
Coupled-cluster approach to nuclear physics

D. J. Dean
Physics Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831-6373, USA

M. Hjorth-Jensen
Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway

(Received 4 September 2003; published 27 May 2004)
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I. INTRODUCTION

The coupled-cluster method originated in nuclear physics
over 40 years ago when Coester and Kummel proposed an
exponential ansatz to describe correlations within a nucleus
[1,2]. This ansatz has been well justified for many-body
problems using a formalism in which the cluster functions
are constructed by cluster operators acting on a reference
determinant[3]. Early applications to finite nuclei were de-
scribed in Ref.[4]. Since then, a systematic development and
implementation of this interesting many-body theory in
nuclear physics applications has been only sporadic. The
view from computational quantum chemistry is quite differ-
ent. In fact, coupled-cluster methods applied to computa-
tional chemistry enjoy tremendous success[5–10] over a
broad class of chemistry problems related to chemical and
molecular structure and chemical reactions.

Many solid theoretical reasons exist that motivate a pur-
suit of coupled-cluster methods. First of all, the method is
fully microscopic and is capable of systematic and hierarchi-
cal improvements. Indeed, when one expands the cluster op-
erator in coupled-cluster theory to allA particles in the sys-
tem, one exactly produces the fully correlated many-body
wave function of the system. The only input that the method
requires is the nucleon-nucleon interaction. The method may
also be extended to higher-order interactions such as the
three-nucleon interaction. Second, the method is size exten-
sive which means that only linked diagrams appear in the
computation of the energy(the expectation value of the
Hamiltonian) and amplitude equations. As discussed in Ref.
[6] all shell-model calculations that use particle-hole trunca-
tion schemes actually suffer from the inclusion of uncon-
nected diagrams in computations of the energy. Third,
coupled-cluster theory is also size consistent which means
that the energy of two noninteracting fragments computed
separately is the same as that computed for both fragments
simultaneously. In chemistry, where the study of reactions is
quite important, this is a crucial property not available in the
interacting shell model(named configuration interaction in
chemistry). Fourth, while the theory is not variational, the
energy behaves as a variational quantity in most instances.
Finally, from a computational point of view, the practical
implementation of coupled-cluster theory is amenable to par-
allel computing.

Applications to nuclear problems resurfaced a few years
ago in the works of Mihaila and Heisenberg[11–14]. These
efforts focused primarily on the structure of16O, and used a
strategy of solution that is somewhat different from the ap-
proach we will take in this and subsequent papers. One major
difference is that we will use aG matrix to renormalize the
two-body interactions before we begin our coupled-cluster
calculations. We will also take a somewhat different ap-
proach in our Hilbert space truncation. Also notable is the
work of Moliner, Walet, and Bishop[15] who are pursuing
nuclear problems in translationally invariant coupled-cluster
methods in coordinate space.

The computed energy using the coupled-cluster formalism
includes a very large class of many-body perturbation theory
diagrams. In standard many-body perturbation theory, one
typically sums all diagrams order by order. The coupled-
cluster approach essentially iterates diagrams so that one
may discuss it in terms of an infinite summation of particular
classes of diagrams. Thus the theory is nonperturbative. In
fact the coupled-cluster energy at the single and double ex-
citation level contains contributions identical to those of
second-order and third-order many-body perturbation theory,
but lacks triple excitation contributions necessary to com-
plete fourth-order many-body perturbation theory; see, e.g.,
the review paper of Bartlett[5]. It has been shown that the
quadruple excitation contributions may be factored exactly
into products of double excitations, but no such factorization
is possible for the corresponding triples. Therefore, the
coupled-cluster energy lacks only triple excitation contribu-
tions to be complete through fourth order.

