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In fragmentation of a finite object such as an atomic nucleus or a percolation lattice, the multidimensional
probability distribution of the numbers of fragments of each mass(charge, size) may be approximated as a
product of Poisson distributions. In this work we present an analytical treatment of the influence of constraints
(multiplicity, mass, etc.) that may be imposed on the basic product distribution.
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I. INTRODUCTION

When a finite nucleus breaks into fragments the simplest
observation consists in measuring the average numbers of
fragments of masssmd or chargeszd. In this work, we refer to
these quantities asknml. It should, however, be understood
that, despite the systematic use of the word “mass” the analy-
sis presented herein also applies to fragment charges and to
other manifestations of fragmentation such as the sets of
fragments produced in bond percolation simulations. For a
discussion of nuclear fragmentation we refer the reader to the
recent review by Richert and Wagner[1] and to references
therein. A detailed discussion of statistical models for frag-
mentation can be found in Refs.[2–4].

An experiment carried out with a sophisticated multide-
tector is capable of measuring the set of fragment masses
(more usually charges) event by event. Each event is then
represented by a vectorn;hn1,n2, . . . ,nm, . . .j snmù0d. The
multiplicity is defined asomnm and the experiment provides
an estimate of the partition probabilities. If the total mass of
the fragmenting object is knownsMd then n represents a
partition of the integerM and the sum ruleom=1

M mnm=M
applies. We shall write sums and products overm, respec-
tively, asom andpm.

A model for partition weights(or probabilities) Wsnd [or
Psnd] may be readily constructed using only the average val-
uesknml. The interest is twofold. First, to the extent that the
model provides a “reasonable” description of the available
data, it provides estimations of other interesting observables.
Second, it serves as a basis for the development of more
sophisticated model structures which may be necessary to
explain nontrivial correlations in the production of frag-
ments.

The basic model considered herein results from the as-
sumption of absence of correlations, i.e.,

Wsnd = p
m

wmsnmd. s1.1d

The model is developed by the specification of the individual
distributionswmsnmd as correctly normalized Poisson factors

pmsnmd =
fXmgnme− Xm

nm!
, s1.2d

in which each of the parametersXm (collectively referred to
as X or the sethXmj) is equal(by definition) to the corre-

sponding mean valueknml. We note that models of this “ge-
neric” type have met with considerable success in reproduc-
ing results of multifragmentation experiments[5–8]. The
specific problem of correlations in small systems was dis-
cussed by Cole and Désesquelles[9].

The specification made in Eq.(1.2) obviously implies that
the sum of partition probabilitiesonPsn ;Xd=1. However, if
the multiplicity and total mass can be considered as con-
straintssN,Md this is no longer the case. We write the formal
expression

o
n

Psn;X,N,Md ; o
n

p
m

fXmgnm e− Xm

nm!
dSo

m

nm − ND
3dSo

m

mnm − MD , 1. s1.3d

The constraints themelves introduce correlations. Thus, in
the presence of constraints,knml is no longer equal toXm and
quantities such askninjl−knilknjl are usually nonzero for all
pairs of indicessi , jd.

This work concerns the analytical treatment of a particular
set of constraints which may be imposed on the basic distri-
bution of probabilitiesPsn ;Xd. The constraints considered
are multiplicity, total mass, and higher order moments of the
same form. Thus an arbitrary choice of momentsom=1

M mknm
can be constrained to the valueskk (with this notationN
=k0 andM =k1). The primary goal will be to provide a ver-
sion of Eq.(1.3) in which the delta functions no longer ap-
pear. The essential formalism will be developed in the fol-
lowing section. In Sec. III, the analytical result is validated
by a comparison of predictions for mass distributions(for a
few multiplicities) with results of Monte Carlo calculations.
In this section we also compare the prediction of the partition
probability density, as a function ofk2, for fixed values ofN
andM, with the simulation result.

In Sec. IV, we begin by an extension of the formalism
which is used to demonstrate that, in the case of multiplicity
and mass constraints, the probability distributionpsnmd for
the number of fragments of massm is correctly reproduced.
This leads naturally to a study of the inverse problem, i.e.,
obtaining the sethXmj from the set of mean valuesknml.

In Sec. V, we examine the joint probability distribution
psni ,njd corresponding to multiplicity and mass constrained
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partitions withni fragments of massi and nj fragments of
mass j , and in Sec. VI we derive and test identities which
associate mean values and higher moments of the con-
strained fragment number distribution(quantities such asknil
andkninjl) with specific members of the probability distribu-
tion itself. These identities are exact characteristics of the
multinomial distribution. Remarks and conclusions are pre-
sented in Sec. VII.

