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Following a recent suggestion that theQ+ could be aKpN bound state we perform an investigation under
the light of the meson-meson and meson-baryon dynamics provided by the chiral Lagrangians and using
methods currently employed to dynamically generate meson and baryon resonances by means of unitary
extensions of chiral perturbation theory. We consider two-body and three-body forces and examine the possi-
bility of a bound state below the three-particle pion-kaon-nucleon and above the kaon-nucleon thresholds.
Although we find indeed an attractive interaction in the case of isospin I=0 and spin-parity 1/2+, the interac-
tion is too weak to bind the system. If we arbitrarily add to the physically motivated potential the needed
strength to bind the system and with such strong attraction evaluate the decay width intoKN, this turns out to
be small. A discussion on further work in this direction is done.
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I. INTRODUCTION

A recent experiment at SPring-8/Osaka[1] has found a
clear signal for anS= +1, positive charge resonance around
1540 MeV, confirmed by the DIANA Collaboration at ITEP
[2], CLAS at Jefferson Lab[3], and SAPHIR at ELSA[4].
The resonance has explicit exotic flavor quantum numbers,
given the decay final statesK0p and K+n. Its width is also
intriguingly narrow, less than 20 MeV by present experimen-
tal bounds. A state with these characteristics was originally
predicted by Diakonovet al. in Ref. [5], and since the ex-
perimental observation a large number of theoretical papers
have appeared with different suggestions as to the nature of
the state and possible partners[6–21]. Most of the works
look at the quark structure of what is being called the pen-
taquark, since a standard three quark Fock space assignment
is not allowed. The parity of this candidate state is as yet
undetermined[22], and whereas quark model calculations in
the ground state[23–25] assign to it negative parity, positive
parity is predicted in the Skyrme model[5] requiring a p
wave in the quark model[7,26].

Yet, at a time when many low energy baryonic resonances
are being dynamically generated as meson-baryon quasi-
bound states within chiral unitary approaches[27–34], it
looks tempting to investigate the possibility of this state be-
ing a quasibound state of a meson and a baryon or two me-
sons and a baryon. Its nature as aKN s-wave state is easily
ruled out since the interaction is repulsive. This is in general
the case for scattering with exotic quantum numbers(not
attainable with three quarks) which also explains the repul-
sive core nucleon-nucleon interaction[35]. Indeed the
known kaon-nucleon phase shifts seem difficult to reconcile

with the existence of a broadQ+ resonance, although a nar-
row one is not excluded[36]. KN in a p wave, which is
attractive, is too weak to bind. The next logical possibility is
to consider a quasibound state ofKpN, which in s wave
would naturally correspond to spin-parity 1/2+, the quantum
numbers suggested in Ref.[5]. Such an idea has already been
put forward in Ref.[37] where a study of the interaction of
the three-body system is conducted in the context of chiral
quark models, which suggests that it is not easy to bind the
system although one cannot rule it out completely. Similar
ideas have been exploited in the past[38] to describe the
f1s1420d meson, then named E(1420), as aKKp molecule
bound by color singlet exchanges.

In the present work we further investigate in this direction
and for this we use the meson-meson and meson-baryon in-
teractions generated by the chiral Lagrangians and apply
techniques of unitarized chiral perturbation theory which
have been used in the dynamical generation of the low lying
baryonic resonances.

II. A kN STATE?

Upon considering the possible structure ofQ+ we are
guided by the experimental observation[3] that the state is
not produced in theK+p final state. This would rule out the
possibility of theQ state having isospin I=1. Then we accept
theQ+ to be an I=0 state. As we couple a pion and a kaon to
the nucleon to form such state, a consequence is that theKp
substate must combine toI=1/2 and not I=3/2.This is also
welcome dynamically since the s-waveKp interaction in I
=1/2 is attractive(in I=3/2 repulsive) [39]. The attractive
interaction in I=1/2 is very strong and gives rise to the
dynamical generation of the scalark resonance around
850 MeV and with a large width[39].

One might be tempted to consider theQ+ state as a qua-
siboundkN state. However theQ+ state would then be bound
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by about 200 MeV, apparently too large an amount. But re-
call that the large width of thek (around 400 MeV) allowsk
strength at lower energies and the large binding becomes
more relative. One might next question that, with such a
large width of thek, the Q+ could not be so narrow as ex-
perimentally reported. However, this largek width is no
problem since in our scenario it would arise fromKp decay,
but now theKpN decay of theQ+ is forbidden as theQ+

mass is below theKpN threshold.
One might hesitate to call the possible theoreticalQ+ state

a kN quasibound state because of the large gap with the
nominalkN mass. The name though is not relevant here and
we can opt by calling it simply aKpN state, but the fact is
that theKp system is strongly correlated even at these lower
energies, and since this favors the binding of theKpN state
we shall take it into account.