In this paper, we wish to establish a line of research that
we intend to pursue for calculating nuclear properties using
coupled-cluster techniques. This is therefore a first paper in a
series that we will publish to both develop the method for
nuclear physics and to demonstrate the power of the method
for various applications. This first installment will be de-
voted to outlining our approach, investigating the physical
motivations, establishing numerical convergence tests, and
presenting some initial calculations using the method. In Sec.
II, we will describe our choice of reduced Hilbert space,
construction of an effective interaction for various model
spaces and elimination of the spurious center-of-mass mo-
tion. The model spaces are defined in terms of various major
harmonic oscillator shells and the effective interaction is de-
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fined in terms of theG-matrix, see, e.g., Ref.[16]. Our cal-
culations of the binding energy of nuclei such as helium and
oxygen entail therefore a dependence upon the number of
harmonic oscillator states, the oscillator parameter and the
starting energy at which theG matrix is computed. The con-
vergence of the binding energy as function of the number of
harmonic oscillator shells is a crucial test of the method dis-
cussed in this work. Since the coupled-cluster calculations
are rather time consuming for systems such as16O, we
present, as an introduction to the coupled-cluster method,
intermediate results from perturbative many-body ap-
proaches in Sec. III. Section III also serves the purpose of
finding an eventual minimum for the energy as function of
the oscillator parameter, with which we limit the number of
coupled-cluster computations. It may also be of help in find-
ing how many oscillator shells are needed in order to achieve
a satisfactory convergence. In addition, this section sheds
lights on the limitations of many-body perturbation theory
compared with the coupled-cluster approach.

We turn in Sec. IV to a description of the coupled-cluster
equations. We discuss the numerical techniques we will em-
ploy to obtain solutions to the coupled-cluster equations and
demonstrate several results for4He and16O in Sec. V. We
conclude with a prospective for future directions of this re-
search in Sec. VI.

II. EFFECTIVE INTERACTIONS FOR A TRUNCATED
HILBERT SPACE

The aim of this section is to present and partly justify the
computation of an effective two-body Hamiltonian acting
within a reduced Hilbert space. This two-body Hamiltonian
will in turn serve as the starting point for the perturbative
approach of Sec. III and the coupled-cluster expansion dis-
cussed in Sec. IV.

Before we can compute such an effective two-body
Hamiltonian, we need to define the nucleon-nucleon interac-
tion. Several types of modern nucleon-nucleon scattering in-
teractions have been developed during recent years. These
interactions all fit nucleon-nucleon scattering data up to
300 MeV with excellent precision[17–19]. They do give
slightly differing results for the radius of the deuteron, the
binding energy of the triton and also contain slight differ-
ences in the way they treat locality.

Very recent work by Entem and Machleidt[20] provides
for the first time an interaction of quantitative accuracy that
is based on effective field theory. One basic open question of
nuclear theory involves understanding how the nucleon-
nucleon interaction may be derived from quantum chro-
modymanics, the theory of strong interactions. Quantum
chromodymanics has not been solved in its nonperturbative
low-energy limit at energy scales that are characteristic for
low-energy nuclear physics. One promising way to circum-
vent this problem is to employ a derivation of the nuclear
force based on chiral effective field theory[21,22]. The au-
thors of Ref.[20] undertook the task of generating an accu-
rate nucleon-nucleon interaction based on chiral perturbation
theory. They included one- and two-pion exchange contribu-
tions up to chiral order three. They also showed that a quan-

titative fit of the nucleon-nucleonD-wave phase shifts re-
quires contact terms representing short-range forces of order
four. The number of free parameters used in this chiral inter-
action is 46, which is similar to the number of free param-
eters found in other two-nucleon forces. The phase-shift
analysis shows excellent agreement between the chiral inter-
action and the scattering data.

Two interactions were formulated in Ref.[20]. These two
models, denoted Idaho-A and Idaho-B, differ in their predic-
tion of theD-state probabilities of the deuteron, while both
interactions will give the same values for the3S1,

3D1, ande1
phase parameters up to 300 MeV in scattering energy.
Idaho-A yields aD-state probability of 4.17%, while Idaho-B
gives 4.94%. This also affects the triton binding energy,
yielding 8.14 MeV and 8.02 MeV for Idaho-A and Idaho-B,
respectively. A similar interaction which now goes to fourth
order in chiral perturbation theory and includes charge de-
pendence, has recently been presented by Entem and
Machleidt, see Ref.[23]. Since this is a methodological pa-
per, we limit the attention to one of these interactions,
namely, the Idaho-A model. Deatiled results for other inter-
actions, such as theV18 model of the Argonne group[18],
will be presented in future work.

