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Structure of hot dense matter at subnuclear densities is investigated by quantum molecular dy@istDics
simulations. We analyze nucleon distributions and nuclear shapes using two-point correlation functions and
Minkowski functionals to determine the phase-separation line and to classify the phase of nuclear matter in
terms of the nuclear structure. Obtained phase diagrams show that the density of the phase boundaries between
the different nuclear structures decreases with increasing temperature due to the thermal expansion of nuclear
matter region. The critical temperature for the phase separatia® iMeV for the proton fractiorx=0.5 and
=5 MeV for x=0.3. Our result suggests the existence of “spongelike” phases with negative Euler characteristic
in addition to the simple “pasta” phases in supernova cores TstiB MeV.
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[. INTRODUCTION profiles. At lower temperatures where each nuclei fluctuates
a little around an average species, a compressible liquid-drop
In the process of the collapse-driven supernijamatter ~ model [15] with incorporating the temperature dependence
in the core experiences adiabatic compression: the centr@f its bulk, surface, and Coulomb+lattice components pro-
density increases from10° g cni3 at the beginning of the Vvides a useful way to investigate the pasta p_ha_ses at finite
collapse to around the normal nuclear densipy temperatures. As for the bulk compondas], binding en-

=0.165 f13 just before bounce; the temperature reache&'dY, saturation density, and incompressibility7], which
~0(1) MeV at this point. are parameters characterizing saturation properties, decrease

At subnuclear densities, nuclear matter exhibits the coexWith increasing temperature while the temperature depen-

. o . . dence of the symmetry energy is not significgh8]. For
istence of a liquid phase with a gas phase due to the Inte'gurface component, thermal broadening of the nucleon den-

n_ucleon.mteracuon wh|ch has an attractive part. In th? den'sity profile reduces nuclear surface tensj@f]. Lattice en-
sity region where nuclei are about to melt into uniform

o . ergy is also modified by translational motion of nud&b].
matter, it is expected that, at sufficiently low temperatures,ever, at higher temperatures where the fluctuation of

relevant to neutron star interiof2], the energetically favor- ,clear shape is significant, the above liquid-drop picture no
able configuration of the mixed phase possesses mterestupgnger holds: we have to call on sonab initio method
like and spherical bubbles, etc., which are referred to agight be possible that, at these temperatures, the shape of the

nucle_ar ‘pastar3,4]. _ nuclear surface fluctuates and nuclei of various sizes and
This prediction is confirmed by several approaches asshapes coexist like colloid due to the entropy effect.
suming nuclear shapes such as the liquid drop mdd&elg These finite temperature effects can be well described by

and the Thomas-Fermi calculatiof8, and is also confirmed the methods of molecular dynami@dD) for nucleon many-
without assuming nuclear shapes in the framework of théody systemgsee, e.g., Ref[20] for review). QMD [21],
Thomas-Fermi approximatiof®] and of the quantum mo- which is one of them, enables us to treat much larger systems
lecular dynamic¢QMD) [10,17. While nuclear pasta at zero than the other methods of MD do. Furthermore, at tempera-
temperature is studied by several authors, pasta phasestates of several MeV, shell effects, which cannot be incorpo-
finite temperatures relevant to supernova inner cores havwated by QMD, are less important because they washed away
not been studied yet except for a work by Lassatdl. using by thermal fluctuations above-3 MeV. Thus QMD is an
the Thomas-Fermi approximatigh2] and brief estimates of efficient and trustable method for studying nuclear matter at
thermal fluctuations of the long-wave-length mdéer]. Itis  finite temperature§22,23.
noted that, at temperatures of several MeV, effects of thermal Pasta phases in supernova mat®KM) are expected to
fluctuations on nucleon distribution would be quite signifi- affect the neutrino transport and hydrodynamics in super-
cant at subnuclear densities. However, the mean-field aprova cores. Let us first note that the neutrino wavelengths,
proximation such as the Thomas-Ferfli3] and Hartree- typically of order 20 fm, are comparable to or even greater
Fock [14] approximation is not suitable to incorporate than the internuclear spacing, leading to diffractive effects on
thermal fluctuations. the neutrino elastic scattering off such a periodic spatial
Finite temperature effects lead to evaporation of nucleonstructure of nuclear matt¢8]. These effects, induced by the
from nuclear liquid region and smoothed nucleon densityinternuclear Coulombic correlations, would reduce the scat-
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tering rates and hence the lepton fractign For the bcc
lattice of spherical nuclei, such a reduction was examined by T= >
Horowitz [24] by calculating the associated static structure L)
factor. It is also noteworthy that nonspherical nuclei and . ,
?huebalgjtﬁ;% 28232:5? in specific direction. In such direction, Vo= lcp(i) S exp| - (Ri - Rj)
g processes are no longer coherent, in 2"\ qopo 202
contrast to the case of roughly spherical nuclei whose finite-
ness in any direction yields constructive interference in the _ (P -P)*
scattering, which leads to the neutrino-trappj2§,26. The 2p(2)
final point to be mentioned is that the changes in the nuclear
shape are accompanied by discontinuities in the adiabatic
index, denoting how hard the equation of state of the mate- Vsiorme= @ > i
rial is. These discontinuities may influence the core hydro- Y 2po; j(=i) '
dynamics during the initial phase of the collag4é]. -
In the present paper, we '_s'_tudy the_structure of hot dense + LT [ 2 d3r7)i(r)7)j(r)] A
matter at subnuclear densities within the framework of (L+7)pg 5 i(#i)
QMD. Simulations of nuclear matter with proton fractign
=0.3 in addition to symmetric nuclear matter=0.5 are c
performed because the typical value of the proton fraction Veym= 2—5 E 1-27- Tj|)pij, (5)
for supernova matter is around 0.3 due to the trapping of the Poij(i)
electron neutrinog25,26. We draw phase diagrams far
=0.5 and 0.3 in the density versus temperature plane, which 1) 1
show the qualitative feature of the finite temperature effects Vwp = ng%)D + Vﬁ)Dzz_ex > P_p
on the structure of nuclear matter. The results of the present Poij+) g 4| T2
study would be helpful to understand the real situation of the fipnq
interior of the collapsing cores. c® 1
The plan of this paper is as follows. In Sec. Il, we briefly + = 5P} » (6)
explain the QMD model used in the present study and then 2poij(+i) 1+ Pi=Pj
discuss an effective temperature. In this section, a thermo- fipuo
statting method used in the simulations is also explained. In
Sec. Ill, we show snapshots of some typical nucleon distri- &2 1 1
butions to discuss qualitative features of finite temperature  Vcoulomb™ 5 > ( ) (TJ + )
effect. After that, we analyze the structure of matter using L)
two-point correlation functions and Minkowski functionals, 1
and finally, resultant phase diagrams are shown. Summary x de3r d*r’
and conclusion are presented in Sec. IV.