A. Kp scattering matrix

We begin by refreshing how thek can be generated in the
Bethe-Salpeter approach used in Ref.[40] to generate thes,
f0s980d, anda0s980d scalar resonances. From the lowest or-
der ChPT Lagrangian[41] one takes theKp amplitude which
serves as kernel V of the Bethe-Salpeter equation(here the
Lippman-Schwinger equation with relativistic meson propa-
gator)

tKp = VKp + VKpGmmtKp, s1d

whereVKp for I=1/2 in swave, which we call from now on
tmm, is given by

s2d

yielding (in an s wave)

kI = 1/2 I3utmmuI = 1/2 I3l =

4mp
2 + 4mK

2 − 4s+
3l

2s

4f2 , s3d

where f .100 MeV is the meson decay constant, which we
take as an average betweenfp and fK ,s the Mandelstam
variable, and lsmp ,mK ,Îsd=fmp

4 +mK
4 +s2−2smp

2mK
2 +mp

2s
+mK

2sdg Källen’s function.
Also in Eq. (1) Gmm is the two-meson loop function de-

fined in Ref. [40] and regularized with a three-momentum
cutoff of 850 MeV (which produces satisfactory fits to the
pK scattering phase shift in thek and also in thepp s
channels, not shown),

Gmm=E
0

L q2dq

4p2

vK + vp

vKvp

1

sÎs+ vp + vKdsÎs− vp − vK + ied
,

s4d

vK = ÎmK
2 + q2, vp = Împ

2 + q2 s5d
and V,t factorize in Eq.(1) with their on shell value as
discussed in Ref.[40]. This simply means that one takespi

2

=mi
2 in the expressions of theKp kernel. Note thattmm is

attractive in thek channel.
Equation(1), which we numerically solve, resums thepK

scattering perturbation series

s6d

The k state appears then as a pole of thetKp matrix in the complex plane.

B. Nk scattering

In order to determine the possibleQ+ state we search for poles of theKpN→KpN scattering matrix. To such point we
construct the series of diagrams

s7d

where we account explicitly for theKp interaction by constructing correlatedKp pairs and letting the intermediateKp and
nucleon propagate. This requires a kernel for the two meson-nucleon interaction which we now address. TheKp correlation
in the external legs is dispensable for the purpose of finding poles of thet matrix.
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We formulate the meson-baryon Lagrangian in terms of
the SUs3d matrices,B,Gm ,u, and the implicit meson matrix
F standard in ChPT[42–45],

L = TrsB̄igm¹mBd − MBTrsB̄Bd + 1
2D TrsB̄gmg5hum,Bjd

+ 1
2F TrsB̄gmg5fum,Bgd, s8d

¹mB = ]mB + fGm,Bg,

Gm = 1
2su†]mu + u]mu†d, s9d

with the definitions in Refs.[42–45].
First there is a contact three-body force simultaneously

involving the pion, kaon, and nucleon, which can be derived
from the meson-baryon Lagrangian(8) term containingGm:

s10d

We now show that a nucleon, kaon, and pion see an at-
tractive interaction in an isospin zero state through this con-
tact potential. By taking the isospinI=1/2 k states

k0 =
1
Î3

up0K0l −Î2

3
up−K+l,

k+ = −Î2

3
up+K0l −

1
Î3

up0K+l, s11d

and combining them with the nucleon, also isospin 1/2, we
generateI=0,1 states

Q0 = uI = 0 I3 = 0l =
1
Î2

sup k0l − un k+ld,

Q1 = uI = 1 I3 = 0l =
1
Î2

sup k0l + un k+ld, s12d

which diagonalize the scattering matrix associated totmB,

kQ1utmB
s uQ1l = −

1

144f4f− 4sK” + K” 8d − 11sp” + p”8dg,

kQ0utmB
s uQ0l = −

21

144 f4fsK” + K” 8d − sp” + p”8dg, s13d

where for a near-threshold study we will perform the usual
nonrelativistic approximationūgmkmu=k0. Since theKpN
system is bound by about 30 MeV, one can take for a first
testk0,p0 as the masses of theK andp, respectively, and one
sees that the interaction in the I=0 channel is attractive,
while in the I=1 channel it is repulsive. This would give
chances to thekN t matrix to develop a pole in the bound
region, but rules out the I=1 state.