A. Definition of the model space and
the two-body effective interaction

In order to derive an effective interaction suitable for
coupled cluster calculations, we need to introduce various
notations and definitions pertinent to the methods exposed.

A common practice in nuclear many-body theory is to
reduce the infinitely many degrees of freedom of the Hilbert
space to those represented by a physically motivated sub-
space, the model space. In such truncations of the Hilbert
space, the notions of a projection operatorP onto the model
space and its complementQ are introduced. The projection
operators defining the model and excluded spaces are

P = o
i=1

D

uFilkFiu, s1d

and

Q = o
i=D+1

`

uFilkFiu, s2d

with D being the dimension of the model space, andPQ
=0, P2=P, Q2=Q, and P+Q= I. The two-body wave func-
tions uFil are normally eigenfunctions of an unperturbed
HamiltonianH0. In this work we let only the kinetic energy
enter the definition ofH0, i.e.,H0= t. Since we will employ a
harmonic oscillator basis, this means that we need to com-
pute the expectation value ofH0 as well. The unperturbed
wave functions are not eigenfunctions oft. The full Hamil-
tonian is thenH= t+VNN with VNN the nucleon-nucleon in-
teraction. The eigenfunctions of the full two-body Hamil-
tonian are denoted byuCal andEa,
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HuCal = EauCal. s3d

Rather than solving the full Schrödinger equation above, we
define an effective Hamiltonian acting within the model
space such that

PHeffPuCal = EaPuCal = EauFal, s4d

where uFal=PuCal is the projection of the full wave func-
tion onto the model space, the model space wave function.
HereHeff is an effective Hamiltonian acting solely within the
chosen model space given byHeff=PtP+Veff, with the inter-
action

Veff = o
i=1

`

Veff
sid , s5d

where Veff
s1d, Veff

s2d, Veff
s3d , . . . are effective one-body, two-body,

three-body interactions, etc. For finiteA-body systems, the
sum terminates ati =A. As stated above, in this work we will
limit the attention to two-body interactions. The next step
could be to employ perturbative many-body techniques or
the coupled cluster method. In perturbation theory, the effec-
tive interactionHeff can be written out order by order in the
interactionVNN as

PHeffP = PtP+ PVNNP + PVNN
Q

e
VNNP

+ PVNN
Q

e
VNN

Q

e
VNNP + ¯ . s6d

In this expansion,e=v− t, wherev is the so-called starting
energy, defined as the unperturbed energy of the interacting
particles. However, the nucleon-nucleon interactions all pos-
sess a hard core that makes them unsuitable for perturbative
many-body approaches. The standard procedure is therefore
to renormalize the short-range part of the interaction by in-
troducing the so-called reaction matrixG:

G = VNN + VNN
Q̃

v − Q̃tQ̃
G. s7d

The operatorQ̃ is normally different from the projection op-
erator defined in Eq.(2), since theG matrix by construction

allows only specific two-body states to be defined byQ̃.
Typically, the G matrix is the sum over all ladder type of
diagrams with intermediate particle-particle states only. This
sum is meant to renormalize the repulsive short-range part of
the interaction. The physical interpretation is that the par-
ticles must interact with each other an infinite number of
times in order to produce a finite interaction. This interaction
can in turn serve as an effective interaction acting in a re-
duced space.

We illustrate the definition of the exclusion operator em-
ployed in this work in Fig. 1. Using a harmonic oscillator
basis for the single-particle wave functions, a single-particle
state is classified by the quantum numbersnlj . A two-particle
state in an angular momentum coupling scheme is given by
usnala janblb jbdJTZl, wherea andb represent one of the or-

bitals 0s1/2, 0p3/2, 0p1/2, etc., andJ is the total two-particle
angular momentum andTZ the corresponding isospin projec-
tion.