P?

m’ (2)

iLj(#i)

81O 3)

] ]

2Pij

|r —r ,|Pi(r)Pj(r') +Vp—ev (7)
wherep;; means the overlap between the single-nucleon den-
Il. FORMULATION sities, pi(r) andp;(r), for ith andjth nucleons given as

A. Model Hamiltonian

Simulating nuclear matter at subnuclear densities within pij = f d®r pi(r)p;(r), (8)
the framework of QMD, we use a QMD model Hamiltonian
developed by Maruyamet al. [22], which is constructed so 4. is the nucleon spin and; is the isospin(r;=1/2 for

as to reproduce bulk properties of nuclear matter and propprotons and -1/2 for neutrons and Cp, g, Po,
erties of finite nuclei. This model Hamiltonian, which de- , B,7,Cs cW c@ u, andL are model parameters de-

: : : : ex 1 Zex 1 M1
scribes interactions between nucleons, consists of the followgsrmined to reproduce the properties of the ground states
Ing six terms of the finite nuclei, especially heavier ones, and the satu-

H=T+Vo, +V. +Voo + Vo +V 1 ration_ properties Qf nuclear_ matt€?2]. A parameter set
paurt Vigme+ Veym+ Viuo * Veouoms (1) used in this work is shown in Table I. The single-nucleon

whereT is the kinetic energyVp,,; is the Pauli potential densitiesp;(r) and’p;(r) are given as
introduced to reproduce the Pauli principle effectively,
VsiymelS the Skyrme potential which consists of an attrac- B ,_ 1 (r-Ry)? 9
tive two-body term and a repulsive three-body teig,, pir) =li(n)]= (27.,|_)3/2€Xp oL ' 9
is the symmetry potential,Vyp is the momentum-
dependent potential introduced as two Fock terms of the B
. . . (r - R)
Yukawa interaction and/cqyomp iS the Coulomb energy i) = - (10)
including the constant contributioW,_. due to the Cou- (277L)32 oL
lomb interaction between protons and electrp28]. The
expressions of these terms are given as with
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TABLE |. Effective interaction parameter s¢K=280 MeV, 1 P2
medium EOS model in Ref22)). kBTkln E (12)
| 1 Zm
a(MeV) ~92.86 loses its meaning of the temperature in thermodynamics. We
B(MeV) 169.28 here use an effective temperaturg; proposed by Chika-
T 1.33333 zumi et al. [29], which is given as
C4{MeV) 25.0
1 - 3 1 R;
ezx(MeV) 258.54 EE . 2 s dR;
cZ(Mev) 375.6 2 NS 2 ' dt
u(MeV) 2.35
uo(MeV) 0.4 1 IH
L(fm?) 2.1 :—25 \op (13
It can be immediately seen that this expression is equivalent
- (A+nY to the usual kinetic temperature defined by EtR) if the
L=—"—L. (11)  effective HamiltonianX does not have momentum depen-
2 dent interactiongi.e., Vpui and Vyp).

