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The capture cross sections and barrier distributions are investigated for reactions with48Ca projectiles
leading to some of the most recently discovered superheavy nuclei. The Wong’s formula and the coupled-
channel method(which takes into account the excitation of rotational states of the ground state band of the
target nucleus) are used to assess the role of the hexadecupole deformations of the target on the capture cross
sections of fusion reactions leading to the recently discovered superheavy nuclei286112, 292114, and296116.
The contribution of orientations other than the pole-pole one in the cross sections is substantiated for increasing
bombarding energy.
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I. INTRODUCTION

More than 25 years, one of us(W.G.) together with col-
laborators[1], suggested the best targets to be used with the
48Ca ion beam in order to synthesize new elements in the
range 100øZø116. As a theoretical tool it was employed
the earlier designed fragmentation theory which explained
the triple-, double-, and single-humped fission mass distribu-
tions of the heavy nuclei226Ra,236U, and258Fm [2]. Accord-
ingly, this theory recommended that for the synthesis of the
elements withZ=112,114, and 116 the targets234,236,238U,
240,242,244Pu, and244,246,248Cm should be used.

The selection of48Ca as projectile is justified using the
following simple argument. Taking, for example, the super-
heavy nucleus286112 and fixing the mass splittingssA1
=48,A2=238d, and carrying out the minimization procedure
over sZ1,Z2d and the interfragment distanceR (see Ref.[3]
for details) the combination48Ca+238U results to be the op-
timal one(see Fig. 1). When looking to the driving potential
along the light nucleus mass numberA1 (see Fig. 6 from Ref.
[3]) a stable minimum is obtained around48Ca for the case
where the collision takes place at the equator of the deformed
target, whereas collisions at the tips(poles) are associated to
a minimum centered on50Ca.

Recently at the Flerov Laboratory of Nuclear Reactions
from JINR-Dubna, experiments were carried out with the
U-400 accelerator with the goal to study the fusion-fission of
superheavy nuclei withZ=102–122[4]. The reactions with
48Ca which proved to be succesful in synthesizing the ele-
ments withZ=112,114, and 116 are among those predicted
in Ref. [1], i.e., 48Ca+238U→ 286112, 48Ca+244Pu→ 292114,
and 48Ca+248Cm→ 296116.

Using the M3Y N-N effective force we compute the
projectile-target potential, the capture cross sections, and bar-

rier distributions for the three reactions mentioned above. It
is worthwhile to notice for further considerations that for this
type of reactions, the quasifission mechanism is dominant
compared to the fission of the compound nucleus with maxi-
mum of the distribution centerd on the light fragmentA1
<78–82 and heavy oneA2<204–208[4]. Despite that, in
the symmetric region of fission fragment massessA1
=A/2±20d the experiment claims a prevailance of the
fusion-fission of the compund nucleus over the quasifission
with a distribution peak of the light fragment<132–134.

In a previous paper[3] we investigated the driving poten-
tial for different orientations of the superheavy nuclei286112,
292114, 296116, and306122. For all three superheavy nuclei,
on which we are focusing in this paper, we showed that there
is a Pb valley which is very pronounced when the colliding
nuclei are oriented belly-to-belly or equator-equator(ee),
e.g., 208Pb+78Zn for 286112, 208Pb+84Ge for 292114, and
208Pb+88Se for 296116.

For nose-to-nose or pole-pole(pp) configurations we en-
countered a relative high and broad barrier in the mass-
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FIG. 1. Driving potential of the superheavy nucleus286112 cor-
responding to varioussZ1,Z2d splittings with fixed sA1=48,A2

=238d.

PHYSICAL REVIEW C 69, 054601(2004)

0556-2813/2004/69(5)/054601(6)/$22.50 ©2004 The American Physical Society69 054601-1



asymmetry direction between the Pb valley, which is no
longer so deep like in the ee case and a sort of Fe-Cr valley
which is closer in mass to the “injection” valley of48Ca. The
fact that the quasifission yields are larger for the Pb valley
than for the Fe-Cr valley is a possible indication that in the
quasifission of the initial dinucleus48Ca+238U, at excitation
energyE* =33 MeV, orientations much more inclined than
the pp one are favored and splittings like208Pb+78Zn are
prevailing compared to226Ra+60Cr.

