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We investigate quantum corrections to a classical intranuclear cascade simulation of pion single charge
exchange on the deuteron. In order to separate various effects, the orders of scattering need to be distinguished
and, to that end, we develop signals for each order of scattering corresponding to quasifree conditions. Quan-
tum corrections are evaluated for double scattering and are found to be large. Global agreement with the data
is good.
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I. INTRODUCTION

The solution of the many-body Schrödinger equation for
scattering problems is difficult indeed. For this reason quan-
tum mechanical reaction calculations are often replaced with
their classical analogs. The replacement of the quantum
problem by the classical one was first suggested by Serber
[1]. He observed that the early data seemed to be consistent
with a simple cascade of collisions within a Fermi gas model
of the nucleus. This idea was followed by a long list of
developing codes(see Refs.[2–16]).

For heavy-ion reactions the final state is very compli-
cated, and the cascade calculation became one of the few
tools available to predict results. The relativistic quantum
molecular dynamics(RQMD) approach[8] and the Liège
code [9] provide two standard calculational techniques for
treating intermediate energy heavy ion reactions. The code
from Valencia [10] is capable of treating proton and pion
projectiles. New approaches include a code developed by Li
et al. [11] using a set of coupled transport equations and a
cascade model developed with relativistic heavy-ion colli-
sions in mind, the ARC(a relativistic cascade) code[12].

Almost all of these models rely on the treatment of the
scattering from the point of view of classical probabilities
with each scattering being treated independently. Of course
we know that there are phases arising from quantum me-
chanics which should enter into the calculation of the total
probability.

If one wanted to perform a fully quantum mechanical cas-
cade one possibility might be to consider all possible results
arising from the initial conditions and then calculate the
quantum mechanical probability of each event. These prob-
abilities would then be used as weights. This would be an
extremely inefficient procedure, however, since the dominant
fraction of the events, if chosen completely randomly, would
occur with very small probability and most of the calcula-
tional time would be wasted. A far more efficient procedure
would be to choose the events according to some approxi-
mate (well defined) probabilistic rule and then correct the
approximate rule by taking for the weight of the event the
ratio of the probabilities. This is a standard technique in
Monte Carlo procedures known as “importance sampling.”

The approximate event generator must have the property that
it can be sampled and that the probability for a given event
can be calculated. Of course, the full calculation will be more
efficient if the event generator gives results close to the “cor-
rect” answer. For this event generator we will use the classi-
cal simulation mentioned above. It is known to give good
results for simple reactions such as quasielastic scattering.
Deviations from the model are also seen, and it is never sure
if these discrepancies should be ascribed to new physics or to
the fact that the model is purely classical. Because of its
simplicity we have chosen thep++d→ppp0 reaction to in-
vestigate some quantum corrections.

To elucidate, to the extent possible, the role and magni-
tude of the quantum corrections, we have been led to explore
the role of various parameters(counter size, lower momen-
tum cuts, absorption parameters, etc.) in relation to either the
data or the model.

II. DATA

For the case of single charge exchange on the deuteron,
there exist fairly complete data[13] on the cross section with
a coincidence between the two final protons such that the
final state was entirely determined. The coincidences were
between pairs of counters on opposite sides of the beam at
228 and 294 MeV so that the reaction took place in a plane.
The counter positions are at 20°, 45°, 60°, and 125° on each
side of the beam. This would seem to give 16 pairs but all
coincidences are not possible. Removing thes20° ,−20°d,
s60° ,−125°d, s125° ,−60°d, ands125° ,−125°d cases, there
remain 12 angle pairs. By convention, the momentum distri-
bution displayed will be that of the counter corresponding to
the first element of the angle pair.

The coincidence requirement opens up new possibilities
for analyzing the data. The quantum correction that we con-
sider is the one due to quantum vs classical double scatter-
ing. The data of Taciket al. [13] present the opportunity to
explore its nature. One might think that the double scattering
contribution to single charge exchange on the deuteron is
small, and that is, in general, true. However, in the cases in
which just one charge exchange on the neutron takes place
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(without a scattering from the other nucleon), the spectator
proton has very low momentum in the final state due to the
low Fermi momentum of the deuteron. In most experiments
(in particular the one we shall consider here[13]), the two
protons are detected with a minimum momentum. Under
these conditions the double and higher scattering contribu-
tions are the most important.

This positive feature is balanced by the fact that the ac-
ceptance of the experimental system must be understood.
Since the spectrum of one proton was measured in coinci-
dence with the second proton the threshold on the second
detector is important.

The data show a smooth variation as a function the
counter pair position as well as a function of incident pion
energy. However there are very strong, narrow peaks in the
momentum spectra which are perhaps surprising. We shall
argue that these peaks are normal kinematic features and can,
to some extent, serve as indicators of orders of scattering. We
need to characterize the data in terms of the multiple scatter-
ing components since the relative weights of each order are
different at 228 and 294 MeV.

