PHYSICAL REVIEW C 69, 054320(2004)
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Using many-body perturbation theory and coupled-cluster theory, we calculate the ground-state energy of
“He and%0. We perform these calculations using a no-cGrenatrix interaction derived from a realistic
nucleon-nucleon potential. Our calculations employ up to two-particle two-hole coupled-cluster amplitudes.
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I. INTRODUCTION Applications to nuclear problems resurfaced a few years

The coupled-cluster method originated in nuclear physic&d° in the works of Mihaila and Heisenbei—14. These

over 40 years ago when Coester and Kummel proposed jforts focused primarily on the structure 8D, and used a
exponential ansatz to describe correlations within a nucleuStategy of solution that is somewnhat different from the ap-

[1,2]. This ansatz has been well justified for many-bodyProach we will take in this and subsequent papers. One major
problems using a formalism in which the cluster functionsd'ﬁerence.Is that we will use & matrix to renormalize the
are constructed by cluster operators acting on a referen g,vo-body Interactions before we begin our cou_pled-cluster
determinanf3]. Early applications to finite nuclei were de- calculations. We will also take a somewhat different ap-

: . : : roach in our Hilbert space truncation. Also notable is the
;crlbed n R('.‘\f[4]‘ Smcg then, a systematic development a.mevork of Moliner, Walet, and Bishoppl5] who are pursuing
implementation of this interesting many-body theory in

I hvsi licati has b | di Thnuclear problems in translationally invariant coupled-cluster
nuclear physics applications has been only sporadic. ethods in coordinate space.

view from computational quantum chemistry is quite differ- 1 computed energy using the coupled-cluster formalism
ent. In fact, coupled-cluster methods applied to computayciydes a very large class of many-body perturbation theory
tional chemistry enjoy tremendous succgSs10 over a  diagrams. In standard many-body perturbation theory, one
broad class of chemistry problems related to chemical angpically sums all diagrams order by order. The coupled-
molecular structure and chemical reactions. cluster approach essentially iterates diagrams so that one
Many solid theoretical reasons exist that motivate a purmay discuss it in terms of an infinite summation of particular
suit of coupled-cluster methods. First of all, the method isclasses of diagrams. Thus the theory is nonperturbative. In
fully microscopic and is capable of systematic and hierarchifact the coupled-cluster energy at the single and double ex-
cal improvements. Indeed, when one expands the cluster opitation level contains contributions identical to those of
erator in coupled-cluster theory to @l particles in the sys- second-order and third-order many-body perturbation theory,
tem, one exactly produces the fully correlated many-bodybut lacks triple excitation contributions necessary to com-
wave function of the system. The only input that the methodplete fourth-order many-body perturbation theory; see, e.g.,
requires is the nucleon-nucleon interaction. The method mathe review paper of Bartlef5]. It has been shown that the
also be extended to higher-order interactions such as thguadruple excitation contributions may be factored exactly
three-nucleon interaction. Second, the method is size exteirto products of double excitations, but no such factorization
sive which means that only linked diagrams appear in thés possible for the corresponding triples. Therefore, the
computation of the energythe expectation value of the coupled-cluster energy lacks only triple excitation contribu-
Hamiltoniar) and amplitude equations. As discussed in Reftions to be complete through fourth order.
[6] all shell-model calculations that use particle-hole trunca- In this paper, we wish to establish a line of research that
tion schemes actually suffer from the inclusion of uncon-we intend to pursue for calculating nuclear properties using
nected diagrams in computations of the energy. Thirdcoupled-cluster techniques. This is therefore a first paper in a
coupled-cluster theory is also size consistent which meanseries that we will publish to both develop the method for
that the energy of two noninteracting fragments computecduclear physics and to demonstrate the power of the method
separately is the same as that computed for both fragmentsr various applications. This first installment will be de-
simultaneously. In chemistry, where the study of reactions ivoted to outlining our approach, investigating the physical
quite important, this is a crucial property not available in themotivations, establishing numerical convergence tests, and
interacting shell mode{named configuration interaction in presenting some initial calculations using the method. In Sec.
chemistry. Fourth, while the theory is not variational, the Il, we will describe our choice of reduced Hilbert space,
energy behaves as a variational quantity in most instancesonstruction of an effective interaction for various model
Finally, from a computational point of view, the practical spaces and elimination of the spurious center-of-mass mo-
implementation of coupled-cluster theory is amenable to partion. The model spaces are defined in terms of various major
allel computing. harmonic oscillator shells and the effective interaction is de-
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fined in terms of theG-matrix, see, e.g., Ref16]. Our cal- titative fit of the nucleon-nucleo-wave phase shifts re-
culations of the binding energy of nuclei such as helium andjuires contact terms representing short-range forces of order
oxygen entail therefore a dependence upon the number dbur. The number of free parameters used in this chiral inter-
harmonic oscillator states, the oscillator parameter and thaction is 46, which is similar to the number of free param-
starting energy at which th® matrix is computed. The con- eters found in other two-nucleon forces. The phase-shift
vergence of the binding energy as function of the number o&nalysis shows excellent agreement between the chiral inter-
harmonic oscillator shells is a crucial test of the method disaction and the scattering data.
cussed in this work. Since the coupled-cluster calculations Two interactions were formulated in R¢R0]. These two
are rather time consuming for systems such!®d, we models, denoted Idaho-A and Idaho-B, differ in their predic-
present, as an introduction to the coupled-cluster methodijon of the D-state probabilities of the deuteron, while both
intermediate results from perturbative many-body ap-nteractions will give the same values for t#®, °D;, ande;
proaches in Sec. lll. Section Il also serves the purpose gbhase parameters up to 300 MeV in scattering energy.
finding an eventual minimum for the energy as function ofldaho-A yields aD-state probability of 4.17%, while Idaho-B
the oscillator parameter, with which we limit the number of gives 4.94%. This also affects the triton binding energy,
coupled-cluster computations. It may also be of help in findvyielding 8.14 MeV and 8.02 MeV for Idaho-A and Idaho-B,
ing how many oscillator shells are needed in order to achieveespectively. A similar interaction which now goes to fourth
a satisfactory convergence. In addition, this section shedsrder in chiral perturbation theory and includes charge de-
lights on the limitations of many-body perturbation theory pendence, has recently been presented by Entem and
compared with the coupled-cluster approach. Machleidt, see Ref{23]. Since this is a methodological pa-
We turn in Sec. IV to a description of the coupled-clusterper, we limit the attention to one of these interactions,
equations. We discuss the numerical techniques we will emramely, the Idaho-A model. Deatiled results for other inter-
ploy to obtain solutions to the coupled-cluster equations anactions, such as th¥;s model of the Argonne grouplg],
demonstrate several results file and*®0 in Sec. V. We  will be presented in future work.
conclude with a prospective for future directions of this re-

rch in . VL —_
searc Sec A. Definition of the model space and

the two-body effective interaction
Il. EFFECTIVE INTERACTIONS FOR A TRUNCATED

HILBERT SPACE In order to derive an effective interaction suitable for

coupled cluster calculations, we need to introduce various
The aim of this section is to present and partly justify thenotations and definitions pertinent to the methods exposed.

computation of an effective two-body Hamiltonian acting A common practice in nuclear many-body theory is to

within a reduced Hilbert space. This two-body Hamiltonianreduce the infinitely many degrees of freedom of the Hilbert

will in turn serve as the starting point for the perturbativespace to those represented by a physically motivated sub-

approach of Sec. Ill and the coupled-cluster expansion disspace, the model space. In such truncations of the Hilbert

cussed in Sec. IV. space, the notions of a projection operafoonto the model
Before we can compute such an effective two-bodyspace and its compleme@ are introduced. The projection

Hamiltonian, we need to define the nucleon-nucleon interacoperators defining the model and excluded spaces are

tion. Several types of modern nucleon-nucleon scattering in-

teractions have been developed during recent years. These o

interactions all fit nucleon-nucleon scattering data up to P:E|Cl>i><<bi|, (1

300 MeV with excellent precisioril7—19. They do give i=1

slightly differing results for the radius of the deuteron, the

binding energy of the triton and also contain slight differ- and

ences in the way they treat locality.