II. THE CONSTRAINED PROBABILITY

It is, in principle, possible to(numerically) generate all
partitions corresponding to the product Poisson distribution
selecting those that satisfy a given set of constraints. The
difficulty of this enterprise can be appreciated by making a
rough evaluation. Let us suppose the values of the param-
eters Xm are such that the probabilities for anynm to be
greater than or equal to 10 can be discarded. Under these
circumstances, denoting the highest value of m for which
Xm.0 asMT, the number of partitions to be examined is of
the order of 10MT. Of course, one can use Monte Carlo tech-
niques to provide an estimation of probabilities, but for small
probabilities such calculations become extremely time con-
suming and eventually impossible. We are therefore justified
in seeking an alternative strategy.

The following derivation is based on a technique used to
obtain level densities in atomic nuclei[10]. We first make the
Laplace transform of the sum of constrained probabilities
and then make the inverse transform using an approximation
to the exact integrand. ThesK+1d-dimensional Laplace
transform of the sum of constrained probabilities is

Zsad = o
n
E

0

` E
0

`

¯ E
0

`

Psn;XdHp
k

dSo
m

mknm − kkDJ
3e− a0k0e− a1k1

¯ e−aKkKdk0dk1 ¯ dkK

=o
n

Psn;Xde−okakommknm, s2.1d

in which the symbolok designates the sumok=0
K . We now

note that

e−okakommknm = e−omnmokakm
k
= p

m

fe-okakm
k
gnm. s2.2d

Then, recalling the normalized form for the partition prob-
ability [Eqs. (1.1) and (1.2)] and writing the configuration
sum ason;on1

on2
¯onm

¯, we obtain

Zsad = e− omXmo
n1

fX1e
− okak1

k
gn1

n1!
3 o

n2

fX2e
− okak2

k
gn2

n2!

3 · · · 3 o
nm

fXme− okakm
k
gnm

nm!
3 · · ·. s2.3d

We recognize that the second and subsequent factors on the
right hand side of Eq.(2.3) are simple expansions of expo-
nentials so that, finally,

Zsad = p
m

eXmfe− okakm
k
−1g s2.4d

and (explicitly exhibiting the limitMT)

lnfZsadg = o
m=1

MT

Xmfe−okakm
k
− 1g. s2.5d

The inverse Laplace transform will now be evaluated ap-
proximately, thus providing an approximation to
onPsn ;X ,kd which we will refer to asQsX ,kd. The exact
transform is, of course,

o
n

Psn;X,kd = F 1

2pi
GK+1E

c0−i`

c0+i` E
c1−i`

c1+i`

¯ E
cK−1`

cK+i`

Zsad

3eokakkkda0da1 ¯ daK. s2.6d

We now definefsad=lnfZsadg+okakkk and replace the inte-
grand in Eq.(2.6) by the exponential of the second order
Taylor expansion offsad about the pointa=a defined by the
set of equationsdf /dak=0 sk=0,Kd. Making the change of
variablesak=ck+ iyk (whena=a, let y=u) we approximate
the inverse Laplace transform as

QsX,kd =
efsad

s2pdK+1E
−`

+` E
−`

+`

¯ E
−`

+`

egsyddy0dy1 ¯ dyK

s2.7d

in which gsyd is defined by the expansion

fsad − fsad < o
i=0

K

o
j=0

K U sai − aidsa j − ajd
2!

d2f

daida j
U

a=a

= o
i=0

K

o
j=0

K U syi − uidsy j − ujd
2!

d2f

dyidy j
U

y=u
. s2.8d

The integral in Eq.(2.7) is well known [2,11] and yields

QsX,kd =
efsad

s2pdsK+1d/2 3
1

Îdetsf9d
, s2.9d

where the symmetric square matrixf9 has elements

f i,j9 = Ud2 lnfZsadg
daida j

U
a=a

. s2.10d

To complete the derivation we need only write down the first
and second derivatives offsad. The minimum satisfies

U df

dai
U

a=a
= − o

m=1

MT

Xmmi e−okakm
k
+ ki = 0 s2.11d

and, at the minimum,

Ud2 lnfZsadg
daida j

U
a=a

= o
m=1

MT

Xmmi+j e−okakm
k
. s2.12d

An example of the application of these equations will be
given in the next section, in which we begin by obtaining an
expression forQ under constraints of mass and multiplicity.
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III. CASE STUDY: MULTIPLICITY, MASS,
AND k2 CONSTRAINTS