In the treatment of these data we first run a cascade code
to generate an event file with charge exchange events. This
file is then analyzed with appropriate threshold cuts, selec-
tion of the number of scatterings, etc. After some studies
attempting to match the experimental thresholds we decided
to use a standard momentum threshold of 226 MeV/c for all
of the cases. The counters were taken to have an extension of
5° in the u sense and the back-to-back condition was en-
forced by requiring that cosDfø−0.99, whereDf is the
difference in azimuthal angles for the two protons.

III. CLASSICAL CODE

The present INC(intranuclear cascade) code was origi-
nally developed to treat moderate-energy antiproton annihi-
lation in nuclei and has been applied to that end several times
[14–18]. However, the annihilation of an antiproton leads to
pions (or at least it is so treated by the model) and so the
history of pions in the energy range below, and of the order
of, 1 GeV is essential to the calculation of energy deposition.
Of particular importance for the thermalization of the nuclear
matter are pion absorption and production. For this reason
the code needed to be checked against reactions initiated by
pion beams[19]. Calculations have been done to compare
with data on antiproton annihilation of 5–10 GeV antipro-
tons on several nuclei[20]. Considerable success has been
obtained in predicting the rapidity distributions of strange
particles produced in antiproton reactions[18]. The question
of pion absorption and comparison with data has been ad-
dressed[21] and the code has been used for the comparison
with inclusive data[22]. It was quite successful in describing
the overall spectrum although there is a problem with the
number of final pions in the region of the delta resonance.

A description of the basic features of the pion version of
the code can be found in Ref.[23] where pion double charge
exchange on4He was treated with a quantum correction for
final state interaction for the(unobserved) nucleon pair on
which the two charge exchanges took place. This was an

important correction since, for high-energy final pions, these
two nucleons often have low relative energies. In the present
case the two final nucleons cannot have low relative energies
(because the counter pairs require a substantial separation in
angle) so this final state interaction correction was not in-
cluded.

As can be seen in the above mentioned descriptions, the
absorption is controlled by a parameter which expresses the
probability that an absorption takes place when it is permit-
ted by conservation laws. In the present work we varied this
parameter to fit the experimental absorption cross sections
[24]. Even large variations of the cross-section(a factor of 2)
led to variations in the magnitude of the charge exchange
cross sections of at most of the order of 20–30 % with no
major change in the shape of the spectra.

The first problem to be approached in attempting to make
a classical solution to the many-body scattering system act as
a simulation of the quantum system is the realization of the
initial density of particles in the bound target. While one can
choose the coordinate positions appropriately, the distribu-
tion of momenta of the particles also needs to be taken to
match the quantum case. The technique for the construction
of a nucleus withA nucleons is given in Ref.[23].

For the case of the deuteron a direct sampling method can
be used to take the spatial distribution directly from a prob-
ability density. For the radial density we have taken that of
the solution with a one-pion-exchange potential[25–28].

Since we intend to have the two nucleons propagate under
the action of a potential, once the position of an initial
nucleon is established the kinetic energy is fixed by the re-
lation

Tsrd + Vsrd = E, s1d

where T is the kinetic energy of the particle andV is the
potential chosen. Once a value ofr is chosen then a value of
the kinetic energy(and hence of momentum) is fixed. Since
(as we will see shortly) the coincidence requirement leads to
delta functions for the momentum distributions for double
scattering in the absence of Fermi motion in the deuteron, it
is important that the distribution of this quantity be realistic.

If the potential in this equation is chosen to be the same as
that used in the quantum mechanical problem to provide a
solution giving the density, in general the distribution of the
momenta obtained from the classical procedure just outlined
will give a (very) different distribution of momenta from the
one obtained from the square of the momentum space wave
function derived from the solution of the quantum problem.
In particular, the quantum solution gives a distribution of
momenta which has support to infinity, whereas the classical
solution, because of the fact that a typical potential used in
the solution of the nucleon-nucleon problem has a maximum
depth, has a cutoff at a finite value. This cutoff comes at a
point well within the range of interest of momenta so that the
resulting momentum distribution is far from realistic.

This problem can be solved(at an expense as we shall
see) by choosing the potential such that the momentum dis-
tribution is correct if the radial density is the one desired. In
the present case, we have taken the binding energy of the
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deuteron to be zero so that the kinetic energy is equal to the
negative of the potential.

To find the potential which will make these two distribu-
tions compatible in the classical sense, we first transform the
momentum distribution to a distribution of kinetic energies.
The momentum distribution used in this case is taken from a
fit to the data of Bernheimet al. [29] where the data and the
fit are shown in Fig. 1.

Given this distribution, the condition that the kinetic en-
ergy distributiongsTd be obtained from a given radial distri-
bution rsrd is

rsrddr = gsTddT s2d

for which the integrated form(taking account of the proper
limits to give the boundary conditions) is

Fsrd ; E
r

`

rsrddr =E
0

T

gsTddT; GsTd. s3d

To obtain the desired solution the functionsFsrd and GsTd
are tabulated numerically and then the numerical inversion

Tsrd = G−1fFsrdg s4d

is made. The potential is then identified with the negative of
the kinetic energy. The numerical inversion procedure intro-
duces some error but is stable except for very small values of
r, where the numerical procedure limits to a constant poten-
tial, whereas the true result goes to infinity. A fit is then made
to the potential which follows the potential in the region
where it is well determined. In general the procedure works
well and the resultant momentum distribution from the simu-
lation is shown in Fig. 1 compared with the input distribu-
tion. The agreement is good but not perfect.

