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We discuss a quantum effect in the diffusion process by developing a theory, which takes the finite curvature
of the potential field into account. The transport coefficients of our theory satisfy the well-known fluctuation-
dissipation theorem in the limit of Markovian approximation in the cases of diffusion in a flat potential and in
a potential well. For the diffusion along a potential barrier, the diffusion coefficient can be related to the
friction coefficient by an analytic continuation of the fluctuation-dissipation theorem for the case of diffusion
along a potential well in the asymptotic time, but contains strong non-Markovian effects at short times. By
applying our theory to the case of realistic values of the temperature, the barrier curvature, and the friction
coefficient, we show that the quantum effects will play significant roles in describing the synthesis of super-
heavy elements, i.e., the evolution from the fusion barrier to the conditional saddle, in terms of a diffusion
process. We especially point out the importance of the memory effect, which increases at lower temperatures.
It makes the net quantum effects enhance the probability of crossing the conditional saddle.
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I. INTRODUCTION lation to the case of diffusion along a potential well is well

Diffusion processes take place in a variety of problemsknown’ the modification in the case of a diffusion along a

[1-6]. The concept has recently been applied to theoreticallﬁﬁfﬁgté?lo?argeérha%Sao far been discussed only in a limited
describing the synthesis of superheavy elemgnig). It is papergs,6,9.

now well accepted that it is not sufficient for the two nuclei caJshee dat;mtr?; tfri]rllftepiﬁfvraltsu rtg ci‘xt?ln:nitgx'ﬁa?zzrr‘rtiue Ta?quegt
in heavy-ion collisions to overcome the fusigre., the Cou- y P y

lomb) barrier in order to form a heavy compound nucleusthe low temperature aspect of the diffusion process. To this

such as superheavy elements. Since the conditional saddle;i%%’swig'r;t ?:%Vlﬁlgﬁsgr?(\:/lf ! guigi?omn d\;\tf?hs I()r]no:li/logkvc\)l\?igg
located inside the fusion barrier for heavy-ion collisions be- 4

tween two heavy nuclei, two nuclei have to further progreséranSport coefﬁuentg. We then apply it to the situation rel-
vant to the synthesis of superheavy elements. We will show

inwards to approach inside the conditional saddle. The ide . ;
of Refs.[7,8], called fluctuation-dissipation dynamics, is to ig:sth:rechguimp%fgﬁf’ especially the non-Markovian ef-

describe the time evolution from the fusion barrier to the In Sec. I, we briefly sketch the derivation of the Fokker-

conditional saddle as a diffusion process. Planck equation with non-Markovian transport coefficients
Though this approach is very attractive and is Oﬁe”ngwhich include quantum effects. In Sec. Ill we discuss the

much useful information, one needs to examine the applica-u{mtum effects on the diffusion coefficient. In Sec. IV we
bility of one of the basic assumptions made so far, i.e., thé! : )

use of the standard fluctuation-dissipation theorem whicﬁﬁﬂ?’nthfh(faom;?gfnn;t;?sacv?‘l% zhe;?: gfg\;‘;ﬂgﬁ;:irﬁé "ﬁ]—e
holds at high temperatures to relate the diffusion coefficient§ 9 P

to the friction coefficients. Since superheavy elements ar iffusion Process in the synthess of superheavy elements.

stabilized by shell correction energies, one has to synthesizee summarize the paper in Sec. V.

them at reasonably low energies, as low as 1 MeV or below.

On the other hand, the curvature of the conditional saddle is ~!l: QUANTUM DIFFUSION EQUATION WITH

also of the order of 1 MeV. It is thus required to carefully =~ NON-MARKOVIAN TRANSPORT COEFFICIENTS

study quantum effects. An interesting issue is to explore the \ye derive the required diffusion equation by extending

connection between the diffusion and friction coefficients inyhe quasilinear response theory developed in R so as

the diffusion process along a potential barrier under suchy include the curvature of the potential barrier. Details of the

circumstances. Though the generalization of the Einstein regeriyation will be published elsewhef#1]. Here we sketch
the main stepg:1) We start form the von Neumann equation
for the system consisting of spaddor macroscopic degrees
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0556-2813/2004/68)/05460%5)/$22.50 69 054605-1 ©2004 The American Physical Society



TAKIGAWA, AYIK, WASHIYAMA, AND KIMURA PHYSICAL REVIEW C 69, 054605(2004)

of freedom.(3) We move to the Galilei transformed coordi- ) 1 A oa -~

nate system specified yt) and p(t). (4) We keep only up Xap(tity) = ETrB([fa(t)'fﬁ(tl)]+DB(tl))’ (9)
to the second order terms of the potential and the coupling

Hamiltonian in the expansion with respect to the fluctuation
around the classical trajectorys) We solve the coupled
equations describing th& andB spaces in the lowest order - ot A
approximation concerning the fluctuating for¢e) We make fo(t) = Ug(t,to)FoUg(t,to) (10)
a Wigner transform of the resultant extended von Neumann .