In order to confirm whether the effective temperattigg
is consistent with temperature in the Boltzmann statistics, we
The quantityp;(r) is introduced in the three body term of perform Metropolis Monte Carl¢MC) simulations[30—32
Skyrme interaction Eq(4) to incorporate the effect of the with 256 nucleongwith x=0.5, i.e., 128 protons and 128
repulsive density-dependent term by the modified width ~ neutrong. We investigate six given temperaturebg
=0.1, 1, 3, 5, 7, and 10 MeV at four nucleon densities
=0.1, 0.3, 0.5, and 0.8, within a wide region of the phase
B. Effective temperature diagram at subnuclear densities covering from a phase-
separating region to a uniform fluid region. We prepare a
The effective Hamiltoniaril) used in this work contains cubic box, which is imposed of the periodic boundary con-
momentum dependent interactions, i.e., the Pauli potentialition. In the simulations the system is equilibrated at a given
Vpaui @nd the momentum dependent potentigh. Thus the temperatureTg for 1000 MC steps(i.e., 1000< N trial
usual expression for the instantaneous kinetic temperatum@oves, and then sampling is carried out for the following
T.in given as 10000 MC steps. Sampled values of the instantaneous effec-

")

B

FIG. 1. Sampled values of the
instantaneous effective tempera-
ture Te and their long-time aver-
ages (Tg for p=0.1, 0.3, 0.5,
and 0.8pg.

T (MeV k
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- 38.07 fm —

(d)

FIG. 2. (Color online The nucleon distributions fox=0.5, p=0.22%, at the temperatures of 1, 2, 3 and 4 MeV. 2048 nucleons are
contained in the simulation box of sitg,,=38.07 fm. These figures show the top views along the axis of the rodlike nuclei. Protons are
represented by the red particles, and neutrons by the green ones.

tive temperaturd o is plotted in Fig. 1. We can see from this N p2 srﬁ Ins
figure that the instantaneous effective temperaiiysefluc- Hnose= E —— +U{R}{PH+—=+g—
tuates around the given value fg, It is noted that the i=1 2m, 2Q B
long-time averaged valu€3 ) of the effective temperature

I . e . s Ins
coincide withTse quite well within the fluctuations of order =H+—=+9g—, (14
~Ts/ VN due to the finite particle number. Thus we can 2Q B

conclude that the effective temperature given by @) is _ ) _

consistent with temperature in the Boltzmann statistics. It igvhere/({R},{P;}) is the potential which depends on both

also confirmed that, in microcanonical molecular dynamicgPositions and moments is the additional dynamical vari-

simulations, the mean value of the effective temperaturéble for time scalingps is the momentum conjugate £ Q

keeps constant after the system is equilibrated enough.  is the thermal inertial parameter corresponding to a coupling
The instantaneous effective temperature can be negatiygonstant between the system and thermdstaour simula-

as plotted in Fig. 1 forTg,=0.1 whenP; and R; take the tions, we seQ~10° MeV (fm/c)”], g is a parameter to be

opposite directions each other due to the contribution of th&€termined as I8 by a condition for generating the ca-
momentum dependent interactions. However, it is also con?onical ensemble in the classical molecular dynamics
firmed that, after the system is relaxed, the long-time averaggimulations, ands is defined asf=1/kgTsex The equa-

of the effective temperature does not take negative valugd®ns of motion yield

when we pursue the time evolution of the system by the

QMD equations of motion even though some friction terms dRi _ IHnose_ P IU (15)
were attached to them like Eq€l7) in Ref. [11]. In the dt JdP; m P’

remaining part of this paper, we measure temperaiuby

the effective temperature.

= = P, 16
C. Thermostat at IR, IR, &Py (16)

It is necessary to perform “isothermal” QMD simulations
in order to equilibrate the system at a specified effective
temperature. In ordinary molecular dynamics simulations, 1ds_ 19Hnose_ 19 Hnose_ 17
what is called the Nosé-Hoover thermostat is commonly sdt s dps Q d¢& =& 17)
used to carry out constant-temperature simulati@is-34.
The approach of Nosé and Hoover is based on the Hamil-
tonian of an extended system, which contains additional and d¢ 1 h
artificial coordinates and velocities intended to mimic the aza D
dynamics of the system in contact with a thermal bath. It is
shown by Nosé that this method generates the states in the
canonical ensemble average, i.e., the microcanonical et”!
semble average in the extended system reduces to the ca-
nonical ensemble average in the real system. For example, E= i’s, (19)
the momentum distribution coincides with the Maxwell- Q
Boltzmann distribution exactly after the system is well
equilibrated with this thermostat. where ¢ means the thermodynamic friction coefficient.

Here we modify the Nosé-Hoover’s method so as to adapt In the dynamical process described by these equations,
to the effective temperature. The Hamiltonian of the ex-HposeiS cOnserved and the value of the effective temperature
tended system in this case can be written as fluctuates aroundg; as can be seen from E(L8).

= [ (18
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FIG. 3. (Color online The same as Fig. 2 at the temperatures of 1, 2, and 3 MeV for the system with 16384 nucleons. Thelhgx size
is 76.14 fm. The upper panels show the top views along the axis of the cylindrical nu@leiDatand the lower ones show the side views.