The resulting potential is shown in Fig. 2. It is seen that it
has only a cursory resemblance to a semirealisticNN poten-
tial at larger and is completely different at smallr where it
lacks the repulsive hard core. This potential is the price paid

for being able to have correct spatial and momentum distri-
butions with conservation of energy. For double scattering or
higher this potential is not very important since the nucleons
have high energies and are little affected by the final state
interaction between the two nucleons.

For single scattering, however, where the Fermi momen-
tum (after final state interaction) must be detected in one of
the pair of counters, the error can be substantial. Since only
the tail of the Fermi momentum distribution has large
enough values of momentum to be observed in the detectors,
the exact values of the momentum in the tail is crucial. For a
number of cases the single scattering plays a small role while
for others it contributes in certain parts of the spectrum in
ways that might not be imagined without some reflection.

Since we know the initial distribution and we can select
the events with single scattering in the calculation and accu-
mulate the distributions of the final proton momenta, the ef-
fect of this potential in the final state can be observed. Figure
3 shows such a comparison for four angle pairs. The curves
have been normalized to the same integral values. It is seen
that the momenta for the case of the forward angle counters
have been shifted to lower values as expected from the above
arguments. In other cases the distribution is very similar to
the starting distribution or increased at high momenta. The
largest angle counters show a double peaked structure.

IV. SINGLE, DOUBLE, AND TRIPLE SCATTERING

While the quasifree single scattering peak has been
known for a long time, it is interesting that in a coincidence
experiment one can expect peaks from quasifree double and
triple scattering. Since peaks in spectra are sometimes inter-
preted as particle masses, one should be aware of the pos-
sible presence of such peaks to avoid misinterpretations that
could arise. Scattering is carried only to fourth order, i.e.,
after the pion has scattered four times it is not allowed to
interact. Thus, what we call quadruple scattering really rep-
resents all of the rest of the scatterings which would have

FIG. 1. Comparison of the measurements of Fermi momenta by
Bernheimet al. [29] with a fit to the data(dashed line) and the
result of the INC(solid line) using the potential derived in the text
and shown in Fig. 2. Also shown is the square of the momentum
wave function of the one-pion-exchange deuteron(dotted).

FIG. 2. The potential obtained as described in the text. The solid
line is the potential directly from the procedure and the dashed line
shows the fit used in the cascade code. The dash-dotted line shows
the Malfliet-Tjon [30] potential as modified in[28].
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occurred as well. We are not able to give an analytical dis-
cussion of this higher order but we will treat the first three
orders.

A. Single scattering

The quasifree scattering peak is well known in measure-
ments in which a single particle is observed and, indeed,
appears prominently in many cases. It corresponds to a free
nucleon at rest being struck. Since the Fermi momentum
distribution typically peaks at zero(or low) momentum, a
peak in the final momentum distribution is observed at the
value of momentum appropriate for free scattering. In addi-
tion there is a distribution of counts on either side with the
extent of the wings depending on the Fermi momenta.

In the present coincidence experiment, where for the case
of single scattering a substantial Fermi momentum is needed
for the observation of the spectator proton, the maximum of
the quasifree peak is explicitly excluded. The most one might
expect to see is one or both of the wings of the distribution.
This effect can lead to rather unexpected contributions to the
spectrum.

Figure 4 shows results for single scattering. The dotted
curve shows the distribution without any thresholds for the
counters, and the quasifree peak is clearly seen. The solid

curve displays the result with the threshold cuts in place and
one sees that most of the single scattering is eliminated by
the cuts. In some cases a remnant of the single scattering is
left. Interesting are the cases of the angle pairss45° ,−45°d
ands60° ,−20°d where the quasifree peak is in the center of
the spectrum and only the tails of the distribution remain
after the cut resulting in peaks at high and low momenta,
with precisely the opposite shape to the original spectrum
before the cuts. Clearly, it is difficult to be sure of the
strength of these peaks since they depend on the values of
the cuts and, especially, on the final state interaction poten-
tial. In these two cases, since the momentum distribution has
been modified only slightly by the final state interaction, one
may expect that the predictions are at least qualitatively cor-
rect.

The remnants after cuts shown in Fig. 4 for 294 MeV are
among the largest for that energy. The remaining single scat-
tering cross sections at 228 MeV are large, not only in the
case of the counter pairs shown but in the pairss20° ,
−45°d and s45° ,−20°d and to a lesser extent for the pairs
s45° ,−60°d ands60° ,−45°d. For thes20° ,−60°d angle pair
the final momentum for the quasifree peak is clearly visible
without cuts but mostly eliminated with them. The effect of
the cuts is rather different at 228 MeV and 294 MeV.

