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Structure of hot dense matter at subnuclear densities is investigated by quantum molecular dynamics(QMD)
simulations. We analyze nucleon distributions and nuclear shapes using two-point correlation functions and
Minkowski functionals to determine the phase-separation line and to classify the phase of nuclear matter in
terms of the nuclear structure. Obtained phase diagrams show that the density of the phase boundaries between
the different nuclear structures decreases with increasing temperature due to the thermal expansion of nuclear
matter region. The critical temperature for the phase separation is*6 MeV for the proton fractionx=0.5 and
*5 MeV for x=0.3. Our result suggests the existence of “spongelike” phases with negative Euler characteristic
in addition to the simple “pasta” phases in supernova cores untilT&3 MeV.
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I. INTRODUCTION

In the process of the collapse-driven supernova[1], matter
in the core experiences adiabatic compression: the central
density increases from,109 g cm−3 at the beginning of the
collapse to around the normal nuclear densityr0
=0.165 fm−3 just before bounce; the temperature reaches
,Os1d MeV at this point.

At subnuclear densities, nuclear matter exhibits the coex-
istence of a liquid phase with a gas phase due to the inter-
nucleon interaction which has an attractive part. In the den-
sity region where nuclei are about to melt into uniform
matter, it is expected that, at sufficiently low temperatures
relevant to neutron star interiors[2], the energetically favor-
able configuration of the mixed phase possesses interesting
spatial structures such as rodlike and slablike nuclei and rod-
like and spherical bubbles, etc., which are referred to as
nuclear “pasta”[3,4].

This prediction is confirmed by several approaches as-
suming nuclear shapes such as the liquid drop models[5–7]
and the Thomas-Fermi calculations[8], and is also confirmed
without assuming nuclear shapes in the framework of the
Thomas-Fermi approximation[9] and of the quantum mo-
lecular dynamics(QMD) [10,11]. While nuclear pasta at zero
temperature is studied by several authors, pasta phases at
finite temperatures relevant to supernova inner cores have
not been studied yet except for a work by Lassautet al.using
the Thomas-Fermi approximation[12] and brief estimates of
thermal fluctuations of the long-wave-length mode[6,7]. It is
noted that, at temperatures of several MeV, effects of thermal
fluctuations on nucleon distribution would be quite signifi-
cant at subnuclear densities. However, the mean-field ap-
proximation such as the Thomas-Fermi[13] and Hartree-
Fock [14] approximation is not suitable to incorporate
thermal fluctuations.

Finite temperature effects lead to evaporation of nucleons
from nuclear liquid region and smoothed nucleon density

profiles. At lower temperatures where each nuclei fluctuates
a little around an average species, a compressible liquid-drop
model [15] with incorporating the temperature dependence
of its bulk, surface, and Coulomb+lattice components pro-
vides a useful way to investigate the pasta phases at finite
temperatures. As for the bulk component[16], binding en-
ergy, saturation density, and incompressibility[17], which
are parameters characterizing saturation properties, decrease
with increasing temperature while the temperature depen-
dence of the symmetry energy is not significant[18]. For
surface component, thermal broadening of the nucleon den-
sity profile reduces nuclear surface tension[19]. Lattice en-
ergy is also modified by translational motion of nuclei[15].
However, at higher temperatures where the fluctuation of
nuclear shape is significant, the above liquid-drop picture no
longer holds; we have to call on someab initio method
which does not assume nuclear shape. More interestingly, it
might be possible that, at these temperatures, the shape of the
nuclear surface fluctuates and nuclei of various sizes and
shapes coexist like colloid due to the entropy effect.

These finite temperature effects can be well described by
the methods of molecular dynamics(MD) for nucleon many-
body systems(see, e.g., Ref.[20] for review). QMD [21],
which is one of them, enables us to treat much larger systems
than the other methods of MD do. Furthermore, at tempera-
tures of several MeV, shell effects, which cannot be incorpo-
rated by QMD, are less important because they washed away
by thermal fluctuations above,3 MeV. Thus QMD is an
efficient and trustable method for studying nuclear matter at
finite temperatures[22,23].

Pasta phases in supernova matter(SNM) are expected to
affect the neutrino transport and hydrodynamics in super-
nova cores. Let us first note that the neutrino wavelengths,
typically of order 20 fm, are comparable to or even greater
than the internuclear spacing, leading to diffractive effects on
the neutrino elastic scattering off such a periodic spatial
structure of nuclear matter[3]. These effects, induced by the
internuclear Coulombic correlations, would reduce the scat-

PHYSICAL REVIEW C 69, 055805(2004)

0556-2813/2004/69(5)/055805(14)/$22.50 ©2004 The American Physical Society69 055805-1



tering rates and hence the lepton fractionYL. For the bcc
lattice of spherical nuclei, such a reduction was examined by
Horowitz [24] by calculating the associated static structure
factor. It is also noteworthy that nonspherical nuclei and
bubbles are elongated in specific direction. In such direction,
the neutrino scattering processes are no longer coherent, in
contrast to the case of roughly spherical nuclei whose finite-
ness in any direction yields constructive interference in the
scattering, which leads to the neutrino-trapping[25,26]. The
final point to be mentioned is that the changes in the nuclear
shape are accompanied by discontinuities in the adiabatic
index, denoting how hard the equation of state of the mate-
rial is. These discontinuities may influence the core hydro-
dynamics during the initial phase of the collapse[12].