[l. SIMULATIONS AND RESULTS wave packetqsee, e.g., Appendix A in Refl1]), which
enables us to sum up the contributions of long-range inter-
actions in a system with periodic boundary conditions effi-
Let us here explain the procedure for the simulations. Weiently. For the nuclear interaction, we use the effective
investigate nuclear matter with proton fractioks0.5 and  Hamiltonian developed by Maruyanet al. (medium EOS
0.3 at subnuclear densities in sufficiently wide regions of themode) [22], whose expressions are given in Sec. Il A.
density versus temperature plane covering the whole region We first prepare a hot, uniform gas with 2048 nucleons at
where phase separation is observed: symmetric nuclear mak—~ 20 MeV as an initial condition, which is equilibrated for
ter is studied up tp=0.7py and T=8 MeV, and nuclear ~500-2000 fm¢ in advance. We then cool it down slowly
matter withx=0.3, up top=0.6p, and T=7 MeV. Intervals for O(10°-10% fm/c keeping the nucleon density un-
of the density and the temperature between the investigatathanged by the frictional relaxation methete Eqs(17) of
points are 0.02f&, or 0.05, and 0.5 MeV or 1 MeV, respec- Ref. [11]] until the temperature reaches5 MeV. For the
tively (from the present section onward, we kgt 1). present QMD model, this is the typical temperature for the
We perform simulations for a cubic box with periodic boundary of the phase-separating region at subnuclear den-
boundary condition. We study tHe, p,e) system with 2048 sities relevant to the pasta phases. In some cases, the ther-
nucleons(for some typical cases of the columnar phase andnostat of the Nosé-Hoover tyfisee Sec. Il ¢is also used
the planar phase, a system with 16384 nucleons is alsg.usedo cool the system down quickly untic10 MeV, at which
Throughout this paper, we treat systems which are not magemperature matter is still completely uniform.
netically polarized, i.e., they contain equal numbers of pro- After the cooling process, the system is then relaxed for
tons(and neutronswith spin up and spin down. The relativ- ~4000—-5000 fm¢ at a given temperaturd,e using the
istic degenerate electrons which ensure charge neutrality atbermostat of the Nosé-Hoover type, which is followed by a
regarded as a uniform background because the influence &irther relaxation for~5000 fm/c at the sameT ., without
the electron screening on the phase diagram at subnucletire thermostat(i.e., microcanonical molecular dynamics
densities is small as shown explicitly in R¢27]. The Cou-  simulation. Thermal averages are measured in the microca-
lomb interaction is calculated by the Ewald method takingnonical relaxation process. The above relaxation processes
account of the Gaussian charge distribution of the protorwith and without the thermostat are repeated for the other

A. Procedures for simulations
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«—31.42fm——

=z

FIG. 4. (Color onling The nucleon distributions fok=0.5, p=0.4p, at the temperatures of 1,2,3, and 4 MeV. 2048 nucleons are
contained in the simulation box of sitg.=31.42 fm. Protons are represented by the red particles, and neutrons by the green ones.

values ofT¢; by changingT.;by 0.5 or 1 MeV and keeping 1 1
the densit;aconstant. * §n(r)zz_rfdﬂrvfdgxd(x)@(XH) (20)
Simulations of a larger system with 16384 nucleons have

also been performed for some typical cases of the phases

with slablike nuclei and with rodlike nuclei to examine the =(&(x)a(x+ r)>X'Qr’
importance of finite size effects. We combine eight replicate
samples aff=0 with 2048 nucleons into a 16384-nucleon
sample. We then add numerical noise to the positions and th

(21)

QNhere(- . ->X,Qr denotes an average over the positkoand the
irection ofr, and§,(x) is the fluctuation of the density field

momenta of nucleons, up to 0.1 fm in the position and” "(x) given by
1 MeV/c in the momentum. We increase the temperature by p(x) _Eﬁ
1 MeV and relax the system for4000-5000 fmé¢ using §(x) = — (22
the Nosé-Hoover thermostat and relax further for p
~3000-5000 fmé¢ without the thermostat. These relaxation it
processes are repeated far=2 and 3 MeV.
The simulations of the 2048-nucleon system are per- —_ Ni
formed wusing PCs (Pentium ) equipped with p= V& (23

MDGRAPE-2, and those of the 16384-nucleon system are

done by Fujitsu VPP 5000 equipped with MDGRAPE-2.  To identify the nuclear surface and extract its morphological
characteristics, we use the Minkowski functionédse, e.g.,
Ref.[35] and references therein; a concise review is provided

B. Two-point correlation functions by Ref.[36]; a brief explanation is given in Sec. IV C of Ref.
and Minkowski functionals [11]), especially of the integral mean curvature and the Euler
characteristi¢37].