FIG. 3. Comparison of the observed final mo-
mentum of the unstruck particle in single scatter-
ing events with the initial Fermi momentum(its
initial momentum before interaction with the
potential).
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B. Double scattering

We now discuss the existence of quasifree double scatter-
ing peaks where each of the two particles will receive a
substantial momentum from the scattering process. For this
reason in this study we limit ourselves to the case of zero
Fermi momentum. By specifying the angle of the outgoing
(first) nucleon, with the incident pion momentum known, the
kinematics of the reaction are expressed by

kp = k1 + k , s5d

wherek1 is the final energy of the first struck nucleon andk
is the pion momentum after the first scattering. Equating the
total laboratory energy before and after scattering, we have

E = v + M = Îm2 + skp − k1d2 + ÎM2 + k1
2

= Îm2 + kp
2 + k1

2 − 2kpk1x + ÎM2 + k1
2, s6d

wherex is the cosine of the angle between the incident pion
direction andk1. Solving this equation foruk1u, we have

uk1u = k1 =
2Mkpx

E − kp
2x2/E

. s7d

Since the final pion momentum from the first scattering is
known, it can be used as input for the second scattering, and,
with the direction of the final nucleon fixed by the experi-
mental conditions, all angles and energies are again known.
We can apply the same formula to find

FIG. 4. Single scattering with
and without cuts at 228 and
294 MeV. The data points shown
in this figure and all of the figures
to follow are from[13].
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k2 =
2Mky

E8 − k2y2/E8
, s8d

whereE8=Îk2+m2+M and y is the cosine of the angle be-
tweenk andk2.

Thus, for a given angle pair there are two momenta(each
in a different counter) where one might expect to observe a
peak. Since the first scattering must lead to the recoil of the
nucleon in the forward direction, when one counter at 125° is
involved there is only one value possible corresponding to
the scattering to the forward counter first. Tables I and II give
the peak position expected at 294 and 228 MeV, respec-
tively.

Figure 5 compares calculations with and without Fermi
momentum for double and total scattering. They are made
including the quantum correction to be discussed in the next
section. It is seen that peaks do indeed come where predicted
by the above considerations(shown as triangles in the fig-
ure). Fermi motion and higher order scatterings tend to blur
and hide them but they are often visible in the final result.

C. Triple scattering

In this case(perhaps remarkably) one also has regions of
strength in the quasifree process. The reason for the exis-
tence of structure is a Jacobian peak introduced by a trans-
formation discussed in the following. If we assume that the
entire triple scattering remains in a plane, then for a given

value of the recoil angle for the initial scattering,u1
i , for a

fixed u2 all kinematics are defined. The probability of such
an event will be given in terms of a product of the three
scattering cross sections involved. Performing the transfor-
mation from the distribution inz=cosu1

i to the distribution in
final momentak1szd (the momentum of the first nucleonafter
the secondscattering), the momentum distribution is given
by

dP

dk1
=

dP

dzYUdk1

dz
U , s9d

where the quantitydP/dk1 is the probability of the triple
scattering taking place for a givenz. dk1/dz typically has a
zero in the range of interest. This zero occurs at the maxi-
mum energy possible for triple scattering, which, in fact,
coincides with the maximum energy possible for the reaction
(regardless of the number of scatterings). Triple scattering is
the first order in which this maximum momentum can be
reached. This peak will have the same form for any value of
Fermi momentum and hence is not broadened by the motion
of the nucleon. Since the measurement is a coincidence cross
section, one expects a companion peak in the second counter
at the energy of the second scattering which corresponds to
the Jacobian peak. While the Jacobian peak is clearly seen in
the experimental results the companion peak is usually much
broader and generally not visible. It is worthwhile to note
that the counter size can influence what is seen since there is

TABLE I. Expected peaks from quasifree double scattering for a pion incident energy of 294 MeV. The
numbers are for the position of peaks expected in the first counter of the pair. The first number corresponds
to the case where the first struck nucleon was detected in this counter and the second number corresponds to
the case where the second scattered nucleon was detected in the first member of the counter pair. In the pairs
in which one of the counters is at 125°, only one value is possible since the first scattering cannot lead to a
particle recoiling at greater than 90°(without Fermi motion).

Angle pair 20, 125 20, 60 20, 45

Peak position(s) sMeV/cd 573 573 507 573 316

Angle pair 45, 125 45, 60 45, 45 45, 20

Peak position(s) sMeV/cd 415 415 557 415 447 415 75

Angle pair 60, 60 60, 45 60, 20

Peak positionssMeV/cd 287 529 287 486 287 165

Angle pair 125, 45 125, 20

Peak positionsMeV/cd 259 376

TABLE II. Expected peaks from quasifree double scattering for a pion incident energy of 228 MeV. See
Table I for an explanation of the entries.

Angle pair 20, 125 20, 60 20, 45

Peak position(s) sMeV/cd 488 488 427 488 260

Angle pair 45, 125 45, 60 45, 45 45, 20

Peak position(s) sMeV/cd 357 357 476 357 378 357 54

Angle pair 60, 60 60, 45 60, 20

Peak positionssMeV/cd 249 458 249 416 249 135

Angle pair 125, 45 125, 20

Peak positionsMeV/cd 241 334

J.-P. DEDONDER AND W. R. GIBBS PHYSICAL REVIEW C69, 054611(2004)

054611-6



a true singularity in these peaks. Table III gives the positions
of these Jacobian peaks and the companion peak.

