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Analytical treatment of constraints in fragmentation
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In fragmentation of a finite object such as an atomic nucleus or a percolation lattice, the multidimensional
probability distribution of the numbers of fragments of each m@abksarge, sizemay be approximated as a
product of Poisson distributions. In this work we present an analytical treatment of the influence of constraints
(multiplicity, mass, etg.that may be imposed on the basic product distribution.
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I. INTRODUCTION sponding mean valu@,,). We note that models of this “ge-

When a finite nucleus breaks into fragments the simpleseric” type have met with considerable success in reproduc-
observation consists in measuring the average numbers #fg results of multifragmentation experiments—g. The
fragments of mas@m) or charge(z). In this work, we refer to ~ specific problem of correlations in small systems was dis-
these quantities a@,)). It should, however, be understood cussed by Cole and Désesquelles
that, despite the systematic use of the word “mass” the analy- The specification made in E¢lL.2) obviously implies that
sis presented herein also applies to fragment charges and iée sum of partition probabilitieXx,P(n;X)=1. However, if
other manifestations of fragmentation such as the sets dhe multiplicity and total mass can be considered as con-
fragments produced in bond percolation simulations. For atraints(N, M) this is no longer the case. We write the formal
discussion of nuclear fragmentation we refer the reader to thexpression
recent review by Richert and Wagnil] and to references

therein. A detailed discussion of statistical models for frag- _ B [Xpp]"m e %m
mentation can be found in Refi—4]. 2 PiX,NM) =TT Ny 5<2 Nm = N)
An experiment carried out with a sophisticated multide- " nem "
tector is capable of measuring the set of fragmen_t masses x>, mn,-M)| <1. (1.3
(more usually chargesvent by event. Each event is then m

represented by a vectar={n;,n,, ... Ny, ...} (n,=0). The
multiplicity is defined as®,n,, and the experiment provides The constraints themelves introduce correlations. Thus, in
an estimate of the partition probabilities. If the total mass ofthe presence of constraints,,) is no longer equal t&, and
the fragmenting object is knowtM) then n represents a quantities such a&yn;)—(n;)(n;) are usually nonzero for all
partition of the integeM and the sum rulEM mn,=M pairs of indiced(i,j).
applies. We shall write sums and products owgrrespec- This work concerns the analytical treatment of a particular
tively, as=,, andTly,. ) - set of constraints which may be imposed on the basic distri-
A model for partition weightgor probabilitie3 W(n) [or  pytion of probabilitiesP(n;X). The constraints considered
P(n)] may be readily constructed using only the average valyre muyltiplicity, total mass, and higher order moments of the
ues(ny). The interest is twofold. First, to the extent that the g3 me form. Thus an arbitrary choice of momeﬁﬁéhlmknm
model provides a “reasonable” description of the availablecan be constrained to the valueg (with this notationN
data, it provides estimations of other interesting observables ,; and M= «,). The primary goal will be to provide a ver-
Second, it serves as a basis for the development of mor§on of Eq.(1.3) in which the delta functions no longer ap-
sophisticated model structures which may be necessary {gear. The essential formalism will be developed in the fol-
explain nontrivial correlations in the production of frag- |owing section. In Sec. Iil, the analytical result is validated

ments. _ _ by a comparison of predictions for mass distributi¢fts a
The basic model considered herein results from the asew multiplicities) with results of Monte Carlo calculations.
sumption of absence of correlations, i.e., In this section we also compare the prediction of the partition

probability density, as a function af,, for fixed values olN
andM, with the simulation result.

In Sec. IV, we begin by an extension of the formalism
The model is developed by the specification of the individuaklwhich is used to demonstrate that, in the case of multiplicity
distributionswm(nm) as Correctly normalized Poisson factors and mass constraints, the probab”ity distribut'm(m]m) for

w(n) = [T wy(ng). (1.1)

[X,,]'me™ Xm the number of fragments of massis correctly reproduced.
PNy = — (1.2)  This leads naturally to a study of the inverse problem, i.e.,
Mo obtaining the sefX,} from the set of mean valugs,,).
in which each of the parameteXxs, (collectively referred to In Sec. V, we examine the joint probability distribution

as X or the set{Xy}) is equal(by definition) to the corre-  p(n;,n;) corresponding to multiplicity and mass constrained
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partitions withn; fragments of mass and n; fragments of — [e e _q]
massj, and in Sec. VI we derive and test identities which Za) l;l e 24
associate mean values and higher moments of the con- o o o

strained fragment number distributioquantities such a&;)  and(explicitly exhibiting the limitM+)

and(n;n;)) with specific members of the probability distribu- Mt
tion itself. These identities are exact characteristics of the IN[Z(a)] = E xm[e—Ekakmk_ 1]. (2.5
multinomial distribution. Remarks and conclusions are pre- m=1

sented in Sec. VI The inverse Laplace transform will now be evaluated ap-

proximately, thus providing an approximation to
Il. THE CONSTRAINED PROBABILITY >,P(n; X, k) which we will refer to asQ(X, k). The exact