In the present paper, we study the structure of hot dense
matter at subnuclear densities within the framework of
QMD. Simulations of nuclear matter with proton fractionx
=0.3 in addition to symmetric nuclear mattersx=0.5d are
performed because the typical value of the proton fraction
for supernova matter is around 0.3 due to the trapping of the
electron neutrinos[25,26]. We draw phase diagrams forx
=0.5 and 0.3 in the density versus temperature plane, which
show the qualitative feature of the finite temperature effects
on the structure of nuclear matter. The results of the present
study would be helpful to understand the real situation of the
interior of the collapsing cores.

The plan of this paper is as follows. In Sec. II, we briefly
explain the QMD model used in the present study and then
discuss an effective temperature. In this section, a thermo-
statting method used in the simulations is also explained. In
Sec. III, we show snapshots of some typical nucleon distri-
butions to discuss qualitative features of finite temperature
effect. After that, we analyze the structure of matter using
two-point correlation functions and Minkowski functionals,
and finally, resultant phase diagrams are shown. Summary
and conclusion are presented in Sec. IV.

II. FORMULATION

A. Model Hamiltonian

Simulating nuclear matter at subnuclear densities within
the framework of QMD, we use a QMD model Hamiltonian
developed by Maruyamaet al. [22], which is constructed so
as to reproduce bulk properties of nuclear matter and prop-
erties of finite nuclei. This model Hamiltonian, which de-
scribes interactions between nucleons, consists of the follow-
ing six terms

H = T + VPauli+ VSkyrme+ Vsym+ VMD + VCoulomb, s1d

whereT is the kinetic energy,VPauli is the Pauli potential
introduced to reproduce the Pauli principle effectively,
VSkyrmeis the Skyrme potential which consists of an attrac-
tive two-body term and a repulsive three-body term,Vsym
is the symmetry potential,VMD is the momentum-
dependent potential introduced as two Fock terms of the
Yukawa interaction andVCoulomb is the Coulomb energy
including the constant contributionVp−e due to the Cou-
lomb interaction between protons and electronsf28g. The
expressions of these terms are given as
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whereri j means the overlap between the single-nucleon den-
sities,risr d andr jsr d, for ith and j th nucleons given as

ri j ;E d3rrisr dr jsr d, s8d

si is the nucleon spin andti is the isospinsti =1/2 for
protons and −1/2 for neutronsd and CP,q0,p0,
a ,b ,t ,Cs,Cex

s1d ,Cex
s2d ,m1,m2 andL are model parameters de-

termined to reproduce the properties of the ground states
of the finite nuclei, especially heavier ones, and the satu-
ration properties of nuclear matterf22g. A parameter set
used in this work is shown in Table I. The single-nucleon
densitiesrisr d and r̃isr d are given as

risr d = ufisr du2 =
1

s2pLd3/2expF−
sr − Rid2

2L
G , s9d

r̃isr d =
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2L̃
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with
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L̃ =
s1 + td1/t

2
L. s11d

The quantityr̃isr d is introduced in the three body term of
Skyrme interaction Eq.s4d to incorporate the effect of the

repulsive density-dependent term by the modified widthL̃.

B. Effective temperature

The effective Hamiltonian(1) used in this work contains
momentum dependent interactions, i.e., the Pauli potential
VPauli and the momentum dependent potentialVMD. Thus the
usual expression for the instantaneous kinetic temperature
Tkin given as

3

2
kBTkin =

1

N
o
i=1

N
Pi

2

2mi
, s12d

loses its meaning of the temperature in thermodynamics. We
here use an effective temperatureTeff proposed by Chika-
zumi et al. [29], which is given as

3
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It can be immediately seen that this expression is equivalent
to the usual kinetic temperature defined by Eq.s12d if the
effective HamiltonianH does not have momentum depen-
dent interactionssi.e., VPauli andVMDd.

In order to confirm whether the effective temperatureTeff
is consistent with temperature in the Boltzmann statistics, we
perform Metropolis Monte Carlo(MC) simulations[30–32]
with 256 nucleons(with x=0.5, i.e., 128 protons and 128
neutrons). We investigate six given temperaturesTset
=0.1, 1, 3, 5, 7, and 10 MeV at four nucleon densitiesr
=0.1, 0.3, 0.5, and 0.8r0 within a wide region of the phase
diagram at subnuclear densities covering from a phase-
separating region to a uniform fluid region. We prepare a
cubic box, which is imposed of the periodic boundary con-
dition. In the simulations the system is equilibrated at a given
temperatureTset for 1000 MC steps(i.e., 10003N trial
moves), and then sampling is carried out for the following
10000 MC steps. Sampled values of the instantaneous effec-