Figure 6 gives the final momenta of the two nucleons as a
function of the(assumed in plane) scattering angle in the first
scattering for the angle pairss20° ,−125°d and s125° ,
−20°d. It is seen that the momentum of the particle in the
second counter also has a maximum(and hence also a Jaco-
bian peak) for the cases125° ,−20°d. For the conjugate pair,
s20° ,−125°d the case is not realized for the peak of the
second momentum. However, this second Jacobian peak in
the 20° counter means that there should be two sharp peaks
with no Fermi momentum. When Fermi momentum is in-
cluded in the problem the peak in the interior of the distri-
bution will be broadened but that at the maximum of mo-
mentum will not.

Figure 7 shows results of the INC calculation with a very
small Fermi momentum. It is seen that the peaks match the
predictions(marked with the triangles). While the compan-
ion peak to the Jacobian is normally broad(see pair 45° ,
−60°), we see that, indeed, the angle pairs20° ,−125°d is an
exception with the second peak being also narrow. There is
some broadening of the peaks due to the finite size taken for
the counters in the analysis of the events coming from the
INC.

V. QUANTUM CORRECTIONS

In this section we discuss the quantum corrections that we
apply for the double scattering only. We will treat spin,
space, and isospin in turn, starting with the general form of
the operator in spin space.

A. General form

In order to calculate the ratio of the quantum double scat-
tering cross section to the classical version we must evaluate
the double scattering amplitude, which can be expressed as

Adsskp,kp8 ;r1,r2d

=
1

2p2 E dq
e−ikp8 ·r2fsq,kp8 deiq·sr 2−r 1dfskp,qdeikp·r 1

q2 − k2 − ie

s10d

=
e−iskp8 ·r 2−kp·r 1d

2p2 E dq
fsq,kp8 deiq·r fskp,qd

q2 − k2 − ie
. s11d

Following the technique of Ref.[31] and including plane
wave functions for the nucleon final states, we can express

FIG. 5. Total and double scattering with and without Fermi motion at 294 MeV. The solid line represents the contribution of double
scattering and the dashed line gives the total. Both calculations were made without absorption.
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the amplitude for a fixed position of the two nucleons as an
operator on a single functiongsrd.

eisk1·r 1+k2·r 2−kp·r 1+kp8 ·r 2dAds= sA1 + B1q ·kp + C1s1 ·q 3 kpd

3sA2 + B2kp8 ·q + C2s2 ·kp8 3 qd

3gsrd, s12d

whereq is to be interpreted as −i=. Here the constantsA, B,
and C are determined from pion-nucleon phase shifts and
correspond to the two processes possible:p+ elastic scatter-
ing on the proton followed by charge exchange on the neu-
tron or charge exchange on the neutron followed byp0 elas-
tic scattering on the proton. The phase factor on the left
could be ignored in some cases but we need to keep it here
since we wish to consider the coherence of this scattering
(nucleon 1 followed by nucleon 2) with the reverse order.

The functiongsrd is given by

gsrd =
eikr − e−ar

r
−

sk2 + a2d
2a

e−ar , s13d

where we have taken

vsqd =
a2 + k2

a2 + q2 , s14d

k is the momentum of the intermediate propagating pion, and
a is the range of the form factor(taken as 4 fm−1 here).

We consider the transformations of the radius vectors ac-
cording to

r 1 = R +
r

2
, r 2 = R −

r

2
.

We see that we have terms with no, one, and two deriva-
tives. Since=gsrd= r̂g8srd=rg8srd / r we can make a simple
replacement in the terms with one derivative. For the terms
with two derivatives a second term appears which corre-
sponds to the operation of the derivative on the factorr .
Thus we can expand Eq.(12) as

eisk1·r 1+k2·r 2−kp·r 1+kp8 ·r 2dAds

= A1A2gsrd + sA1B2kp8 ·q + A2B1q ·kpdgsrd

+ sB1B2q ·kpkp8 ·qdgsrd + sA1C2s2 ·kp8 3 q

+ A2C1s1 ·q 3 kpdgsrd + sB1C2q ·kps2 ·kp8 3 q

+ B2C1kp8 ·qs1 ·q 3 kpdgsrd + sC1C2s1 ·q

3kps2 ·kp8 3 qdgsrd, s15d

where we have separated the terms according to the number
of derivatives and the number of occurrences of the spin
operators. Performing the operations we can write(still as an
operator in spin space)

TABLE III. Expected peaks in triple scattering at 294 and
228 MeV based on the position of the Jacobian singularity. Both
entries at a given energy correspond to the momentum in the first
member of the angle pair.