Sn terms of the fluctuation force:aa(t) defined by

equation for subspace A. with
Denoting the Wigner transform of the density operator of - -
the subspace A bip,w, we finally obtain F = IVqV).X) _ Tr( IVe(q(V).X) ﬁe(U)- (11)
‘ I Iy
J 1 9 d _ J o .
HDAV\prqyt) = (— Mp“a_ + an&— - X(aﬁE)qﬁa— In Eqg. (11), ps(t) is the density operator of the total system
e Pa Pa in the Galilei transformed coordinate system. Thét,ty) is
. -0 9 + +O) & the time evolution operator of the subspace B, which satis-
Xap &papﬁ Xap 0Pq 0 fies the partial differential equation
e ) J
+ a+ DAMpvq!t) (l) .ﬁ_’\ it :ﬁ t 0 t,t 12
B 9P, I Pg ! &tUB(,O) s(DUs(t,to), (12

The non-Markovian property'c.)f the diffusion process due toyith the initial conditioni(to, to) =1. In Eq.(12), the effec-
quantum effects, more specifically the effects of the curvasjye Hamiltonian is given by

ture of the potential barrier, is hidden in the transport coef-
ficients, which are generalized from the first and zeroth mo-
ments of the response and correlation functigfis,and y*,
e.g., as

he(t) = Ha(X) + V(q(t),%), (13

where|:|B(>“<) is the unperturbed Hamiltonian of space B and

t V. the coupling Hamiltonian. The density operafm) de-
-O)(¢) = ) c
Xap (t)‘ft dtlS(t'tl)Xaﬁ(t'tl)' @) scribing our basic equationg1), (8), and (9)] is defined
0 from the density operator in the Galilei transformed coordi-
nate spaceg(t) by

t
OO = | duCt xSt t). 3 .
ot ft Rttt @ Pe(t) = Ua(t, ) DO I3t to) (14

TheC ands are defined by using the curvature of the poten-The Dy(t) is defined byDg(t) =Tra(D(1)).
tial C as

Clt,ty) = cogQ(t—ty)], 4) ll. QUANTUM EFFECTS ON THE
FLUCTUATION-DISSIPATION THEOREM

1 The time evolution of the subspace B should in principle
S(tty) = V—CSIF{Q('E—H)], (5  be determined by solving E12) or the corresponding re-
duced von Neumann equati¢h0,12. Here we approximate

V
with Q=\C/M whenC=0. i.e., for the motion in a poten- the density operator by the canonical distribution,

tial well, and

pe(t) = exp{B(H[F ~ hg(t)]}. (15
C(t,ty) = cosh(t - ty)], (6) . .
We further replacéng(t) by Hg in Eq. (15) to be consistent
with the linear response theory. One can then easily show by
S(t,ty) = %sinf{ﬂ(t—tl)], (7)  introducing spectral functiofil,10] that the following well-
VM|C]| known generalized fluctuation-dissipation theorem follows

in the limit of Markovian approximation for the motion
with Q=y|C|/M when C<0, i.e., for a motion along a along a potential well,
potential barrier. The response and the correlation func-

; (=) (+) ; (+E)
tions, t,t;) and t,ty), are given b t .
Xaﬁ( 1) Xalg( 1) g y X(‘_ao)( ) =MT, (16)
i Xaa (1)
Ot ty) = —Trg([f (1), f 5(t)]Dg(t 8
Xag(t,to) h a([fa(0), To(ty) IDe(t1), ® with the effective temperature given by
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P
T =2h0 cot 284 Q] (17) T=0.5MeV
- hQ=1.0MeV T_40MeVy ------- .
T (T>#hQ) - hw, = 20.0 MeV T =3.0 MeV ———— -
e (T=h0). (18 e 1220 MEY e

Equation(1) is then nothing but the Kramers diffusion equa-
tion [13] postulated in Refd.7,8], though there exist some
modifications such as the temperature being replaced by the~
effective temperature.