TABLE I. Effective interaction parameter set(K=280 MeV;
medium EOS model in Ref.[22]).

asMeVd −92.86

bsMeVd 169.28

t 1.33333

CssMeVd 25.0

Cex
s1dsMeVd −258.54

Cex
s2dsMeVd 375.6

m1sMeVd 2.35

m2sMeVd 0.4

Lsfm2d 2.1

FIG. 1. Sampled values of the
instantaneous effective tempera-
ture Teff and their long-time aver-
ages kTeffl for r=0.1, 0.3, 0.5,
and 0.8r0.
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tive temperatureTeff is plotted in Fig. 1. We can see from this
figure that the instantaneous effective temperatureTeff fluc-
tuates around the given value ofTset. It is noted that the
long-time averaged valueskTeffl of the effective temperature
coincide withTset quite well within the fluctuations of order
,Tset/ÎN due to the finite particle number. Thus we can
conclude that the effective temperature given by Eq.(13) is
consistent with temperature in the Boltzmann statistics. It is
also confirmed that, in microcanonical molecular dynamics
simulations, the mean value of the effective temperature
keeps constant after the system is equilibrated enough.

The instantaneous effective temperature can be negative

as plotted in Fig. 1 forTset=0.1 whenPi and Ṙi take the
opposite directions each other due to the contribution of the
momentum dependent interactions. However, it is also con-
firmed that, after the system is relaxed, the long-time average
of the effective temperature does not take negative values
when we pursue the time evolution of the system by the
QMD equations of motion even though some friction terms
were attached to them like Eqs.(17) in Ref. [11]. In the
remaining part of this paper, we measure temperatureT by
the effective temperature.

C. Thermostat

It is necessary to perform “isothermal” QMD simulations
in order to equilibrate the system at a specified effective
temperature. In ordinary molecular dynamics simulations,
what is called the Nosé-Hoover thermostat is commonly
used to carry out constant-temperature simulations[31–34].
The approach of Nosé and Hoover is based on the Hamil-
tonian of an extended system, which contains additional and
artificial coordinates and velocities intended to mimic the
dynamics of the system in contact with a thermal bath. It is
shown by Nosé that this method generates the states in the
canonical ensemble average, i.e., the microcanonical en-
semble average in the extended system reduces to the ca-
nonical ensemble average in the real system. For example,
the momentum distribution coincides with the Maxwell-
Boltzmann distribution exactly after the system is well
equilibrated with this thermostat.

Here we modify the Nosé-Hoover’s method so as to adapt
to the effective temperature. The Hamiltonian of the ex-
tended system in this case can be written as

HNose= o
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+ UshRij,hPijd +
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2
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b
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whereUshRij ,hPijd is the potential which depends on both
positions and momenta,s is the additional dynamical vari-
able for time scaling,ps is the momentum conjugate tos, Q
is the thermal inertial parameter corresponding to a coupling
constant between the system and thermostatfin our simula-
tions, we setQ,108 MeV sfm/cd2g, g is a parameter to be
determined as 3N by a condition for generating the ca-
nonical ensemble in the classical molecular dynamics
simulations, andb is defined asb;1/kBTset. The equa-
tions of motion yield
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Q
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wherej means the thermodynamic friction coefficient.
In the dynamical process described by these equations,

HNoseis conserved and the value of the effective temperature
fluctuates aroundTset as can be seen from Eq.(18).

FIG. 2. (Color online) The nucleon distributions forx=0.5, r=0.225r0 at the temperatures of 1, 2, 3 and 4 MeV. 2048 nucleons are
contained in the simulation box of sizeLbox=38.07 fm. These figures show the top views along the axis of the rodlike nuclei. Protons are
represented by the red particles, and neutrons by the green ones.
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III. SIMULATIONS AND RESULTS

A. Procedures for simulations

Let us here explain the procedure for the simulations. We
investigate nuclear matter with proton fractionsx=0.5 and
0.3 at subnuclear densities in sufficiently wide regions of the
density versus temperature plane covering the whole region
where phase separation is observed: symmetric nuclear mat-
ter is studied up tor=0.7r0 and T=8 MeV, and nuclear
matter withx=0.3, up tor=0.6r0 and T=7 MeV. Intervals
of the density and the temperature between the investigated
points are 0.025r0 or 0.05r0 and 0.5 MeV or 1 MeV, respec-
tively (from the present section onward, we setkB=1).

We perform simulations for a cubic box with periodic
boundary condition. We study thesn,p,ed system with 2048
nucleons(for some typical cases of the columnar phase and
the planar phase, a system with 16384 nucleons is also used).
Throughout this paper, we treat systems which are not mag-
netically polarized, i.e., they contain equal numbers of pro-
tons(and neutrons) with spin up and spin down. The relativ-
istic degenerate electrons which ensure charge neutrality are
regarded as a uniform background because the influence of
the electron screening on the phase diagram at subnuclear
densities is small as shown explicitly in Ref.[27]. The Cou-
lomb interaction is calculated by the Ewald method taking
account of the Gaussian charge distribution of the proton

wave packets(see, e.g., Appendix A in Ref.[11]), which
enables us to sum up the contributions of long-range inter-
actions in a system with periodic boundary conditions effi-
ciently. For the nuclear interaction, we use the effective
Hamiltonian developed by Maruyamaet al. (medium EOS
model) [22], whose expressions are given in Sec. II A.

