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We study the isoscalarsT=0d and isovectorsT=1d pairing correlations inN=Z nuclei. They are estimated
from the double difference of binding energies for odd-oddN=Z nuclei and the odd-even mass difference for
the neighboring odd-mass nuclei, respectively. The empirical and BCS calculations based on aT=0 andT
=1 pairing model reproduce well the almost degeneracy of the lowestT=0 andT=1 states over a wide range
of even-even and odd-oddN=Z nuclei. It is shown that this degeneracy is attributed to competition between the
isoscalar and isovector pairing correlations inN=Z nuclei. The calculations give an interesting prediction that
the odd-oddN=Z nucleus82Nb has possibly the ground state withT=0.
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There is a current topic with increasing interests in study-
ing isovectorsT=1d and isoscalarsT=0d proton-neutronspnd
pairing correlations inN=Z nuclei [1]. At present, it is not
clear whetherpn pairing correlations are strong enough to
form a static condensate. It is well known that an experimen-
tal signature of like-nucleon proton-protonsppd and neutron-
neutronsnnd J=0 pairing correlations in nuclei with neutron
excess is the odd-even mass difference, which is extra bind-
ing energy of even-even nuclei relative to that of odd-mass
nuclei. However, the odd-even mass differences for even-
even N=Z nuclei are larger than those of the neighboring
even-evenN=Z+2 nuclei, and it reflects the gain in pairing
due to strongerpn correlations[2]. It has recently been
shown[3,4] that the three-point odd-even mass difference for
an odd-mass nucleus with neutron excess is an excellent
measure ofpp and nn pairing correlations in neighboring
even-even nucleus, although it is still controversial[5]. This
conclusion suggests that thepp andnn pairing correlations in
N=Z even-even nuclei also can be estimated from the odd-
even mass difference of neighboring odd-mass nuclei with
N=Z+1. On the other hand, thepn pairing can be estimated
from the double difference of binding energies[2]. When we
assume isospin symmetry inN<Z nuclei, theT=1 pn pair-
ing and like-nucleon(pp andnn) pairing are classified in the
sameT=1 pairing correlations, and the former correlation
energy should be the same as the latter one.

Odd-oddN=Z nuclei are an ideal experimental laboratory
for the study ofpn pairing correlations. It is well known that
the lowestT=0 andT=1 states in odd-oddN=Z nuclei are
almost degenerate and exhibit the inversion of the sign of the
energy differenceET=1−ET=0, while all even-evenN=Z nu-
clei have theT=0 ground states and theT=1 excited states
with large excitation energies. Several authors[6–11] already
pointed out that this degeneracy in odd-oddN=Z nuclei re-
flects the delicate balance between the symmetry energy and
the pairing correlations. TheT=0 and T=1 ground-state
binding energies ofN=Z nuclei were calculated by using an
algebraic model based on IBM-4[12]. In this paper, we
study theT=0 andT=1 pairing correlations from a phenom-
enological point of view, and analyze them in the BCS cal-
culations within a schematic model that includesT=1 and
T=0 pairing interactions.

We begin with the estimation ofT=1 pairing correlations
in N=Z nuclei. A typical indicator forT=1 pairing correla-
tions is the following three-point odd-even mass difference:

Dn
s3dsZ,Nd =

s− 1dN

2
fBsZ,N + 1d − 2BsZ,Nd + BsZ,N − 1dg,

s1d

whereBsZ,Nd is the negative binding energy of a system.
Since BsZ,N±1d<BsZ,Nd+D±l based on standard BCS
theory with pairing gapD leads toDn

s3dsZ,Nd<D, the indi-
catorDn

s3d is often interpreted as a measure of the empirical
pairing gap. However, it is well known that values of
Dn

s3dsZ=even,Nd are large for evenN and small for oddN. It
was discussed[3] that Dn

s3dsZ=even,N=oddd is an excellent
measure ofT=1 pairing correlations, and the differences of
Dn

s3d at adjacent even- and odd-N nuclei reflect the mean-field
contributions. From a view point of the semiempirical mass
formula, the above indicator is well known to be affected by
the symmetry energy term in the liquid-drop model. In the
macroscopic-microscopic shell model, however, the curva-
ture contribution cancels out the symmetry energy contribu-
tion as pointed out by Satultaet al. [3]. What does the mag-
nitude of the pairing gap in theN=Z nuclei mean? We
suggest thatDn

