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A semimicroscopic approach based on both the continuum random-phase-approximation method and a
phenomenological treatment of the spreading effect is extended and applied to describe the main properties
(particle-hole strength distribution, energy-dependent transition density, partial direct-nucleon-decay branching
ratios) of the isoscalar giant dipole, second monopole, and second quadrupole resonances. The abilities of the
approach are checked by description of the gross properties of the main-tone resonances. Calculation results
obtained for the resonances in a few singly- and doubly-closed-shell nuclei are compared with available
experimental data.
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I. INTRODUCTION

Experimental and theoretical studies of high-energy giant
resonances(GRs) have been undertaken in recent years to
understand better how the different characteristics associated
with GR formation (concentration of the particle-hole
strength, coupling to the continuum, the spreading effect) are
affected with increasing the GR energy. Many of the known
high-energy GRs are the next vibration modes(the over-
tones) relative to the corresponding low-energy GRs(the
main tones). The lowest-energy overtone is the isoscalar gi-
ant dipole resonance(ISGDR) experimentally studied in a
few medium-heavy and heavy nuclei via thesa ,a8d reaction
[1–4]. The ISGDR is the overtone of the 1− zero-energy
spurious state(SS), associated with center-of-mass motion.
The experimental results of Refs.[1–4] are concerned with
distribution of the corresponding dipole strengths. Only re-
cently have the direct nucleon decays of the ISGDR been
observed, using thesa ,a8Nd reactions[5–7]. These studies
are planned to be continued[8]. The isovector giant charge
exchange(in the b− channel) monopole and spin-monopole
resonances are the overtones of the isobaric analogue and
Gamow-Teller resonances, respectively. These overtones
have been studied via charge-exchange reactions[9,10]. Di-
rect proton decays of the giant spin-monopole resonance
have been recently observed using thes3He,tpd reaction
[10]. Other candidates for studies of high-energy GRs are the
overtones of the isoscalar giant monopole and quadrupole
resonances(ISGMR2 and ISGQR2, respectively). The corre-
sponding main tones, having relatively low energy, have
been experimentally studied at some length[1–3]. However,
evidence for the existence of the ISGQR2 has been reported
for the first time only recently[5,6].

Theoretical studies of the isoscalar overtones deal prima-
rily with the ISGDR. Microscopically, this GR is mainly due
to 3"v particle-hole-type excitations, while the overtones of
the isoscalar quadrupole and monopole GRs are mainly due
to 4"v excitations. The first microscopic calculations of the
strength distribution for the ISGDR and for all the above-
mentioned isoscalar overtones were done in the 1980s(Refs.
[11,12], respectively). In recent years Hartree-Fock

+random phase approximationsRPAd calculations with the
use of the Skyrme interactions have been done to specify the
ISGDR energy and, after comparing with experimental data,
to draw conclusions about the nuclear incompressibility
[13,14]. Similar goals are pursued in the approaches based
on the relativistic version of the RPA and on the semiclassi-
cal treatment of nuclear vibrations(see, e.g., Refs.[15,16],
respectively). However, the microscopic structure and “dif-
ferential” properties of high-energy GRs, which correspond
to collective excitations of nuclei as finite-size open Fermi
systems, are of particular interest. Attempts to describe the
main properties(the strength distribution, energy-dependent
transition density, partial direct-nucleon-decay branching ra-
tios) of the ISGDR have been undertaken in Refs.[17,18]
within a semimicroscopic approach, based on both the con-
tinuum RPA(CRPA) method and a phenomenological treat-
ment of the spreading effect. In these references the gross
properties(parameters of the strength distribution, transition
density) have been satisfactorily described for the ISGDR in
a few medium-heavy and heavy nuclei. Unlike the gross
properties, the partial branching ratios for direct nucleon de-
cay of a particular GR carry information about its micro-
scopic structure and also about its coupling to the continuum
and the spreading effect. Initial attempts(undertaken in Refs.
[17,18] for the ISGDR in 208Pb) to calculate the partial
direct-nucleon-decay branching ratios ran into difficulties as-
sociated with taking the spreading effect into account. A way
to overcome these difficulties was given in Ref.[19]. The
overtone of the isoscalar monopole resonance was theoreti-
cally studied within a CRPA-based approach in Ref.[20]
mainly to search for narrow(“trapped”) resonances, having a
small relative strength. The gross properties of the ISGMR2
are described in Ref.[21], where both the microscopic
Hartree-Fock1RPA approach with the use of the Skyrme
interactions and a semiclassical approach have been em-
ployed. Within the semimicroscopic approach, the main
properties of this resonance are briefly described in Ref.[19].

Motivated by aspirations to describe both the main prop-
erties of high-energy GRs and forthcoming experimental
data concerned with the isoscalar overtones, we pursue the
following goals in the present work.
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(i) Extension of the CRPA-based semimicroscopic ap-
proach to describe direct nucleon decay of high-energy GRs;

(ii ) description of the gross properties of the isoscalar
main-tone resonances to check the abilities of the approach
and to find the probing operators appropriate for overtone
studies;

(iii ) calculation of the partial direct-nucleon-decay
branching ratios for the high-energy component of the IS-
GDR;

(iv) description of the main properties of the second iso-
scalar giant monopole and quadrupole resonances; and

(v) comparison of the calculation results obtained for
singly- and doubly-closed-shell nuclei58Ni, 90Zr, 116Sn,
144Sm, and208Pb, with available experimental data.

The paper is organized as follows. In Sec. II the basic
elements, ingredients, and new points of the approach are
presented. Section III contains calculation results and avail-
able experimental data on properties of the isoscalar giant
main-tone and overtone resonances. A discussion of the re-
sults and concluding remarks are given in Sec. IV.