The series(7) might lead to a bound state ofkN which
would not decay since the only intermediate channel is made
out of KpN with mass above the available energy.

The decay intoKN observed experimentally can be taken
into account by explicitly allowing for an intermediate state
provided by the p-wave interaction vertices from Eq.(8),
through the diagram

s14d

The evaluation of this diagram requires the extrapNN
Yukawa vertex, which one generates from theD, F terms of
the Lagrangian(8) and to which we attach the commonly
usedpNN monopole form factor to account for the nucleon’s
finite size with a scaleL=1 GeV:

tpN
I j = iSGA

2f
DsW ·qWFsuqW u2dkNutI juN8l, s15d

with GA=D+F=1.26,

FsuqW u2d =
L2

L2 + uqW u2
.

The isospin factor for Eq.(14) turns out to be 3 forI =0 and
1/3 for I =1. As we shall see, this diagram provides some
attraction at low energies, but in theI =1 case the relative
factor of 1/9 makes it negligible compared with the repul-
sion generated by Eq.(10). The evaluation of the customary
pole integrals overq0 in Eq. (14) leads to

tmB
p = 3tmm

2 E d3q

s2pd3SGA

2f
D2

uqW u2Fsqd2MN

EN

1

p0 + P0 − vK − EN + ie

1

4vkvp
3sEN − p0 + vpd2fP0

2 − svp + vKd2g2

3hsEN − p0d2f− P0
2vK + svK + vpd2svK + 2vpdg + sEN − p0dfP0 3vK − P0

2vKsvK + 2vpd + svK
2 + 3vpvK + 2vp

2d2

− P0vKsvK
2 + 4vpvK + 3vp

2dg + 2vpfP0 3vK − P0
2vKsvK + vpd + svK + vpd4 − P0vKsvK

2 + 3vpvK + 2vp
2dgj, s16d
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with vK and vp as in Eq. (5), EN=ÎMN
2 +q2,p0=MN the

nucleon mass(incoming and outgoing energies), andP0 the
incoming pion-kaon system energy(masses minus possible
binding energy).

Through the remainingNK propagator in the integral, Eq.
(16) generates a real part from the principal value and an
imaginary part corresponding to placing the intermediateK
andN on shell. This would account for the decay of theQ+

state intoKN.

C. Sequential two-body contributions

The existence of diagram(14) above can be interpreted as
havingpK interaction followed bypN interaction in p wave.
One of course can also consider this latter interaction in s
wave using the same Lagrangian(8) with two meson fields,
as in

s17d

There is also a novelty with respect to diagram(14) since
now the meson coupling to the nucleon can be either thep or
the K, while in the case of the p wave, the requirement to
include only ordinary baryons in the intermediate baryon
state does not allow theK to be coupled to the nucleon.1

We need now themN→mN amplitudes, which are easily
obtained from the Lagrangian of Eq.(8) and give

tmN→mN= −
1

4f2Cijsq0 + q08d, s18d

whereq0 andq08 are the initial and final meson energies and
the Cij coefficients are given in Table I.

After performing theq0 integration in the loop with three
propagators with the explicitsq0+q08d dependence of the
vertex of Eq.(18), but takingtKp with the arguments of the
externalKp system, we obtain for the case of ap coupling
to the nucleon in Eq.(17),

tmN
s8 = − 2tmm

2 P0

4f2E d3q

s2pd3

svp + vKd
vpvK

F 1

P02 − svp + vKd2G2

.

s19d

It is worth noting that this expression is symmetric inp and
K. Hence, the loops corresponding to having the K instead of
thep coupling to the nucleon have the same expression up to
some SUs3d flavor factors. A straightforward calculation
shows that forI =0 the coefficient is the same, but opposite

in sign, whether the pion or the kaon couple to the nucleon,
implementing an exact cancellation of the two types of dia-
grams. It is also worth noting that in the case of I=1 there is
no cancellation but instead one finds a repulsive contribution,
obtained by changing the coefficient 2 of Eq.(19) by −2

3.
Diagram (17), when the meson exchange is iterated be-

tween the other meson and the nucleon, generates a subseries
of the terms implicit in the Faddeev equations. For instance,
the subseries of terms in the iterations of Eq.(17) with a pion
generate the Faddeev series in the fixed center approxima-
tion, accounting for the interaction of the pion with theKN
system(should it be bound by itself which is not the case)
[46,47]. Yet, this subseries is inoperative, given the cancel-
lation of thep andK contributions.