Very recent work by Entem and Machleif0] provides *
for the first time an interaction of quantitative accuracy that Q= X |[DND, (2
is based on effective field theory. One basic open question of i=D+1

nuclear theory involves understanding how the nucleon-

nucleon interaction may be derived from quantum chro-with D being the dimension of the model space, &Q
modymanics, the theory of strong interactions. Quantun¥0, P>=P, Q?=Q, and P+Q=I. The two-body wave func-
chromodymanics has not been solved in its nonperturbativéions |®;) are normally eigenfunctions of an unperturbed
low-energy limit at energy scales that are characteristic foHamiltonianH,. In this work we let only the kinetic energy
low-energy nuclear physics. One promising way to circum-enter the definition oHy, i.e.,Hy=t. Since we will employ a
vent this problem is to employ a derivation of the nuclearharmonic oscillator basis, this means that we need to com-
force based on chiral effective field thedi®1,22. The au- pute the expectation value &f, as well. The unperturbed
thors of Ref.[20] undertook the task of generating an accu-wave functions are not eigenfunctionstofThe full Hamil-
rate nucleon-nucleon interaction based on chiral perturbatiotonian is thenH=t+Vyy with Vyy the nucleon-nucleon in-
theory. They included one- and two-pion exchange contributeraction. The eigenfunctions of the full two-body Hamil-
tions up to chiral order three. They also showed that a quartonian are denoted by¥ ) andE,,,
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H[W ) =¥ ,). () I

Rather than solving the full Schrdodinger equation above, we nalajdl
define an effective Hamiltonian acting within the model
space such that

PHP|W,) = E,PW,) = E,/D,), @) M

ot
I
[=]
el
I
-

where|®,)=P|¥ ) is the projection of the full wave func-
tion onto the model space, the model space wave function.
HereHg is an effective Hamiltonian acting solely within the
chosen model space given bBl.s=PtP+V4, with the inter-

o
I
O
I
o

action
o nslsJs|
Ver= 3 Vi ® .
i=1 Ty by gy nalaj2 "ﬁllﬁjﬁ
(1) /(2 /) ;
where Vg, Vi, Voii .- are efiective one-body, two-body, FIG. 1. Definition of the exclusion operator used to compute the

three-body interactions, etc. For finifebody systems, the G matrix. See text for further details.
sum terminates at=A. As stated above, in this work we will

could e "o employ ;\(/avr(t)l;kr)k()):t)i/v:antr?]r:r?;[/l%rtl)sdyT:aechnneigLe?;egrbitals Gsy/2 OPar, Oy, €tC., and] s the total two-particle
the coupled cluster method. In perturbation theory, the effec"—;‘ngUIar momentum arit, the corresponding isospin projec-

L . . . tion.
tive interactionHy; can be written out order by order in the . . . .
interactionVyy as The single-particle states labeled by, j; andn,l,j, rep

resent the last orbit of model spaéeln this workngl4j, and
n,l,j, will mark the number of harmonic oscillator shells

included in the definition ofP. In the actual calculations
presented below these range from four to eight major shells.
+ PVNNQVNNQVNNP e (6) For four major shells\l,j;=1p;» andn,l,j,=1p,,, while for

€ € eight major shells we gat,l,j;=3p1» and nyl,j,=3p;» as
the last single-particle orbits. In Fig. 1 the two-body state

energy, defined as the unperturbed energy of the interactir1|énf"|C'J'anﬁlﬁlﬁ)‘]-rz> does not belong to the m_odel_space and
particles. However, the nucleon-nucleon interactions all pos: mcluded_ in the computation Of. the matrix. Similarly,
sess a hard core that makes them unsuitable for perturbati\lr@wlajanvl /) 7~)‘]TZ> and [(ng ﬁnBIBJB)JTZ> also enter the
many-body approaches. The standard procedure is therefo@efinition of Q whereag(ng 5j ;n,l,j,)JT,) is not included in

to renormalize the short-range part of the interaction by inthe computation ofs. This means that correlations not de-

PHegP = PtP + PViP + PVNN%VNNP

In this expansione=w-t, wherew is the so-called starting

troducing the so-called reaction mats fined in theG matrix need to be computed by other nonper-
5 turbative resummations or many-body schemes. This is
Q where the coupled-cluster scheme enters.
G=Vin+Vw——= =G @) Before we proceed we outline the computation of ¢he
w=QQ matrix using the exclusion operator of Fig. 1. One can solve

~ . . I the equation for th& matrix for finite nuclei by employing
The operatoQ is normally different from the projection op- ) o~ i
erator defined in Eq2), since theG matrix by construction & formally exact technique for handlir@ discussed in, e.qg.,

allows only specific two-body states to be defined @y Ref. [16]. Using the matrix identity, for whichP is the
Typically, the G matrix is the sum over all ladder type of complement ofQ such thatP+Q=1,
diagrams with intermediate particle-particle states only. This
sum is meant to renormalize the repulsive short-range part of
the interaction. The physical interpretation is that the par- éié—}—EN 1 |~3} ®)
ticles must interact with each other an infinite number of P 541D e’
times in order to produce a finite interaction. This interaction
can in turn serve as an effective interaction acting in a re-
duced space. to rewrite Eq.(7) as

We illustrate the definition of the exclusion operator em-
ployed in this work in Fig. 1. Using a harmonic oscillator
basis for the single-particle wave functions, a single-particle G=G+AG, (9)
state is classified by the quantum numhdaijs A two-particle
state in an angular momentum coupling scheme is given by
(Nal4j gl g1 p)IT2), Wherea and B represent one of the or- whereGe is the freeG matrix defined as
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1 I 3
Gk =Vant Vv Gr. (10)
w-—t a
The termAG is a correction term defined entirely within the
model spaceé® and given by )
nplpip
AG =~V P—t Py, (11)
T VNN, Ba-lp A NN-
Employing the definition for the fre& matrix of Eq.(10),
one can rewrite the latter equation as niliji
1~ 1 ~1
AG=-Gg=P= ~P—G, (12
€ pPet+elGee )P € -
with e=w—t. We see then that th@ matrix is expressed as niliji NgleJq b

the sum of two terms; the first term is the fréematrix with o _
no corrections included. while the second term accounts for F!G- 2. Definition of particle and hole states for coupled-cluster

di dificati due to th lUSi SoTh and perturbative many-body calculations. We use the notation that
medium modifications due fo the exciusion oper_@or e p,q,r,sindex all single-particle states, whilgj, k, | refer to single-
second term can easily be obtained by soTe simple Matlligyje states. The orbits represented by the quantum nunmders

operations involving the model-space matfxonly. The  represent hole states whereag)l, qip,q represent the last particle
above allows, for a given model-space operzﬁofor a nu- orbits included in thes matrix model space. The hole states define
merically exact computation of th® matrix. the Fermi energy.