s3dsZ,Z+1d of odd-mass nucleus should be re-
garded as pure pairing gap inN=Z adjacent even-even and
odd-odd nuclei. For theN=Z nuclei, the four and five point
indicators cannot be adopted because they include large con-
tributions from mean-field andpn correlations[2,5]. Figure 1
shows experimental values ofDn

s3d in odd-mass nuclei, where
we plot Dn

s3dsZ,Z+1d for 16,A,60. When there is no data
of Dn

s3dsZ,Z+1d for 60,A,110, we adoptDn
s3d for nearest

nuclei with N=Z+1. The expected quenching of neutron
pairing at magic(or semimagic) particle numberN or Z
=14, 28, 40, and 50 is clearly seen in the figure.

The standard curve 12A−1/2 is also shown as a guide eye
in Fig. 1. We can see that the average pairing gap is smaller
than the values of the curve 12A−1/2. The global trend can be
fitted by the curve 5.18A−1/3 MeV, as discussed in recent
analyses[11,13], whereT=1 pairing gapDT=1 obtained from
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some binding energy difference is fitted by the mass depen-
denceA−1/3 different from the standard one 12A−1/2. The dif-
ference between the two curves is quite large for light nuclei,
while it is small for heavy nuclei. The average gap was re-
cently analyzed[14] by D=a+bA−1/3 which has theoretical
foundation. This analysis also supports the weaker mass de-
pendence. We now consider the following pairing Hamil-
tonian to describe theT=1 pairing correlations:

H = H0 + HP = o
a

«aca
†ca −

1

2
Go

k

Pk
†Pk, s2d

where«a is the single-particle energy andPk is theJ=0 pair
operator with isospinT=1,Tz=k. Implying isospin invari-
ance to the above Hamiltonian, the pairing partHP includes
the isovectorpn interactions. The standard BCS calculations
with the pairing Hamiltonian(2) were performed insd and
fpg shells. We adopted single-particle energies from a
spherical Woods-Saxon potential in the BCS calculations.
The pairing force strengthG=24.5/A was chosen so as to fit
the experimental odd-even mass differenceDn

s3dsZ=even,Z
+1d in odd-mass nuclei. The BCS results forA.40 almost
agree with the experimental odd-even mass differences, and
moreover reproduce the shell effects. The BCS calculations
reproduce well the behavior of the observed odd-even mass
difference over a wide range ofN=Z nuclei. Thus theT=1
pairing correlations can be estimated from the odd-even
mass differenceDn

s3dsZ=even,Z+1d in odd-mass nuclei.
To describe thepn pairing correlations in odd-oddN=Z

nuclei, let us estimate the following double difference of
binding energies[2,15,16]:

Dpn
T sZ,Nd = 1

2fBsZ,NdT − BsZ,N − 1d − BsZ − 1,Nd

+ BsZ − 1,N − 1dg, s3d

where BsZ,NdT is the binding energy of lowest state with

isospinT in odd-oddN=Z nuclei. Figure 2 shows the double
difference of binding energies calculated from the experi-
mental binding energies. The odd-even mass differences for
odd-mass nuclei are also displayed. Then we can see that the
Dn

s3dsZ=even,Z+1d agrees with theDpn
T=1sZ+1,Z+1d. This

means thatT=1 pn pairing for odd-oddN=Z nuclei has the
same correlation energy as the like-nucleonnn pairing, Dn

=Dpn
T=1, when assuming isospin symmetry. Thus,

the indicatorDpn
T=1 gives theT=1 pn pairing gap inN=Z

nuclei. TheDpn
T=0 can be regarded as theT=0 pn pairing

gap as well. Figure 2 with these estimations indicates that the
T=0 pn correlations are superior to theT=1 pn correlations
in the ground states ofsd shell nuclei, and the inversion
occurs in thepf shell nuclei. TheT=0 pn pairing gapDpn