For the pp configuration the deepest cold valley is en-
countered in the weak-asymmetric region centered on the
neutron magic nucleus134Te. Since the deepest cold valleys
in the pp configuration were able to describe very well quali-
tatively the neutronless fission yields of252Cf [5,6], it is then
likely that the conclusion of the Dubna experiment is correct
and the mass distribution observed in the symmetric region is
due to the fission of the compound nucleus286112. As we
showed recently, this seems to be no longer the case for the
other two superheavy nuclei292114 and296116 [7].

Using the frame of the dinuclear model it was concluded
in Ref. [8] that the orientation of nuclei does not influence
the geometrical cross section of the collision as much as the
value of the critical angular momentumlcr determining the
reaction cross section. The invoked argument is that in pp
orientations the potential pocket is deeper and wider than in
the case of ee orientations, a fact which was verified also
with M3Y N-N forces (see Fig. 3 of Ref.[3]). Due to the
larger stability of the pp pocket, trajectories with larger or-
bital angular momentum are more likely to be trapped. The
authors of the above quoted paper are thus concluding that
the capture cross section for collisions near the pp orientation
are significantly larger.

The theoretical investigation of the influence of the hexa-
decupole deformation in fusion was for the first time carried
out in Ref. [9] for the fusion reaction16O+180W and con-
cluded that due to the large negative hexadecupole deforma-
tion of the target the fusion cross section is enhanced.

In Ref. [10] the influence of the hexadecupole deforma-
tion on subbarrier fusion reactions was investigated experi-
mentally for reactions in which the spherical projectile is
taken to be16O and as deformed targets, the rare-earth nuclei
154Sm, 166Er, and176Yb. The model used, although simplis-
tic, suggested that the hexadecupole deformations may play a
role in explaining the fusion cross sections.

Very recently[11] the Woods-Saxon center-line nucleus-
nucleus potential, which does not account for surface curva-
ture correction, was tested in the calculation of the fusion
cross sections and found to be inadequate. Instead, the simul-
taneous inclusion of the minimum distance between the sur-
faces of the fusing nuclei and the curvature correction
change by up to 50% the calculated cross sectionss and
barrier distributionsD in the reaction16O+154Sm. This tre-
mendous change was assigned to the quadrupole and hexa-
decupole deformations of the target.

A first study on the role played by the quadrupole defor-
mation and orientation in reactions with48Ca projectiles
leading to the most recent discovered superheavy nuclei was
carried out very recently in Refs.[12,13].

The main goal of the present paper is to assess the influ-
ence of the hexadecupole deformation on capture cross sec-

tions in reactions with48Ca projectiles leading to superheavy
elements and to investigate the role of the target-projectile
orientation using the fusion barriers distribution. For that we
use the orientation dependent double-folding potential with
M3Y effective N-N forces and a repulsive core[3]. The
deformations of the targets are taken from the macroscopic-
microscopic evaluations of Mölleret al. [14].

II. CAPTURE CROSS SECTIONS

As in previous papers[3] we compute the projectile-target
interaction via the double-folding procedure with M3YN
-N effective forces to which we add a repulsive core. This
choice is appropriate especially when one considers the first
stage of the fusion process, i.e., the capture, when the pro-
jectile and the target are only gently overlapping and initial
identity of the reacting nuclei is preserved, i.e., no nucleon
transfer takes place.

The spherical projectile is approaching the deformed tar-
get along a direction which makes the angleu with the sym-
metry axis of the target and consequently the potential can be
read off from Eq.(17) of Ref. [3] in the case wherev1
=sf ,u ,0d v2=s0,0,0d. Thence,

VsRd = o
lm

Vl
m

0
0

l
msRdDm0

l sv1dDm0
l sF,Q,0d. s1d

The potential at the barriersRBd is denoted byVB in what
follows.

To compute the capture cross sections we consider two
approaches frequently used in the literature.