We first prepare a hot, uniform gas with 2048 nucleons at
T,20 MeV as an initial condition, which is equilibrated for
,500–2000 fm/c in advance. We then cool it down slowly
for Os103−104d fm/c keeping the nucleon density un-
changed by the frictional relaxation method[see Eqs.(17) of
Ref. [11]] until the temperature reaches,5 MeV. For the
present QMD model, this is the typical temperature for the
boundary of the phase-separating region at subnuclear den-
sities relevant to the pasta phases. In some cases, the ther-
mostat of the Nosé-Hoover type(see Sec. II C) is also used
to cool the system down quickly until.10 MeV, at which
temperature matter is still completely uniform.

After the cooling process, the system is then relaxed for
,4000–5000 fm/c at a given temperatureTset using the
thermostat of the Nosé-Hoover type, which is followed by a
further relaxation for,5000 fm/c at the sameTset without
the thermostat(i.e., microcanonical molecular dynamics
simulation). Thermal averages are measured in the microca-
nonical relaxation process. The above relaxation processes
with and without the thermostat are repeated for the other

FIG. 3. (Color online) The same as Fig. 2 at the temperatures of 1, 2, and 3 MeV for the system with 16384 nucleons. The box sizeLbox

is 76.14 fm. The upper panels show the top views along the axis of the cylindrical nuclei atT=0, and the lower ones show the side views.
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values ofTset by changingTset by 0.5 or 1 MeV and keeping
the density constant.

Simulations of a larger system with 16384 nucleons have
also been performed for some typical cases of the phases
with slablike nuclei and with rodlike nuclei to examine the
importance of finite size effects. We combine eight replicated
samples atT=0 with 2048 nucleons into a 16384-nucleon
sample. We then add numerical noise to the positions and the
momenta of nucleons, up to 0.1 fm in the position and
1 MeV/c in the momentum. We increase the temperature by
1 MeV and relax the system for,4000–5000 fm/c using
the Nosé-Hoover thermostat and relax further for
,3000–5000 fm/c without the thermostat. These relaxation
processes are repeated forTset=2 and 3 MeV.

The simulations of the 2048-nucleon system are per-
formed using PCs (Pentium III) equipped with
MDGRAPE-2, and those of the 16384-nucleon system are
done by Fujitsu VPP 5000 equipped with MDGRAPE-2.

B. Two-point correlation functions
and Minkowski functionals

To analyze the spatial distribution of nucleons, we use the
two-point correlation function. The two-point correlation
function jii for the nucleon density fieldrsid (i =N,p,n;
whereN stands for nucleons) is here defined as

jiisrd =
1

4p
E dVr

1

V
E d3xdisxddisx + r d s20d

;kdisxddisx + r dlx,Vr
, s21d

wherek¯lx,Vr
denotes an average over the positionx and the

direction ofr , anddisxd is the fluctuation of the density field
rsidsxd given by

disxd ;
rsidsxd − rsid

rsid , s22d

with

rsid ;
Ni

V
. s23d

To identify the nuclear surface and extract its morphological
characteristics, we use the Minkowski functionalsssee, e.g.,
Ref. f35g and references therein; a concise review is provided
by Ref.f36g; a brief explanation is given in Sec. IV C of Ref.
f11gd, especially of the integral mean curvature and the Euler
characteristicf37g.

Suppose we set a threshold densityrth and consider the
regions where the density is higher than this value sur-
rounded by the isodensity surfaces forrth (the procedure for
identifying the nuclear surface, which is characterized by

FIG. 4. (Color online) The nucleon distributions forx=0.5, r=0.4r0 at the temperatures of 1,2,3, and 4 MeV. 2048 nucleons are
contained in the simulation box of sizeLbox=31.42 fm. Protons are represented by the red particles, and neutrons by the green ones.

FIG. 5. (Color online) The same as Fig. 4 at the temperatures of 1,2, and 3 MeV for the system with 16384 nucleons. The box sizeLbox

is 62.84 fm. These figures are shown in the direction parallel to the plane of the slablike nuclei atT=0.
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isodensity surfaces for a specific value ofrth, will be ex-
plained in Sec. III D. The integral mean curvature and the
Euler characteristic are defined as surface integrals of the
following local quantities: the mean curvatureH=sk1

+k2d /2 and the Gaussian curvatureG=k1k2, i.e., e]K HdA
and x;s1/2pde]K GdA, wherek1 and k2 are the principal
curvatures anddA is the area element of the surface of the
body K. The Euler characteristicx is a purely topological
quantity and is expressed as

x = snumber of isolated regionsd − snumber of tunnelsd

+ snumber of cavitiesd. s24d

Here we introduce their normalized quantities: the area-
averaged mean curvature,kHl;s1/AdeHdA, and the Euler
characteristic density,x /V, where V is the volume of the
whole space.