294 MeV 228 MeV

Angle Pair k1sMeV/cd k2sMeV/cd k1sMeV/cd k2sMeV/cd

20, −125 696 606 598 508

45, −125 493 419 440 379

20, −60 585 237 498 199

45, −60 557 336 477 285

60, −60 551 402 475 343

20, −45 576 144 490 117

45, −45 517 227 441 191

60, −45 499 286 428 239

125, −45 259 191 244 189

45, −20 462 38 394 28

60, −20 419 83 358 66

125, −20 377 287 335 252

FIG. 6. Momenta for triple scattering at 294 MeV. The momen-
tum k1 is the one measured in the 20° counter andk2 that measured
in the 125° counter.
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eisk1·r 1+k2·r 2−kp·r 1+kp8 ·r 2dAds= A1A2gsrd − isA1B2kp8 · r̂ + A2B1r̂ ·kpdg8srd − B1B2r̂ ·kpkp8 · r̂g−srd − B1B2kp ·kp8
g8srd

r

− isA1C2s2 ·kp8 3 r̂ + A2C1s1 · r̂ 3 kpdg8srd − sB1C2r̂ ·kps2 ·kp8 3 r̂ + B2C1kp8 · r̂s1 · r̂ kpdg−srd

− sB1C2s2 ·kp8 3 kp + B2C1s1 ·kp8 3 kpd
g8srd

r
− C1C2Fss1 · r̂ 3 kps2 ·kp8 3 r̂ dg−srd

+ ss1 ·kp8s2 ·kp − s1 · s2kp ·kp8 d
g8srd

r
G , s16d

whereg−srd;g9srd−g8 / r.
Terms proportional tog8srd / r are “quantum” in origin and

fall off as 1/r2 for large distances. For large values ofr also

gsrd → eikr

r
, g9srd → − k2eikr

r
, g8srd → ik

eikr

r
.

The spin-independent terms will be diagonal in the initial
and final states, but we must take the expectation values of

the the spin operators for the other terms. We will use the
singlet-triplet representation for the present problem since
the initial state is a pure triplet. The matrix elements needed
for the spin amplitudes are given in Appendix B.

B. Isospin of the deuteron

In order to include the effect the definite isospin of the
deuteron we can write the amplitude as

FIG. 7. Triple scattering without cuts, with
absorption, and with a small Fermi momentum at
294 MeV to show the kinematic effects of the
Jacobian peaks.

PION CHARGE EXCHANGE ON DEUTERIUM PHYSICAL REVIEW C69, 054611(2004)

054611-9



M = kppu o
iÞ j ,j=1,2

eiskp·r j−kp8 ·r id

3E dq
f isq,kp8 df jskp,qdeiq·sr i−r jd

q2 − k2 uDl, s17d

where the operatorsf i are the pion-nucleon amplitudes in
spin and isospin space and the bras and kets refer to isospin
states only. We have included the initial and final spatial
states of the pion but not the final state of the two protons.
Since there are two orders of scattering possible and there are
two terms in the isospin expansion of the deuteron wave
function, there are four terms in this expression, each of the
type presented in the previous section.

Thus, since an operator cannot act on the same particle
successively the effect of one term on the isospin part of the
deuteron wave function is

kp1ukp2usf2f1 + f1f2d
1
Î2

sup1lun2l − un1lup2ld, s18d

where each product off ’ s can be decomposed into terms
from Eq. (16) consisting of a constant multiplying an opera-
tor. We make the simplifying approximation that the ampli-
tudes for the elastic scatterings and charge exchanges depend
only on the pion momentum(neglecting the nucleon mo-
tion). Thus, we assume all nucleons at rest for the purpose of
the evaluation of thepN amplitudes only.

These considerations allow us to write this in the form

f2
xskp8 df1

+skpd − f2
0skp8 df1

xskpd + f1
0skp8 df2

xskpd − f1
xskp8 df2

+skpd,

s19d

where f i
x, f i

0, and f i
+ are, respectively, charge exchange,p0

scattering, andp+ scattering on nucleoni.
Considering, term by term, the components in Eq.(16)

that have the form of constants times operators and taking
the expression for double scattering of a generic operator to
be represented byRsr ,kp ,kp8 ,qid [=Rsr ,qid, suppressing the
pion momenta for brevity] and a generic constant amplitude
for the corresponding term to beD we can write

fDxskp8 dD+skpd − D0skp8 dDxskpdgRsr ,q1deiskp+kp8 d·r /2

+ fD0skp8 dDxskpd − Dxskp8 dD+skpdgRs− r ,q2de−iskp+kp8 d·r /2

= fDxskp8 dD+skpd − D0skp8 dDxskpdgfRsr ,q1deiskp+kp8 d·r /2

− Rs− r ,q2de−iskp+kp8 d·r /2g, s20d

where qi =kp−k i is the intermediate momentum of the
propagating pion(the same ask in the previous develop-
ment) in each case. For example, for the second term in Eq.
(16) D=−iA1B2 andR=k8 ·r̂g8srd.

The subtraction of the strength of the two possible inter-
actions represented by the differences of the multiplying con-
stantsD does not depend on the spatial coordinates. The
minus sign can be traced to the isospin character of the deu-
teron.

C. Phases from the proton-proton final state

For the spatial final state wave function of the two protons
we have

e−isk1·r 1+k2·r 2d ± e−isk1·r 2+k2·r 1d → eisk2−k1d·r /2 ± e−isk2−k1d·r /2

s21d

where the plus sign corresponds to a singlet final state and
the minus sign to the triplet final state.