The G matrix defined by the exclusion opera@rof Fig. o o o
1 represents now our effective two-body interaction, with a  The unperturbed HamiltoniaH, is given by the kinetic

. : = . energy only. However, in order to define a suitable starting
reduced Hilbert space defined by the model sché‘th point for an effective interaction to be used in the coupled-

means that our Hamiltonian acts within the model spBce ¢|yster calculations we use the definition of particles and

and is given by holes in Fig. 2 and compute the single-hole energigs
Her(®) = t+ Gla). (13  through
2
The results from exact shell-model diagonalizations, pertur- e = <i ‘ Lo ‘ i> + > (ij|Glw =& + &)]ij), (14)
bative many-body calculations and coupled-cluster calcula- 2m j<F :

tions will depend on the limits of the model spa%and the

) whereF stands for the Fermi energy. We do not perform a
chosen oscillator parameter. Furthermore, although Ghe 9y P

self-consistent Brueckner-Hartree-Fock calculation however,

tmhgtrcljx hasda Weak'ltlje;;ren??rr]\ci' uplon thﬁ sttﬁrtlngl er:e{gy as done by, e.g., Gad and Muther. The matrix elements are all
IS cependence Wil affect the Tinal Tesults the calclalions, sy mmetrized. Furthermore, for single-particle states

The dependence of the results upon these parameters will - ; ; -
. X ve the Fermi energy we leave the single-particle energi
elucidated in Secs. 11l and V. %‘Bo e the Fermi energy we leave the single-particle energies

. . . . unchanged. This procedure, which follows the Bethe-
We end this section with the setup of the exclusion opera: randow-Petschek theoref@i5], introduces an artificial gap
tor used in the final perturbative many-body calculations Olat the Fermi surface. Note aléo that the single-particle wave
Sec. Il and the coupled-cluster cNaIcuIations of Sec. V. functions are not ch:;mged in EQ.4). The main purpose of

With the G matrix model spac® of Fig. 1 we can now the above procedure is to yield a prescription for obtaining a
define an appropriate space for many-body perturbatiostarting energy independent effective interaction for the
theory and coupled-cluster calculations where correlationgoupled-cluster calculations. Using the single-particle ener-
not included in theG matrix are to be generated. This model gies from Eq.(14) we define, following Ref[24], an effec-

space is defined in Fig. 2, where the labelg|, qipq repre- tive interaction for our coupled-cluster model spaces by
sent the same single-particle orbits ms)l; 5j; , in Fig. 1.

Hereafter we use the notation thatg,r,s index all single-  (ij[VerlKl) = 3[(ij |G(w = & + &) [KI) + (i} |G(w = & + &) KI)]

particle states, while, j,k,| refer to single-hole states. (15)
The G matrix does not reflect a specific nucleus and

thereby single-particle orbits which define the uncorrelatedor two-body states with holes only and

Slater determinant. For a nucleus suclfide the &, orbit ) 1o

is fully occupied and defines thereby single-hole states. (ip[Verlkap = 5[(ip|G(w = &; + £p) ka)

These are labeled hyl;j; in Fig. 2. For'60 the correspond- +(ip|G(w = £+ £g) k0] (16)

ing hole states are represented by the orbés,00ps,, and

0p,,»- With this caveat we can then generate correlations ndfor two-body states with one particle and one hole. For two-

included in theG matrix. body states with two single-particle stafggwe use a fixed
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starting energy, typically in the range € [-80,-5] MeV. p? 1 , 1
This introduces a starting energy dependence in our results. Tem= SMA migA pi+ mg pi-p;. (19
The reason for fixing the starting energies for two-particle !
states is due to the fact that we use kinetic energies onlyVe perform the subtraction perturbatively so that the input to
above the Fermi surface and d@rmatrices are computed at the many-body perturbation calculations and the coupled-
negative starting energies only. cluster approach is given by

An obvious improvement to this procedure is to generate
a complexG matrix which takes care of both positive and H
negative energies, reflecting thereby the nonresonant con-
tinuum, bound two-body states and eventual resonances . ) o
and/or virtual states. We will however leave this interesting(We drop the prime on H at this potThis is known to
topic to a further study. The main focus of this paper is tos_llghtly overest_|mate the effec_t of the cente_r-of-mass correc-
establish a method for doing the coupled-cluster calculationon [4]. There is also a potential problem with the excitation
without having to resort to employing the bare interaction,SPectrum when using this approach which we will investi-
needing thereby many major harmonic oscillator shells. Ougate more fully in a future publication.
hope is that with & matrix, 7-8 major shells may suffice.
Such a truncation in the harmonic oscillator space is sup-
ported by the recent works of Barrett, Navratil, and Vary

[26-28, see also the recent calculations of RE9]. In Our results will depend on the size of the model space and
these works no-core shell-model calculations have beefhe chosen harmonic oscillator enerdyo. This section
mounted for light nuclei ranging from the triton to ma&s  geryves therefore two aims central to the coupled-cluster ap-
=12. Furthermore, in Ref$26,27, another approach for ob- proach of this work.

taining a starting energy independent interaction is obtained (i) In the coupled-cluster calculations we search for an
through the similarity transformations of Lee and Suzukienergy minimum as function of, e.g., the oscillator energy
[30,31], yielding a fully Hermitian effective interaction. This 4., Even for small systems such 380 with five or six
should be contrasted to the more approximative method prenajor shells included, these are major time-consuming cal-
sented in Egs(15) and(16). culations. Results from many-body perturbation theory,
which to second or third order in the interactiGnare fairly
simple, may therefore serve as a guide in order to limit the
range offiw values used in the coupled-cluster calculations.
With increasing dimensionality of th®-matrix model space,
§he results should become independent of the oscillator en-

ergy.