To analyze the spatial distribution of nucleons, we use the Suppose we set a threshold dengify and consider the
two-point correlation function. The two-point correlation regions where the density is higher than this value sur-
function & for the nucleon density fielp® (i=N,p,n; rounded by the isodensity surfaces fg{ (the procedure for
whereN stands for nucleonds here defined as identifying the nuclear surface, which is characterized by

FIG. 5. (Color onling The same as Fig. 4 at the temperatures of 1,2, and 3 MeV for the system with 16384 nucleons. Thelhgx size
is 62.84 fm. These figures are shown in the direction parallel to the plane of the slablike nuickd.at
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FIG. 7. The same as Fig. 6 fa=0.5 andp=0.4py, where the
FIG. 6. Comparison of the two-point correlation functiofigy ~ system is in the phase with rodlike nuclei at zero temperature.
for the systems with 2048 and 16384 nucleons. These are calculated
for x=0.5 andp=0.225,, where the system is in the phase with These snapshots help us to understand the qualitative feature

rodlike nuclei at zero temperature. The error bars are the standa@f finite temperature effects on the nuclear structure.
deviations in the long-time average. Figures 2 and 3 show snapshots of the nucleon distribu-
tion for x=0.5 at a density of 0.22f (the phase with cylin-
isoqlensi_ty surfaces for a specific value mf, will be ex- Sr(l)cgl ;nudc:)tezl OEI‘Z;; (()t)h:nghzlsges.wéiltha?)?ar?a?hr:)lﬁlgi]oasti g;a '
plained in Sec. lll D. The integral mean curvature and theHere we show snapshots of the 2048-nucleon system and
Euler characteristic are defined as surface integrals of thg .« 0 16384 nicleon system for both cases. Figures 8
following local quantities: the mean curvaturd=(x; and 9 forx=0.3 are the same as Figs. 3 and 5 X&O.S,
+xp)/2 and the Gaussian curvatu@s= «yky, i.e., [ HAA respectively; Fig. 8 is for 0.17 (the phase with cylindrical
and x=(1/2m)] x GdA wherex,; and «, are the principal  \,clej at T=0), and Fig. 9 is for 0.3, (the phase with
curvatures andiA is the area element of the surface of the yjanar nuclei af=0). The snapshots for the 16384-nucleon
body K. The Euler characteristig is a purely topological systems(Figs. 3, 5, 8, and Pare depicted without perspec-
quantity and is expressed as tive.

From these figures, we can see the following qualitative
features irrespective of the proton fraction and the system
+ (number of cavities (24)  size: atT=1.5-2 MeV (but snapshots fof =1.5 MeV are
not shown therg the number of the evaporated nucleons
starts to be significant; at=3 MeV, the density profiles of
the nucleons are smoothed out and it is difficult to identify
the nuclear surface. In view of the fact that these general
features are the same for systems with different particle num-
ber (see Figs. 2 and 3 fop=0.22%; Figs. 4 and 5 forp

AT . =0.4py), We can say that a qualitatively correct phase dia-
nucleon density dIStI’IbUtIO@(')(X).. Detailed procedures for gram can be obtained by using 2048-nucleon system. This
calculatingg; ((H) andyx/V) are given in Sec. IVAIV C) of - giatement is supported by the behaviors of the two-point cor-
Ref. [11]. relation function for these two systems. It is remarkable that
the results oféyy for the 2048-nucleon and 16384-nucleon
systems coincide quite well, as shown in Figs. 6 and 7. How-
ever, we should note that the larger system can incorporate
thermal fluctuations of longer wavelengtf38]. As can be

Let us first show some snapshots of the nucleon distribuseen by comparing Figs.(&@ and Ka), the slablike nuclei
tion at finite temperatures for densities corresponding to théave waves in the 16384-nucleon systenTatl MeV, but
phases with slablike nuclei and with rodlike nucleiTat0.  they do not in that with 2048 nucleons.

x = (number of isolated regions (number of tunnels

Here we introduce their normalized quantities: the area
averaged mean curvatur@il)=(1/A) [HdA, and the Euler
characteristic densityy/V, whereV is the volume of the
whole space.

In the present work, we use 8428 grid points for the
2048-nucleon(16384-nucleop system in constructing the

C. Typical nucleon distributions for the phases with rodlike
and slablike nuclei
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FIG. 8. (Color online The nucleon distributions fax=0.3, p=0.175p, at the temperatures of 1, 2, and 3 MeV. 16384 nucleons are
contained in the simulation box of sitg,,=82.788 fm. Protons are represented by the red particles, and neutrons by the green ones. The
upper panels show the top views along the axis of the cylindrical nucle&8t and the lower ones show the side views.

By comparing the two cases of different values of theFigs. 2b) and 3b)]. The fragility of the phase with slablike
proton fraction in more detail, we can see that the number ofiuclei would stem from the Landau-Peierls instability and its
the evaporated protons is significantly smaller than that ofarger volume fraction for the nuclear matter region.
neutrons aff =2 MeV for x=0.3 although they are close to In closing the present section, we would like to mention
each other aT =2 MeV for x=0.5. Here, the number den- the effect of the dripped neutrons on the nuclear structure.
sity of the evaporated neutrons is defined as the number dektere we note that the dripped neutrons, on the one hand,
sity of neutrons outside nuclei minus that of dripped neutronsuppress the thermal expansion of nuclei due to its pressure
at T=0. A nuclear matter region with higher proton fraction acting on the nuclear surface, and they, on the other hand,
(but less than 0)6is more energetically favorable than that reduce the nuclear surface tension. As can be seen by com-
with lower proton fraction because of the symmetry energyparing Figs. 8a), 3(b), 8(a), and &b), rodlike nuclei tend to
and thus, ak=0.3, neutrons are preferentially evaporated tobuckle atx=0.3 as the temperature increases, but they do not
increase the proton fraction in the nuclei. at x=0.5 while just expand in radius. At a fixed density and