II. BASIC ELEMENTS AND INGREDIENTS
OF THE APPROACH

The continuum RPA method and a phenomenological
treatment of the spreading effect are the basic elements of the

semimicroscopic approach. In implementations of the ap-
proach the following phenomenological input quantities are
used: a realistic nuclear mean field and the Landau-Migdal
particle-hole interaction bound together by self-consistency
conditions; an energy- and radial-dependent smearing param-
eter.

A. CRPA equations

The CRPA equations are taken in the form accepted
within Migdal’s finite Fermi system theory[22]. As applied
to description of isoscalar particle-hole-type excitations in
closed-shell nuclei, these equations are given in detail in
Refs. [17,18] and not shown here.[For the reader’s conve-
nience we use(in the main) the notation of Refs.[17,18] and
sometimes refer to equations, tables, and figures from these
references.] The nuclear polarizibilityPLsvd, strength func-
tion SLsvd, and energy-dependent transition density
rLsrW ,vd=rLsr ,vdYLMsnWd (v is the excitation energy) corre-
sponding to an isoscalar probing operatorVLsrWd
=VLsrdYLMsnWd can be calculated to describe gross properties
of the corresponding isoscalar GR within the CRPA. The
above-listed quantities are expressed via the radial part of the

effective probing operatorsṼL
asr ,vd (a=n,p is the isotopic

index), which are different from VLsrd due to core-

TABLE I. The peak energy, total width(both in MeV), and parametershL (in fm2) calculated for theL
=0,1,2isoscalar GRs in the nuclei under consideration. The corresponding experimental values(given with
errors) are taken from Ref.[3] sL=0,1d and Ref.[28] sL=2d.

58Ni 90Zr 116Sn 144Sm 208Pb

ISGMR

vpeak 17.7 16.2 15.7 14.8 13.6

16.6±0.1 15.4±0.1 15.3±0.1 13.4±0.2

G 4.4 4.2 4.0 3.9 3.9

4.9±0.2 5.5±0.3 3.7−0.6
+0.1 4.0±0.4

ISGQR

vpeak 14.7 12.7 11.9 11.2 10.0

14.0±0.2 13.2±0.2 12.2±0.2 11.0±0.2

G 2.8 2.65 2.6 2.4 2.2

3.4±0.2 3.3±0.2 2.4±0.2 2.7±0.3

ISGDR

hL=1 22.71 29.28 34.74 39.74 51.07

vpeak
LE 9.21a 12.1 9.3 12.0 7.02b

17.8±0.5 15.6±0.5 14.2±0.2 13.0±0.1

vpeak
HE 27.4 26.0 26.1 25.0 22.9

26.9±0.7 25.4±0.5 25.0−0.3
+1.7 22.7±0.2

ISGMR2

hL=0 42.04 52.75 55.57 54.50 75.25

vpeak
HE 30.8 29.9 32.0 33.8 32.1

ISGQR2

hL=2 24.38 30.50 35.90 40.41 52.54

vpeak
HE 32.9 34.6 34.1 32.8 30.5

aThe LE component has an additional maximum at 12.1 MeV.
bThe LE component has an additional maximum at 11.4 MeV.
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polarization effects caused by the particle-hole interaction.
The v dependence of the above quantities comes from that
of the free particle-hole propagator. The latter can be ex-
pressed in terms of occupation numbersnm

a, radial bound-
state single-particle wave functionsxm

a, and radial Green’s
functionsgsld

a sr ,r8 ,em±vd to take exactly the single-particle
continuum into account[see Eqs.(1)–(3) of Ref. [17] and
Eq. (1) of Ref. [18]].

When compared with Ref.[22], a new element of the
CRPA equations is used within the approach-the direct-
nucleon-escape amplitudeMc

Lsvd [see Eqs.(4),(5) of Ref.
[17]]. This amplitude is proportional to the product ofsnm

ad1/2

and the matrix element of the corresponding radial effective
operator taken with the use of the radial bound-state wave
function xm

a and the radial continuum-state wave function
xe,sld

s+da [m is the set of quantum numbers for an occupied

single-particle level;e=em+v and sld are the energy and
quantum numbers of an escaped nucleon, respectively,c
=m ,sld ,a is the set of nucleon-decay-channel quantum
numbers compatible with the corresponding selection rules].
The v dependence of the direct-nucleon-escape amplitude

comes not only from the effective probing operator, but also
from the continuum-state wave function.

The partial direct-nucleon-decay branching ratiobc
Lsdd

can be reasonably defined as the ratio of the squared
nucleon-escape amplitude integrated over a certain
excitation-energy intervald=v1−v2 to the corresponding
strength function integrated over the same interval. The total
branching ratiobtot

L =ocbc
L is equal to unity for arbitrary in-

tervald, as follows from the unitary condition, which is valid
within the CRPA[Eq. (4) of Ref. [17]].

For comparison with the experimental branching ratios
we sometimes replace the occupation numbersnm in the ex-
pression forbm

L =osldbc
L with the corresponding experimental

spectroscopic factorsSm. In this way, the coupling of single-
hole statesm−1 populated after direct nucleon decay of GRs
to low-energy collective states is taken into account phenom-
enologically.

In description of the gross properties of high-energy GRs,
nucleon pairing in open-shell subsystems can be neglected
with a high accuracy. To take into account the effect of
nucleon pairing on the direct-nucleon-decay branching ratios
in the CRPA equations, we replace the occupation numbers
nm with the corresponding Bogoliubov factorsvm

2. The latter

FIG. 1. (a) The relative energy-weighted strength function cal-
culated for the ISGMR.(b) The reduced energy-dependent transi-
tion density calculated at the peak energy of the ISGMR(Table I).
The thick, thin, dashed, dotted, and dash-dotted lines are for58Ni,
90Zr, 116Sn, 144Sm, and208Pb, respectively.