T=0

cannot be explained by theT=1 pairing Hamiltonian(2).
In a previous paper[2], it has been shown that theT=0

matrix elements of the monopole fieldVm
Tsa,bd are signifi-

cantly larger than theT=1 ones, and are very important in
determining the double differences of binding energies,
wherea,b are the single-particle orbitals. We can see that the
matrix elements are quite large for isoscalar components but
small for isovector components. In the USD interaction, the
monopole matrix elements withT=0 have values around
−3 MeV and are strongly attractive. If we assume that the
T=0 monopole matrix elements are equal and independent of
angular momentumJ and the single-particle orbitals,Vm

T=0 is
reduced to theJ-independent isoscalarpn pairing interaction.
Neglecting T=1 monopole components, let us add the
J-independentT=0 pn pairing interaction[2,17] to the pair-
ing Hamiltonian(2):

H = H0 + HP + Hpn
t=0

= H0 + HP − k0o
aùb

o
J,M

AJM,00
† sabdAJM,00sabd, s4d

whereAJM,00
† sabd is the pair operator with spinJ and isospin

FIG. 1. The experimental odd-even mass differencesDn
s3dsZ

=even,Z+1d (solid diamonds) in odd-mass nuclei withN=Z+1,
and the pairing gaps(open circles) obtained by the BCS calcula-
tions. The solid curve is 5.18A−1/3 and the dashed curve denotes
12A−1/2.

FIG. 2. Thepn pairing gaps estimated from the double differ-
ences of experimental binding energies. The solid circles denote the
T=0 pn pairing gap, and the solid triangles theT=1 pn pairing gap.
The odd-even mass differences in odd-mass nuclei withN=Z+1 are
shown by the open squares. The dashed curve is the half of theT
=0 pairing force strengthk0.
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T=0. TheT=1 pairing interaction does not contribute to the
double difference of binding energiesDpn

T=0, andDpn
T=0<k0/2.

Then, the T=0 pairing force strength k0=244.5s1
−1.67A−1/3d /A is chosen so as to fit theT=0 pn pairing gap
as seen in Fig. 2. The isovector monopole components in
USD are small, except forVm

T=1ss1/2,s1/2d. The deviations
from the curvek0/2 for 30P and 34Cl in Fig. 2 would be
attributed to the large value of isovector component
Vm

T=1ss1/2,s1/2d. We recently introduced[17] monopole cor-
rections to improve the energy levels of48Ca, etc. In this
paper, we ignore these correction terms.

If we assume degenerate single-particle energies«a=0.0,
the above Hamiltonian has SO(5) symmetry [18] and the
eigenenergy is assigned by the valence nucleon numbern,
seniorityn, p=sn−nd /2, and isospinT [2],

kHP0
+ Hpn

t=0lSOs5d = −
1

2
Gps2V + 3 −n − pd −

1

2
k0n

2
Sn

2
+ 1D

+
1

2
sG + k0dTsT + 1d, s5d

whereV=oa is the degeneracy of shell orbits. Note that the
above equation includes the so-called symmetry energy term
with coefficientasAd /A=sG+k0d /2. The parametersG and
k0 used above give just the empirical symmetry energy for-
mula asAd=134.4s1−1.52A−1/3d determined by Duflo and
Zuker [13].

We next consider energy difference between the lowest
T=0 and T=1 states in odd-oddN=Z nuclei. Odd-oddN
=Z nuclei with A,40 have the ground states withT
=0,J.0 except for34Cl, while the ground states of odd-odd

N=Z nuclei with 40,A,74 areT=1 andJ=0 except for
58Cu. Several authors discussed that this degeneracy is attrib-
uted to the delicate balance between the symmetry energy
and pairing correlations, and that the energy difference be-
tween T=1 and T=0 states is well reproduced byET=1
−ET=0=2asAd /A−2DT=1 using the value,75 for asAd and
the pairing gapDT=1=12A−1/2. However, if we substitute the
odd-even mass differenceDn

s3dsZ=even,Z+1d for DT=1, the
energy differenceET=1−ET=0 becomes larger than the experi-
mental value. The energy difference can be regarded as a
measure of competition between theT=0 andT=1 pairing
correlations as seen from the following identity,