The single-particle states labeled byn1l1j1 andn2l2j2 rep-

resent the last orbit of model spaceP̃. In this workn1l1j1 and
n2l2j2 will mark the number of harmonic oscillator shells

included in the definition ofP̃. In the actual calculations
presented below these range from four to eight major shells.
For four major shellsn1l1j1=1p1/2 andn2l2j2=1p1/2 while for
eight major shells we getn1l1j1=3p1/2 and n2l2j2=3p1/2 as
the last single-particle orbits. In Fig. 1 the two-body state
usnala janblb jbdJTZl does not belong to the model space and
is included in the computation of theG matrix. Similarly,
usnala janglg jgdJTZl and usndld jdnblb jbdJTZl also enter the

definition of Q̃ whereasusndld jdnglg jgdJTZl is not included in
the computation ofG. This means that correlations not de-
fined in theG matrix need to be computed by other nonper-
turbative resummations or many-body schemes. This is
where the coupled-cluster scheme enters.

Before we proceed we outline the computation of theG
matrix using the exclusion operator of Fig. 1. One can solve
the equation for theG matrix for finite nuclei by employing

a formally exact technique for handlingQ̃ discussed in, e.g.,

Ref. [16]. Using the matrix identity, for whichP̃ is the

complement ofQ̃ such thatP̃+Q̃=1,

Q̃
1

Q̃eQ̃
Q̃ =

1

e
−

1

e
P̃

1

P̃e−1P̃
P̃

1

e
, s8d

to rewrite Eq.(7) as

G = GF + DG, s9d

whereGF is the freeG matrix defined as

FIG. 1. Definition of the exclusion operator used to compute the
G matrix. See text for further details.
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GF = VNN + VNN
1

v − t
GF. s10d

The termDG is a correction term defined entirely within the

model spaceP̃ and given by

DG = − VNN
1

A
P̃

1

P̃A−1P̃
P̃

1

A
VNN. s11d

Employing the definition for the freeG matrix of Eq. (10),
one can rewrite the latter equation as

DG = − GF
1

e
P̃

1

P̃se−1 + e−1GFe−1dP̃
P̃

1

e
GF, s12d

with e=v− t. We see then that theG matrix is expressed as
the sum of two terms; the first term is the freeG matrix with
no corrections included, while the second term accounts for

medium modifications due to the exclusion operatorQ̃. The
second term can easily be obtained by some simple matrix

operations involving the model-space matrixP̃ only. The

above allows, for a given model-space operatorP̃, for a nu-
merically exact computation of theG matrix.

TheG matrix defined by the exclusion operatorQ̃ of Fig.
1 represents now our effective two-body interaction, with a

reduced Hilbert space defined by the model spaceP̃. This

means that our Hamiltonian acts within the model spaceP̃
and is given by

Heffsvd = t + Gsvd. s13d

The results from exact shell-model diagonalizations, pertur-
bative many-body calculations and coupled-cluster calcula-

tions will depend on the limits of the model spaceP̃ and the
chosen oscillator parameter. Furthermore, although theG
matrix has a weak dependence upon the starting energyv,
this dependence will affect the final results the calculations.
The dependence of the results upon these parameters will be
elucidated in Secs. III and V.

We end this section with the setup of the exclusion opera-
tor used in the final perturbative many-body calculations of
Sec. III and the coupled-cluster calculations of Sec. V.

With the G matrix model spaceP̃ of Fig. 1 we can now
define an appropriate space for many-body perturbation
theory and coupled-cluster calculations where correlations
not included in theG matrix are to be generated. This model
space is defined in Fig. 2, where the labelsnp,qlp,qjp,q repre-
sent the same single-particle orbits asn1,2l1,2j1,2 in Fig. 1.
Hereafter we use the notation thatp,q,r ,s index all single-
particle states, whilei , j ,k, l refer to single-hole states.

The G matrix does not reflect a specific nucleus and
thereby single-particle orbits which define the uncorrelated
Slater determinant. For a nucleus such as4He the 0s1/2 orbit
is fully occupied and defines thereby single-hole states.
These are labeled bynil i j i in Fig. 2. For16O the correspond-
ing hole states are represented by the orbits 0s1/2, 0p3/2, and
0p1/2. With this caveat we can then generate correlations not
included in theG matrix.