FIG. 2. (a) The relative energy-weighted strength function cal-
culated for the ISGQR.(b) The reduced energy-dependent transition
density calculated at the peak energy of the ISGQR(Table I). The
notations on each graph are the same as in Fig 1.
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can be calculated in an isospin-self-consistent way with the
use of experimental pairing energies[23]. To phenomeno-
logically account for the coupling of single-quasiparticle
states populated after direct nucleon decay to low-energy
collective states, the calculatedbm value is divided byvm

2 and
multiplied by Sm [23].

An important aspect of the theoretical studies of GR over-
tones within the RPA is the choice of an appropriate probing
operator. It is convenient to choose this operator with the
condition that the main tone is not being excited. In this case
the overtone exhausts most of the respective particle-hole
strength. As applied to description of the ISGDR, charge-
exchange giant monopole, and spin-monopole resonances,
the choice of appropriate probing operators is discussed in
Refs.[17,23,26], respectively. In particular, the radial part of
the isoscalar second-order dipole probing operatorVL=1

s2d srd
=r3−hL=1r is used for description of the ISGDR. The param-
eter hL=1 is defined by the condition:erL=1

SS srdVL=1
s2d srdr2dr

=0, whererL=1
SS srd is the spurious-state transition density. To

describe the properties of the second isoscalar giant mono-
pole and quadrupole resonances the radial part of the corre-
sponding second-order probing operators is taken in the form
VL

s2dsrd=r4−hLr2. The parametershL in this expression are
determined by the condition

E rLsr,vpeakdVL
s2dsrdr2dr = 0, s1d

whererLsr ,vpeakd is the radial part of the energy-dependent
main-tone transition density taken at the peak energy of the
main-tone strength function.

B. Smearing procedure

Within the approach, the coupling of doorway states of
the particle-hole type to many-quasiparticle configurations
(i.e., the spreading effect) is taken into account phenomeno-
logically in terms of an appropriate smearing parameter.
Somewhat different smearing procedures are used for the
description of low- and high-energy GRs. The aforemen-
tioned v-dependent quantities, calculated within the CRPA,
for a low-energy(“sub-barrier”) GR can be expanded in
terms of nonoverlapping doorway-state resonances(of Breit-
Wigner type) that have total escape widthsG↑. To take into
account the spreading effect in evaluating these energy-
averagedv-dependent quantities, each doorway-state reso-
nance is smeared independently. The smearing procedure lies
in the replacement ofG↑ by G↑+ I, or equivalently, the re-
placement ofv by v+ iI /2. The parameterI (the mean
doorway-state spreading width) is fitted to reproduce the ex-
perimental total width of the specific GR in calculations of
the energy-averaged strength function. To calculate the
energy-averaged direct-nucleon-escape amplitudes, it is also
necessary to average the potential-barrier penetrability in a
proper way, because the direct-escape nucleons have rela-
tively low (“sub-barrier”) energies. Thus, the energy-
averaged transition density and the partial direct-nucleon-
decay branching ratios can be evaluated within this approach
without the use of any free parameters. This method has been
employed in Ref.[17] to quantitatively describe the direct
nucleon decay of ISGMR in a few nuclei. When applied to
direct nucleon decay of the ISGDR in208Pb, the method
results only in qualitative description, however, because the
corresponding doorway-state resonances have significant

TABLE II. Parameters of the ISGMR and ISGQR calculated for a certain excitation-energy interval. All
the parameters are given in MeV except forx, which is given in percent.

Nucleus

ISGMR ISGQR

v1−v2 v̄ D x v1−v2 v̄ D x

58Ni 12–31 18.21 3.06 89 10–20 14.89 1.90 70
90Zr 10–25 16.47 2.64 87 9–18 13.07 1.78 70
116Sn 10–20 15.38 2.13 79 8–19 12.51 2.13 72
114Sm 10–20 14.85 2.05 80 7–19 11.91 2.31 74
208Pb 10–20 13.89 2.05 79 6–17 10.51 2.18 71

TABLE III. Comparison of calculated and experimental parameters of the ISGMR and ISGDR. The
experimental data(given with errors) are taken from Refs.[29,2], respectively. All the parameters are given
in MeV.

90Zr 16Sn 208Pb

ISGMR v̄ 17.89±0.20 16.5 16.07±0.12 15.4 14.17±0.28 13.9

D 3.14±0.09 2.6 2.16±0.08 2.1 1.93±0.15 2.1

LE-ISGDR v̄ 16.2±0.8 13.8 14.7±0.5 13.9 12.2±0.6 11.2

D 1.9±0.7 2.1 1.6±0.5 2.0 1.9±0.5 1.9

HE-ISGDR v̄ 25.7±0.7 25.4 23.0±0.6 25.1 19.9±0.8 20.7

D 3.5±0.6 3.5 3.7±0.5 3.2 2.5±0.6 2.4
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overlap with each other[17]. The smearing procedure out-
lined above is based on a statistical assumption: after aver-
aging over the energy, each doorway state independently
“decays” into many-quasiparticle configurations[24]. Such
an assumption seems to be reasonable in view of the com-
plexity of many-quasiparticle configurations at high excita-
tion energies.

Per CRPA calculations of the strength functions for high-
energy (“overbarrier”) GRs, the doorway-state resonances
overlap. In such a case, the smearing procedure lies in the
replacement ofv by v+ iI /2 in the CRPA equations. This
replacement results in the use of the imaginary part of the
single-particle potential,7si /2dIsr ,vd, when the radial
Green’s functions and continuum-state wave functions are
calculated. As a result, the energy-averagedv-dependent

quantities[the strength functionS̄Lsvd, the transition density

r̄Lsr ,vd, and the direct-nucleon-escape amplitudeM̄c
Lsvd]

can be calculated at once with the use of a radial- and
energy-dependent smearing parameter in the CRPA equa-
tions. In accordance with the statistical assumption, the fol-
lowing parametrization for I is used: Isr ,vd
= Isvdfwssr ,R* , ad, where fws is the Woods-Saxon function
taken withR* .R (R anda are the radius and diffuseness of
the isoscalar part of the nuclear mean field, respectively).
The calculated strength distribution and transition density of
high-energy GRs are found to be almost independent of the
“cutoff” radius at R* . s1.7–1.9dR. The energy-dependent
part of the smearing parameterIsvd is taken in the form