ET=1 − ET=0 = 2sDpn
T=0 − Dpn

T=1d. s6d

The relationshipsDpn
T=0<k0/2 andDpn

T=1<Dn
s3d offer an alter-

native relationET=1−ET=0<k0−2Dn
s3d for the energy differ-

ence except for30P and34Cl. If we adopt the parameterk0

=244.5s1−1.67A−1/3d /A and the average value of pairing gap
5.18A−1/3 for Dn

s3d, we get the dashed curve in Fig. 3, which
displays well the trend of the experimental values of energy
differenceET=1−ET=0. Adopting the experimental odd-even
mass differences forDn

s3d andk0=244.5s1−1.67A−1/3d /A, we
obtain the energy differenceET=1−ET=0 denoted by the open
squares. These values nicely reproduce the experimental val-
ues except for30P and34Cl as shown in Fig. 3. The disagree-
ments in30P and34Cl are attributed to the large deviations of
T=0 pairing gap from the curvek0/2 due to the neglect of
the shell effects in Fig. 2.

Moreover, we calculated theT=0 andT=1 energy differ-
ences for odd-oddN=Z nuclei with Aù78, although there
are no experimental data of the energy difference. The cal-
culation predicts that82Nb has possibly the ground state with

FIG. 3. The energy difference between theT=0 andT=1 states
in odd-oddN=Z nuclei. The experimental values of the differences
are denoted by solid diamonds. The open squares present the values
estimated from the experimental odd-even mass differences in Fig.
1 and theT=0 pairing force strengthk0. The dashed line isk0

−10.4A−1/3.

FIG. 4. The calculated energy differences between the lowest
T=0 andT=1 states in even-even(upper plots) and odd-odd(lower
plots) N=Z nuclei. The solid diamonds are the same as Fig. 3. The
open circles denote the energy differences obtained by the BCS
calculations. The dashed curve is 2asAd /A.

COMPETITION BETWEEN ISOSCALAR AND ISOVECTOR… PHYSICAL REVIEW C 69, 061302(R) (2004)

RAPID COMMUNICATIONS

061302-3



T=0, while the other odd-oddN=Z nuclei have theT=1
ground state. We call this isospin inversion hereafter. It is
well known that a similar isospin inversion occurs at58Cu.
The isospin inversion is due to characteristic situation, where
the Fermi energy lies between large spin and small spin or-
bits with large energy gap, i.e., 1f7/2 and 2p3/2 for 58Cu, and
1g9/2 and 2p1/2 for 82Nb. In these cases, theT=1 pairing gap
is quite small as seen in Fig. 1, and energy difference
becomes large from the simple relationET=1−ET=0<k0

−2Dn
s3dsZ=even,Z+1d.

Figure 4 shows the calculated energy differencesET=1
−ET=0 in odd-odd and even-evenN=Z nuclei. The energy
differences in the BCS approximations are calculated by
2asAd /A+DBCS for even-even N=Z nuclei and by k0

−2DBCS for odd-oddN=Z nuclei whereasAd is the empirical
symmetry energy coefficient andDBCS is the BCS pairing
gap. The BCS calculations well reproduce the experimental
values of energy differences, except for odd-oddN=Z nuclei
with A,40. The BCS calculations show that theT=0 and
T=1 states in82Nb are almost degenerate, while the ground
states of adjacent odd-oddN=Z nuclei have isospinT=1.

In conclusion, we investigated theT=0 andT=1 pairing
correlations inN=Z nuclei. TheT=1 pairing correlations in
N=Z nuclei are extracted from the odd-even mass differ-
ences of the neighboring odd-mass nuclei, which can be fit-
ted by the curve 5.18A−1/3. The pn pairing correlations are
estimated from the double difference of binding energies.
The T=1 pn pairing gap is the same as thenn pairing gap.
The indicatorDpn

T=0 presents the magnitude ofT=0 pn pairing
correlations. The energy differences between theT=0 and
T=1 states are well described by theT=1 andT=0 pairing
model. In odd-oddN=Z nuclei, theT=1 pairing correlations
compete with theT=0 pairing correlations, and the degen-
eracy of theT=0 andT=1 states occurs. The empirical val-
ues and BCS results reproduced the energy difference. In
particular, our results predict that odd-oddN=Z nucleus
82Nb has theT=0 ground state or theT=0 andT=1 states
are almost degenerate. The odd-even mass differences for
even-evenN=Z nuclei are extremely larger than those of the
neighboring even-evenNÞZ nuclei. It would be affected by
strongpn correlations. Further studies in this direction are in
progress.
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