Referring back to Eq.(1.3), let us select the part of the
probability for which the total multiplicityk0=N and the
total massk1=M. No other constraints apply. In this case we
can divide the two equations[(2.11), with i =0,1] to obtain

M

N
=

o
m

Xmme− a1m

o
m

Xme− a1m
. s3.1d

The (numerical) solution of this equation fora1 can then be
used to obtaina0. Thus, using the multiplicity equation
[(2.11) with i =0] we obtain

a0 = lnFo
m

Xme− a1m

N
G . s3.2d

The determinant in Eq.(2.9) can be calculated straightfor-
wardly using Eq.(2.12). We define

Si ; o
m

Xmmi e−okakm
k

s3.3d

and further write

s = FS2

N
−

M2

N2 G1/2

. s3.4d

The result is simply

detff 9g = N2s2. s3.5d

Then, recalling the expression forQ [Eq. (2.9)] (where no
confusion can arise we will supress the argumentX) we ob-
tain

lnfQsN,Mdg = N − o
m

Xm + a0N + a1M − lnf2pNsg.

s3.6d

In order to test Eq.(3.6) we consider a specific case in which
Xm is defined as a sum of exponentials, i.e.,Xm=A1e

−g1m

+A2e
−g2m for m=1, MT. The parameterssA1=1.0, g1

=0.1, A2=35, g2=1.0, MT=80d were chosen to provide
mean valuesknml which are not unlike results of percolation
simulations and multifragmentation experiments in the vicin-
ity of the phase transition[12]. An unconstrained Monte
Carlo generation of partititions using this distribution yields
a mean multiplicity of 30 and a mean mass of 131. We con-
strained the multiplicity to take on a few values around this
mean and compared distributions ofQ, for an appropriate
range of masses, with Monte Carlo estimates obtained by
generating partitions using the unconstrained Poisson prod-
uct probability distribution and recording the fraction of par-
titions with the specified values ofN andM. The results are
shown in Fig. 1. The agreement is most gratifying and per-
haps even a little surprising. Eventually, of course, statistical
precision becomes a limitation in the Monte Carlo simula-
tions. However, within the range of statistical errors, the re-

sults do not reveal any significant discrepancy. As a further
test we have calculated the constrained partition probability
density as a function ofk2 for fixed valuesN=30 andM
=130. The straightforward generalization of Eq.(3.6) leads,
in this case to the expression

lnfQsN,M,k2dg = N − o
m

Xm + a0N + a1M + a2k2

− 0.5 lnf8p3Dg, s3.7d

where the determinantD is given as

D = Nk2S4 − NS3
2 + 2Mk2S3 − M2S4 − k2

3. s3.8d

The comparison with the Monte Carlo simulation, shown in
Fig. 2, is generally satisfactory but reveals a discrepancy for
high values ofk2 (albeit for probabilities of the order of
10−7). A detailed investigation reveals that this discrepancy is
simply due to the limitation of the quadratic approximation
[Eq. (2.8)] with respect to the variablea2 (the difficulty does
not occur for smaller values ofk2). For estimation of low
order moments of the distribution ofk2 the difficulty can be

FIG. 1. Constrained probabilitiesQsN,Md [Eq. (3.6)] compared
with results of Monte Carlo simulations(filled circles) with Xm

=e−0.1m+35e−m for 1ømø80 sXm=0,m.80d. The predictions are
represented as continuous lines.

FIG. 2. Probability distributions[Eq. (3.7)] of the second mo-
ment k2 for fixed values of the multiplicityN s30d and total mass
M s130d. Other specifications as in Fig. 1. Note that ifN is even
(odd) k2 is even(odd) so that the(continuous) approximation must
be multiplied by a factor of 2 before comparing with data.
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circumvented by direct use of the momentsknil and kni ·njl
(calculated using only multiplicity and mass constraints),
which, as shown in the following sections, can be estimated
accurately.

IV. CONSTRAINED FRAGMENT SIZE DISTRIBUTIONS

We will be concerned, in this section, with partitions con-
strained by multiplicity and total mass. The generalization to
include constraints of higher order is straightforward. With
multiplicity and mass constraints the statistical weight asso-
ciated with partitions for which the number of fragments of
massi is equal toni, when expressed using the Laplace trans-
form approximation, can be written

Wsnid =
fXignie− Xi

ni!
o
n

p
m

fXm
sidgnme− Xm

sid

nm!
dSo

m

nm − sN − nidD
3dSo

m

mnm − sM − inidD
<

fXignie− Xi

ni!
Q„X sid,sN − nid,sM − inid…, s4.1d

where the set of parametersX sid;hXm
sidj is identical with the

set hXmj with the exception of the parameterXi, which is
removed. Using the sethXmj defined in the previous section,
with N=30 andM =130, we show in Fig. 3 the prediction
provided for the distribution of the numbers of fragments of
mass 1, 2, and 10. As can be seen there is no observable
discrepancy with the simulation results.