The unperturbed HamiltonianH0 is given by the kinetic
energy only. However, in order to define a suitable starting
point for an effective interaction to be used in the coupled-
cluster calculations we use the definition of particles and
holes in Fig. 2 and compute the single-hole energies«i
through

«i =KiU p2

2m
UiL + o

jøF

ki j uGsv = «i + « jdui j l, s14d

whereF stands for the Fermi energy. We do not perform a
self-consistent Brueckner-Hartree-Fock calculation however,
as done by, e.g., Gad and Müther. The matrix elements are all
antisymmetrized. Furthermore, for single-particle states
above the Fermi energy we leave the single-particle energies
unchanged. This procedure, which follows the Bethe-
Brandow-Petschek theorem[25], introduces an artificial gap
at the Fermi surface. Note also that the single-particle wave
functions are not changed in Eq.(14). The main purpose of
the above procedure is to yield a prescription for obtaining a
starting energy independent effective interaction for the
coupled-cluster calculations. Using the single-particle ener-
gies from Eq.(14) we define, following Ref.[24], an effec-
tive interaction for our coupled-cluster model spaces by

ki j uVeffukll = 1
2fki j uGsv = «i + « jdukll + ki j uGsv = «k + «ldukllg

s15d

for two-body states with holes only and

kipuVeffukql = 1
2fkipuGsv = «i + «pdukql

+ kipuGsv = «k + «qdukqlg s16d

for two-body states with one particle and one hole. For two-
body states with two single-particle statespq we use a fixed

FIG. 2. Definition of particle and hole states for coupled-cluster
and perturbative many-body calculations. We use the notation that
p,q,r ,s index all single-particle states, whilei , j ,k, l refer to single-
hole states. The orbits represented by the quantum numbersnil ii i
represent hole states whereasnp,qlp,qjp,q represent the last particle
orbits included in theG matrix model space. The hole states define
the Fermi energy.
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starting energy, typically in the rangevP f−80,−5g MeV.
This introduces a starting energy dependence in our results.
The reason for fixing the starting energies for two-particle
states is due to the fact that we use kinetic energies only
above the Fermi surface and ourG matrices are computed at
negative starting energies only.

An obvious improvement to this procedure is to generate
a complexG matrix which takes care of both positive and
negative energies, reflecting thereby the nonresonant con-
tinuum, bound two-body states and eventual resonances
and/or virtual states. We will however leave this interesting
topic to a further study. The main focus of this paper is to
establish a method for doing the coupled-cluster calculations
without having to resort to employing the bare interaction,
needing thereby many major harmonic oscillator shells. Our
hope is that with aG matrix, 7–8 major shells may suffice.
Such a truncation in the harmonic oscillator space is sup-
ported by the recent works of Barrett, Navratil, and Vary
[26–28], see also the recent calculations of Ref.[29]. In
these works no-core shell-model calculations have been
mounted for light nuclei ranging from the triton to massA
=12. Furthermore, in Refs.[26,27], another approach for ob-
taining a starting energy independent interaction is obtained
through the similarity transformations of Lee and Suzuki
[30,31], yielding a fully Hermitian effective interaction. This
should be contrasted to the more approximative method pre-
sented in Eqs.(15) and (16).

B. Treatment of center-of-mass motion

Momentum conservation requires that a many-body wave
function must factorize asCsr d=fsRdCsr reld whereR is the
center-of-mass coordinate andr rel the relative coordinates. If
we choose to expand our wave functions in the harmonic
oscillator basis, then we are able to exactly separate the
center-of-mass motion from the problem provided that we
work in a model space that includes alln"v excitations. In
this paper we perform calculations with aQ operator that
allows for all possible two-particle interactions within a
given set of oscillator shells. This means that we aren"v
incomplete in a given calculation so that our method of sepa-
ration of the center-of-mass motion becomes approximate.
For example, for4He in four major oscillator shells, we can
excite all particles ton=12"v excitations, but we can only
excite one particle ton=3"v excitations. Thus, care must be
taken when correcting for center-of-mass contamination in
our calculations. We intend to investigate a full range of
options for removing the center of mass from these calcula-
tions in a future work.

Here we approximately remove the center-of-mass motion
by subtracting the kinetic energy of the system from the
Hamiltonian. Thus,

H8 = H − Tc.m., s17d

where the center-of-mass kinetic energy is given by

Tc.m.=
P2

2MA
=

1

2MA
o

i=1,A
pi

2 +
1

2MA
o
iÞ j

pi ·p j . s18d

We perform the subtraction perturbatively so that the input to
the many-body perturbation calculations and the coupled-
cluster approach is given by

H = S1 −
1

A
Dt + Gsvd − s2MAd−1o

iÞ j

pi ·p j s19d

(we drop the prime on H at this point). This is known to
slightly overestimate the effect of the center-of-mass correc-
tion [4]. There is also a potential problem with the excitation
spectrum when using this approach which we will investi-
gate more fully in a future publication.