Isvd = 5a
sv − Dd2

1 + sv − Dd2/B2, v . D,

0, v , D,

s2d

with universal parameters. Such an energy dependence is
used for the absorption potential in some versions of the
optical model for nucleon-nucleus scattering[25]. The
above-outlined smearing procedure has been used in Ref.
[18] to describe quantitatively the gross properties of the
ISGMR and ISGDR in a few nuclei. However, this procedure
cannot be directly applied to evaluation of the energy-

averaged escape amplitudesM̄c
Lsvd (and, therefore, the cor-

responding branching ratios) because of nonphysical absorp-
tion of escaped nucleons outside the nucleus. For this reason,
in the present work all the energy-averagedv-dependent
quantities are calculated using the “cutoff ” radiusR* = R
together with the properly increased value of the intensitya
in Eq. (2). Such a choice allows us to correctly describe the
corresponding single-particle resonances in the energy de-

pendence of the continuum-state wave function, while the
calculated gross properties of a high-energy GR are found to
be almost the same within both versions of the smearing
procedure. In Refs.[18,23,26] the branching ratios calculated

TABLE IV. Comparison of calculated and experimental param-
eters of the ISGMR and ISGQR in58Ni. The experimental data are
taken from Ref.[30]. All the parameters are given in MeV.

ISGMR v̄ 20.30−0.14
+1.69 18.2

D 4.25−0.23
+0.69 3.1

ISGQR v̄ 16.1±0.3 14.9

D 2.4±0.2 1.9

FIG. 3. (a) The energy-averaged strength function calculated for
the ISGDR.(b) The reduced energy-dependent transition density
calculated at the peak energy of the HE ISGDR(Table I). (c) The
reduced energy-dependent transition density calculated at the peak
energy of the LE ISGDR(Table I). Curves with filled circles and
open circles correspond, respectively, to the additional maximum
for 58Ni and 208Pb as given in Table I. Other notations on each
graph are the same as in Fig. 1.
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for a few overtones in208Pb are overestimated because the
absorption of escaped nucleons inside the nucleus is not
taken into account. This shortcoming is partially eliminated
in Ref. [19], where allv-dependent quantities are calculated
using the smearing parameter with intermediate radiusR*
=1.3R to take the spreading effect into account in evaluation
of the branching ratios for the ISGDR in a few nuclei.

In conclusion of this subsection, we define the energy-
averaged quantities suitable for description of the main prop-
erties of the isoscalar GRs. The relative energy-weighted

strength functionyLsvd=vS̄Lsvd / sEWSRdL is used to show
exhaustion of the respective energy-weighted sum rule
(EWSR) by a particular GR. The use of the reduced energy-

dependent transition densityRLsr ,vd=r2r̄Lsr ,vdS̄L
−1/2svd

normalized by the conditioneRLsr ,vdVLsrddr=1 is conve-
nient to compare the transition densities related to different
energy regions[18]. The squared and properly normalized
energy-averaged direct-nucleon-escape amplitude determines
the corresponding differential partial branching ratio:

db̄m
Lsvd
dv

=

o
sld

uM̄c
Lsvdu2

E
v1

v2

S̄Lsvddv

. s3d

These quantities show how the partial and total branching
ratios are formed.

C. Ingredients of the approach

Within the approach, a phenomenological isoscalar part of
the nuclear mean field(including the spin-orbit term) and the
(momentum-independent) Landau-Migdal particle-hole in-
teraction are used as the input quantities for CRPA calcula-
tions. Parametrization of these quantities is explicitly given

in Ref. [17]. Within the RPA, the isospin symmetry of the
model Hamiltonian can be restored. As a result, the isovector
part of the mean field is calculated self-consistently via the
Landau-Migdal isovector parameterf8 and the neutron-
excess density(see, e.g., Ref.[23]). The mean Coulomb field
is also calculated self-consistently via the proton density.

Within the CRPA, the distribution of the isoscalar dipole
strength[corresponding to the probing operator with the ra-
dial part VL=1srd=r] can be calculated for a given model
Hamiltonian. In the studies of Refs.[17,18], the Landau-
Migdal isoscalar parameterfex is chosen for each nucleus to
make the energy of the 1− spurious state close to zero. If the
translation invariance of the model Hamiltonian was fully
restored, the spurious state would exhaust 100% of the
EWSR corresponding to the above-mentioned probing op-
erator. Within the current version of the approach, the SS
exhausts in all cases more than 92% of this sum rule, the
exact percentage being dependent on the nucleus[17,18]. A
small part of the spurious strength(less than 8%) is distrib-
uted mainly among isoscalar dipole 1"v particle-hole-type
excitations.

The calculation results presented in Sec. III are obtained
with the use of model parameters taken, in the main, from
previous studies of Refs.[17,18]. The mean-field parameters
and the Landau-Migdal isovector parameterf8=1.0 are taken
from Ref. [17], where the experimental nucleon separation
energies have been satisfactorily described for closed-shell
subsystems in nuclei withA=90–208. The isoscalar Landau-
Migdal parameterf in is taken equal to 0.0875 in agreement
with the systematics of Refs.[22,27], while the values of
parameterfex=−s2.7–2.9d are found in Ref.[18] in the man-
ner described above for each nucleus under consideration.
The universal parameters of Eq.(2) used for description of
the spreading effect,a=0.125 MeV−1, D=3 MeV, B
=7 MeV, are the same as in Ref.[18], except for thea value
(a=0.085 MeV−1 is used in Ref.[18], together withR*
=1.8R).

TABLE V. Parameters of the ISGDR calculated for different excitation-energy intervals. All the param-
eters are given in MeV except forx, which is given in percent.