(1 - i)t +G(w) - (2MA) ) p; - p; (19

i#]

Ill. PERTURBATIVE MANY-BODY METHODS

B. Treatment of center-of-mass motion

Momentum conservation requires that a many-body wav
function must factorize a¥(r)=(R)W(r ) whereR is the
center-of-mass coordinate ang, the relative coordinates. If (i) The energy will also depend on the size of the model
we choose to expand our wave functions in the harmonlcspace_ The hope is that not too many shells are needed in

oscillator basis, then we are able to exactly separate thSrder to achieve a converged energy. With the present ap-

center-of-mass motion from the problem provided that Weyoach our coupled-cluster calculationsté® are limited to

W?”‘ in @ model space that inc[udes E,‘n“’ excitations. In six major shells. Results from many-body perturbation
this paper we perform calculations with@ operator that theory can thus serve as a guideline.

allows for all possible two-particle interactions within a = 1o linked-diagram theoref10,32 can be used to obtain
given set of oscillator shells. This means that we m#® 5 horrhative expansion for the energy in terms of the per-
incomplete in a given calculation so that our method of SeP3g,rhationV(G) or V=H-H, whereH, represents the unper-

ration of the center-pf—mass motion pecomes approximate, e part of the Hamiltonian. The expression for the energy
For example, for'He in four major oscillator shells, we can

excite all particles tm=124w excitations, but we can only E reads

excite one particle to=3%w excitations. Thus, care must be *

taken when correcting for center-of-mass contamination in E= 2 (VoH[(0 = Ho) *HIN¥o),, (20)

our calculations. We intend to investigate a full range of k=0

options for removing the center of mass from these calculagnere ¥, is the uncorrelated Slater determinant for the
tions in a future work. ground stateg is the corresponding unperturbed energy and

Here we approximately remove the center-of-mass motioghe sybscript stands for linked diagrams only. In our cal-
by subtracting the kinetic energy of the system from thegyjations, we must replace the Hamiltonidwith the effec-
Hamiltonian. Thus, tive one defined in Eq(13) and employ the definition of

particle and hole states of Fig. 2. In Fig. 3 we show all
antisymmetrized Goldstone diagrams through third order in
H' =H-Tcm, (17)  perturbation theorywe omit the first-order diagramAll
closed circles stand for a summation over hole states. In this
section we let theG matrix define the interaction vertex.
where the center-of-mass kinetic energy is given by Since we do not use a self-consistently determined single-
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FIG. 3. Antisymmetrized Goldstone diagrams
through third order in perturbation theory in-
cluded in the evaluation of the binding energy.
The dashed lines represents the interaction, in our
case theG matrix. Particle and hole states are
represented by upward and downward arrows, re-
spectively. The first-order diagram is omitted. All
closed circles stand for a summation over hole
states.

particle Hamiltonian, we need to account for diagrams withthe energy minimum as function of the oscillator energy lim-
so-called Hartree-Fock insertions as well. Examples of thédts the range ofiw values used in the coupled-cluster calcu-

latter are shown in Fig. 3, see also the work of Ka$3@

lations.

for a detailed discussion of the various diagrams. There is an Needless to say, many-body perturbation theory has se-
additional problem with our many-body perturbation theoryvere limitations. It is very difficult to go beyond third order

calculations. Consider the expressiai, for diagram 4 in

an angular momentum coupled bagigth J being the total

two-body angular momentum anig the corresponding iso-
spin projection of Fig. 3

1
AE,= ¢ > 23+ 1(([)ITJG(w= ¢ +&)|(pa)ITy)

ij<F
pars>F
J
1
X————————((pQJIT|G(w = &; + &) (rs)IT)
gite—gp—egq
1 .
X ——————((rs)ITJG(w = &; + £))|([})ITy.

gite—&g ~&
(21)

The G matrices depend on the starting enetgydefined in

in perturbation theory without a self-consistent single-
particle potential and beyond fourth order with a self-
consistent potential. The coupled-cluster method offers on
the other hand a systematic way to generate all many-body
correlations in a given model space.

Many-body perturbation theory results
for helium and oxygen

We present here results from third-order in perturbation
theory for the binding energies 6He and*®0 as functions
of the size of the model space and the chosen oscillator en-
ergy fiw. These results are shown in Figs. 4 and 54de
and %0, respectively.

There are several features to be noted. First of all, both
figures show that the results seem to stabilize between seven
and eight major shells. FofHe all possible excitations
within these shells are allowed in the computation of the

this case by the hole energies. With a harmonic oscillatodiagrams, to be contrasted to the work of Kaq&i8] and
basis and with kinetic energies only these starting energiesther traditional approach¢%6] where one typically consid-
will be positive, whereas ouB matrix is defined for negative ers only 2-4w excitations. For%0 we keep the same num-
energies only withw e[-140,-§ MeV. To remove this bers of maximum allowed excitations for both thg @shell
problem we employ the single-hole energies computed acand the @;,,0p;, shells. As an example, for eight major
cording to Eq.(14). This leads to an artificial gap at the shells we could have Z4v 2p-2h excitations from the § ,
Fermi surface and demonstrates one of the problems withhell whereas from them,,.0p;,, shell we can at most have
many-body perturbation theory. A self-consistent approach i424» 2p-2h excitations. The latter fixes the total number of
needed both for holes and particles, and @Genatrix needs allowed excitations with eight major shells f4i0. The fact

to be computed for both positive and negative energies. Thithat the energies seem to converge at this level of truncation
is however beyond the scope of this work, where our emphais a welcome feature which can be exploited in the coupled-
sis is on the coupled-cluster approach. The center-of-magsguster calculations. These calculations, see below, are much
corrections discussed in the preceding section are not imrmore challenging from a computational point of view since
cluded in our perturbative calculations. This section, as willwe, in principle, generate a much larger class of diagrams. In
be seen below, serves the main aim of justifying our modethis work we are limited to computations with at most seven
space used in the coupled-cluster computation. In additiormnajor shells in helium and oxygen in our coupled-cluster
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-1o - T y T y T y for N=6 we haved(E/A)/dw=0.35. The corresponding de-
rivatives for “He atZw=18 MeV are forN=8 d(E/A)/dw
=0.12, for N=7 d(E/A)/dw=0.16, and for N=6
d(E/A)/dw=0.21, indicating a smoother dependence upon
- ho with increasingN. The reader should also note that in the
limit Zw— 0 we haveE— 0. Finally, we observe that we are
not able to reproduce the experimental binding energies. We
will come back to this point in Sec. V, where a comparison
with coupled-cluster theory is also made.

E (MeV)

~20F

IV. COUPLED CLUSTERS IN SINGLE
AND DOUBLE EXCITATIONS

255 . m . 1'5 . 35 . 55 In this section, we will discuss a formal derivation of the
he> (MeV) f:oupled—cluster equations. While this discussion is standard
in quantum chemistry(see, for example, Ref[6]), the
FIG. 4. Binding energyE from third-order perturbation theory Nhuclear physics community may not be familiar with this
for “He as function of the number of major harmonic oscillator formulation of coupled-cluster theory. We will therefore in-
shellsN and the oscillator energyw. ForN=8 we have the optimal  troduce notations and equations that we will continue to use
value of E=-20.83 MeV at#w=13.3 MeV. The experimental throughout our discussiofin this and following papepsof
value isE=-28.30 MeV. this technique and its extensions. The reason for this, as men-
tioned also in the Introduction, is that the method applied in
calculations. This means that hopefully the trend seen ifhis work differs from that of Moliner, Walet, and Bishop
Figs. 4 and 5 allows us to limit our coupled-cluster calcula-[15] and the contributions from Heisenberg and Mihaila
tions to six or seven major shells. Second, although the minif11-14. The method of Molineret al. [15] is taylored for
mum shifts a little as function of the oscillator energy as wecalculations in coordinate space rather than in configuration
increase the oscillator space, we notice that as the number §pace as done here. One of the advantages is that such a
major shells is increased, the dependence of the binding efermulation allows for a translationally invariant approach.
ergy upon the oscillator parameter weakens. A similar featur&lowever, the implementation of the Pauli principle is rather
is seen in the coupled-cluster calculations below. ¥orthe  difficult and calculations hitherto have been limited to cen-
minimum for seven shells takes place EBtA=-7.16 MeV tral interactions. Working in configuration space it is rather
for Zw=12.9 MeV and for eight shells we havE/A  straightforward to account for the Pauli principle. The ap-
=-7.12 MeV atfw=13.6 MeV. For six shells we obtain Proach of Heisenberg and Mihaila1-14 starts with a con-
E/A=-7.42 MeV at hw=12.6 MeV. The curvature for figuration space description and relies on an expansion in the
larger values offiw decreases with increasing number of inverse particle-hole energy spacings. Both these groups start
shellsN. At #w=18 MeV we have for'®0 andN=8 that  With bare interactions.