We also note that, fox=0.5, the slablike nuclei touch and a fixed number of nuclei, the nuclear radius is directly related
fuse with each other ai=2 MeV [see Figs. &) and b)] to the volume fraction of the nuclear matter region, which is
while the rodlike structure persists at this temperafisee  principally determined by the bulk properties. Conversely,

T=3Me

T e

T=1MeV

(@)
FIG. 9. (Color online The nucleon distributions fox=0.3, p=0.3%, at the temperatures of 1, 2, and 3 MeV. 16384 nucleons are

contained in the simulation box of sitg,,=66.34 fm. Protons are represented by the red particles, and neutrons by the green ones. These
figures are shown in the direction parallel to the plane of the slablike nuclet @t
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FIG. 10. Two-point correlation function of the density fluctua-  FIG. 11. Two-point correlation function of the density fluctua-
tion calculated foN=2048,x=0.5 andp=0.22%,, where the sys- tion calculated folN=2048,x=0.5 andp=0.4p,, Where the system
tem is in the phase with rodlike nuclei at zero temperature. Thés in the phase with slablike nuclei at zero temperature. The error
error bars are the standard deviations in the long-time average. bars are the standard deviations in the long-time average.

bending of nuclei is controled by elastic constants of nucleizero temperaturésee Figs. 2 and)4From these figures, we
which depend on nuclear surface tension and the Coulomban see that the amplitude §fy and the relative density
energy[39]. The reduction of nuclear surface tension due todispersion given byé\(0) decrease as the temperature in-
the dripped neutrons leads to decrease of the elastic cogreases. It is also noted that the smallest value atfwhich
stants, which makes rodlike nuclei easy to buckle in the casg, is zero does not change much compared to the change in
of x=0.3. In the case ok=0.5, there is no reduction of the the amplitude. This behavior a@fy is similar to that when
elastic constants due to the dripped neutrons, and we thule density increases keepifig 0, which we have studied in
only observe the thermal expansion in radius of the rodlikedetail in Ref.[11]. The important point is that, from the
nuclei. Next, let us consider about slablike nuclei. By com-pehavior ofé&yy, We can determine the temperature at which
paring Figs. §o) and 9b), we can see that, fax=0.5, the  the long-range correlation of the nucleon distributions disap-
slablike nuclei expand in thickness and they touch with eaclpears. Figure 1QFig. 11) show that the long-range correla-
other atT~2 MeV; for x=0.3, their expansion is smaller tion cannot be seen a=6 MeV(5 MeV) and thus the
and they do not touch at this temperature. This result can bghase-separating boundary lies betw@erb and 6 MeV at
understood as a consequence of suppressing the thermal éx225,, (T=4 and 5 MeV at 0.4).
pansion of nuclei due to the dripped neutrons. The two-point correlation function; (i=N,p, andn) for
x=0.3 are also plotted in Figs. 12 and 13 fo#+0.175 and
0.3, respectively. As shown in Figs. 8 and 9, these densi-
ties correspond to the phases with rodlike nuclei and with
In constructing phase diagrams, we determine the phasstablike nuclei.(Although the snapshots shown in these fig-
separating region, identify the nuclear surface and classifyires are for the 16384-nucleon system, the correlations func-
the nuclear structure according to its morphological charactions &; shown in Figs. 12 and 13 are calculated for the
teristics. For these purpose, we use the two-point correlation048-nucleon systemThe amplitude of; and the relative
functions and the Minkowski functionals introduced in Sec.density dispersion decrease with increasing temperature as in
[l B. the case ok=0.5. Amongéyn; &pp and §,,, the second one
The phase-separation region is determined by the twohas the largest amplitude and the third one has the smallest
point correlation functiorgyy of the nucleon density fluctua- except for high temperatures at which matter is almost uni-
tion. In Figs. 10 and 11, we plofy(r) for symmetric  form. We note that the smallest zero-points of the three kinds
nuclear matter ah=0.225 and 0.4y, respectively, as typical of &; almost coincide each other and they remain nearly con-
examples. The former density corresponds to the phase witktant at lower temperatures. This behavior shows that the
rodlike nuclei and the latter one to that with slablike nuclei atdensity fluctuations of protons and neutrons are strongly cor-

D. Phase diagrams
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FIG. 12. Two-point correlation function of the density fluctua-  FIG. 13. Two-point correlation function of the density fluctua-
tion calculated foN=2048,x=0.3 andp=0.175,, where the sys- tion calculated foN=2048,x=0.3 andp=0.3%y, where the system
tem is in the phase with rodlike nuclei at zero temperature. Thds in the phase with slablike nuclei at zero temperature. The error
error bars are the standard deviations in the long-time average. bars are the standard deviations in the long-time average.