Taking into account the conservation of momentumkp

=kp8 +k1+k2 we can combine the phase factor of the two
terms in Eq.(20) (dropping the overall multiplying constant
for the moment) to find

feir ·q1 ± eir ·q2gRsr ,q1d − fe−ir ·q1 ± e−ir ·q2gRs− r ,q2d. s22d

The operators in Eq.(16) have a definite character in the
parity of r , either even or odd. The next step in computing

FIG. 8. Double scattering comparing classical
(dashed line), fully quantum(solid line), and par-
tial quantum effects without the coherent deu-
teron wave function (dash-dotted line) at
228 MeV.
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the quantum matrix element would be to integrate over this
vector, thus picking out the matching terms in the final state
nucleon wave function. Since we are “correcting” for the
quantum effect event by event(and each event has a definite

value ofr ) we cannot proceed to this integration step but we
will keep only those terms that would survive this integra-
tion. This leads us to the following array which must be
applied term by term:

Spin Triplet to triplet Triplet to singlet

Even fcossr ·q1d−cossr ·q2dgfRsr ,q1d+Rsr ,q2dg fcossr ·q1d+cossr ·q2dgfRsr ,q1d−Rsr ,q2dg
Odd ifsinsr ·q1d−sinsr ·q2dgfRsr ,q1d+Rsr ,q2dg ifsinsr ·q1d+sinsr ·q2dgfRsr ,q1d−Rsr ,q2dg

VI. RESULTS

Calculations were performed(with 43108 cascades) with
the quantum effects on double scattering discussed being
implemented in the calculation by computing a weight cor-
responding to each event.

Figure 8 illustrates, for a typical pair of angles, that the
isospin correction is the most important quantum effect. The
phase correction is much smaller. The constantsD in Eq.
(20) tend to cancel for the most important partial waves. If
the amplitude were completely dominated by the 33 reso-
nance, there would be a constant reduction factor. That domi-
nance is not as pronounced at these energies as at the reso-
nance but there is still a significant cancellation in many
cases.

Figures 9 and 10 show the various orders of multiple scat-
tering beyond single. The interactions in the cascade were
stopped at fourth order so that quadruple scattering really
includes all higher orders which would have occurred if al-
lowed to continue. We have seen that the higher orders of
multiple scattering are more important at 294 MeV than at
228 MeV. One possible reason for this is that the absorption
is less at the higher energy. When the energy is degraded by
collisions, the absorption becomes larger and truncates the
multiple scattering. This may be one reason why we have so
much multiple scattering.

Figures 11 and 12 give the results for all angular pairs
with and without quantum corrections in the double scatter-
ing. We have seen that the quantum effects included(espe-
cially the isospin one) give a large decrease in the double
scattering cross section which carries over into the total as
well. We see that the agreement with the data at 228 MeV is
generally good with the possible exception of the counter
pairss60° ,−45°d ands60° ,−60°d where the cross section is
overestimated in the midmomentum range. At 294 MeV the
agreement is excellent except for a substantial overestimate
for the pairss60° ,−60°d and s20° ,−125°d. Much, but not
all, of the overestimate(in the first counter pair at least) can
be attributed to third and higher order scatterings which sug-
gests that in some cases the model overestimates these con-
tributions. One possible reason could be that the quantum
corrections have not been made to these orders. We antici-
pate that such corrections would go again in the direction of

reducing the cross section but their inclusion, though pos-
sible, is beyond the scope of the present work.

The comparison for the counter pairs125° ,−20°d at
228 MeV is puzzling. The data reverse their trend from the
same pair at 294 MeV while the calculation gives the same
general form.

VII. DISCUSSION

The poor agreement of the obtained potential with a semi-
realistic nucleon-nucleon potential may worry some, and
with good reason. However, it seems to be necessary in order
to obtain some even more important conditions in a classical
simulation. First, the density distribution of nucleons must be
correct or else the magnitude of the cross section and esti-
mates of multiple scattering will be wrong. Even the early
INC codes did this(more or less) correctly. Second, Fermi
momentum must be included. Without this physical effect
the coincidence spectra would appear as a series of spikes.
The correct degree of smearing is very important. Third, en-
ergy must be conserved and definite. If one simply includes
the motion of the nucleons without adding a potential to
compensate the kinetic energy of the nucleons that corre-
sponds to the Fermi motion, the deuterium nucleus will not
have a definite energy and such features as the Jacobian
peaks would be washed out. Thus, these three conditions are
absolutely essential for the present calculation. The selection
of any two implies the third, so there is no choice: we are left
with a specified potential.

The nonrealistic nature of this potential mainly affects the
single scattering through distortion of the distribution of the
final state momentum of the spectator particle. Since single
scattering is largely eliminated by the momentum thresholds,
we do not expect a large problem. In those cases in which
there remains a significant contribution from single scatter-
ing, errors may occur. We believe that we have taken the
correct compromise for this particular set of observables. For
another case(one in which very low energy protons were
detected, for example) it might be more appropriate to
choose a realistic potential at the expense of the Fermi mo-
mentum distribution or the correct density.