. L . . transform is, of course,
It is, in principle, possible tgnumerically generate all

partitions corresponding to the product Poisson distribution 1 |K*L [egrie [egHoe CHie
selecting those that satisfy a given set of constraints. The 2 PN X, k) = {%} f . J _ f Z(a)
difficulty of this enterprise can be appreciated by making a " oI T et o1

rough evaluation. Let us suppose the values of the param- X ek agday * -+ day. (2.6)
eters X, are such that the probabilities for amy, to be i )
greater than or equal to 10 can be discarded. Under thedie now definef(a)=In[Z(@)]+ = ayx and replace the inte-

circumstances, denoting the highest value of m for whicr@rand in Eq.(2.6) by the exponential of the second order
X.,>0 asMy, the number of partitions to be examined is of Taylor expansion of (@) about the poin=a defined by the

the order of 1§7. Of course, one can use Monte Carlo tech-Set of equationslf/da,=0 (k=0,K). Making the change of
niques to provide an estimation of probabilities, but for smallvariablesq=c,+iy (when a=a, let v=u) we approximate
probabilities such calculations become extremely time conthe inverse Laplace transform as

suming and eventually impossible. We are therefore justified of@ e e +o0

in seeking an alternative strategy. Q(X, k) = ﬁf J f 9 dyyduy - -+ duy
The following derivation is based on a technique used to (2m) - J oo o0

obtain level densities in atomic nucldiO]. We first make the (2.7

Laplace transform of the sum of constrained probabilities ] . ] )
and then make the inverse transform using an approximatiotd Which g(v) is defined by the expansion

to the exact integrand. ThéK+1)-dimensional Laplace K K )
transform of the sum of constrained probabilities is fla)-f@) =~ > D (e~ a)(aj—ay) df
o - o i=0 j=0 2' daida]- a=a
Z(a>:2f f f P(n;X>{H 6(2 mknm—xk)} c o oWy -u) o
— | |
n Jo Jo 0 k m -ZZ o1 dudu . (2.8
i=0 j=0 MY 1 v=u

Xe_ “0"06_ @Ky .. e aKKKdKodKl e dKK
The integral in Eq(2.7) is well known[2,11] and yields

:2 P(n;x)e_ZkakEmmknm, (21) f(a)
n e 1
Q(X, k) = (277)(K+1)/2 X ﬂm, (2.9
in which the symbol¥, designates the surﬁ,fzo. We now A
note that where the symmetric square matiikxhas elements
2
e—EkakEmmknm - e—EmnmEkakmk - H [e—Ekakmk]nm_ (2.2 f;’. _ d“In[Z(a)] . (2.10
m ] daidaj a=a

Then, recalling the normalized form for the partition prob- T0 complete the derivation we need only write down the first

sum asz,=2,2, ">, '+, we obtain M
T dr ETX | @i 0 (2.1
— = - =k + K = .

(@) = m>) € Sed ] 3 Xe Sk e P “ 240

(@) =€ =m"m X
n ! n, ny! and, at the minimum,
K.
[Xpe™ 2 P & In[z o
XX nE BRI X (2.3 —da[df)za)] =3 x,mt e (2,12
m i j a=a m=1

We recognize that the second and subsequent factors on th@ example of the application of these equations will be
right hand side of Eq(2.3) are simple expansions of expo- given in the next section, in which we begin by obtaining an
nentials so that, finally, expression folQ under constraints of mass and multiplicity.
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IIl. CASE STUDY: MULTIPLICITY, MASS,
AND k, CONSTRAINTS

Referring back to Eq¢1.3), let us select the part of the
probability for which the total multiplicityxo=N and the
total massc; =M. No other constraints apply. In this case we
can divide the two equatiorj$2.11), with i=0, 1] to obtain

> Xyme &am
M_m 37
N~ S xeam (3.9
m

The (numerica) solution of this equation foa,; can then be
used to obtainay. Thus, using the multiplicity equation
[(2.12) with i=0] we obtain

E Xme— ajm
m

N (3.2

a=1In

The determinant in Eg2.9) can be calculated straightfor-
wardly using Eq(2.12. We define

= X, m e S (3.3
m
and further write
M2 1/2
(ﬂ[%-ﬁ4 . (3.4
The result is simply
deff"] = N?0?. (3.5

Then, recalling the expression f@ [Eg. (2.9)] (where no
confusion can arise we will supress the argumentve ob-
tain

IN[Q(N,M)]=N = >, X, +agN +a;M — In[27No].