In the present work, we use 643s1283d grid points for the
2048-nucleon(16384-nucleon) system in constructing the
nucleon density distributionrsidsxd. Detailed procedures for
calculatingjii (kHl andx /V) are given in Sec. IV A(IV C) of
Ref. [11].

C. Typical nucleon distributions for the phases with rodlike
and slablike nuclei

Let us first show some snapshots of the nucleon distribu-
tion at finite temperatures for densities corresponding to the
phases with slablike nuclei and with rodlike nuclei atT=0.

These snapshots help us to understand the qualitative feature
of finite temperature effects on the nuclear structure.

Figures 2 and 3 show snapshots of the nucleon distribu-
tion for x=0.5 at a density of 0.225r0 (the phase with cylin-
drical nuclei atT=0) and Figs. 4 and 5 show those forx
=0.5 andr=0.4r0 (the phase with planar nuclei atT=0).
Here we show snapshots of the 2048-nucleon system and
those of the 16384-nucleon system for both cases. Figures 8
and 9 forx=0.3 are the same as Figs. 3 and 5 forx=0.5,
respectively; Fig. 8 is for 0.175r0 (the phase with cylindrical
nuclei at T=0), and Fig. 9 is for 0.34r0 (the phase with
planar nuclei atT=0). The snapshots for the 16384-nucleon
systems(Figs. 3, 5, 8, and 9) are depicted without perspec-
tive.

From these figures, we can see the following qualitative
features irrespective of the proton fraction and the system
size: atT.1.5–2 MeV (but snapshots forT.1.5 MeV are
not shown there), the number of the evaporated nucleons
starts to be significant; atT*3 MeV, the density profiles of
the nucleons are smoothed out and it is difficult to identify
the nuclear surface. In view of the fact that these general
features are the same for systems with different particle num-
ber (see Figs. 2 and 3 forr=0.225r0; Figs. 4 and 5 forr
=0.4r0), we can say that a qualitatively correct phase dia-
gram can be obtained by using 2048-nucleon system. This
statement is supported by the behaviors of the two-point cor-
relation function for these two systems. It is remarkable that
the results ofjNN for the 2048-nucleon and 16384-nucleon
systems coincide quite well, as shown in Figs. 6 and 7. How-
ever, we should note that the larger system can incorporate
thermal fluctuations of longer wavelengths[38]. As can be
seen by comparing Figs. 4(a) and 5(a), the slablike nuclei
have waves in the 16384-nucleon system atT=1 MeV, but
they do not in that with 2048 nucleons.

FIG. 6. Comparison of the two-point correlation functionsjNN

for the systems with 2048 and 16384 nucleons. These are calculated
for x=0.5 andr=0.225r0, where the system is in the phase with
rodlike nuclei at zero temperature. The error bars are the standard
deviations in the long-time average.

FIG. 7. The same as Fig. 6 forx=0.5 andr=0.4r0, where the
system is in the phase with rodlike nuclei at zero temperature.
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By comparing the two cases of different values of the
proton fraction in more detail, we can see that the number of
the evaporated protons is significantly smaller than that of
neutrons atT.2 MeV for x=0.3 although they are close to
each other atT.2 MeV for x=0.5. Here, the number den-
sity of the evaporated neutrons is defined as the number den-
sity of neutrons outside nuclei minus that of dripped neutrons
at T=0. A nuclear matter region with higher proton fraction
(but less than 0.5) is more energetically favorable than that
with lower proton fraction because of the symmetry energy,
and thus, atx=0.3, neutrons are preferentially evaporated to
increase the proton fraction in the nuclei.

We also note that, forx=0.5, the slablike nuclei touch and
fuse with each other atT=2 MeV [see Figs. 4(b) and 5(b)]
while the rodlike structure persists at this temperature[see

Figs. 2(b) and 3(b)]. The fragility of the phase with slablike
nuclei would stem from the Landau-Peierls instability and its
larger volume fraction for the nuclear matter region.

In closing the present section, we would like to mention
the effect of the dripped neutrons on the nuclear structure.
Here we note that the dripped neutrons, on the one hand,
suppress the thermal expansion of nuclei due to its pressure
acting on the nuclear surface, and they, on the other hand,
reduce the nuclear surface tension. As can be seen by com-
paring Figs. 3(a), 3(b), 8(a), and 8(b), rodlike nuclei tend to
buckle atx=0.3 as the temperature increases, but they do not
at x=0.5 while just expand in radius. At a fixed density and
a fixed number of nuclei, the nuclear radius is directly related
to the volume fraction of the nuclear matter region, which is
principally determined by the bulk properties. Conversely,

FIG. 8. (Color online) The nucleon distributions forx=0.3, r=0.175r0 at the temperatures of 1, 2, and 3 MeV. 16384 nucleons are
contained in the simulation box of sizeLbox=82.788 fm. Protons are represented by the red particles, and neutrons by the green ones. The
upper panels show the top views along the axis of the cylindrical nuclei atT=0, and the lower ones show the side views.