A. Wong formula

The penetrability for a given angleu (orientation) be-
tween the target symmetry axis and the beam direction and
orbital angular momentuml is calculated according to a
parabolic approximation

Plsud =
1

1 + expH 2p

"vsl,ud
SVBsud − E +

lsl + 1d

2mRB
2sud

DJ ,

where m is the reduced mass, andVBsud, RBsud, and
"vsl ,ud="ÎuVB9 u /m are the barrier characteristicssheight,
radius, and curvatured. For heavy systems these quantities
are depending weakly on the center-of-mass energyE and
l. Then the capture cross section at each angle is given by
the Wong formulaf15g

scsE,ud =
p "2

2mE
o

l

s2l + 1dPlsud

=
RB

2sud"vsud
2E

lnF1 + expH 2p

"vsud
sE − VBsudjG .

s2d

The capture cross section integrated over all orientations,
used in Eq.(2) is
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scsEd =E
0

p/2

duscsE,udsin u. s3d

B. Coupled-channel method

We consider the case when the radial degree of freedom is
coupled to the rotational degree of freedom of the target
nucleus. Then the scattering Hamiltonian reads

H = T + Hrotsvd + VsR,vd, s4d

whereT is the radial kinetic energy of the projectile-target
system,Hrot describes the rotational ground-state band of
the target, andVsR,vd is the heavy-ion interaction given
in Eq. s1d. Following the standard proceduref16g we ex-
pand the wave function of the above Hamiltonian in terms
of wave functions of good angular momentumJ,

CsR,vd = o
JM

aJMcJMsR,vd. s5d

Next the rotor statescJM are splitted into elasticsfor the
entrance and exit channelsd and nonelastic statessfor the exit
channelsd,

cJMsR,vd = RJIlsRdFJMIlsR,vd + o
I8l8

RJI8l8sRdFJMI8l8sR,vd.

s6d

In the above ansatz,RJIlsRd is the radial wave function when
the spin of the target isI and l is the relative angular mo-
mentum. Inserting Eq.s6d in the Schrödinger equation cor-
responding to the Hamiltonians4d and the eigenvalueE, we
obtain the coupled-channel equations

H−
"2

2m
S ]2

] R2 −
lsl + 1d

R2 D + «I − EJRJIlsRd

+ o
I8l8

RJI8l8sRdkFJMIluVsR,vduFJMI8l8l = 0, s7d

where «I are the eigenvalues ofHrot. After some Racah-
Wigner algebra manipulations, the coupling term in the
above equation can be reduced to

kFJMIluVsR,vduFJMI8l8l=s− dl+I Î Î8l̂ l̂8o
l

S I I 8 l

0 0 0
D

3S l l l8

0 0 0
DH l I J

I8 l8 l
JVl

0
0
0

l
0sRd.

s8d

The coupled-channel set of equations can be further simpli-
fied by using a canonical transformationf17g

cIJ = o
l

Î2l + 1S l l l8

0 0 0
DRJIlsRd, s9d

and the set from Eq.s7d is retransformed to

H−
"2

2m
S ]2

] R2 −
JsJ + 1d

R2 D + «I − EJcIJ + o
I8

Î Î8o
l

Vl
0

0
0

l
0sRd

3S I l I8

0 0 0
D2

cI8J = 0. s10d

Like in other works from the literaturef17g we considered
above that the reduced mass is large enough so that
"2I2/2mR2 is neglected near the barrierRB. In this case the
following approximation was possible: substituteJ in place
of l in the centrifugal term.

The boundary conditions and the integration procedure of
the system(10) are taken as in Ref.[18]. As a result, the
inclusive penetrabilityPJsEd, labeled by the quantum num-
ber J, is obtained. This is introduced in the formula for the
capture cross section,

scsEd =
p

k2o
l

s2J + 1dPJsud s11d

where

k =Î2m

"2 SE −
"2JsJ + 1d

2mR2 − V 0
0
0
0
0
0sRdD . s12d

C. Results

In the present work we computed the capture cross sec-
tions for the three reactions under investigation. In Fig. 2 we
compare the results for the capture cross sections of the re-
action 48Ca+238U computed with the Wong formula(3),
when the target is taken to be spherical(solid curve), quad-
rupole deformed(dotted curve), quadrupole+hexadecupole

FIG. 2. (Color online) The capture cross sections of the reaction
48Ca+238U computed with(a) the Wong formula(3). The solid
curve corresponds to spherical fragments, the dotted one to a target
nucleus with g.s. deformationb2=0.215, and the dashed one to the
inclusion of an additional hexadecupole deformation(b4=0.093 of
the target); (b) in the CC formalism with g.s. quadrupole and hexa-
decupole deformations.
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deformed(dashed curve), and when the coupled-channel for-
malism (11) is employed and has quadrupole and hexadecu-
pole deformations(dashed-dotted curve).