(3.6)

In order to test Eq(3.6) we consider a specific case in which
Xm is defined as a sum of exponentials, iX,=A;e 71"
+Ae ™ for m=1, My. The parameters(A;=1.0, y;
=0.1, A,=35, ,=1.0, M:=80) were chosen to provide
mean valuegn,,) which are not unlike results of percolation

simulations and multifragmentation experiments in the vicin-

ity of the phase transitiorj12]. An unconstrained Monte
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In [Q(N,M)]
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FIG. 1. Constrained probabiliti3(N, M) [Eq. (3.6)] compared
with results of Monte Carlo simulationdilled circley with X,
=g 0IM4 356" for 1<m=80 (X,,=0,m>80). The predictions are
represented as continuous lines.

sults do not reveal any significant discrepancy. As a further
test we have calculated the constrained partition probability
density as a function ok, for fixed valuesN=30 andM
=130. The straightforward generalization of K£8§.6) leads,

in this case to the expression

IN[QIN,M, k)] =N = 2 X+ agN + ayM + 8
m

- 0.5I87%A], (3.7
where the determinak is given as
A=NiS - NS+ 2Mk,S; - M2S, - k5. (3.8)

The comparison with the Monte Carlo simulation, shown in
Fig. 2, is generally satisfactory but reveals a discrepancy for
high values ofx, (albeit for probabilities of the order of
1077). A detailed investigation reveals that this discrepancy is
simply due to the limitation of the quadratic approximation
[Eq.(2.8)] with respect to the variable, (the difficulty does

not occur for smaller values ot,). For estimation of low
order moments of the distribution af, the difficulty can be

Carlo generation of partititions using this distribution yields
a mean multiplicity of 30 and a mean mass of 131. We con-
strained the multiplicity to take on a few values around this
mean and compared distributions Qf for an appropriate
range of masses, with Monte Carlo estimates obtained by
generating partitions using the unconstrained Poisson prod-
uct probability distribution and recording the fraction of par-
titions with the specified values &f andM. The results are

2.0
1.5 x108
@ |
= 1.0
Z )
S
0.5
0.0 -4 T T ! T ]
0 2000 4000 6000
K

FIG. 2. Probability distributiongEq. (3.7)] of the second mo-

shown in Fig. 1. The agreement is most gratifying and perment «, for fixed values of the multiplicityN (30) and total mass
haps even a little surprising. Eventually, of course, statisticai (130). Other specifications as in Fig. 1. Note thatNfis even
precision becomes a limitation in the Monte Carlo simula-(odd) «, is even(odd) so that thecontinuoug approximation must
tions. However, within the range of statistical errors, the re-be multiplied by a factor of 2 before comparing with data.
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S ) FIG. 4. Predicted mean valués,,) [Eq. (4.2)] compared with
FIG. 3. Probability distributions corresponding to the numbersyionte Carlo simulation resultsM =130, N=20,30,40. The
of fragments of mass(i=1, 2, and 10. In each case the quantity \jonte Carlo “data” are represented by crosses and the predictions
displayed isp(n) =W(n;)/Q(N,M) with W(n;) given by Eq.(4.1).  py straight lines(set{X,} as in Fig. 3. Values forN=20 andN
The Monte Carlo calculations are represented as filled circles and 409 have been displaced by +2 and -2, respectively.
the predictions by open circles joined by straight liiest{X,} as
in Fig. 1, N=30, M=130). . . T .
g 9 We show in Fig. 4, for three multiplicities, the predicted
) d by di f th q {n,y distributions compared with the Monte Carlo calcula-
circumvente DYy Irect use 9 ,t 'e momexity and (n 'nJ',> tions. This figure demonstratéat least in the case consid-
(Ca_lculated using only mult|p_I|C|ty and mass constraints ered that, provided the sefX,} is given, the theory accu-
which, as shown in the following sections, can be estlmateqately predicts the resulting set of values(of,)