III. PERTURBATIVE MANY-BODY METHODS

Our results will depend on the size of the model space and
the chosen harmonic oscillator energy"v. This section
serves therefore two aims central to the coupled-cluster ap-
proach of this work.

(i) In the coupled-cluster calculations we search for an
energy minimum as function of, e.g., the oscillator energy
"v. Even for small systems such as16O with five or six
major shells included, these are major time-consuming cal-
culations. Results from many-body perturbation theory,
which to second or third order in the interactionG are fairly
simple, may therefore serve as a guide in order to limit the
range of"v values used in the coupled-cluster calculations.
With increasing dimensionality of theG-matrix model space,
the results should become independent of the oscillator en-
ergy.

(ii ) The energy will also depend on the size of the model
space. The hope is that not too many shells are needed in
order to achieve a converged energy. With the present ap-
proach, our coupled-cluster calculations of16O are limited to
six major shells. Results from many-body perturbation
theory can thus serve as a guideline.

The linked-diagram theorem[10,32] can be used to obtain
a perturbative expansion for the energy in terms of the per-
turbationVsGd or V=H−H0 whereH0 represents the unper-
turbed part of the Hamiltonian. The expression for the energy
E reads

E = o
k=0

`

kC0uHfsv − H0d−1HgkuC0lL, s20d

where C0 is the uncorrelated Slater determinant for the
ground state,v is the corresponding unperturbed energy and
the subscriptL stands for linked diagrams only. In our cal-
culations, we must replace the HamiltonianH with the effec-
tive one defined in Eq.(13) and employ the definition of
particle and hole states of Fig. 2. In Fig. 3 we show all
antisymmetrized Goldstone diagrams through third order in
perturbation theory(we omit the first-order diagram). All
closed circles stand for a summation over hole states. In this
section we let theG matrix define the interaction vertex.
Since we do not use a self-consistently determined single-
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particle Hamiltonian, we need to account for diagrams with
so-called Hartree-Fock insertions as well. Examples of the
latter are shown in Fig. 3, see also the work of Kassis[33]
for a detailed discussion of the various diagrams. There is an
additional problem with our many-body perturbation theory
calculations. Consider the expressionDE4 for diagram 4 in
an angular momentum coupled basis(with J being the total
two-body angular momentum andTz the corresponding iso-
spin projection) of Fig. 3

DE4 =
1

8 o
i j øF

pqrs.F

J

s2J + 1dksi j dJTzuGsv = «i + « jduspqdJTzl

3
1

«i + « j − «p − «q
kspqdJTzuGsv = «i + « jdsrsdJTzl

3
1

«i + « j − «r − «s
ksrsdJTzuGsv = «i + « jdusi j dJTzl.

s21d

The G matrices depend on the starting energyv, defined in
this case by the hole energies. With a harmonic oscillator
basis and with kinetic energies only these starting energies
will be positive, whereas ourG matrix is defined for negative
energies only withvP f−140,−5g MeV. To remove this
problem we employ the single-hole energies computed ac-
cording to Eq.(14). This leads to an artificial gap at the
Fermi surface and demonstrates one of the problems with
many-body perturbation theory. A self-consistent approach is
needed both for holes and particles, and theG matrix needs
to be computed for both positive and negative energies. This
is however beyond the scope of this work, where our empha-
sis is on the coupled-cluster approach. The center-of-mass
corrections discussed in the preceding section are not in-
cluded in our perturbative calculations. This section, as will
be seen below, serves the main aim of justifying our model
space used in the coupled-cluster computation. In addition,

the energy minimum as function of the oscillator energy lim-
its the range of"v values used in the coupled-cluster calcu-
lations.

Needless to say, many-body perturbation theory has se-
vere limitations. It is very difficult to go beyond third order
in perturbation theory without a self-consistent single-
particle potential and beyond fourth order with a self-
consistent potential. The coupled-cluster method offers on
the other hand a systematic way to generate all many-body
correlations in a given model space.