The upper ordinate in Fig. 2 corresponds to the excitation
energysE* =E+Qd. The experimental values(squares) were
taken from Ref.[4], where the capture cross sections are
given as a function of the excitation energy. With arrows we
indicated the values of the barrier for polar(p), spherical(s)
and equatorial(e) configurations.

The ground-state deformationssb2,4d and the reaction en-
ergy Q=B1+B2−BCN are taken from macroscopic-
microscopic evaluations tabulated in Ref.[14].

Two important conclusions can be drawn from Fig. 2.
First, taking hexadecupole deformations is essential in repro-
ducing satisfactory the experimental data. Second, the very
good agreement in predictions of the approximate formula of
Wong and the coupled channel(CC) formalism including up
to six channels from the rotational g.s. of the target, i.e.,I
=0+,2+, . . . ,10+.

The same quantities as above are plotted in Fig. 3 for the
capture reaction48Ca+244Pu and in Fig. 4 for48Ca+248Cm.
In this two cases we were no longer able to achieve a fit to
the experiment. As we mentioned above, in Ref.[4] the ex-
perimental values are given as a function of the excitation
energy instead of the center-of-mass energy. Then, to obtain
the fit we would be obliged to assume in the transformation
formula fromE* to E a value of the reaction energyQ, dif-
ferent from the one predicted by Ref.[14]. Such a shift inQ
is in our view due to a higher degree of uncertainty ofBCN
compared toB1 or B2. We checked that if this hypothesis
would be true, then, in order to fit the experimental data one
should assume that both superheavy nuclei,244Pu and248Cm,
are more bound, by a couple of MeV, compared to the
macroscopic-microscopic evaluations.

For all three capture reactions, we represented in Figs.
2–4 the location of the p, s, and e barriers. It is worthwhile to
remark that for collissions with energies at the equatorial

barrier the capture cross sections have almost the same val-
ues for spherical, quadrupole, and quadrupole
+hexadecupole deformations whereas for energies corre-
sponding to the polar barrier the capture cross sections are
more sensitive on the deformation. A similar situation was
encountered in the study of the role of the orientation on the
formation of cold valleys for superheavy nuclei[3]. There
we noticed that the equator-equator valleys are bearing a
visible resemblances with the spherical valleys, having the
same structure of maxima and minima.

III. BARRIERS DISTRIBUTION

A. Significance of barriers distribution

In Ref. [19] a method to measure the sensitivity of fusion
to nuclear static deformation of the reacting nuclei was pro-
posed. The idea is to convert the measured fusion cross sec-
tion s into an experimental barrier distributionD by a double
differentiation with respect to the energy on the center-of-
mass frame:

DsEd =
d2sEsd

dE2 .

This energy-dependent quantity is proportional to the prob-
ability of encountering a fusion barrier of heightE. An ad-
vantage of using fusion-barrier distributions instead of the
total fusion cross section, which is the primary quantity mea-
sured in experiments, is that the former show much more
clear signatures of positive and negative hexadecupole defor-
mations.

In Fig. 5 we displayed the barrier distribution in the case
of the reaction48Ca+238U for a spherical, quadrupole, and
quadrupole+hexadecupole deformed target. Whereas in the
spherical caseDsEd has a pronounced peak at center-of-mass
energy corresponding to the height of the spherical Coulomb
barrier, when we plugb2 and b4, DsEd will spread over a

FIG. 3. (Color online) The capture cross sections of the reaction
48Ca+244Pu. The solid curve corresponds to spherical fragments,
the dashed one to a target nucleus with g.s. deformationb2

=0.224, and the dot-dashed one to the inclusion of an additional
hexadecupole deformation(b4=0.062 of the target) system.

FIG. 4. (Color online) The capture cross sections of the reaction
48Ca+248Cm. The solid curve corresponds to spherical fragments,
the dashed one to a target nucleus with g.s. deformationb2

=0.235 and the dot-dashed one to the inclusion of an additional
hexadecupole deformation(b4=0.04 of the target) system.
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broad range of energies with two maxima near the configu-
rations corresponding to a spherical projectile colliding the
target at its nose(polar p) and on the top of its belly(equator
e). From Fig. 5 we conclude that the second maximum of
DsRd is enhanced when we introduce the positive hexadecu-
pole deformation of the target in calculations, a fact already
remarked in Ref.[11] for the reaction16O+154Sm. In the
same time the probability to encounter a barrier in the polar
region is decreased. Thus, whereas in the case when the tar-
get has only a quadrupole deformation the probabilities that
the spherical projectile encounters a barrier between the nose
and the belly of the target are comparable, in the case where
the target has also a hexadecupole deformation, the probabil-
ity to encounter a barrier at the equator increases sharply,
whereas the probability to encounter a barrier at the pole
decreases.

