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We discuss a quantum effect in the diffusion process by developing a theory, which takes the finite curvature
of the potential field into account. The transport coefficients of our theory satisfy the well-known fluctuation-
dissipation theorem in the limit of Markovian approximation in the cases of diffusion in a flat potential and in
a potential well. For the diffusion along a potential barrier, the diffusion coefficient can be related to the
friction coefficient by an analytic continuation of the fluctuation-dissipation theorem for the case of diffusion
along a potential well in the asymptotic time, but contains strong non-Markovian effects at short times. By
applying our theory to the case of realistic values of the temperature, the barrier curvature, and the friction
coefficient, we show that the quantum effects will play significant roles in describing the synthesis of super-
heavy elements, i.e., the evolution from the fusion barrier to the conditional saddle, in terms of a diffusion
process. We especially point out the importance of the memory effect, which increases at lower temperatures.
It makes the net quantum effects enhance the probability of crossing the conditional saddle.
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I. INTRODUCTION

Diffusion processes take place in a variety of problems
[1–6]. The concept has recently been applied to theoretically
describing the synthesis of superheavy elements[7,8]. It is
now well accepted that it is not sufficient for the two nuclei
in heavy-ion collisions to overcome the fusion(i.e., the Cou-
lomb) barrier in order to form a heavy compound nucleus
such as superheavy elements. Since the conditional saddle is
located inside the fusion barrier for heavy-ion collisions be-
tween two heavy nuclei, two nuclei have to further progress
inwards to approach inside the conditional saddle. The idea
of Refs. [7,8], called fluctuation-dissipation dynamics, is to
describe the time evolution from the fusion barrier to the
conditional saddle as a diffusion process.

Though this approach is very attractive and is offering
much useful information, one needs to examine the applica-
bility of one of the basic assumptions made so far, i.e., the
use of the standard fluctuation-dissipation theorem which
holds at high temperatures to relate the diffusion coefficients
to the friction coefficients. Since superheavy elements are
stabilized by shell correction energies, one has to synthesize
them at reasonably low energies, as low as 1 MeV or below.
On the other hand, the curvature of the conditional saddle is
also of the order of 1 MeV. It is thus required to carefully
study quantum effects. An interesting issue is to explore the
connection between the diffusion and friction coefficients in
the diffusion process along a potential barrier under such
circumstances. Though the generalization of the Einstein re-

lation to the case of diffusion along a potential well is well
known, the modification in the case of a diffusion along a
potential barrier has so far been discussed only in a limited
number of papers[5,6,9].

The aim of this paper is to examine this quantum effect
caused by the finite curvature of the potential barrier and by
the low temperature aspect of the diffusion process. To this
end, we first develop a novel quantum diffusion theory which
leads to a Fokker-Planck equation with non-Markovian
transport coefficients. We then apply it to the situation rel-
evant to the synthesis of superheavy elements. We will show
that the quantum effects, especially the non-Markovian ef-
fects, are very important.

In Sec. II, we briefly sketch the derivation of the Fokker-
Planck equation with non-Markovian transport coefficients,
which include quantum effects. In Sec. III we discuss the
quantum effects on the diffusion coefficient. In Sec. IV we
apply the formalism to analyze the quantum effects by as-
suming the parameters which are relevant to describe the
diffusion process in the synthesis of superheavy elements.
We summarize the paper in Sec. V.