As declared in the Introduction, our interest in connection
with the synthesis of superheavy elements is the diffusion
process along a potential barrier instead of along a potentia
well. In this case, one needs to specify a model in order to
further discuss the properties of the diffusion coefficients. 0 D 4 6 8 10
We assume the Feynmann-Vernon mofB4], which has _2
been used also by Caldeira and Legg##H] to discuss mac- t[10sec]
roscopic quantum tunneling, assume the Ohmic dissipation,
and use the Drude regularizati¢8] by introducing the fol-
lowing cutoff function for the spectral density of the envi-

1) [MeV]
O 2N WA OO N ®

FIG. 1. Ratio of the diffusion to friction coefficients.

ronment, i.e., the subspace B: Figure 1 shows the time dependencerd, i.e., the ratio
of the diffusion to the asymptotic friction coefficients, for
() 1 (19) four different values of the temperature. The barrier curva-

ture Q) and the cutoff frequency, in the spectral density in

_ the Drude regularization have been fixed to ©B&€)

We define =1.0 MeV andfw,=20.0 MeV. The horizontal lines show
Y*B(1) 1 the position of each temperature. The figure shows that the

0 M’ (200  classical fluctuation-dissipation theorem postulated in the

Xee original Kramers pap€gl3] and that also in Ref$7,8] holds

response function takes in the limit of the Markovian ap-the non-Markovian effect, which appears as the strong varia-
proximation or in the asymptotic time. Tht) consists of  tion of Y(t) with time. We remark that the span wheré)

three terms, two of which strongly depend on time, shows this strong variation gets longer roughly in propor-
tional to the inverse of the temperature as londrast ..

@)= 1+(wlw)?

Y(t) =

oo e
Ya(t) =- nge oct-tocof 2 B(t)hw]
IV. BARRIER CROSSING PROBABILITY

% 1 Q(t-tg) 4 1 ~Q(t-t) 21 ; ;
~ Qe ° +Qe , (2D _ We now gpply our formalism to d_|scuss quantum effect.s
@e ¢ in the diffusion process from the fusion barrier to the condi-
5 tional saddle in the synthesis of superheavy elements.
Y,(t) = i E e [m20hBO](t-to) m2n We We fI_I’Sj[ note that the average valuegyaindp are zero in
BM) n=12.. . hB(t) w? - [m2nIkB(t) ] the Galilei transformed space, and that the solution of(Exq.

is a Gaussian. Therefore, one can set

> 1 Qttg) y = 0(tg) b
m2n/h B(t) — Q m2n/h B(t) + Q

1 1
D 1 yt = = A Y0 ) 24
22 Aw(P, 0, t) 2’7TA1/26X ZA% y|y]0'|,1:| (24)

The third one, which gives the asymptotic value, reads A = 0qqop- Uép, (25)
2
w? 1 _ _ o ~
Yat) = —< =40 cof a0 1. 23 wherey,;=qg andy,=p and the 2< 2 matrix o is the inverse
3 w2 - Q0?2 {z600] @3 matrix of the 2x 2 matrix

Note that the right-hand sidg.h.s) of Eq. (23) is the ana- Oqq Tap

lytic continuation of the r.h.s. of Eq17) concerning the sign R (26)
ap 9pp

of the barrier curvature if one ignores the minor change due
to the first factor. Such analytic continuation formula of the which determines the fluctuations, i.e., the mean square de-
r.h.s. of Eq.(17) has been argued in Ref6]. Our theory viations from the average values. The valuesrpfare ob-
contains additionally non-Markovian effects. We note thattained by solving the following coupled equations given by
Y(t) reduces to the temperature at very high temperatures. Eq. (1):
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0 2 0 0.35 aD
‘qug; M . 0.3 FC.F.D. ===~
dt| 7ap (C- D) -0 — h2=1.0 MeV
Tpp(t) M 0.25
0 —2C-x"F) —2@ 2>
o) 0 % 0.2
X qu(t) + )((+o) . (27) '8 0.15
O'pp(t) 2X(+E) o
The Wigner distribution function for the macroscopic motion 0.1
in the original space fixed frame is given by 0.05
pAMq! p,t) = DAMq - q(t)!p - p(t)’t): (28)
0

once the Wigner distribution function in the Galilei trans-
formed spacd,,, is obtained.