FIG. 9. (Color online) The nucleon distributions forx=0.3, r=0.34r0 at the temperatures of 1, 2, and 3 MeV. 16384 nucleons are
contained in the simulation box of sizeLbox=66.34 fm. Protons are represented by the red particles, and neutrons by the green ones. These
figures are shown in the direction parallel to the plane of the slablike nuclei atT=0.
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bending of nuclei is controled by elastic constants of nuclei,
which depend on nuclear surface tension and the Coulomb
energy[39]. The reduction of nuclear surface tension due to
the dripped neutrons leads to decrease of the elastic con-
stants, which makes rodlike nuclei easy to buckle in the case
of x=0.3. In the case ofx=0.5, there is no reduction of the
elastic constants due to the dripped neutrons, and we thus
only observe the thermal expansion in radius of the rodlike
nuclei. Next, let us consider about slablike nuclei. By com-
paring Figs. 5(b) and 9(b), we can see that, forx=0.5, the
slablike nuclei expand in thickness and they touch with each
other atT,2 MeV; for x=0.3, their expansion is smaller
and they do not touch at this temperature. This result can be
understood as a consequence of suppressing the thermal ex-
pansion of nuclei due to the dripped neutrons.

D. Phase diagrams

In constructing phase diagrams, we determine the phase
separating region, identify the nuclear surface and classify
the nuclear structure according to its morphological charac-
teristics. For these purpose, we use the two-point correlation
functions and the Minkowski functionals introduced in Sec.
III B.

The phase-separation region is determined by the two-
point correlation functionjNN of the nucleon density fluctua-
tion. In Figs. 10 and 11, we plotjNNsrd for symmetric
nuclear matter atr=0.225 and 0.4r0, respectively, as typical
examples. The former density corresponds to the phase with
rodlike nuclei and the latter one to that with slablike nuclei at

zero temperature(see Figs. 2 and 4). From these figures, we
can see that the amplitude ofjNN and the relative density
dispersion given byjNNs0d decrease as the temperature in-
creases. It is also noted that the smallest value ofr at which
jNN is zero does not change much compared to the change in
the amplitude. This behavior ofjNN is similar to that when
the density increases keepingT=0, which we have studied in
detail in Ref. [11]. The important point is that, from the
behavior ofjNN, we can determine the temperature at which
the long-range correlation of the nucleon distributions disap-
pears. Figure 10(Fig. 11) show that the long-range correla-
tion cannot be seen atT=6 MeVs5 MeVd and thus the
phase-separating boundary lies betweenT=5 and 6 MeV at
0.225r0 (T=4 and 5 MeV at 0.4r0).

The two-point correlation functionsjii (i =N,p, andn) for
x=0.3 are also plotted in Figs. 12 and 13 forr=0.175 and
0.35r0, respectively. As shown in Figs. 8 and 9, these densi-
ties correspond to the phases with rodlike nuclei and with
slablike nuclei.(Although the snapshots shown in these fig-
ures are for the 16384-nucleon system, the correlations func-
tions jii shown in Figs. 12 and 13 are calculated for the
2048-nucleon system.) The amplitude ofjii and the relative
density dispersion decrease with increasing temperature as in
the case ofx=0.5. AmongjNN,jpp, andjnn, the second one
has the largest amplitude and the third one has the smallest
except for high temperatures at which matter is almost uni-
form. We note that the smallest zero-points of the three kinds
of jii almost coincide each other and they remain nearly con-
stant at lower temperatures. This behavior shows that the
density fluctuations of protons and neutrons are strongly cor-

FIG. 10. Two-point correlation function of the density fluctua-
tion calculated forN=2048,x=0.5 andr=0.225r0, where the sys-
tem is in the phase with rodlike nuclei at zero temperature. The
error bars are the standard deviations in the long-time average.

FIG. 11. Two-point correlation function of the density fluctua-
tion calculated forN=2048,x=0.5 andr=0.4r0, where the system
is in the phase with slablike nuclei at zero temperature. The error
bars are the standard deviations in the long-time average.
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related even atx=0.3 and the wavelength of the density fluc-
tuations does not change significantly at these temperatures.
As can be seen from Fig. 12(a)[13(a)], the long-range corre-
lation disappears atTù5 MeVfT=4 MeVg and thus the
phase-separating boundary lies betweenT=4 and 5 MeV at
0.175r0 [T=3 and 4 MeV at 0.35r0].

To classify the phase in terms of the nuclear structure, we
first have to identify nuclear surface. The Euler characteristic
is useful for identifying the nuclear surface. Figures 14 and
15, show the Euler characteristic densityx /V of the nucleon
density field calculated for symmetric matter forr=0.225
and 0.4r0, respectively, and they are plotted as a function of
the threshold densityrth for an isodensity surface. As forx
=0.3, x /V is plotted in Figs. 16 and 17 forr=0.175 and
0.35r0, respectively. It is noted that the curves ofx /V for
lower temperatures have a plateau, which corresponds to the
nuclear surface. The plateau value ofx /V is in the range of
−Os104d to Os104d (see, e.g., Figs. 12 and 16 in Ref.[11]),
thus we should use the region where the error is smaller than
,10−4 for judging whetherx /V is zero or not(hereafter, we
use the word “plateau” for the plateau region in which the
error is smaller than,10−4). According to these figures, the
plateau ofx /V can be observed atT=1 and 2 MeV, while it
cannot be seen forTù3 MeV. Thus we can say that the
nuclear surface cannot be identified in the temperature range
of Tù3 MeV at these values ofx andr even in the phase-
separating region. This result agrees with the qualitative fea-
ture of the snapshots of nucleon distributions shown in Figs.
2–5, 8, and 9.