II. QUANTUM DIFFUSION EQUATION WITH
NON-MARKOVIAN TRANSPORT COEFFICIENTS

We derive the required diffusion equation by extending
the quasilinear response theory developed in Ref.[10] so as
to include the curvature of the potential barrier. Details of the
derivation will be published elsewhere[11]. Here we sketch
the main steps:(1) We start form the von Neumann equation
for the system consisting of spaceA for macroscopic degrees
of freedom and spaceB for microscopic degrees of freedom.
(2) We introduce the classical trajectory given by(qstd ,pstd),
t being the time andq̂ and p̂ being the coordinate and the
conjugate momentum operators of the macroscopic degrees
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of freedom.(3) We move to the Galilei transformed coordi-
nate system specified byqstd andpstd. (4) We keep only up
to the second order terms of the potential and the coupling
Hamiltonian in the expansion with respect to the fluctuations
around the classical trajectory.(5) We solve the coupled
equations describing theA andB spaces in the lowest order
approximation concerning the fluctuating force.(6) We make
a Wigner transform of the resultant extended von Neumann
equation for subspace A.

Denoting the Wigner transform of the density operator of
the subspace A byDAW, we finally obtain

]

] t
DAWsp,q,td = S−

1

M
pa

]

] qa

+ Cqa

]

] pa

− xab
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The non-Markovian property of the diffusion process due to
quantum effects, more specifically the effects of the curva-
ture of the potential barrier, is hidden in the transport coef-
ficients, which are generalized from the first and zeroth mo-
ments of the response and correlation functions,xs−d andxs+d,
e.g., as

xab
s−Odstd =E
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t

dt1Sst,t1dxab
s−dst,t1d, s2d
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t
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TheC andS are defined by using the curvature of the poten-
tial C as

Cst,t1d = cosfVst − t1dg, s4d

Sst,t1d =
1

ÎMC
sinfVst − t1dg, s5d

with V=ÎC/M whenCù0, i.e., for the motion in a poten-
tial well, and

Cst,t1d = coshfVst − t1dg, s6d

Sst,t1d =
1

ÎMuCu
sinhfVst − t1dg, s7d

with V=ÎuCu /M when C,0, i.e., for a motion along a
potential barrier. The response and the correlation func-
tions, xab

s−dst ,t1d and xab
s+dst ,t1d, are given by

xab
s−dst,t1d =

i

"
TrB„f f̂astd, f̂bst1dgD̂Bst1d…, s8d

xab
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1

2
TrB„f f̂astd, f̂bst1dg+D̂Bst1d…, s9d

in terms of the fluctuation forcef̂astd defined by

f̂astd = ûB
†st,t0dF̂aûBst,t0d, s10d

with

F̂a ;
] Vcsqstd,x̂d
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r̂GstdD . s11d

In Eq. s11d, r̂Gstd is the density operator of the total system
in the Galilei transformed coordinate system. TheûBst ,t0d is
the time evolution operator of the subspace B, which satis-
fies the partial differential equation

i"
]

] t
ûBst,t0d = ĥBstdûBst,t0d, s12d

with the initial conditionûBst0,t0d=1. In Eq.s12d, the effec-
tive Hamiltonian is given by

ĥBstd = ĤBsx̂d + Vc„qstd,x̂…, s13d

whereĤBsx̂d is the unperturbed Hamiltonian of space B and

Vc the coupling Hamiltonian. The density operatorD̂std de-
scribing our basic equationsfs1d, s8d, and s9dg is defined
from the density operator in the Galilei transformed coordi-
nate spacer̂Gstd by

r̂Gstd = ûBst,t0dD̂stdûB
†st,t0d. s14d

The D̂Bstd is defined byD̂Bstd=TrA(D̂std).

III. QUANTUM EFFECTS ON THE
FLUCTUATION-DISSIPATION THEOREM

The time evolution of the subspace B should in principle
be determined by solving Eq.(12) or the corresponding re-
duced von Neumann equation[10,12]. Here we approximate
the density operator by the canonical distribution,

r̂Bstd < exphbstdfF − ĥBstdgj. s15d

We further replaceĥBstd by ĤB in Eq. s15d to be consistent
with the linear response theory. One can then easily show by
introducing spectral functionf1,10g that the following well-
known generalized fluctuation-dissipation theorem follows
in the limit of Markovian approximation for the motion
along a potential well,

xaa
s+Edstd

xaa
s−Odstd

= MT* , s16d

with the effective temperature given by
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T* =
1

2
"V cothf 1

2bstd"Vg s17d

=H T sT @ "Vd
1
2"V sT ! "Vd.

s18d

Equations1d is then nothing but the Kramers diffusion equa-
tion f13g postulated in Refs.f7,8g, though there exist some
modifications such as the temperature being replaced by the
effective temperature.