The mean valueknml within the subset constrained by
mass and multiplicity is

knml =

o
nm

nmWsnmd

o
nm

Wsnmd
. s4.2d

Using Eq.(4.1), the sum in the denominator of Eq.(4.2) is
simply onm

Wsnmd=QsN,Md.

We show in Fig. 4, for three multiplicities, the predicted
knml distributions compared with the Monte Carlo calcula-
tions. This figure demonstrates(at least in the case consid-
ered) that, provided the sethXmj is given, the theory accu-
rately predicts the resulting set of values ofknml.

In practice, of course, one is faced with the inverse prob-
lem. The experiment measures a set of average partial mul-
tiplicities knml, and the first step for application of the mul-
tinomial theory is to obtain the sethXmj. In the presence of
constraints this involves a multidimensional nonlinear search
procedure. An alternative procedure, which has been used in
this work, is based on the fact that a change in the parameter
Xm mainly influences the correspondingknml value. Using
Eq. (4.1) and noting thatQ(X smd ,sN−nmd ,sM −mnmd) does
not depend onXm, we easily obtain

dWsnmd
dXm

= WsnmdS nm

Xm
− 1D . s4.3d

Now, from Eq.(4.2)

dknml
dXm

=

o
nm

nmFdWsnmd
dXm

o
nm

Wsnmd − Wsnmdo
nm

dWsnmd
dXm

G
Fo

nm

WsnmdG2 ,

s4.4d

and on inserting Eq.(4.3) we find the exact relation

dknml
dXm

=
knm

2 l − knml2

Xm
, s4.5d

so that

d lnfknmlg
d lnfXmg

=
knm

2 l − knml2

knml
;

s2snmd
knml

. s4.6d

Consider first the case form.M /2, for which nm can take
on only the values 0, 1, so that only the weightsWs0d and
Ws1d are nonzero. Equation(4.6) then reduces to

FIG. 3. Probability distributions corresponding to the numbers
of fragments of massi si = l , 2 , and 10d. In each case the quantity
displayed ispsnid=Wsnid /QsN,Md with Wsnid given by Eq.(4.1).
The Monte Carlo calculations are represented as filled circles and
the predictions by open circles joined by straight lines(set hXmj as
in Fig. 1, N=30, M =130).

FIG. 4. Predicted mean valuesknml [Eq. (4.2)] compared with
Monte Carlo simulation resultssM =130, N=20,30,40d. The
Monte Carlo “data” are represented by crosses and the predictions
by straight lines(set hXmj as in Fig. 1). Values forN=20 andN
=40 have been displaced by +2 and −2, respectively.
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d lnfknmlg
d lnfXmg

= 1 − knml. s4.7d

More generally, one observes that the variances2snmd in-
creasesalmostlinearly with the mean valueknml (these quan-
tities are identical for the Poisson distribution). Thus, as
shown in Fig. 5, the relation

D lnfnmg = Csmd 3 D lnfXmg s4.8d

holds approximately for allm with Csmdø1. Equation(4.8)
provides a basis for a search routine which, in a given cycle,
successively modifies each value ofXm and generally con-
verges after a few such cycles.

We show in Fig. 6 the result of the search procedure ap-
plied to theknml distribution obtained from the Monte Carlo
simulation using the double exponential distribution speci-
fied just after Eq.(3.6). We mention in passing that, as re-
marked by Désesquelles[13], the sethXmj obtained for fixed
N andM may be transformed, using arbitrary constantsy and

z, to the sethXmyzmj with no effect on observables. In the
present context the only consequence is that two values se-
lected from the sethXmj can be fixeda priori in the search
procedure. Figure 6 demonstrates that the search procedure is
successful insofar as the Monte Carloknml distributions are
nicely reproduced.

V. TWO FRAGMENT CORRELATIONS

In this section we briefly discuss two fragment correla-
tions within the subset of partitions constrained by multiplic-
ity and mass. The probability of observing events within this
subset withni fragments of massi andnj fragments of mass
j is obtained as an obvious extension of Eq.(4.1), i.e.,

psni,njd =
Wsni,njd

o
ni,nj

Wsni,njd
=

Wsni,njd
QsN,Md

, s5.1d

where

Wsni,njd =
fXignie− Xi

ni!
3

fXjgnje− Xj

nj!
o
n

p
m

fXm
si,jdgnme− Xm

si,jd

nm!