related even at=0.3 and the wavelength of the density fluc- o, act morphological features of the nuclear surface using
tuations does not change significantly at these temperature§ie Euler characteristic densifyV and the averaged mean
As can be seen from Fig. {@[13(@)], the long-range corre- curvature(H). As one can see from E@Q4), x/V>0 for the
Iakt]mn dlsappe_ars ar=5 M(T.V[T_A' MeV] and thus the sphere and the spherical hole phases, which have isolated
P ase-sepf\ratmg boundary lies betw@em and 5 MeV at regions and cavities, respectivelihe coexistence phase of
0.17% [T=3 and 4 MeV at 0.3&)]. spheres and cylinders also habv>0), and x/V=0 for the

To classify the phase in terms of the nuclear structure wey ; _
. ) . ' .. other ideal pasta phasésee the plateau of/ V=0 for lower
first have to identify nuclear surface. The Euler characteristic P P P of

is useful for identifying the nuclear surface. Figures 14 and — ——
15, show the Euler characteristic density/ of the nucleon 0.001
density field calculated for symmetric matter fp=0.225
and 0.4,, respectively, and they are plotted as a function of
the threshold density, for an isodensity surface. As for
=0.3, x/V is plotted in Figs. 16 and 17 fop=0.175 and
0.35, respectively. It is noted that the curves pfV for
lower temperatures have a plateau, which corresponds to the=
nuclear surface. The plateau valuexdhV is in the range of §
-0(10% to O(10% (see, e.g., Figs. 12 and 16 in R¢t1)), -0.001
thus we should use the region where the error is smaller than I
~10*for judging whethery/V is zero or not(hereafter, we
use the word “plateau” for the plateau region in which the -
error is smaller than-10"%). According to these figures, the 0002
plateau ofy/V can be observed dt=1 and 2 MeV, while it o/
cannot be seen fof=3 MeV. Thus we can say that the th7 70

nuclear surface cannot be identified in the temperature range giG. 14. Euler characteristic density for various temperatures

of T=3 MeV at these values of andp even in the phase- potted as a function of the threshold densiiy. The data shown
separating region. This result agrees with the qualitative feanere are calculated for=0.5 andp=0.225,, where the system is
ture of the snapshots of nucleon distributions shown in Figsin the phase with rodlike nuclei at zero temperature. The error bars
2-5, 8, and 9. are the standard deviations in the long-time average. For

In the region where the nuclear surfaces can be identified; 2 MeV, the plateau region lies betwepf=0.45, and =0.6p,,
we sort them into several phases by their nuclear shapes. Wehere x/V is negative.

m-3)
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_ FIG. 15. Thg same as Fig. 1_4 fpe=0.4p, where the system is FIG. 16. Euler characteristic density for various temperatures
in the phase with slablike nuclei at zero temperature. olotted as a function of the threshold density, The data shown

here are calculated for=0.3 andp=0.175%,, where the system is
temperatures shown in Figs. 14317e., the cylinder, the in the phase with rodlike nuclei at zero temperature. The error bars
slab and the cylindrical hole phases which consist of infi-are the standard deviations in the long-time average.
nitely long rods, infinitely extending slabs and infinitely long
cylindrical holes, respectively. The “spongelike” intermedi- the different structures decreasesTagicreases. This is due
ate phases which are obtained in our previous works aboub the thermal expansion of the nuclear matter region. At
zero-temperature mattgt0,11 have negative values gff V'  higher temperatures, the volume fraction of the nuclear mat-
(see Fig. 12 of Ref{11)). ter region is larger even at smaller densities, which leads to
As for the averaged mean curvature, at zero temperaturelecrease of the each phase boundaty0.22%, for x=0.5
this quantity decreases almost monotonically from positiveand at 0.17p, for x=0.3, the volume fraction of the nuclear
to negative with increasing density until matter becomes unimatter region increases by5% atT=2 MeV from the value
form (see Fig. 12 of Ref{11]). Obviously, the zero value of at T=1 MeV; at 0.4, for x=0.5 and at 0.3, for x=0.3,
(H) corresponds to the slab phase. this increase is~10-15%. This feature is less noticeable
In our previous work[11], the sequence of nuclear for x=0.3 thanx=0.5, probably because the thermal expan-
shapes at zero temperature with increasing densitgion of nuclei is prevented by the pressure of the dripped
is described by the quantitied) and x/V as follows: neutrons outside of nuclei.
sphere ((H)>0,x/V>0)— cylinder ((H)>0,x/V=0) Above T~3 MeV, si_ngle-particle excitati_ons are d_omi-
—((H)>0,y/V<0)—slab ((H)=0,y/V=0)—((H)<0, nant rather than collective nuclear deformation, and simulta-

YIV<0)— cylindrical hole ((H)<0,y/V=0)— spherical neously, the binding potential of “nuclei” becomes smeared
hole ((H)<0,y/V>0)— uniform out. Further increase of temperature leads to dissolution of