accurately. In practice, of course, one is faced with the inverse prob-

IV. CONSTRAINED ERAGMENT SIZE DISTRIBUTIONS lem. The experiment measures a set of average partial mul-
) o ) ) N tiplicities {(n,y, and the first step for application of the mul-
We will be concerned, in this section, with partitions con- inomial theory is to obtain the s¢K,}. In the presence of
strained by multiplicity and total mass. The generalization t0q,nstraints this involves a multidimensional nonlinear search
include constraints of higher order is straightforward. With procedure. An alternative procedure, which has been used in

multiplici_ty and mass constr_aints the statistical weight assog;g work, is based on the fact that a change in the parameter
ciated with partitions for which the number of fragments of X, mainly influences the correspondirig,) value. Using

frg?ris'a's erg;ier‘rl] ;c:?é'nwzgg i)ép\:\i?tfgr? using the Laplace trans—Eq_ (4.1) and noting thatQ(X™,(N-n,),(M-mn,)) does
bp ' not depend orX,, we easily obtain

(i)

[X e Xi %)]nme— X

[X m
W(my) = 211 8 2 = (N= 1) dWnw _ Mo _
nt T Niy! ( m ) ax.. =WI(n,) X, 1). 4.3
X‘s(% mny = (M - ini)> Now, from Eq.(4.2)

e p [d\/\/(nm) Wi — dV\/(nm)]

= QXX (N, (M —in), @y o nEm Mol o nEm (N (nm)nEm o
where the set of parametex$) ={X"} is identical with the dXm {E W(nm)J2 ’
set {X,,} with the exception of the paramet&t, which is fim
removed. Using the s¢X,} defined in the previous section, (4.4)

with N=30 andM =130, we show in Fig. 3 the prediction
provided for the distribution of the numbers of fragments o
mass 1, 2, and 10. As can be seen there is no observable

fand on inserting Eq4.3) we find the exact relation

Ky () = (ny)?

discrepancy with the simulation results. = , (4.5
The mean valugn,,) within the subset constrained by dXm Xm
mass and multiplicity is so that
- & e s dinl(] _ () = (m® _ oPnw)
Ny = —. 4.2 - = : :
m E W(nm) d In[xm] <nm> <nm>
nm

Consider first the case fan>M/2, for which n,, can take
Using Eq.(4.1), the sum in the denominator of EGt.2) is  on only the values 0, 1, so that only the weigh#0) and
simply =, W(ny,)=Q(N,M). W(1) are nonzero. Equatiof#.6) then reduces to
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0.2 m=30, {
,#*m=10
&

In[ p(ny,n,) ]

A<ny> / <np>

FIG. 7. Probability[defined within the subset witN=30 and
FIG. 5. Monte Carlo simulation results obtained by variation of M=130, Eq.(5.1)] to simultaneously observg fragments of mass
X, parameters. For each valuerofthe variation was made starting i andn; fragments of masg with i=1 andj=2. The Monte Carlo
with the setX specified in the caption to Fig. [see Eq(4.8) and results are represented by crosses and the predictions, by open
preceding teXt The straight lines represent linear least squares fitgircles joined by straight linegset{Xy} as in Fig. J.
to the Monte Carlo “data.”
z, to the set{X,yZ"} with no effect on observables. In the
dIn[{ny] present context the only consequence !s Fh_at two values se-
m =1-(ny. (4.7) lected from the sefX,} can be fixeda priori in the search
procedure. Figure 6 demonstrates that the search procedure is
More generally, one observes that the variaeéén,) in-  successful insofar as the Monte Ca¢fy,) distributions are
creasesmostlinearly with the mean valuén,, (these quan- nicely reproduced.
tities are identical for the Poisson distributjorThus, as
shown in Fig. 5, the relation

Aln[n,]=C(m) X A In[X] (4.8
In this section we briefly discuss two fragment correla-
holds approximately for alin with C(m) <1. Equation(4.8)  tions within the subset of partitions constrained by multiplic-
provides a basis for a search routine which, in a given cycleity and mass. The probability of observing events within this
successively modifies each value Xifn and generally con-  subset withn; fragments of massandn; fragments of mass

verges after a few such cycles. j is obtained as an obvious extension of E41), i.e.,
We show in Fig. 6 the result of the search procedure ap-

plied to the(n,, distribution obtained from the Monte Carlo

V. TWO FRAGMENT CORRELATIONS

W(ng,ny) Wi, my)

simulation using the double exponential distribution speci- p(n;,n;) = , (5.1
fied just after Eq(3.6). We mention in passing that, as re- > W(n;,n;) Q(N,M)
marked by Désesquell§&3], the sefX,,,} obtained for fixed M.
N andM may be transformed, using arbitrary constanénd
where
Nia Xi Nia Xi () X0
W(ni,nj):[x.] e [Xle JEH[Xm |"me

ni! n]| nom nm!