Thinking along the same lines we are led to the other
subseries of the Faddeev equations in which the nucleon is
the particle being exchanged between the mesons:

s20d

The basic vertex in this mechanism is

s21d

where once again the upper meson can be a pion or a kaon.
Following the same techniques as before we obtain for

this term’s contribution the result

t̄KN
s + t̄pN

s =
k0p08

f6 fp08G̃KpsP08d − k0G̃pKsP0dg, s22d

with P0 and P08 the energy of the kaon/nucleon and pion/
nucleon pair, respectively, the loop function

1Knowing theQ+ existence, we could exchange this particle there.
Yet, the intermediate state would be off-shell by about 170 MeV,
plus the small KN width of theQ+ makes theKNQ+ coupling small,
so this contribution can be safely neglected.

TABLE I. Flavor coefficients for meson-nucleon scattering
Cij .

Cij p0p p+n p−p p0n K0p K+n K+p K0n

p0p 0 Î2

p+n Î2 1

p−p 1 −Î2

p0n −Î2 0

K0p −1 −1

K+n −1 −1

K+p −2

K0n −2
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G̃pKsP0d =E q2dq

4p2

1

vK
S 1

P0 − vK − EN + ie
D2SmN

EN
D2

s23d

and G̃Kp having the same expression permutingp and K.
The contribution of Eq.(22) vanishes in the SUs3d limit of
equal meson masses, but for unequal meson masses there is a
net attractive contribution which has about the same strength
as that of the four meson contact term of Eq.(13). Other
interaction terms where the meson lines cross each other are
possible, but either vanish like

s24d

or are small since they involve baryons in thet channel
which are very far off-shell such as

s25d

or involve one p-wave coupling inside a loop which makes it
vanish for large baryon mass, for example,

s26d

III. BETHE-SALPETER ITERATION IN THE „KpN…

SYSTEM

Now we turn our attention to the formulation of the three-
body problem. We have implemented the correlation be-
tweenp andK through multiple scattering, but we have not
done so with theKN or pN interaction. In the case of theKN
interaction this multiple scattering barely changes the lowest
order t matrix tmN→mN [28]. In the case of thepN system it
generates attraction which is also weak at the low energies
considered here and only becomes sizab1e aroundÎs
=1500 MeV where it leads, together with other coupled
channels, to the generation of theN* s1535d resonance
[27,30,48].

The series ofKp loop diagrams of Eq.(6) is summed
with the following equation:

Gkssd =
Gmmssd

1 − tmmssdGmmssd
s27d

which yields ak propagator(that is, a propagator for a cor-
related spin 1/2 pion-kaon state).

At last, if theQ was going to exist as a three-body bound
state, it should appear as a resonance of thek-N scattering
matrix which appears when summing the contribution of the
diagrams of Eq.(7), given by

tkNssd =
tmBssd

1 − tmBssdGmBssd
, s28d

where tmB sums the three nonvanishing contributions, Eqs.
(10), (14), and(22),

tmB= tmB
s + tmB

p + t̄mB
s . s29d

The relevant loop function here,GmB appearing as the big
loop in Eq. (7), is made numerically more tractable by em-
ploying the Lehmann representation forGk,

Gksq0,qWd =
− 1

p
E

mp+mK

`

dv
2v Im Gksv2 − uqW u2d

q0
2 − v2 s30d

(although we have checked our codes also by direct compu-
tation). After factorizing the vertices with the on-shell pre-
scription, we obtain

GmBssd =
− 1

2p3E
0

L

q2dq
MN

ENsqdEÎsmp + mKd2+q2

`

3dv
Im Gksv2 − q2d
Îs− v − ENsqd

, s31d

with

ÎsP smN + mK,mN + mK + mpd.

The algebraic formulation of the Bethe-Salpeter equation
(28) is possible because we have factorized thesk0

+k80d ,sp0+p08d dependence of Eqs.(13), (16), and(22) with
its on-shell value given by the external variables. We have
performed the loop integrals with the full off-shell part and
found that the on-shell approximation induces errors of less
than 20%, hence it is accurate enough for the exploratory
purpose of the present work.

There is a technical detail worth mentioning. We have
assumed in the calculations that the incoming and outgoing
particles have zero momentum. This is certainly an approxi-
mation, but it simplifies the calculations since in the diagram
(14) one has two identical pions propagating and in Eq.(21)
one has two identical nucleon propagators and we evaluate
these Feynman diagrams by partial derivation of a loop func-
tion with only one pion or one nucleon propagator, respec-
tively. This causes no problem if one investigates the ampli-
tudes at 30 MeV below threshold but the approximation
induces an infrared divergence at threshold. We are not in-
terested in this region but in any case we cure the divergence
by assuming an average momentum of the particles in the
three-body wave function. We take 100 MeV/c for this mo-
mentum and we should changevpsqWd by vpsqW −pWd which
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close to threshold can be approximated byvpsqd+p2/2mp.
Similarly, for the diagram(21), the nucleon energy is
changed toENsqd+p2/2mN. This cures the infrared diver-
gence at threshold and has negligible influence away from it.