We checked that similar conclusions for the barrier distri-
bution can be derived for the other two reactions studied in
this paper.

An experimental determination of this quantity will con-
firm the important role played by the higher multipole defor-
mations of the actinide target in the capture of48Ca.

B. Role of the orientation

The conclusion drawn above about the enhancement of
the barrier distribution in the equator region is a consequence
of the role played by the orientation in the collision. To better
understand the contribution of different orientations in the
formation of the capture cross section, we analyze the inte-
grand of Eq.(3) for increasing bombarding(excitation) en-
ergies. The orientation weightwsud=sin uscsud is plotted in
Fig. 6 for only nonvanishing quadrupole ground-state defor-
mation of the target(upper panel) and for both quadrupole
and hexadecupole nonvanishing deformations(lower panel).
The three excitation energies correspond for each case to a

bombarding energy around the pole,u=45° and equator bar-
rier. At first we notice that whereas in theb2Þ, b4=0 case
the weight has only one maximum in theb2,4Þ0 case there
are two maxima. At the smallest considered excitation en-
ergy, when the bombarding energy corresponds to the polar
barrier(solid curve), the orientational weight acquires values
much smaller compared to the case when the bombarding
energy approaches the equatorial barrier(dashed curve).

Figure 6 is hinting that increasing the excitation, i.e.,
bombarding energy, orientations off the molecular axis of the
dinuclear system, are contributing more and more to the final
capture cross section.

The presence of the modulation in the orientation weight
at higher excitation energies when theb4 deformation is
switched on is a consequence of the particular form of the
potential in the orientation variable,u. According to Fig. 7
the barrierVB along theu variable increases smoothly from a
minimum value at the pole configurationsu=0°d to a maxi-
mum value at the equator configurationsu=90°d. However,
when the hexadecupole deformation is taken into account,
the highest barrier is encountered atu<65°. At u=90° the
potential again attains a minimum, which lays higher than
the polar one. These two minima in the potential are explain-
ing the existence of two maxima in the orientation weight
pictured in the lower panel of Fig. 6.

FIG. 5. (Color online) The barrier distribution of the reaction
48Ca+238U. The solid curve corresponds to spherical fragments, the
dashed one to a target nucleus with g.s. deformationb2=0.215, and
the dot-dashed one to the inclusion of an additional hexadecupole
deformation(b4=0.093 of the target) system. By s, p, and e we
indicated the barriers for spherical, deformed in polar and equatorial
configurations.

FIG. 6. (Color online) The integrand of Eq.(3) of the reaction
48Ca+238U for three different excitation energies for the case when
the target is only quadrupole deformed(upper panel) and when it
has both quadrupole and hexadecupole deformations(lower panel).
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IV. CONCLUSIONS

The main conclusion of this investigation is that the in-
sertion of hexadecupole deformation, as predicted by the
macroscopic-microscopic model, in the projectile-target po-
tential induces tremendous changes in the capture cross sec-
tions especially in the low-energy domain. For the capture
reaction 48Ca+238U it was possible to explain the recently
measured capture cross sections only by using the quadru-

pole and hexadecupole deformations predicted by the
macroscopic-microscopic evaluations of Ref.[14].

The use of the simple receipt of Wong to compute cross
sections proved to yield values very close to those provided
by the more involved method of coupled channel when one
considers the coupling only to the states within the ground
state rotational band of the target.

With respect to the orientation problem we note three
facts.

(1) For collissions of 48Ca with quadrupole
+hexadecupole deformed actinide targets with bombarding
energies corresponding to the equatorial barrier the capture
cross sections have almost the same values as for spherical
targets. For that reason the capture cross section by itself
cannot provide enough information on the contribution of
different orientations.

(2) Due to the inclusion of theb4 deformations of the
target we showed that the probability to encounter a barrier
around the equatorial configuration is sensitively larger than
for other configurations, including the polar one.

(3) The importance of orientations, other than the polar
one, was proved by investigating the angular structure of the
integrand providing the capture cross section.
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