I
0 2 4 6 8 10 12 14 16

We represent the conditional saddle by a parabola, K — Vg [MeV]
1 FIG. 2. Compari f th bability t th ditional
__1 2.2 . 2. parison of the probability to cross the conditiona
Vel @) = ZMQ a (29) saddle calculated by quantum diffusion equation and by assuming

. . the classical fluctuation-dissipation theorem.
and calculate the probability to cross the conditional saddle

in order to form a compound nucleus b . . S
P y classical fluctuation-dissipation theorem has been assumed

* [q-qt)]? by ignoring the quantum effects due to the finite curvature of
P(t)=f dq — exp ~ ® the conditional saddle. The figure clearly shows that the
0 VéT0qq a9 quantum effect is important at low temperatures, which are

1 q(t) relevant to the synthesis of superheavy elements.
- Eerfc B \’T(t) : (30 Our theory contains a memory effect. In order to discuss
'“0qq

the connection to a previous wofg], we artificially isolate
We ignore the radial dependence of the friction tensorthe memory effect by calculating the probability to cross the

Denoting the initial position and momentum of the classicalconditional saddle by using the asymptotic value of the dif-

trajectory of the macroscopic variable @g),py), the posi-  fusion coefficient. The result is added in Fig. 3 by the dotted

tion at timet is given by line. We observe that the probability to cross the conditional
) ) ) saddle is reduced by the quantum effect if one ignores the

qt) = e A2 qo<cosl’ﬁt N Esinhﬂ—t> + 2P , memory effect. This is because the asymptotic diffusion co-

2 p 2 B’ 2 efficient in the quantum theory is smaller than that obtained

(31) from the classical fluctuation-dissipation theorem. A similar

with 8'=VB%+4Q02 We adopt the value of the reduced 0.35

friction parameterB from previous studies of fluctuation- Q.D. ——
dissipation dynamics using Langevin equatipfl as 8 03 |
=5X 10" st The curvature of the potential barrier is as- QLD eeenees
sumed to berQ)=1 MeV, which is relevant to heavy nu- 025 L

clei. The initial positiongg is chosen to make the height of

the conditional saddle be 4MeV, and the masparam- £ 02 k

eter to correspond to the reduced mass in the collision ofG ’

the mass number 48 and 238 nuclei. We defer the study oQ T=5.0 MeV

the effects of purely non-Markovian term&™® and y*©) ne_ 0.15

and leave them in determining thg(t) in the following

analyses. 0.1
Figure 2 shows the probability to cross the conditional

saddle as a function of the initial kinetic enerify which is 0.05

measured relative to the height of the conditional sadle =

We remark that the ratiq(t)/\2o44(t) in Eq. (30) converges 0

to an asymptotic value. It was used to evaluate the probabil- 0 2 6 8 10 12 14 16

ity to cross the conditional saddRe We choose three values K — Vg [MeV]

for the temperature. The solid lines are the results of our

theory, while the dot-dashed lines are the results when the FIG. 3. Analysis of the memory effects.

T=1.0 MeV
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effect has been shown in R¢f]. Our study shows in addi- enhance the probability of crossing the conditional saddle,
tion that the memory effect overcomes this effect and finallywhile the quantum effect reduces it if the memory effect is
the net quantum effects enhance the transmission probabilifgnored, as has been shown in Rgf].
of the conditional saddle. In other words, the net quantum We have artificially left out some of the genuine non-
effects reduce the fusion hindrance. Markovian terms, i.e., the odd moment of the correlation
In passing, we wish to mention that quantum effects orfunction and the even moment of the response function.
diffusion process are also discussed in R&6] following a  Also, we have assumed a sharp distribution at the initial time
different approach. However, there are some important difand left out the effects of spreading of the initial distribution.
ferences in the expressions of transport coefficients. For exXA/e will discuss these effects as well as the dependence of the
ample, the diffusion coefficient given by E@) in Ref.[16] quantum effects on the strength of the dissipative force in
does not seem to match with our asymptotic form@3), as  forthcoming papers. One of the interesting problems is to
well as those presented in Ref6,9]. We also wish to refer clarify whether our conclusion concerning the role of non-
to Ref. [17], which discusses the dynamics of barrier pen-Markovian effect is special to our specific choice of the
etration in a thermal medium for the inverted harmonic os-Caldeira-Leggett model, especially to the Ohmic dissipation,
cillator by using the influence functional formalism of the or holds in general. This is another issue which we will ex-
path integral method. plore in the near future.
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