3dSo
m

nm − sN − ni − njdD
3dSo

m

mnm − sM − ini − jnjdD
<

fXignie− Xi

ni!
3

fXjgnje− Xj

nj!

3Q„X si,jd,sN − ni − njd,sM − ini − jnjd…. s5.2d

The results of calculations using this formula are compared
with Monte Carlo simulations in Figs. 7 and 8. The Monte
Carlo results(obtained from simulations with 109 events) are
limited by statistics. However, within these limitations the
predictions appear to be rather accurate.

FIG. 5. Monte Carlo simulation results obtained by variation of
Xm parameters. For each value ofm the variation was made starting
with the setX specified in the caption to Fig. 1[see Eq.(4.8) and
preceding text]. The straight lines represent linear least squares fits
to the Monte Carlo “data.”

FIG. 6. Results of search procedure:knml valuessM =130, N
=20,30,40d obtained from the Monte Carlo simulations are repre-
sented by crosses and predictions(the final values obtained from the
search routine) as open circles. TheXm values obtained from the
search routine are represented as continuous lines. Values forN
=20 andN=40 have been displaced by +2 and −2, respectively.

FIG. 7. Probability[defined within the subset withN=30 and
M =130, Eq.(5.1)] to simultaneously observeni fragments of mass
i andnj fragments of massj with i =1 and j =2. The Monte Carlo
results are represented by crosses and the predictions, by open
circles joined by straight lines(set hXmj as in Fig. 1).
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VI. CHARACTERISTIC IDENTITIES

There are several ways to obtain the identities to be pre-
sented in this section. The present derivation makes use of
equations presented previously. We can begin with the mean
valueknil which, by deriving Eq.(1.3) with respect toXi, can
be written

knil
Xi

= 1 +
1

PsX,N,Md
dPsX,N,Md

dXi
. s6.1d

The derivative can be obtained from Eq.(2.6). We first note
thatd lnfZsadg /dXi =e−a0−a1i −1. Then, differentiating the in-
tegrand, we obtain

dPsX,N,Md
dXi

= F 1

2pi
G2E

c0−i`

c0+i` E
c1−i`

c1+i`

Zsad

3ea0N+a1Mse− a0− a1i − 1dda0da1

; PsX,N − 1,M − id − PsX,N,Md. s6.2d

The identity

knil
Xi

=
PsX,N − 1,M − id

PsX,N,Md
s6.3d

follows immediately. Similarly, we may readily obtain

kninjl
XiXj

=
PsX,N − 2,M − i − jd

PsX,N,Md
s6.4d

and thereby the correlation ratio

kninjl
knilknjl

<
QsX,N − 2,M − i − jdQsX,N,Md

QsX,N − 1,M − idQsX,N − 1,M − jd
, s6.5d

which for independent emission would be identically equal
to unity for all off-diagonal elements. Monte Carlo calcula-
tions of this ratio together with predictions provided by Eq.

(6.5) are shown in Fig. 9. Once again the calculations suc-
cessfully reproduce the Monte Carlo data. The departure
from unity observed in the figure is mainly due to constraint
of the total mass. Relations such as Eq.(6.5) should be of
considerable value in exploring the pertinence of the con-
strained multinomial approximation.

VII. CONCLUDING REMARKS

In this work we developed a simple technique for evalu-
ating probabilities associated with the constrained multino-
mial model. We have shown, in a case study designed to
produce observables similar to those observed in nuclear
multifragmentation, that the technique produces predictions
which generally provide an excellent description of results
obtained from Monte Carlo simulations. The technique is
expected to be especially useful for estimation of small prob-
abilities or, more importantly, of ratios of small probabilities
which cannot be easily estimated by simulation.

It is useful to note that the basic model structure consid-
ered herein is reproduced in at least one of the currently
successful statistical models for nuclear multifragmentation
[3] (see also[8,13]). On the other hand, in many physical
situations one may expect departures from predictions of the
multinomial model due to the dynamical processes involved
in multifragmentation[14]. In this case, the Laplace trans-
form method can be used as a basis(a sort of null hypoth-
esis) that should facilitate detection and characterization of
such processes.

FIG. 8. As Fig. 7 but fori =10 andj =12. FIG. 9. Correlation ratios. The results of the Monte Carlo simu-
lations (108 events, sethXmj as in Fig. 1,N=30, M =130) are rep-
resented as filled circles, open circles, and crosses linked by thin
straight lines. The predictions[Eq. (6.5)] are represented as thick
dashed lines. Diagonal elements(which would be off scale in this
figure) have been suppressed.
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