Nucleus

LE ISGDR HE ISGDR

v1−v2 v̄ D x v1−v2 v̄ D x

58Ni 5–16 11.56 2.08 12 16–36 26.62 4.55 75

16–60 27.94 6.36 86
90Zr 11–18 13.78 2.10 10 18–32 25.42 3.48 68

5–16 11.32 2.19 11 16–40 25.94 4.74 81

16–60 26.69 6.14 86
116Sn 11–18 13.91 1.99 11 18–32 25.09 3.23 67

5–15 10.50 2.36 13 15–35 24.78 4.22 75

15–60 25.91 6.13 84
144Sm 5–15 10.74 2.22 12 15–35 24.20 4.04 77

15–60 25.22 5.92 85
208Pb 8–15 11.18 1.89 14 15–24 20.73 2.39 42

5–15 9.90 2.55 17 15–35 23.02 3.90 74

15–60 23.96 5.83 81
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III. PROPERTIES OF THE ISOSCALAR GIANT
MULTIPOLE RESONANCES

A. Gross properties of the main-tone resonances

We start with a description of the main-tone resonances.
This description allows us to check the quality of restoration
of the translation invariance of the model within the CRPA;
to check the abilities of the semimicroscopic approach be-
cause the gross properties of the isoscalar giant monopole
and quadrupole resonances have been extensively studied ex-
perimentally; and to evaluate the parametershL in the ex-
pression for the radial part of the second-order probing op-
erators appropriate for microscopic studies of the overtones.

The 1− spurious state associated with the center-of-mass
motion is the lowest-energy main-tone state. The method to
determine the properties of the SS within the CRPA is de-
scribed in detail in Ref.[17] (see also Sec. II C). The method
allows us to specify the value of the Landau-Migdal param-
eter fex and to calculate the characteristics of the SS, relative
isoscalar dipole strengthxL=1

SS , and transition densityrL=1
SS srd.

The calculated values offex and xL=1
SS for the nuclei under

consideration(except for58Ni) are given in Table I of Ref.
[18]. For 58Ni we obtain fex=−2.646 andxL=1

SS =96%. The
valuesfex=−2.789 andxL=1

SS =94% are obtained for116Sn tak-

ing neutron pairing into account. The radial dependence of
the calculated transition densityrL=1

SS srd is found to be close
to drsrd /dr, where the ground-state densityrsrd is deter-
mined by the bound-state wave functions for the occupied
levels:

rsrd = o
a=n,p

o
m

s2jm + 1d
4pr2 nm

afxm
asrdg2. s4d

This result is quite reasonable, since the calculated relative
strengthxL=1

SS is close to 100%. For the same reason, the
parameterhL=1 in the expression for the second-order dipole
operator(Sec. II A) is almost equal to the value 5kr2l /3 [av-
eraging is performed over the ground-state density of Eq.
(4)]. This value is employed in many works(see, e.g., Refs.
[11,13,14,17,18]). ThehL=1 values used in calculations of the
main properties of the ISGDR in nuclei under consideration
are given in Table I.

The isoscalar monopole and quadrupole GRs in the nuclei
under consideration have been experimentally studied in
many works[1–3,28–30]. The strength distributions deduced
are presented either in terms of the peak energyvpeak

L and
total width GL (obtained by a Lorentzian or Gaussian fit), or
in terms of the mean energyv̄L and rms energy dispersion
DL (obtained for a certain excitation energy interval). These
data are used below for comparison with the results obtained
within the semimicroscopic approach. The energy-averaged

strength functionsS̄Lsvd calculated with use of the radial part
VLsrd=r2 sL=0,2d of the first-order probing operators show
prominent resonances. The corresponding peak energies and
total widths are given in Table I, together with the corre-
sponding experimental values. The relative energy-weighted

TABLE VI. Calculated partial branching ratios for direct proton
decay of the HE ISGRs in58Ni sSm=1d. The branching ratios are
given in percent.

m−1
b̄m

L=1

s15–40 MeVd
b̄m

L=0

s23–40 MeVd
b̄m

L=2

s25–40 MeVd

s7/2d− 16.4 12.5 19.7

s1/2d+ 4.7 6.0 4.1

s3/2d+ 5.4 7.0 5.8

s5/2d+ 6.6 9.7 7.9

s1/2d− 0.8 1.5 1.0

s3/2d− 1.1 2.8 2.1

b̄p
tot 35.0 39.7 40.6

TABLE VII. Calculated partial branching ratios for direct
nucleon decay of the HE ISGRs in90ZrsSm=1d. The branching ra-
tios are given in percent.

m−1
b̄m

L=1

s18–32 MeVd
b̄m

L=0

s23–39 MeVd
b̄m

L=2

s25–40 MeVd

Neutron

s9/2d+ 10.2 7.6 14.1

s1/2d− 2.8 3.6 2.1

s5/2d− 4.6 5.8 5.0

s3/2d− 5.7 7.3 4.8

s7/2d− 4.5 7.2 7.2

s1/2d+ 0.9 2.4 1.8

b̄n
tot 29.6 40.0 39.9

Proton

s1/2d− 4.0 4.0 3.0

s3/2d− 8.0 8.2 6.4

s5/2d− 5.1 7.3 6.4

s7/2d− 4.0 8.6 7.7

s1/2d+ 1.7 3.3 2.6

s3/2d+ 0.8 3.2 1.9

b̄p
tot 24.0 39.5 31.4

FIG. 4. The relative energy-weighted strength function calcu-
lated for the ISGDR in58Ni.
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strength functionsyLsvd=vS̄Lsvd / sEWSRdL are shown in
Fig. 1(a) sL=0d and in Fig. 2(a) sL=2d for the nuclei under
consideration. Microscopically, the ISGMR and ISGQR are
mainly due to 2"v particle-hole-type excitations. The low-
energy component of the ISGQR[Fig. 2(a)] is due to 0"v
excitations corresponding to single-particle transitions in-
volving changes in both the radial and orbital quantum num-
bers and, consequently, having a small relative strength. The
calculated strength functions are used to evaluate(for a cer-
tain energy interval) the parameters of the ISGMR and IS-
GQR: mean energyv̄L, rms energy dispersionDL, relative
strengthxL. These values are listed in Table II. Comparison
with the available experimental data is given in Tables III
and IV. The reduced transition densitiesRLsr ,vpeak

L d calcu-
lated for the main-tone isoscalar monopole and quadrupole
GRs in the nuclei under consideration are shown in Fig. 1(b)
and Fig. 2(b), respectively. These transition densities are
used to evaluate parametershL following Eq. (1). These val-
ues are given in Table I.