As declared in the Introduction, our interest in connection
with the synthesis of superheavy elements is the diffusion
process along a potential barrier instead of along a potential
well. In this case, one needs to specify a model in order to
further discuss the properties of the diffusion coefficients.
We assume the Feynmann-Vernon model[14], which has
been used also by Caldeira and Leggett[15] to discuss mac-
roscopic quantum tunneling, assume the Ohmic dissipation,
and use the Drude regularization[3] by introducing the fol-
lowing cutoff function for the spectral density of the envi-
ronment, i.e., the subspace B:

gsvd =
1

1 + sv/vcd2 . s19d

We define

Ystd ;
xs+Edstd
x`

s−Od
1

M
, s20d

wherex`
s−Od is the expression which the odd-moment of the

response function takes in the limit of the Markovian ap-
proximation or in the asymptotic time. TheYstd consists of
three terms, two of which strongly depend on time,

Y1std = −
"

4
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2e−vcst−t0dcotf 1
2bstd"vcg

3H 1

vc − V
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1
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1
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n=1,2,. . .
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The third one, which gives the asymptotic value, reads

Y3std =
vc

2

vc
2 − V2

1

2
"V cotf 1

2bstd"Vg . s23d

Note that the right-hand sidesr.h.s.d of Eq. s23d is the ana-
lytic continuation of the r.h.s. of Eq.s17d concerning the sign
of the barrier curvature if one ignores the minor change due
to the first factor. Such analytic continuation formula of the
r.h.s. of Eq.s17d has been argued in Ref.f6g. Our theory
contains additionally non-Markovian effects. We note that
Ystd reduces to the temperature at very high temperatures.

Figure 1 shows the time dependence ofYstd, i.e., the ratio
of the diffusion to the asymptotic friction coefficients, for
four different values of the temperature. The barrier curva-
ture V and the cutoff frequencyvc in the spectral density in
the Drude regularization have been fixed to be"V
=1.0 MeV and"vc=20.0 MeV. The horizontal lines show
the position of each temperature. The figure shows that the
classical fluctuation-dissipation theorem postulated in the
original Kramers paper[13] and that also in Refs.[7,8] holds
only at very high temperatures. The more striking result is
the non-Markovian effect, which appears as the strong varia-
tion of Ystd with time. We remark that the span whereYstd
shows this strong variation gets longer roughly in propor-
tional to the inverse of the temperature as long asT,"vc.

IV. BARRIER CROSSING PROBABILITY

We now apply our formalism to discuss quantum effects
in the diffusion process from the fusion barrier to the condi-
tional saddle in the synthesis of superheavy elements.

We first note that the average values ofq andp are zero in
the Galilei transformed space, and that the solution of Eq.(1)
is a Gaussian. Therefore, one can set

DAWsp,q,td =
1

2pD1/2expF−
1

2D
o
i,j

yiyjs̃i,jG , s24d

D = sqqspp − sqp
2 , s25d

wherey1=q andy2=p and the 232 matrix s̃ is the inverse
matrix of the 232 matrix

Ssqq sqp

sqp spp
D s26d

which determines the fluctuations, i.e., the mean square de-
viations from the average values. The values ofsi j are ob-
tained by solving the following coupled equations given by
Eq. s1d:

FIG. 1. Ratio of the diffusion to friction coefficients.
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The Wigner distribution function for the macroscopic motion
in the original space fixed frame is given by

rAWsq,p,td = DAW„q − qstd,p − pstd,t…, s28d

once the Wigner distribution function in the Galilei trans-
formed spaceDAW is obtained.