In the region where the nuclear surfaces can be identified,
we sort them into several phases by their nuclear shapes. We

extract morphological features of the nuclear surface using
the Euler characteristic densityx /V and the averaged mean
curvaturekHl. As one can see from Eq.(24), x /V.0 for the
sphere and the spherical hole phases, which have isolated
regions and cavities, respectively(the coexistence phase of
spheres and cylinders also hasx /V.0), andx /V=0 for the
other ideal pasta phases(see the plateau ofx /V=0 for lower

FIG. 12. Two-point correlation function of the density fluctua-
tion calculated forN=2048,x=0.3 andr=0.175r0, where the sys-
tem is in the phase with rodlike nuclei at zero temperature. The
error bars are the standard deviations in the long-time average.

FIG. 13. Two-point correlation function of the density fluctua-
tion calculated forN=2048,x=0.3 andr=0.35r0, where the system
is in the phase with slablike nuclei at zero temperature. The error
bars are the standard deviations in the long-time average.

FIG. 14. Euler characteristic density for various temperatures
plotted as a function of the threshold densityrth. The data shown
here are calculated forx=0.5 andr=0.225r0, where the system is
in the phase with rodlike nuclei at zero temperature. The error bars
are the standard deviations in the long-time average. ForT
=2 MeV, the plateau region lies betweenrth.0.45r0 and.0.6r0,
wherex /V is negative.
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temperatures shown in Figs. 14–17), i.e., the cylinder, the
slab and the cylindrical hole phases which consist of infi-
nitely long rods, infinitely extending slabs and infinitely long
cylindrical holes, respectively. The “spongelike” intermedi-
ate phases which are obtained in our previous works about
zero-temperature matter[10,11] have negative values ofx /V
(see Fig. 12 of Ref.[11]).

As for the averaged mean curvature, at zero temperature,
this quantity decreases almost monotonically from positive
to negative with increasing density until matter becomes uni-
form (see Fig. 12 of Ref.[11]). Obviously, the zero value of
kHl corresponds to the slab phase.

In our previous work [11], the sequence of nuclear
shapes at zero temperature with increasing density
is described by the quantitieskHl and x /V as follows:
sphere skHl.0,x /V.0d→ cylinder skHl.0,x /V=0d
→ skHl.0,x /V,0d→slab skHl=0,x /V=0d→ skHl,0,
x /V,0d→ cylindrical hole skHl,0,x /V=0d→ spherical
hole skHl,0,x /V.0d→ uniform.

Here we classify the nuclear structure at various tempera-
tures and densities according to the combinations of signs of
kHl andx /V as we have done in the case ofT=0 [11]. The
phase diagrams obtained forx=0.5 and 0.3 are plotted in
Figs. 18 and 19, respectively, in ther-T plane[40]. Qualita-
tive features of these phase diagrams are the same, but the
phase separating region surrounded by a dashed line is
smaller forx=0.3 than that forx=0.5. As shown by dotted
lines in these figures, nuclear surface can be identified typi-
cally at T&3 MeV in the density range of interest. In this
region where we can observe the nuclear surface, the nuclear
structure generally changes in the same sequence mentioned
above even at finite temperatures(the only exception is that
the density region of the phase with slablike nuclei is
bounded atT*2 MeV for x=0.3). The regions above the
dotted line and the dashed line correspond to some nonuni-
form phase, which is however difficult to be classified into
specific phases because the nuclear surface cannot be well
identified.

The most striking finite temperature effect on the phase
diagrams is that the density of each phase boundary between

the different structures decreases asT increases. This is due
to the thermal expansion of the nuclear matter region. At
higher temperatures, the volume fraction of the nuclear mat-
ter region is larger even at smaller densities, which leads to
decrease of the each phase boundary(at 0.225r0 for x=0.5
and at 0.175r0 for x=0.3, the volume fraction of the nuclear
matter region increases by,5% atT=2 MeV from the value
at T=1 MeV; at 0.4r0 for x=0.5 and at 0.35r0 for x=0.3,
this increase is,10–15%). This feature is less noticeable
for x=0.3 thanx=0.5, probably because the thermal expan-
sion of nuclei is prevented by the pressure of the dripped
neutrons outside of nuclei.

Above T,3 MeV, single-particle excitations are domi-
nant rather than collective nuclear deformation, and simulta-
neously, the binding potential of “nuclei” becomes smeared
out. Further increase of temperature leads to dissolution of
nuclei into the uniform fluid phase. The critical point for the
phase separation is located atr,0.25r0 andT*6 MeV for
x=0.5 and atr,0.2r0 andT*5 MeV for x=0.3. The above

FIG. 15. The same as Fig. 14 forr=0.4r0, where the system is
in the phase with slablike nuclei at zero temperature.