d(E/A)/dw=0.22, forN=7 we obtaind(E/A)/dw=0.28, and In this work the aim is to use an effective interaction
which accounts for the short-range features of the bare
-6.0 — nucleon-nucleon interaction. The hope is that this may yield

a better convergence. Furthermore, witG-anatrix approach
in configuration space there is no restriction on the form of
- the nucleon-nucleon interaction. Nonlocal interactions for-
mulated in momentum space or purely local interaction in
coordinate space can be employed with equal ease.
. An additional feature is the fact that the present method
can rely on the vast formalism that has been developed by
quantum chemists, especially on the inclusion of more com-
- plicated many-body terms such as three-body forces. Work
along these lines is already in progré34].

We must first bring the Hamiltonian into normal ordered
- form with respect to the reference statgy). The Hamil-
tonian then becomes

E/A (MeV)

§ 10 1z 14 16 18 2
1

e Her(0) =1+ G(0) = 2, fodfatag+ 5 > (palrsafalasa)

FIG. 5. Binding energy per particlE/A from third-order per- Pa pars

turbation theory for'®0 as function of the number of major har- + (W o|Heii( )| Wo) = Hy + Eo, (22)

monic oscillator shellN and the oscillator energyw. For N=8 we

have the optimal value &/A=-7.12 MeV atiw=13.6 MeV. The ~Where Eg=(W|He(w)|Wo) and the Fock-matrix element is

experimental value i§€/A=-7.98 MeV. given by
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_ " 1 1
fpa = (PIt) + 2 (pilr). 9 EermE-Eo= 2 futf+ 3 3 Gillat+ 3 Gilante
: ia 4ibj S
To simplify notation, we will usépq||rs)={pq G(w)|rs). We (29)
employ bracket notatiof to indicate normal ordering with

respect to the reference state. As stated previously, we use L . L .
the notation thap,q,r,s refers to all single-particle states °f Wwo-body Hamiltonians, this equation is general and is
andi,j k.| index all sums below the fermi surface. In addi- not restricted to the CCSD approximation since higher-order

tion we leta,b,c,d index all sums above the fermi surface. ClUSter operators such & and T, cannot produce fully

The total number of single-particle states in the model Spacgontracted terms with the Hamiltonian and therefore contrib-

is N.=N,+N, where N, refers to the number of particle ute zero to the energy. Higher-order operators can contribute
S . . .

states, apnd\lh is the nﬁlmber of hole states. Hereafter wet© the energy indirectly through the equations used to deter-

simply useH for He(w) mine these amplitudes. The three terms in 9) are usu-
€ " 2 . .
Formally, the coupled-cluster method begins by postulatfJlIIy referred to as thefy, Ty, and T; contributions to the

ing that the correlated many-body wave function is given bycor_lr_ﬁft(';nuzggggﬁor amplitudes are found by left projection

|¥) = exp(T)|Py), (24)  of excited Slater determinants so that
where we define the the correlation operator as
— /@ _
T:T1+T2+T3+ +TA- (25) 0_<l[/| |eXF( T)HN(T)|\PO>1 (30)
The correlation operators are defined in termsgfarticle
n-hole (np-nh) excitation amplitudes as 0 =(Wilexp(- TIHN(T)[W). (31
T,= X tfaga;, (26) . .
i<ef,a>e The Baker-Hausdorf relation may be used to rewrite the
similarity transformation as
T,= 2 tralaaa, (27)
hi<erabzer exp(— HHN(T) = Hy+ [Hy, Tyl + [Hy, Tol + %[[HNaTl]yTl]
and higher order terms for; to T,. Coupled-cluster theory 1
may thus be hierarchically improved upon by increasing the *allHn Tl Tol + [[Hn Tl Tol + -
number ofT; operators one computes. We will call the theory (32

in which only T, and T, operators are present, CCSD, or

coupled-clusters at the single and double excitation IeveLI.he expansion terminates exactly at quadruply nested com-

CCSDT means thall; is retained in the correlation operator, mutators when the Hamiltonian contains at most two-body

while CCSDTQ refers to keeping bolfy and T, correlation terms, and at six nested commutators when three-body terms

operators. In this uncoupled representation, the correlatlog1re present. We stress that this termination is exact, thus

amplitudes must _obey the fermlqn-s%/mmaebtry rﬂatg”s WhIChaIIowing for a derivation of exact expressions for theand
for the T, correlation operators yielf®=—t{"=—t;=t;% We

: . t, amplitudes. To derive these equations is straightforward
will use the short-hand notation andt, to represent the but tedious work. For example, one of the amplitude terms is
array of all Jp-1h and 2»-2h operators.

We compute the expectation value of the energy from given by

E=(V exp— T)H exp(T)|¥y). 28
(Yol exp= DH e 29 PG =S S5 S e,

Because the energy is computed using projective, asymmet- pars ke 1d mnef
ric techniques, an important question concerns the physical
reality of the coupled-cluster energy. Quantum mechanics
requires that phys_lpal observables should be expectation <\IIO|{ai+a].+aba a}{a;a;asar},
values of Hermitian operators. The coupled-cluster
energy expression contains the non-Hermitian operator
[exp(—-T)H exp(T)]. However, if T is not truncated, the + + + -
similarity-transformed  operator exhibits an energy- tacad{a:adiagaHacaran Vo (33
eigenvalue spectrum that is identical to the original Hermit-
ian operatorH, thus justifying its formal use. From a prac- for which Wick’s theorem may be used to calculate the ex-
tical point of view, the coupled-cluster energy tends to followpectation matrix element. Her&, is the normal ordered
the expectation value resuif the theory is reformulated as a G-matrix operator, and the subscriptindicates only con-

variational theory, even wher is truncated. nected diagrams enter into the computation of the expecta-
The correlation energy is quite easy to calculate and igion value.
given by Thet,; amplitude equations are given by
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: 1 1 , ,
0= 1o+ 2 fadki = 2 i+ 2 (kalleidti+ 2 fdtic + 5 2 (kalledit= 22 (Klfleidtid~ 2 fidfti = 2 (Klllehe
c k ke ke ked kic ke kic

1 1
+ 2 (kallcdtt!= X (Kll[catitt? + X (KIl|ctiti®~ = > (Killcdtift? — = X (il ety (34)
ked klcd klcd 2klcd 2klcd

This equation is nonlinear in thig amplitudes, and linear in thig amplitudes.
Thet, amplitude equations are given by