We represent the conditional saddle by a parabola,

Vcssqd = −
1

2
MV2q2, s29d

and calculate the probability to cross the conditional saddle
in order to form a compound nucleus by

Pstd =E
0

`

dq
1

Î2psqqstd
expS−

fq − qstdg2

2sqqstd
D

=
1

2
erfcS−

qstd
Î2sqqstd

D . s30d

We ignore the radial dependence of the friction tensor.
Denoting the initial position and momentum of the classical
trajectory of the macroscopic variable assq0,p0d, the posi-
tion at timet is given by

qstd = e−bt/2Fq0Scosh
b8

2
t +

b

b8
sinh

b8

2
tD + 2

p0

b8
sinh

b8

2
tG ,

s31d

with b8=Îb2+4V2. We adopt the value of the reduced
friction parameterb from previous studies of fluctuation-
dissipation dynamics using Langevin equationf7g as b
=531021 s−1. The curvature of the potential barrier is as-
sumed to be"V=1 MeV, which is relevant to heavy nu-
clei. The initial positionq0 is chosen to make the height of
the conditional saddle be 4.0MeV, and the massparam-
eter to correspond to the reduced mass in the collision of
the mass number 48 and 238 nuclei. We defer the study of
the effects of purely non-Markovian termsxs−Ed and xs+Od

and leave them in determining thesqqstd in the following
analyses.

Figure 2 shows the probability to cross the conditional
saddle as a function of the initial kinetic energyK, which is
measured relative to the height of the conditional saddleVB.
We remark that the ratioqstd /Î2sqqstd in Eq. (30) converges
to an asymptotic value. It was used to evaluate the probabil-
ity to cross the conditional saddleP. We choose three values
for the temperature. The solid lines are the results of our
theory, while the dot-dashed lines are the results when the

classical fluctuation-dissipation theorem has been assumed
by ignoring the quantum effects due to the finite curvature of
the conditional saddle. The figure clearly shows that the
quantum effect is important at low temperatures, which are
relevant to the synthesis of superheavy elements.

Our theory contains a memory effect. In order to discuss
the connection to a previous work[6], we artificially isolate
the memory effect by calculating the probability to cross the
conditional saddle by using the asymptotic value of the dif-
fusion coefficient. The result is added in Fig. 3 by the dotted
line. We observe that the probability to cross the conditional
saddle is reduced by the quantum effect if one ignores the
memory effect. This is because the asymptotic diffusion co-
efficient in the quantum theory is smaller than that obtained
from the classical fluctuation-dissipation theorem. A similar

FIG. 2. Comparison of the probability to cross the conditional
saddle calculated by quantum diffusion equation and by assuming
the classical fluctuation-dissipation theorem.

FIG. 3. Analysis of the memory effects.
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effect has been shown in Ref.[9]. Our study shows in addi-
tion that the memory effect overcomes this effect and finally
the net quantum effects enhance the transmission probability
of the conditional saddle. In other words, the net quantum
effects reduce the fusion hindrance.

In passing, we wish to mention that quantum effects on
diffusion process are also discussed in Ref.[16] following a
different approach. However, there are some important dif-
ferences in the expressions of transport coefficients. For ex-
ample, the diffusion coefficient given by Eq.(8) in Ref. [16]
does not seem to match with our asymptotic formula(23), as
well as those presented in Refs.[6,9]. We also wish to refer
to Ref. [17], which discusses the dynamics of barrier pen-
etration in a thermal medium for the inverted harmonic os-
cillator by using the influence functional formalism of the
path integral method.