Xa(% N,—(N-n; - nj)>

In[<n>] and In[Xp,]

Xé(% mn,— (M —in; —jnj))

_ Dt » [X]"e %
n;! n;!
XQX",(N=n;—ny),(M=in;=jn)). (5.2

FIG. 6. Results of search procedufke;, values(M=130, N
=20,30,40 obtained from the Monte Carlo simulations are repre- T he results of calculations using this formula are compared
sented by crosses and predictigtie final values obtained from the With Monte Carlo simulations in Figs. 7 and 8. The Monte
search routineas open circles. Thi,, values obtained from the ~Carlo resultgobtained from simulations with 2@vents are
search routine are represented as continuous lines. Value for limited by statistics. However, within these limitations the
=20 andN=40 have been displaced by +2 and -2, respectively. predictions appear to be rather accurate.
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In[ p(nyg,ny,) ]

FIG. 8. As Fig. 7 but foi=10 andj=12.

VI. CHARACTERISTIC IDENTITIES

PHYSICAL REVIEW C 69, 054613(2004)

0 10 20 30 40 50
j

FIG. 9. Correlation ratios. The results of the Monte Carlo simu-
lations (108 events, sefX,,} as in Fig. 1,N=30, M=130) are rep-
resented as filled circles, open circles, and crosses linked by thin
straight lines. The predictiongEq. (6.5)] are represented as thick

There are several ways to obtain the identities to be predashed lines. Diagonal elemeritghich would be off scale in this
sented in this section. The present derivation makes use d&ifure) have been suppressed.
equations presented previously. We can begin with the mean

value(n;) which, by deriving Eq(1.3) with respect toX;, can
be written

() _ 1 dP(X,N,M)
X =1+ POCN.M) dx ) (6.1

The derivative can be obtained from EQg.6). We first note

thatd In[Z(a)]/dX=e %0 -1, Then, differentiating the in-

tegrand, we obtain

dP(X,N,M)_{iT
| 27

Cotioe [CpHiee
Z
o L

comive ¥ cymioe
X gtoN*taiM (@™ a0~ 1l — 1) dodary
=P(X,N-1,M-i)-P(X,N,M). (6.2

The identity
() PX,N-1,M-i)

X PN M)
follows immediately. Similarly, we may readily obtain

<ninj> _ P(X,N— 2,M —i —J)

(6.3

= 6.4
XiX; P(X,N,M) 6.9

and thereby the correlation ratio
iy Q(X,N=-2,M =i - )Q(X,N,M) 6.5

M)y  QX,N-1,M-HQX,N-1,M-j)’

(6.5 are shown in Fig. 9. Once again the calculations suc-
cessfully reproduce the Monte Carlo data. The departure
from unity observed in the figure is mainly due to constraint
of the total mass. Relations such as E§5) should be of
considerable value in exploring the pertinence of the con-
strained multinomial approximation.

VIl. CONCLUDING REMARKS

In this work we developed a simple technique for evalu-
ating probabilities associated with the constrained multino-
mial model. We have shown, in a case study designed to
produce observables similar to those observed in nuclear
multifragmentation, that the technique produces predictions
which generally provide an excellent description of results
obtained from Monte Carlo simulations. The technique is
expected to be especially useful for estimation of small prob-
abilities or, more importantly, of ratios of small probabilities
which cannot be easily estimated by simulation.

It is useful to note that the basic model structure consid-
ered herein is reproduced in at least one of the currently
successful statistical models for nuclear multifragmentation
[3] (see alsd8,13]). On the other hand, in many physical
situations one may expect departures from predictions of the
multinomial model due to the dynamical processes involved
in multifragmentation[14]. In this case, the Laplace trans-

which for independent emission would be identically equalform method can be used as a basissort of null hypoth-
to unity for all off-diagonal elements. Monte Carlo calcula- esig that should facilitate detection and characterization of
tions of this ratio together with predictions provided by Eg. such processes.
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