B. Properties of the ISGDR

The gross properties of the ISGDR in nuclei under con-
sideration are described within the approach using the iso-

scalar second-order dipole probing operator with parameters
hL=1 taken from Table I. The calculated energy-averaged

strength functionS̄L=1
s2d svd [Fig. 3(a)] exhibits a “bimodal”

energy dependence, corresponding to the low- and high-
energy components of the ISGDR(LE and HE ISGDR, re-
spectively). As a resonance in the energy dependence of the
strength function, the HE ISGDR is prominent and can be
described in terms of the peak energy and total width, while

TABLE VIII. Calculated partial branching ratios for direct nucleon decay of the HE ISGRs in116Sn
(Sm=1 andSm=vm

2 are used in the calculations of proton and neutron branching ratios, respectively). The
branching ratios are given in percent.

m−1 Sm

b̄m
L=1

s15–35 MeVd
b̄m

L=0

s22–38 MeVd
b̄m

L=2

s25–37 MeVd

Neutron

s1/2d− 0.006 0.04 0.20 0.06

s3/2d− 0.007 0.07 0.27 0.07

s7/2d− 0.011 0.11 0.16 0.06

s11/2d− 0.188 1.9 0.83 2.7

s3/2d+ 0.195 0.84 0.76 0.45

s1/2d+ 0.362 0.89 1.0 0.46

s7/2d+ 0.862 4.65 3.7 4.75

s5/2d+ 0.896 6.7 5.9 4.4

s9/2d+ 0.992 4.9 5.8 8.7

s1/2d− 0.994 1.8 2.3 1.4

s3/2d− 0.996 3.45 4.8 3.2

b̄n
tot 28.8 25.7 34.7

Proton

s9/2d+ 4.5 8.2 9.0

s1/2d− 2.2 3.6 1.9

s3/2d− 3.9 7.3 4.0

s5/2d− 1.8 5.3 2.5

s7/2d− 1.1 5.6 3.1

s1/2d+ 0.2 1.8 1.4

s3/2d+ 0.1 1.3 0.4

s5/2d+ 1.7 0.6

b̄p
tot 14.0 35.0 22.9

TABLE IX. Calculated partial branching ratios for direct neu-
tron decay of the HE ISGRs in144Sm sSm=1d. The branching ratios
are given in percent.

m−1
b̄m

L=1

s15–35 MeVd
b̄m

L=0

s21–38 MeVd
b̄m

L=2

s24–36 MeVd

s1/2d+ 1.9 2.0 1.0

s3/2d+ 3.4 3.3 2.2

s11/2d− 5.2 4.9 9.9

s5/2d+ 5.1 5.7 4.4

s7/2d+ 2.6 4.1 3.7

s9/2d+ 1.8 4.3 5.2

b̄n
tot 23.1 35.1 35.3
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the LE ISGDR is less prominent. The peak energies of both
components are given in Table I together with the latest ex-
perimental data. The relative energy-weighted strength func-
tions yL=1

s2d svd are very close to those shown in Fig. 1 of Ref.
[18] for the nuclei under consideration(except for58Ni) and
are not shown here. The parameters of both components cal-
culated with the use of the above strength functions are given
in Table V. Results for specific excitation-energy intervals
are compared with the available experimental data deduced
for the same intervals(Table III). The strength function
yL=1

s2d svd calculated for58Ni is shown in Fig. 4. Because the
main-tone transition density is nodeless, the energy-
dependent transition densityRL=1

s2d sr ,vpeakd calculated at the
peak energy of each component exhibits one-node radial de-
pendence[Figs. 3(b) and 3(c)].

The direct nucleon decay of giant resonances is closely
related to their microscopic structure. For this reason, the
decay probabilities are some of the main properties of GRs
together with the energy, total width, and transition density.
The use of the CRPA method together with the phenomeno-
logical treatment of the spreading effect allows us to evaluate
the partial direct-nucleon-decay branching ratios for various
GRs within the semimicroscopic approach. Turning to the
HE ISGDR in the nuclei under consideration, we present the

direct-nucleon-decay branching ratiosb̄m
L=1 calculated with

the use of unit spectroscopic factorsSm for single-hole states
in closed-shell subsystems and of unit ratioSm /vm

2 for single-
quasiparticle states in open-shell subsystems(Tables VI–X).
Some partial branching ratios corresponding to population of
deep-hole states are not shown, but they are included in the
values of the respective total branching ratios also given in
the tables. The recent experimental data of Refs.[6,7] on the
partial direct-proton-decay branching ratios for the HE IS-
GDR in 208Pb are given in Table XI together with the corre-
sponding calculated values obtained with the use of the ex-
perimental spectroscopic factors. Calculated for the same
resonance, the differential partial proton branching ratios of
Eq. (3) are shown in Fig. 5. One can see from this figure the
role of the penetrability factor in formation of the HE IS-
GDR in different proton-decay channels.