V. SUMMARY AND FUTURE DEVELOPMENTS

We have presented a diffusion theory which takes the fi-
nite curvature of the potential field into account. The theory
is then applied to the case where the temperature, barrier
curvature, and the friction coefficient are taken to represent a
realistic situation of the diffusion process from the fusion
barrier to the conditional saddle in the synthesis of super-
heavy elements. We have thus shown that the quantum ef-
fects will play an important role. We especially pointed out
the importance of the memory effect which has been omitted
in any previous works. It makes the net quantum effects

enhance the probability of crossing the conditional saddle,
while the quantum effect reduces it if the memory effect is
ignored, as has been shown in Ref.[9].

We have artificially left out some of the genuine non-
Markovian terms, i.e., the odd moment of the correlation
function and the even moment of the response function.
Also, we have assumed a sharp distribution at the initial time
and left out the effects of spreading of the initial distribution.
We will discuss these effects as well as the dependence of the
quantum effects on the strength of the dissipative force in
forthcoming papers. One of the interesting problems is to
clarify whether our conclusion concerning the role of non-
Markovian effect is special to our specific choice of the
Caldeira-Leggett model, especially to the Ohmic dissipation,
or holds in general. This is another issue which we will ex-
plore in the near future.

ACKNOWLEDGMENTS

This work is supported in part by the Grant-in-Aid for
Scientific Research from Ministry of Education, Culture,
Sports, Science and Technology under Grant No. 12047203
and No. 13640253, also under the Special Area Research,
Contract No. 08640380, and also by the U.S. DOE Grant
No.DE-FG05-89ER40530. N.T. thanks Tennessee Techno-
logical University for support and hospitality during his vis-
its. N.T. and S.A. thank also A. Gokalp and O. Yilmaz for
their kind hospitality at the Middle East Technical
University/Ankara, where this work has been partly com-
pleted.

[1] R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II,
Non-equilibrium Statistical Mechanics(Springer, New York,
1985).

[2] P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62,
251 (1990).

[3] U. Weiss,Quantum Dissipative Systems(World Scientific, Sin-
gapore, 1993).

[4] L. D. Landau and E. M. Lifshitz,Statistical Physics, Part 1
(Butterworth/Heinemann, Oxford, 1997), p. 384.

[5] S. Ayik and J. Randrup, Phys. Rev. C50, 2947(1994).
[6] H. Hofmann, Phys. Rep.284, 137 (1997).
[7] Y. Abe, Eur. Phys. J. A13, 143 (2002); C. Shen, G. Kosenko,

and Y. Abe, Phys. Rev. C66, 061602(R) (2002); Y. Abe, D.
Boilley, B. G. Giraud, and T. Wada, Phys. Rev. E61, 1125
(2000).

[8] Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Phys. Rev. C59,

796 (1999); Y. Aritomo et al., Prog. Theor. Phys. Suppl.(to be
published).

[9] C. Rummel and H. Hofmann, Nucl. Phys.A727, 24 (2003);
Prog. Theor. Phys. Suppl.(to be published).

[10] N. Takigawa, K. Niita, Y. Okuhara, and S. Yoshida, Nucl.
Phys. A371, 130 (1981).

[11] N. Takigawa, S. Ayik, and S. Kimura, nucl-th/0203043.
[12] K. Niita and N. Takigawa, Nucl. Phys.A397, 141 (1983).
[13] H. A. Kramers, Physica(Utrecht) 7, 284 (1940).
[14] R. P. Feynmann and F. L. Vernon, Ann. Phys.(N.Y.) 24, 118

(1963); R. P. Feynman,Statistical Mechanics(Benjamin,
Reading, Massachusetts, 1972).

[15] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett.46, 211
(1981); Ann. Phys.(N.Y.) 149, 374 (1983).

[16] J.-D. Bao and D. Boilley, Nucl. Phys.A707, 47 (2002).
[17] S. Matsumoto and M. Yoshimura, Phys. Rev. A63, 012104

(2000).

QUANTUM EFFECT IN THE DIFFUSION ALONG A… PHYSICAL REVIEW C 69, 054605(2004)

054605-5