Here we classify the nuclear structure at various temper r]uclei into the .unif'orm fluid phase. The critical point for the
tures and densities according to the combinations of sig%s hase separation is locatedyat 0.25, and T=6 MeV for
(H) and x/V as we have done in the case®£0 [11]. The =0.5and ap~0.2p0 andT=5 MeV forx=0.3. The above
phase diagrams obtained fg=0.5 and 0.3 are plotted in N B
Figs. 18 and 19, respectively, in tipeT plane[40]. Qualita- x=0.3, p=0.35p, ]
tive features of these phase diagrams are the same, but tt 001
phase separating region surrounded by a dashed line i
smaller forx=0.3 than that fox=0.5. As shown by dotted
lines in these figures, nuclear surface can be identified typi-z~
cally at T=3 MeV in the density range of interest. In this IE
region where we can observe the nuclear surface, the nucleeZ
structure generally changes in the same sequence mentione{
above even at finite temperaturgke only exception is that > -0.001
the density region of the phase with slablike nuclei is
bounded afT=2 MeV for x=0.3). The regions above the
dotted line and the dashed line correspond to some nonuni
form phase, which is however difficult to be classified into
specific phases because the nuclear surface cannot be we P/ Po
identified.

The most striking finite temperature effect on the phase FIG. 17. The same as Fig. 16 for O@5where the system is in
diagrams is that the density of each phase boundary betwedie phase with slablike nuclei at zero temperature.
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FIG. 18. Phase diagram of matterxat0.5 plotted in thep-T plane. The dashed and the dotted lines on the diagram show the phase
separation line and the limit below which the nuclear surface can be identified, respectively; thus the regions above the dotted line and the
dashed line show the nonuniform regions, which are difficult to be classified into specific phases in terms of the nuclear structure. The
dash-dotted lines are the phase boundaries between the different nuclear shapes. The symbols SP, C, S, CH, SH, U stand for nuclear shape:
i.e., sphere, cylinder, slab, cylindrical hole, spherical hole, and uniform, respectively. The pareiigB3eshow intermediate phases
between A and B phases. The regigas{(g) correspond to the nuclear shapes characterizééipand y/V as follows:(a) (H)>0,x/V>0;

(b)y (HY>0,x/V=0; (c) (H)>0,x/V<0; (d) (H)=0,x/V=0; (e) (H)<0,x/V<O0; (f) (H)y<0,x/V=0; (g) (H)y<0,x/V>0. Simulations
have been carried out at points denoted by circles.

value of the critical temperature far=0.5 is not so different gion between 2 and 3 MeV carefully, in which the nuclear
from the result obtained by Chikazuret al, T,=8 MeV,  surface still remains but its fluctuations are large.
using a similar nuclear potentig29].

As far as we have investigated, the coIIoit_jaI state in IV. SUMMARY AND CONCLUSION
which nuclei of various sizes and shapes coexist cannot be
observed except for the coexistence phase of spheres andWe have investigated the structure of hot nuclear matter at
cylinders. To resolve the problem whether the colloidalsubnuclear densities by QMD simulations. The values of the
phases are realized due to entropy effect at finite tempergroton fraction studied in the present work are 0.5 and 0.3;
tures, it would be necessary to perform simulations with theéhe latter is a typical value in supernova inner cores. The
16384-nucleon system for various densities other than thphase diagram obtained for=0.3 (Fig. 19 tells that the
typical cases shown in Sec. Il C, or for the temperature repasta phases and the spongelike intermediate phases survive
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until T<3 MeV except for the higher density region pf Through the present work and the previous off11],
= 0.45%,. This result strongly suggests that these phases wittve have depicted the structure of nuclear matter in neutron
exotic nuclear structures can exist in the inner cores in thetar inner crusts and supernova inner cores in its equilibrium
pre-bounce stage of the collapse-driven supernovae. Thusdtate. Our studies will be helpful in understanding the realis-
would be meaningful to investigate a modification to thetic sjtuations of the interior of the dense stars. For further
neutrino opacity due to the infinitely extending “pasta” andwork, studies on the dynamical aspects of the nuclear pasta
spongelike structures in the futuf41]. _ become important. For example, in connection with the pos-
The present research has provided the general picture @fp|e instability of the long-range order of the planar phase,
the phase diagram at subnuclear densities in the temperatUfgich cannot be fully incorporated in our simulations, elastic
vs density plane. The qualitative features of the nucleon dis; ropertieg39] of the pasta and spongelike phases should be
Fribution at finit_e temperatures, except f(_)r higher densitie tudied further. Structural transitions between the pasta
Just below which matter becomes uniform even ‘Bt phases induced by compression and decompression is one of

~0 MeV, may be summarized as follows. . X )
At T=1-1.5 MeV, the number of evaporated nucleonsthe most interesting pr_oblenﬁQZ] which have not yet been
tudied at all. We believe that our work here, which was

starts to be significant. However, the macroscopic structur@ . ; ;
of matter does not basically change from that of seroPerformed within a dynamical framework, will open up these
temperature matter except for a small expansion of th&€W aspects of the study on nuclear pasta.
nuclear matter regions.

At T=1.5-2.5 MeV, fluctuations of the nuclear shape

start to be significant and, in some cases, the topology of the ACKNOWLEDGMENTS
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