The effect of the low-energy experimental cuts is quite
important. The single scattering is very large in some cases
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and small errors in the cuts, which largely eliminate the
single scattering, can have a large influence.

In the experimental paper[13] a calculation was presented
based on Faddeev equations. Although it is difficult to com-
pare our calculation with that one because the cuts were not
taken into account, it seems that we have a better agreement
with the data.

This work points out that it is very important to have the
correct isospin in the initial state. This can be expected to be
most important in the very light elements.

The quantum phase effect seems to be moderate to small.
In the original INC it was assumed that the large number of
unobserved particles would “wash out” the phases with av-
eraging. It is somewhat surprising that even for this case,
with only two nucleons and complete kinematics, this effect
is still not very important. Of course, we can make that state-
ment only about the angles tested.

There is some hope that the overestimate of the cross
section in the third and fourth orders will be corrected by the
introduction of quantum effects in these orders as happened
in the second order. The testing of this conjecture is left for
future work.

While we began the paper with a very brief review of the
beginning history of the INC based on heavy targets and

many particles, we have found that a classical simulation
(suitably corrected for quantum effects) can be successful in
describing even very small systems. To our knowledge this is
the first work to try this approach on the deuteron.
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APPENDIX A: A SIMPLE LIMIT

In the case where the momentum is determined by a po-
tential, as in the present model, we can get some feeling for
this correction(independent of the form of the potential) by
considering a simplified case. We assume that particle 2(the
spectator particle) has a given Fermi momentump2 with the
angle being given by the coincidence counter. Then particle
one must have an initial momentum equal and opposite.

FIG. 9. Comparison of orders of multiple scattering and the total at 228 MeV. The single scattering fors45° ,−45°d is shown in
Fig. 4.
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With the usual center of mass expressions

p =
p1 − p2

2
, P = p1 + p2, p1 =

P

2
+ p, p2 =

P

2
− p,

sA1d

where, in fact,P=0 in this case, we can write the sum of the
kinetic and potential energies in the initial state as

p2

m
+ V = 0, sA2d

where we assume zero binding. After the scattering with mo-
mentum transferq, we have

p28 = p2, p18 = p1 + q, p8 = p +
q

2
. sA3d

In the final state the relative momentum at infinity will be
given by

p8̀2

m
=

p82

m
+ V =

p82

m
−

p2

m
or p8̀2 = p82 − p2 =

q2

4
+ q ·p.

sA4d

Assuming that the direction in the center of mass does not
change as the particles propagate to infinity(as would be the
case when they are back to back)

p8̀ =Îq2

4
+ q ·p

p8

up8u
=

Îq2/4 + q ·p
Îq2/4 + q ·p + p2Sp +

q

2
D ,

sA5d

the final momentum of the spectator particle in the laboratory
will be

p2`8 =
q

2
+

Îq2/4 + q ·p
Îq2/4 + q ·p + p2Sp2 −

q

2
D . sA6d

Thus, asuqu→` the momentum of the spectator in the final
state becomes equal to the initial Fermi momentum. How-
ever, the present case treats only moderate values of momen-
tum transfer so a substantial correction is to be expected.

FIG. 10. Comparison of orders of multiple scattering and the total at 294 MeV. The single scattering fors45° ,−45°d is shown in
Fig. 4.
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FIG. 11. Total scattering at 228 MeV with(solid) and without(dashed) quantum corrections.
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FIG. 12. Total scattering at 294 MeV with(solid) and without(dashed) quantum corrections.
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APPENDIX B: SPIN MATRIX ELEMENTS

With the definitions

c = a 3 b, sB1d

a0 = az, a+1 =
1
Î2

sax + iayd, a−1 = −
1
Î2

sax − iayd,

sB2d

the matrix elements ofkS8Sz8us1·as2·buSSzl can be written

(0,0) (1,21) (1,0) (1,11) sS8 ,Sz8d

sS,Szd (0,0) −a·b −ic−1 ic0 −ic+1

(1,21) −ic+1 a0b0 −a0b+1−a+1b0 2a+1b+1

(1,0) −ic0 a0b−1+a−1b0 a·b−2a0b0 a+1b0+a0b+1

(1,11) −ic21 2a−1b−1 −a−1b0−a0b−1 a0b0

We need this matrix twice, once fora=k, b=k8 and once
for a= r̂ 3k, . For the second case we can writec=−sr̂ ·k
3k8dr̂ .

For a single spin operator we have

(0,0) (1,21) (1,0) (1,11)

(0,0) 0 −a−1 a0 −a+1

(1,21) a+1 −a0 a+1 0

(1,0) a0 −a21 0 a+1

(1,11) a−1 0 −a−1 a0

for the matrix elements ofkS8Sz8us1·auSSzl and

(0,0) (1,21) (1,0) (1,11)

(0,0) 0 +a−1 −a0 a+1

(1,21) −a+1 −a0 a+1 0

(1,0) −a0 −a21 0 a+1

(1,11) −a−1 0 −a−1 a0

for the matrix elements ofkS8Sz8us2·auSSzl.
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