FIG. 16. Euler characteristic density for various temperatures
plotted as a function of the threshold densityrth. The data shown
here are calculated forx=0.3 andr=0.175r0, where the system is
in the phase with rodlike nuclei at zero temperature. The error bars
are the standard deviations in the long-time average.

FIG. 17. The same as Fig. 16 for 0.35r0, where the system is in
the phase with slablike nuclei at zero temperature.
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value of the critical temperature forx=0.5 is not so different
from the result obtained by Chikazumiet al., Tc=8 MeV,
using a similar nuclear potential[29].

As far as we have investigated, the colloidal state in
which nuclei of various sizes and shapes coexist cannot be
observed except for the coexistence phase of spheres and
cylinders. To resolve the problem whether the colloidal
phases are realized due to entropy effect at finite tempera-
tures, it would be necessary to perform simulations with the
16384-nucleon system for various densities other than the
typical cases shown in Sec. III C, or for the temperature re-

gion between 2 and 3 MeV carefully, in which the nuclear
surface still remains but its fluctuations are large.

IV. SUMMARY AND CONCLUSION

We have investigated the structure of hot nuclear matter at
subnuclear densities by QMD simulations. The values of the
proton fraction studied in the present work are 0.5 and 0.3;
the latter is a typical value in supernova inner cores. The
phase diagram obtained forx=0.3 (Fig. 19) tells that the
pasta phases and the spongelike intermediate phases survive

FIG. 18. Phase diagram of matter atx=0.5 plotted in ther-T plane. The dashed and the dotted lines on the diagram show the phase
separation line and the limit below which the nuclear surface can be identified, respectively; thus the regions above the dotted line and the
dashed line show the nonuniform regions, which are difficult to be classified into specific phases in terms of the nuclear structure. The
dash-dotted lines are the phase boundaries between the different nuclear shapes. The symbols SP, C, S, CH, SH, U stand for nuclear shapes,
i.e., sphere, cylinder, slab, cylindrical hole, spherical hole, and uniform, respectively. The parentheses(A,B) show intermediate phases
between A and B phases. The regions(a)–(g) correspond to the nuclear shapes characterized bykHl andx /V as follows:(a) kHl.0,x /V.0;
(b) kHl.0,x /V=0; (c) kHl.0,x /V,0; (d) kHl=0,x /V=0; (e) kHl,0,x /V,0; (f) kHl,0,x /V=0; (g) kHl,0,x /V.0. Simulations
have been carried out at points denoted by circles.

FIG. 19. Phase diagram of
matter at x=0.3 plotted in the
r-T plane.
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until T&3 MeV except for the higher density region ofr
*0.45r0. This result strongly suggests that these phases with
exotic nuclear structures can exist in the inner cores in the
pre-bounce stage of the collapse-driven supernovae. Thus it
would be meaningful to investigate a modification to the
neutrino opacity due to the infinitely extending “pasta” and
spongelike structures in the future[41].

The present research has provided the general picture of
the phase diagram at subnuclear densities in the temperature
vs density plane. The qualitative features of the nucleon dis-
tribution at finite temperatures, except for higher densities
just below which matter becomes uniform even atT
,0 MeV, may be summarized as follows.

At T.1–1.5 MeV, the number of evaporated nucleons
starts to be significant. However, the macroscopic structure
of matter does not basically change from that of zero-
temperature matter except for a small expansion of the
nuclear matter regions.

At T.1.5–2.5 MeV, fluctuations of the nuclear shape
start to be significant and, in some cases, the topology of the
nuclear structure changes from that in the zero-temperature
matter for the same density.

At T.2.5–3 MeV, single particle excitations are domi-
nant rather than collective excitations, representing nuclear
deformations. The density profile of nucleons is smoothed
out, and nuclear surface cannot be identified by a threshold
density. At higher temperatures, even the density contrast
becomes drastically smaller, which leads to the transition to
uniform matter. The order of the transition from inhomoge-
neous matter to uniform matter has yet to be clarified.

The critical temperatureTc for the phase separation is
*6 MeV for x=0.5 and*5 MeV for x=0.3.

Through the present work and the previous ones[10,11],
we have depicted the structure of nuclear matter in neutron
star inner crusts and supernova inner cores in its equilibrium
state. Our studies will be helpful in understanding the realis-
tic situations of the interior of the dense stars. For further
work, studies on the dynamical aspects of the nuclear pasta
become important. For example, in connection with the pos-
sible instability of the long-range order of the planar phase,
which cannot be fully incorporated in our simulations, elastic
properties[39] of the pasta and spongelike phases should be
studied further. Structural transitions between the pasta
phases induced by compression and decompression is one of
the most interesting problems[42] which have not yet been
studied at all. We believe that our work here, which was
performed within a dynamical framework, will open up these
new aspects of the study on nuclear pasta.
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