C. Main properties of the ISGMR2 and ISGQR2

We describe the gross properties of the isoscalar mono-
pole and quadrupole overtones in the nuclei under consider-
ation, using the corresponding second-order probing opera-
tors with parametershL sL=0,2d taken from Table I. The
overtone strength is distributed over a wide energy interval
exhibiting the main peak at a high excitation energy. The
vpeak

L values are given in Table I. The relative energy-
weighted strength functionsyL

s2dsvd are shown in Figs. 6(a)
sL=0d and 7(a) sL=2d, while the parameters of the high-
energy components are given in Table XII. Because the
main-tone transition density has one node inside of the
nucleus[L=0, Fig. 1(b)] or is nodeless[L=2, Fig. 2(b)], the
overtone transition density has two nodes[L=0, Fig. 6(b)] or
one node[L=2, Fig. 7(b)], respectively. The direct-nucleon-

decay branching ratiosb̄m
L , calculated for the high-energy

components of both overtones with the use of unit spectro-
scopic factors, are given in Tables VI–X. Partial branching
ratios for direct proton decay of the above resonances in
208Pb are also calculated with the use of experimental spec-
troscopic factors(Table XI).

IV. DISCUSSION OF RESULTS AND SUMMARY

Within the CRPA-based semimicroscopic approach, all
the main properties of a given GR can be described in a
transparent and rather simple way using universal parameters
for medium-heavy and heavy(spherical) nuclei. The symme-
tries of the model Hamiltonian are restored via the corre-
sponding self-consistency conditions. In the present version
of the approach the spin-orbit part of the nuclear mean field
is mainly responsible for incomplete restoration of transla-
tion invariance of the model. If this part was taken equal to
zero, the SS would exhaust more than 99.5% of the corre-
sponding sum rule, while the gross properties of isoscalar
GRs are essentially not changed. The self-consistency of the
present version of the approach can possibly be improved,
provided that the isoscalar spin-dependent part of the
Landau-Migdal particle-hole interaction is taken into ac-
count. This study is outside the scope of the present work
and will be addressed in a future publication.

In discussing the results, we start from the gross proper-
ties of the isoscalar GRs. Taking208Pb as an example, one
can see from the results of the semimicroscopic calculations
of the relative energy-weighted strength functionyLsvd (Fig.
8) the general tendency for changing isoscalar strength dis-
tribution with increasing excitation energy. The main compo-
nents of the ISGMR2 and ISGQR2 are not very collective

TABLE X. Calculated partial branching ratios for direct nucleon
decay of the HE ISGRs in208Pb sSm=1d. The branching ratios are
given in percent.

m−1
b̄m

L=1

s15–35 MeVd
b̄m

L=0

s25–35 MeVd
b̄m

L=2

s25–35 MeVd

Neutron

s1/2d− 0.7 0.2 0.2

s5/2d− 2.5 0.7 1.3

s3/2d− 1.8 0.6 0.6

s13/2d+ 3.8 1.3 7.5

s7/2d− 4.3 1.9 7.2

s9/2d− 2.1 1.1 3.0

b̄n
tot 22.4 24.7 32.5

Proton

s1/2d+ 1.2 2.6 1.2

s3/2d+ 1.4 4.4 2.2

s11/2d− 0.5 6.2 2.7

s5/2d+ 1.4 7.2 3.5

s7/2d+ 0.28 3.1 0.8

s9/2d+ 0.07 2.8 0.7

b̄p
tot 4.9 31.5 31.0
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and exhaust around one-half of the total strength(Table XII).
As a result, theA dependence ofvpeak

HE for these overtones is
not so regular, as it takes place for more collective GRs
(Table I). According to the data shown in Tables I, III, and IV
the experimental energies of the ISGMR, ISGQR, and HE
ISGDR in nuclei from a wide mass interval are reasonably
described within the approach. The energy of the LE ISGDR
in the same nuclei is described satisfactorily(Tables I and
III ). The energy of the recently found ISGQR2 in208Pb,
26.9±0.7 MeV[5,6], is also satisfactorily reproduced in the
calculations(Table I). Thus, the calculated energies of the
second isoscalar giant quadrupole and monopole resonances
in the nuclei under consideration can be used as a guide to
search for these GRs experimentally.

We try to elucidate the universal phenomenological de-
scription of the total width of an arbitrary GR using an ap-
propriate smearing parameter with the saturationlike energy
dependence of Eq.(2). A similar attempt applied to isovector
GRs was found to be satisfactory[26]. According to this

description, the total width of low-energy GRs(except for
the isobaric analogue resonance) is mainly due to the spread-
ing effect. Such a case is realized for the main-tone isoscalar
monopole and quadrupole resonances. CRPA calculations

TABLE XI. Partial branching ratios for direct proton decay of the HE ISGRs in208Pb into some one-hole
states of 207Tl. Experimental spectroscopic factorsSm taken from Ref.[31] are used in calculations.
Excitation-energy intervals are taken the same as in Table X. Calculation results for decays of the HE ISGDR
are compared with the experimental data of Refs.[6,7]. The branching ratios are given in percent.

m−1 Sm b̄m
L=1 [6] [7]c

b̄m
L=0 b̄m

L=2

s1/2d+ 0.55 0.65 2.3±1.1a 0.34±0.06 1.43 0.66

s3/2d+ 0.57 0.80 0.61±0.10 2.51 1.25

s11/2d− 0.58 0.29 1.2±0.7b 0.31±0.05 3.60 1.57

s5/2d+ 0.54 0.75 1.07±0.17 3.89 1.89

s7/2d+ 0.26 0.02 0.81 0.21

ob̄m
L 2.51 12.24 5.58

aDecay into thes3/2d+ state is included.
bDecay into thes5/2d+ state is included.
cPreliminary results.

FIG. 5. The differential partial branching ratios calculated for
direct proton decay of the HE ISGDR in208Pb into several one-hole
states of207Tl sSm=1d. The thick, thin, dashed, dotted, and dash-
dotted lines are for decay into 3s1/2, 2d3/2, 1h11/2, 2d5/2, and 1g7/2

states, respectively.