. 1 . 1 . .
0 =(abifij) + X (fodti® ~ fadt) = 2 (figth = futhd)+ 52 (Il + 5 (ablledyti+ P(ij) P(ab) S (kbilej)tie
c k cd ke

2kI

1 1 1
+ P(i)) 2 (abllepty - P(ab) 2 (kbifip)te+ S P(ij)P(ab) X (Kl i+ 7 X (killecti i~ JP(ab) X (kil|cd)ttef
c k kicd kicd klcd

- SRS et 2 Pab) S kIl + 5P S abllcd - P Plab) S kbiic)ite+ Plab) S fi e
kicd ki cd ke ke

+ P(ij) 2 fkdfG0- P(ij) X (KIl|cititi® + P(ab) X (kal|cd)tits® + P(ij ) P(ab) X (aK||dot'the+ P(ij) P(ab) > (k|[ic)t?the
ke klc kcd kcd klc

1 . 1 1 1 . .
+ P2 (Kl tEP - SP(ab) 3 (kblledyiti’ SPaiP(ab) X kbllech it + SPai P(ab) 2 ket

- P S (et~ Plab)S, ettt + 2P S, lcatitiEh+ T Plab) S (ke + Pl P(ab)

kicd kicd kicd kicd
1
x 2 (Kl eyttt + - P(ij)Pab) X (Klllecttiet. (35)
klcd 4 kicd
|
The permutation operatd? yields V. CCSD CALCULATIONS FOR HELIUM
AND OXYGEN
PG = 1)) - F(i). (36) A. lteration of the equations

Several computational challenges arise when we imple-

. . . t the CCSD equation solver. One problem involves
and t, terms. While these equations appear quite Iength)/'nen . . S
they are solvable through iterative techniques that we wiIImemory requirements for th& matrix, which in its un-

discuss below. We note that the amplitude equations inCIudcoupled form is a four-index tensor and therefore requires a
) € amp q . E\rge amount of storage. In order to maintain fast computa-
terms that allow for g-4h excitations. Indeed, while we

tion, we do not employ storage compression of &enatrix

speak of doubles in terms of amplitudes, the class of diaa yhis stage. Thus, for example, BiF 7 calculation requires

grams involved in the theory include fourth-order terms. This;og gB of storage for th&-matrix elements. Present-day
is a very important difference and distinction between theyarajiel computing systems use distributed memory architec-
shell model with up to @-2h excitations and CCSD. Further- res that allow for the storage of such large sets of data. Our
more, when the energy is computed in CCSD, all terms arg@mplementation in distributing th€ matrix is to store the
linked and connected. third and fourth indices across processors in submatrix
In order to calculate expectation values of operators welocks. In doing this, we are able to take advantage of the
may use the Hellmann-Feynman theorg®b] which states large available memory for storing the matrix elements.
that if we perturb our Hamiltonian such that’=H+\(), We use an iterative method to generate solutions tdjthe
where\ is a small quantity an€) is the operato(either bare  andt, amplitude equations. In this paper, we are concerned
or effective of interest, then the energy changes only by awith closed shell nuclei. In this case, a slight rearrangement
small amount from its original value @&\ =0). As a func-  of Egs.(34) and(35) gives a second-order perturbative initial
tion of \, the energy becomds =E(\=0)+\dE/d\, and the  solution for the amplitudes. For the amplitude, we rear-

The equations of thé, amplitudes are nonlinear in both

expectation value of the operator is given by range the first few terms by pulling out the diagonal in the
first two sums and definingpt1lh and 2-2h energy denomi-
tors as
dE(\ =0) na
=0 @37 D=t - f 38
d\ i = Ti = Taas (38)
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Dia}b: fi + £, = faa— fon. (39) TABLE I. Various memory scalings for the He and O systems as
a function of the number of major oscillator shel,Listed are the
The first terms in thet; and t, amplitude equations then number of uncoupled single-particle states, the two-particle two-
become hole amplitudes iffHe, the number of nonze@-matrix elements,
and the number of nonzero two-particle two-hole amplitudé$@n
D?tia: fa+ E (1- 5ca)factic_ 2 (1- 5ik)fikt2+ B
c k

N N ‘He G (in millions) %0
(40)
4 80 1,792 0.93 24,960
- 5 140 4,000 7.23 77,880
D%} = (abiif) + P(ab) X (1 - 8 fudt}" 6 224 7976 40.4 176,240
Cc ' . ’
) . 7 336 14,112 1785 345,160
+P(ij) 2 (1= S fits+ -+ (41)
k

. VY

While these are exactly the same equations as given in EqY/Crk scales from one computation of ord8tNyN;) to two
(34) and(35), we may use them to begin an iterative solutionc0mputations of2(N;N;). Second, by formulating the algo-
by initially setting all amplitudes on the left-hand side to rithm in this manner, we take advantage of highly optimized

zero. We then obtain for initial amplitudes basic linear algebra subprograif@]. This represents a sig-
nificant reduction in effort when contrasted with the naive
2= fai (42) equations. We see that a calculatif® should require 16
' DY times more computational time when compared to a calcula-
tion of “He in the same model space. Due to the longer loop
o (@bl structure in*%0 the time required to complete a single-

; AL (43) oxygen run is only a factor of 10 larger than the He case.
Djj Third, because we have subblocked the interaction ampli-
We now need to compute the various terms in &) to tudes_, we can spread the work across NUMErous processors.
obtain the new amplitudes. Since dBrmatrix elements are " d0ing S0, we must perform a global reduction operatn
distributed across processors, we will have partial sums of!oPal sum in order to generate the new amplitudes for the
certain indices. For clarity, we do not show this complicationn€Xt itération. We show in Table | some details of the com-

in the following. We demonstrate the numerical procedure byPutational sizes of therscheme problems that we have un-
considering one of the terms in the two-particle two-holedertaken in this paper. The number of unknowns for which

amplitude equation, Eq35): we are solving is approximately the number of two-particle
two-hole amplitudes. Therefore, in our largest calculation for

f(ab,ij) = >, (kl||cd>tﬁdték‘,b. (44) 160 we are actually solving approximately 176300 equations

kl,cd per iteration. We also list the total number of nonzero

G-matrix elements in Table I.

Equation(43) represents the terms that one uses to com-
pute the energy in second-order perturbation theory of the
M B:tﬁlbi Mgller-Plesset typd37]. We show in Table Il the energy

@ obtained from the zerotB(0) iteration and the final iteration
E(F) as a function of increasing oscillator levels in tH®

We perform the following mapping to matricés, N, andO,
P, andQ:

Ng,, = (Kilcdh, system. Note that the difference between the converged
o CCSD energies and the initial zeroth order energies increases
0,s=1j, as the basis space increases. The converged summation of
the CCSD equations vyields approximately 10 Me&Wdr
Q..s=f(abij), (45) 0.6 MeV per particlg in extra binding. These findings are

where we map the indices=(a,b), B=(k,1), y=(c,d), and  1a| E 1. Comparisons of the zeroth-order eneig0) and the
6=(i,j). Our computation then becomes two matrix-matriX converged CCSD resul&(F) for 10 as a function of increasing

multiplications: model space. The results are also compared with many-body per-
turbation theory to second and third ordeghs, and ESl9or, re-
Pa,y: 2 Ma,ﬁNB,yr spectively. All energies are in MeV. No center-of-mass corrections
B are included in these calculations.
Qus= 2 PuyOys 46) N (ho) E(0) S Edrd E(F)
7 414 ~135.12  -132.06  -129.92  -140.47
followed by a mapping oR, s to f(ab,ij). All terms in the 514 -124.79  -124.84  -12152  -127.79
amplitude equations can be formulated in this way and three g 14 -121.36 -121.48 -118.23 -119.73

important consequences follow. First, the computational
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NN J ) I ! I ! J ' TABLE Ill. Comparisons of CCSD results itfO when using
ANSY — HFbusis, N=4| ] naively filled oscillator reference state, or when using the Hartree-
107k NN, ot Fock reference state. No center-of-mass correction is taken into
’ -—- OSC basis, N=6 account in this comparison.
% Term Oscillator(MeV) Hartree-FockMeV)
5 } Eo -109.45 -122.51
< T -8.86 5x 1075
. . : T -1.50 ~0.3x10°3
N ] T, -20.66 -16.73
. RN Ecor -31.02 -16.76
v, Ny Erota ~140.47 -139.26
40 50

CCSD Iteration

~ FIG. 6. The convergence of the ground-state energy as a funGrence states. The naive choice fir) is to fill the lowest

tion of the CCSD iterations fofO. oscillator states for a given system. For example, we define
corroborated by those from many-body perturbation theory¥o) as the filled & state for‘He and the filled 8-0p states
from Sec. Ill. It is therefore worth comparing these resultsfor 160. This choice is fine for closed-shell nuclei since none
with those from second-order and third-order many-bodyof the energy denominators discussed above becomes zero,
perturbation theory as well. These are labelg and  but for other nuclei this would be a problem. As an alterna-
Edae7 in the same table. The reader should notice that théive procedure, we start with the Hartree-Fock ground-state
zeroth iterations of the coupled-cluster schemes already irglater determinant for a given system. We solve the Hartree-
cludes corrections to the one-body amplitudesHowever, Fock equations in the oscillator basis in order to obtain trans-
the energy denominators used in the computation of thgyrmation matrice that take us from the oscillator to the
second-order diagrams of Fig. (Biagrams 2 and 3have  pairee-Fock basis. We then transform the Hamiltonian to
hole states determined by E@.4). The agreement with the .« Hartree-Fock basis using the relatiofi=3, D, c!
zeroth-order iteration and second-order perturbation theory i\7°vhereai anda/ annihilate and create particles in ?heatl)sac’illa—

very good, especially for five and six major shells, as can b ; L . )
see>:1gfrom Ta%le II.yHowever for third-jorder perturbation?Or basis, and, andcl anmhﬂzite and create particles in the
theory one clearly sees fairly large differences compare&_'artreﬁ'F?Ck b?ﬂf'.s' N.?:]e thb@t D_l' VY(;"Ie. ?dct(?]mplete dlr-e-
with the coupled-cluster results. Typically, the relation be-agonaliization oA in eithér basis would yield the same
tween first- and second-order in perturbation theory far sults, the CCSD amplitude equations are not invariant under
this transformation since states below and above the fermi

is given by a factor of~5-6. For exampleN=5 andzw - i
=14 MeV, we have -329.12 MeV from first order and Surface will be mixed. Furthermore, at the Hartree-Fock

—47.72 from second order. To third order we obtain a repu|JeveI, rotational symmetry of the Hamiltonian is broken, al-
sive contribution of 3.32 MeV, to be contrasted with the al-though correlations including those at the CCSD level will
most 3 MeV of attraction given by higher-order terms in therestore much of this symmetry. Although we do not discuss
coupled-cluster expansion. This indicates that many-bodyn this paper open-shell systems, the Hartree-Fock solution
perturbation theory to third order is most likely not a con- offers a clean way obtain a reference Slater determinant for
verged result. An interesting feature to be noted from manythose cases.

body perturbation theory calculations is that higher terms We show in Fig. 6 the convergence of the CCSD equa-
loose their importance as the size of system is increased. Ftions in both the oscillator and Hartree-Fock basis Ner4

“He the relation between first-order and second-order pertumajor shells. In both cases, convergence at thé el is
bation theory is given by a factor 6¢3—4, depending on the reached before 40 iterations. A more quantitative assessment
value offiw. Calculations for*®Ca not reported here indicate of how the choice of reference state affects the final results is
a relation of~7-9 between first-order and second-order perseen in Table Ill. In the oscillator basis, thp-1h amplitudes
turbation theory. This is somewhat expected sinceGhma-  carry a significant fraction of the correlation energy, while in
trix is smaller for larger systems, although the energy dethe Hartree-Fock basis these terms do not contribute to the

nominators becomes smaller. energy. The difference between the Hartree-Fock and oscil-
We show typical convergence curves for our coupledator total energies is 0.9%. We note that if one completely
cluster calculations in Fig. 6 fofO for theN=4,5,60scil-  ignores the p-1h amplitudes in the Hartree-Fock basis, the

lator shell-model spaces. In this figu(l) is the energy at energy becomes —138.64 MeV, a difference of 0.4%. In the
thelth iteration, whileE(F) is the final energy of the system. oscillator basis, a much larger error of 5.7% is obtained if
We obtain convergence within 50 iterations in most casesone ignores the @g-1h amplitudes. Furthermore, the CCD
The curves also exhibit an exponentially convergent behavequationgignoring the p-1h amplitude$ sometimes exhibit
ior. numerical instabilities similar to ignoring the Hartree-Fock

Since the CCSD amplitude equations are nonlinear, wénsertions in many-body perturbation theory discussed
investigated the results obtained by using different initial ref-above.
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FIG. 7. Dependence of the ground-state energiHzf onfw as
a function of increasing model space. No center-of-
is taken into account in this calculation.

m et FIG. 8. The total energy ofHe as a function of increasing
ass correc IOPnodel-space size, for different values of the starting energy. Here,
we include the center-of-mass correction.

B. *He and °O ground states conclusion. In these calculations we have not included the

We now return to a discussion &fle and®O by provid-  contribution from the Coulomb interaction.
ing a description of their ground-state energies using the In this initial study we performed calculations of the
CCSD formalism. As in the many-body perturbation theoryground state for up to seven major oscillator shells as a func-
section of this paper, we wish to demonstrate how thdion of Zw. Figure 9 indicates the level of convergence of the
coupled-cluster theory converges as a function of increasingnergy per particle foN=4,5,6,7shells. The experimental
model space. We are currently able to perform this study fovalue resides at 7.98 MeV per particle. This calculation is
up to seven major oscillator shells in helium and up to sixpractically converged. By seven oscillator shells, thede-
shells in oxygen. While these studies do not address thpendence becomes rather minimal and we find a ground-state
starting-energy dependence of @Bematrix, they do indicate binding energy of 7.52 MeV per particle in oxygen using the
the convergence of the calculations as a function of modeldaho-A potential. Since the Coulomb interaction should
space, and they indicate the softening of #he dependence give approximately 1 MeV/nucleon of repulsion, and is not
as one moves to larger spaces. The dependence of the included in this calculation, we actually obtain approxi-
ground-state energy dHe as a function of the model space mately 6.60 MeV of nuclear binding in the 7 major shell
is shown in Fig. 7 for thdN=4,5,6, 7major oscillator shells calculation which is somewhat above the experimental value.
with no center-of-mass correction. These curves generallyVe note that the entire procedu(& matrix plus CCSD
exhibit a parabolic character. tends to approach from below converged solutions.