IV. NUMERICAL RESULTS AND CONCLUSION

We examine now thetkN amplitude of Eq.(28) as a func-
tion of Îs of the three external particles(for simplicity we
split the small binding energy between the pion and kaon in
proportion to their masses). In Fig. 1(a) we showutu2 against
Îs.

We see that the function is monotonously increasing as a
function ofÎs, but there is no trace of a pole or resonance. In
order to see how far we are from a pole, we show in Fig. 1(b)
the real part of the denominator of Eq.(28), 1−tmBGmB. We
see that in the region fromÎs=1540 MeV to 1570 MeV this
value is bigger than 0.6, while it should be around zero to
have a resonance. Typical values oftmB and GmB are GmB
.−0.05s100 MeVd3, tmB.−s2−3ds100 MeVd−3 for a cutoff
L=1 GeV. From these results we can conclude the follow-
ing.

With the dynamics which we are considering we find no
bound state aroundÎs=1540 MeV.

The fact thattmBGmB is far away from unity indicates
that we are far away from having a pole of thekN scattering
matrix.

In order to quantify this second statement we proceed as
follows. We increase artificially the potentialtmB by adding
to it a quantity which leads to a pole aroundÎs
=1540 MeV. This is reached by adding −16s100 MeVd−3 to
the already existing potential, which means we add an attrac-
tive potential around five or six times bigger than the exist-

ing one. If we do that we obtain the results forutu2 shown in
Fig. 2.

There is indeed a resonance aroundÎs=1540 MeV with a
width of aroundG=40 MeV, which is of the order of mag-
nitude of the experimental one. Refinements of the theory,
considering that in the generation of the resonance the exter-
nal k would be itself part of a loop, would lead according to
our estimates to a smaller width, but for the order of magni-
tude the approximations performed are fair. This exercise
gives a quantitative idea of how far one is from having a
pole. We do not envisage at this stage a possible source of
such a large attraction within our theoretical treatment. There
is another exercise which we want to present here. We have
regularized thepKN loop function with a cutoff in the three-
momentum of 1 GeV. This is the natural scale for the prob-
lems we are dealing with. Yet, we could try to see how much
L has to be increased to find a pole. The exercise conducted
is the following: we have takenL=4 GeV and see how
much more potential we have to add to get the resonance
around 1540 MeV. This is done by adding a potential with a
strength of −2.5s100 MeVd−3, which amounts to about dou-
bling the calculated one. The result forutu2 can be seen in
Fig. 3.

What we see is that the width becomes much larger than
before. This trend continues in the same manner and we can
reduce the amount of extra potential as the cutoffL increases
(although the dependence ofG on the cutoff is by then loga-
rithmic). The width also increases unrealistically for these
larger values ofL. Hence this does not seem to be the ad-
equate path to follow in future searches.

As a positive output there are hopes, given by the trend of
the results in Fig. 1 that a resonance could develop at higher

FIG. 1. Our final result:KpN scattering matrix[modulus and
denominator of Eq.(28)]. Energy units are 100 MeV.

FIG. 2. We find a resonance with a reasonable width for a po-
tential larger by a factor 6(see text). Units are 100 MeV.

FIG. 3. We also find a resonance, this time too broad, by in-
creasing the cutoff in thekN loop to 4 GeV and about doubling the
potential. Units are 100 MeV.
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energies above threshold. This would be a task worth follow-
ing, which however would require to modify technically our
approach which has relied on a below threshold situation
avoiding the singularities of open physical channels above
threshold.

Another point is that we have only partially solved the
Faddeev equations, including therein a three-body potential
with the basic units repeated in the Faddeev sequence of
diagrams. A more standard three-body Faddeev approach
would also be one of the tasks worth undertaking. The steps
walked here and the dynamics used could be directly input to
the full set of Faddeev equations.

In summary, we think our calculation is sufficiently accu-
rate to claim that the nature of theQ+ as a boundpKN
system is very unlikely, but this should be checked by other
independent calculations and different technical approaches,
given the importance of this resonance. At last, it would also

be interesting to continue with the present study extrapolat-
ing the approach aboveKpN threshold to explore the possi-
bility of a resonance at not too high energies but beyond the
scope of the present work.
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