FIG. 6. (a) The relative energy-weighted strength function cal-
culated for the ISGMR2.(b) The reduced energy-dependent transi-
tion density calculated at the peak energy of the ISGMR2(Table I).
The notations on each graph are the same as in Fig. 1.
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imply that a significant part of the total width of high-energy
GRs is due to the particle-hole strength distribution and the
coupling to the continuum. The rest is due to the spreading
effect, which also leads to the averaging of the strength dis-
tribution over the energy. We note that the widths of the
ISGMR and ISGQR, and the rms energy dispersion for both
components of the ISGDR are well described within our ap-
proach(Tables I and IV). The experimental total width of the
ISGQR2 in 208Pb, 6.0±1.3 MeV[5], agrees well with the
rms energy dispersion calculated for the main component of

this resonance(Table XII). It is worth noting that there ap-
pears to be considerable scatter in the experimental data for
the total width of the HE ISGDR[3,5,6]. This, as also the
spread in the experimental relative strengthsxL, is apparently
attributable to the uncertainties in the subtraction of the un-
derlying continuum in the analysis of thesa ,a8d-reaction
cross sections. For this reason we do not compare in the
present work the calculatedxL values(Tables II and V) with
the corresponding experimental data. Nevertheless, one can
compare the calculated(Fig. 4) and experimental(Ref. [4])
strength functionsyL=1

s2d svd for 58Ni and find satisfactory
agreement.

As expected, the radial dependence of the one-node tran-
sition densityRLsr ,vpeakd for the ISGMR and HE ISGDR
[Figs. 1(b) and 3(b)] is rather close to that of the correspond-
ing transition density calculated within the scaling model
[32], provided the ground-state density of Eq.(4) is used in
the calculations. This can be seen, for instance, in Fig. 2 of
Ref. [18]. We note also that the difference in the transition
densities calculated at the peak energy of each ISGDR com-
ponent is not large enough[Figs. 3(b) and 3(c)] to warrant
exotic alternative explanations for the nature of the LE IS-
GDR. As is also expected, the overtone transition density has
one extra node inside the nucleus relative to the main-tone
transition density[Figs. 1(b), 2(b), 3(b), 6(b), and 7(b)]. We

TABLE XII. Parameters of the ISGMR2 and ISGQR2 calculated for a certain excitation-energy interval. All the parameters are given in
MeV except forx, which is given in percent.

Nucleus

ISGMR2 ISGQR2

v1−v2 v̄ D x v1−v2 v̄ D x

58Ni 23–40 31.1 4.7 52 25–40 32.5 4.1 45
90Zr 23–39 30.6 4.4 51 25–40 32.2 4.1 48
116Sn 22–38 29.6 4.6 50 25–37 31.3 3.3 40
114Sm 21–38 29.2 4.7 56 24–36 30.4 3.3 43
208Pb 25–35 30.2 2.8 34 25–35 30.0 2.6 38

FIG. 7. (a) The relative energy-weighted strength function cal-
culated for the ISGQR2.(b) The reduced energy-dependent transi-
tion density calculated at the peak energy of the ISGQR2(Table I).
The notations on each graph are the same as in Fig. 1.

FIG. 8. The relative energy-weighted strength functions calcu-
lated for isoscalar GRs in208Pb. The thick, thin, dashed, dotted, and
dash-dotted lines are for the ISGMR, ISGQR, ISGDR, ISGMR2,
and ISGQR2, respectively.
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further note that the use of the modified smearing procedure
(as compared with that of Ref.[18]) leads to practically the
same results, as can be seen from a comparison of the data of
Tables II and V with those of Tables I and II of Ref.[18].

The use of the modified smearing procedure(Sec. II B)
allows us to describe within the present approach the direct-
nucleon-decay branching ratios for high-energy GRs. The
corresponding calculation results obtained for the isoscalar
overtones in the nuclei under consideration are given in
Tables VI–X. For the ISGDR, the total direct-nucleon-decay
branching ratio decreases with decrease of the peak energy
(with increase of the mass number). The relative change is
larger for the total proton branching ratios due to the differ-
ence in the penetrability factors. We note that the results of
Ref. [19], where the main shortcoming in evaluation of the
direct-nucleon-decay branching ratios for high-energy GRs
was eliminated(Sec. II B), are close to those of Tables
VI–XI.

The recent experimental data of Refs.[6,7] on partial
direct-proton-decay branching ratios for the HE ISGDR in
208Pb are satisfactorily described within the present ap-
proach, provided that experimental spectroscopic factors for
the final single-hole states of207Tl (Table XI) are taken into
account. In Ref.[6] direct neutron decay of the same reso-
nance into the final states of207Pb from the excitation-energy
interval 0–6 MeV has also been observed. The deduced
branching ratio 23±5 % reasonably agrees with the value
15.2% obtained with the use of a unit spectroscopic factor
for the corresponding one-hole states(Table X). A reasonable
description of the above data allows us to infer that the cal-
culation results shown in Tables VI–IX will be useful for the
analysis of forthcoming experimental data on direct nucleon
decays of the HE ISGDR in several medium-heavy and

heavy nuclei[8]. Some evidence for direct proton decay of
the ISGQR2 in208Pb in coincidencesa ,a8pd experiments
has been found recently[5,6]. It allows us to hope that the
calculated parameters of the ISGQR2 and ISGMR2(includ-
ing the energy, total width, transition density, and branching
ratios for direct nucleon decay) would also be useful in ex-
perimental searches for these resonances.

In conclusion, we extend a CRPA-based partially self-
consistent semimicroscopic approach to describe direct
nucleon decay of high-energy giant resonances. The main
properties of the isoscalar overtones(ISGDR, ISGMR2, IS-
GQR2) in a few singly- and doubly-closed-shell nuclei are
described within the approach and found to be in reasonable
agreement with available experimental data, including the
latest ones. The ability of the approach to describe the main-
tone resonances is successfully checked. Predictions con-
cerning forthcoming experimental data for the isoscalar over-
tones are also presented.
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