We applied the center-of-mass correction described above We have also performed calculations with other nucleon-
to the He calculations. We demonstrate how this proceduraucleon interactions, such as tfg; interaction model of the
behaves when one solves the CCSD equations in Fig. 8 for
“He as a function of increasing model space for different o——T————T T T 1

values of the starting energy but with fixéd as determined -12f —e N=7 .
from the minima in Fig. 7. While starting energies larger al gt ]
than —10 MeV are affected by the growing model spahe= ' " A—d N=4 |
to the proximity of the deuteron polefor starting energies 1o ]
below about —20 MeV results change by less than 1% as we 7.8} -
increase the model space froN=6 to N=7. The ground- 2 [ e~ — ]

state energy using Idaho-A was quoted as —27.40 MeV by< 1
Navratil and Ormand in Ref29]. At the level of CCSD, a  * R ]
result of around —-26.5 MeV would be desired, thus leaving -84 .
room for additional binding coming from triples correlations  _g¢L
[34]. We obtain this result for a starting energy of approxi-
mately —35.0 MeV. Such a value for the starting energy |
would also be in good agreement with the fact that it is 90— "7 16 15 = 20
meant, within the context of perturbative many-body meth-

ods, to represent the unperturbed energy of two nucleons.
However, a better approach would be to determine this en- FIG. 9. Dependence of the ground-state energ}fofonzw as
ergy self-consistently. We discuss such alternatives in the function of increasing model space.

ho (MeV)
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Argonne group[18]. This potential yields less binding than investigate which of these methods are appropriate for the
the ldaho-A interaction, mainly due to the stronger tensomuclear problem.
force of Vi3 model. Typical numbers ar€or six major The effort to perform a complete solution to the quantum
shells and no center-of-mass correcjioand for “He  many-body problem grows exponentially as one adds par-
E=-20.95 MeV for Aiw=8 MeV and E=-20.96 MeV for ticles. Combined with the difficulty of methods we suffer in
hw=9 MeV. The corresponding numbers for Idaho-A arenuclear physics from interactions that are not completely de-
E=-21.47 MeV and E=-21.37 MeV, respectively. The termined. Thus, our methods and techniques for solution
trend for'®0 is similar. A more detailed comparison for other typically develop in lock step with our understanding of the
nucleon-nucleon interactions will be presented elsewhere. nuclear Hamiltonian. While several sets of two-nucleon of
interactions that fit nucleon scattering perfectly have been
developed over the last 10 years, their many-body character-
VI. CONCLUSIONS AND PERSPECTIVES istics (in particular, their ability to obtain nuclear ground-
state massesindicate that they are insufficient. Three-
Our goal in this paper has been to describe a nonpertuﬂUdeon interactions bepome necessary even to fit the triton
bative method of solution to the many-body problem thatand“He. To date, no derivations of CCSDr CCSDT) equa-
sums classes of diagrams built upon low ordes to fourth tions eX|s'_[ that mc_orporate a three-body interaction. We will
order in this pap@many-body perturbation theory diagrams. Pursue this effort in future research. . .
We have shown how to calculate nuclear ground states using CCSD and its extensions can be used to obtain excited
coupled-cluster methods. In this paper, we concentrated ostate information by diagonalizingl=exp-T)H exp(T) in
CCSD equations. We used@matrix as our two-body inter- the space of all singly and doubly excited determinants
action and we expanded in the spherical harmonic-oscillatowhere the amplitudes are obtained directly from the con-
basis. We reiterate that CCSD is a nonperturbative approacrerged CCSD amplitudes. This will be an important step in
to the many-body problem: we sum classes of diagrams tthe development of the coupled-cluster method for nuclear
infinite order in order to calculate various nuclear propertiesscience.
The coupled-cluster method discussed here clearly demon- Finally, our results do depend on the starting energy of the
strates the need of summing many-body correlations to infieffective interaction. We demonstrated this in Fig. 8 for the
nite order. This is seen when comparing the coupled-clustetHe. For®0O and four oscillator shells arfow=14 MeV, our
results to many-body perturbation theory. Furthermore, theesult is —140.47 MeV with the starting energy of —80 MeV,
latter is hard to extend beyond third order without a self-while we obtain -143.53 MeV with a starting energy of
consistent single-particle potential and beyond fourth order-60 MeV. The dependence is therefore weak, but still
with a self-consistent potential. Our results show tha a present. The dependence is more crucial in helium since the
matrix based approach exhibits signs of convergence of theinding energy is much lower, and o@® matrix is not de-
binding energy for*He and!®0 at around seven to eight fined for positive starting energies. One could choose a start-
major shells, a result which is in qualitative agreement withing energy which gives a binding energy close to other
many-body perturbation theory. This is indeed a promisingvorks, however, one would then loose the possibility of hav-
result. In quantum chemistry the coupled-cluster method ening a self-consistent starting point.
joys considerable success in reproducing excited states and There are two possible ways to overcome this problem.
properties of valence particle systems as well. This may ope@ne is to use the similarity transformation of Lee and Su-
for interesting theoretical studies in connection with datazuki, following closely the no-core approach of Barrett,
from the proposed Rare Isotope Accelerator. Data from, e.gNavratil, and co-worker$26—28. This yields a Hermitian
weakly bound medium mass nuclei represent a considerabbnd starting energy independent interaction for a large space.
challenge to present many-body schemes in theoreticalowever, in this case the effective interaction is often deter-
nuclear physics. To go beyond a major shell in shell-modemined by solving a two-body problem. The two-body eigen-
calculations for medium heavy nuclei is still beyond reach ofvalues and eigenvectors are thence used to generate an effec-
present day technology. We believe that the coupled-clustdive two-body interaction to be used in a no-core shell-model
theory is a particularly promising approach for such studiesalculation and thereby a smaller space via a similarity trans-
due to its enormous success in quantum chemistry. formation. In that case the effective interaction is defined by
Before closing this paper, we would like to discuss severathe two-body eigenvalues although a mass dependence is
steps that we will take during the course of this research. included via center-of-mass corrections. In principle, when
One improvement upon the method will be to include theone uses such similarity transformations, one should repeat
calculation of triples excitationgcalled CCSDT or approxi- this calculation for each new nucleus. It is an open and in-
mations to ij. We indicated that the three-particle three-holeteresting question how much such an interaction would
diagrams likely give repulsion and are important for the de-change compared to one generated from the two-body sys-
scription of ground-state properties. Since the CCSD equaem only. We plan to investigate this in the future.
tions do not include the B83h diagrams completely, and Alternatively, one can compute self-consistently the
since we have seen that these diagrams are important, veingle-particle energies using @ matrix defined for both
will eventually need to include the triples amplitudes into ourpositive and negative starting energies. Thereafter, a starting
equations. Various methods that include triples diagramgnergy independent interaction can be obtained using, e.g.,
have been investigated by quantum chemists and we wibhe prescription of Eq(15), but for both holes and patrticles.
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