Many-body perturbation theory results
for helium and oxygen

We present here results from third-order in perturbation
theory for the binding energies of4He and16O as functions
of the size of the model space and the chosen oscillator en-
ergy "v. These results are shown in Figs. 4 and 5 for4He
and 16O, respectively.

There are several features to be noted. First of all, both
figures show that the results seem to stabilize between seven
and eight major shells. For4He all possible excitations
within these shells are allowed in the computation of the
diagrams, to be contrasted to the work of Kassis[33] and
other traditional approaches[16] where one typically consid-
ers only 2-4"v excitations. For16O we keep the same num-
bers of maximum allowed excitations for both the 0s1/2 shell
and the 0p3/20p1/2 shells. As an example, for eight major
shells we could have 14"v 2p-2h excitations from the 0s1/2
shell whereas from the 0p3/20p1/2 shell we can at most have
12"v 2p-2h excitations. The latter fixes the total number of
allowed excitations with eight major shells for16O. The fact
that the energies seem to converge at this level of truncation
is a welcome feature which can be exploited in the coupled-
cluster calculations. These calculations, see below, are much
more challenging from a computational point of view since
we, in principle, generate a much larger class of diagrams. In
this work we are limited to computations with at most seven
major shells in helium and oxygen in our coupled-cluster

FIG. 3. Antisymmetrized Goldstone diagrams
through third order in perturbation theory in-
cluded in the evaluation of the binding energy.
The dashed lines represents the interaction, in our
case theG matrix. Particle and hole states are
represented by upward and downward arrows, re-
spectively. The first-order diagram is omitted. All
closed circles stand for a summation over hole
states.
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calculations. This means that hopefully the trend seen in
Figs. 4 and 5 allows us to limit our coupled-cluster calcula-
tions to six or seven major shells. Second, although the mini-
mum shifts a little as function of the oscillator energy as we
increase the oscillator space, we notice that as the number of
major shells is increased, the dependence of the binding en-
ergy upon the oscillator parameter weakens. A similar feature
is seen in the coupled-cluster calculations below. For16O the
minimum for seven shells takes place atE/A=−7.16 MeV
for "v=12.9 MeV and for eight shells we haveE/A
=−7.12 MeV at "v=13.6 MeV. For six shells we obtain
E/A=−7.42 MeV at "v=12.6 MeV. The curvature for
larger values of"v decreases with increasing number of
shells N. At "v=18 MeV we have for16O and N=8 that
dsE/Ad /dv=0.22, forN=7 we obtaindsE/Ad /dv=0.28, and

for N=6 we havedsE/Ad /dv=0.35. The corresponding de-
rivatives for 4He at "v=18 MeV are forN=8 dsE/Ad /dv
=0.12, for N=7 dsE/Ad /dv=0.16, and for N=6
dsE/Ad /dv=0.21, indicating a smoother dependence upon
"v with increasingN. The reader should also note that in the
limit "v→0 we haveE→0. Finally, we observe that we are
not able to reproduce the experimental binding energies. We
will come back to this point in Sec. V, where a comparison
with coupled-cluster theory is also made.

IV. COUPLED CLUSTERS IN SINGLE
AND DOUBLE EXCITATIONS

In this section, we will discuss a formal derivation of the
coupled-cluster equations. While this discussion is standard
in quantum chemistry(see, for example, Ref.[6]), the
nuclear physics community may not be familiar with this
formulation of coupled-cluster theory. We will therefore in-
troduce notations and equations that we will continue to use
throughout our discussion(in this and following papers) of
this technique and its extensions. The reason for this, as men-
tioned also in the Introduction, is that the method applied in
this work differs from that of Moliner, Walet, and Bishop
[15] and the contributions from Heisenberg and Mihaila
[11–14]. The method of Molineret al. [15] is taylored for
calculations in coordinate space rather than in configuration
space as done here. One of the advantages is that such a
formulation allows for a translationally invariant approach.
However, the implementation of the Pauli principle is rather
difficult and calculations hitherto have been limited to cen-
tral interactions. Working in configuration space it is rather
straightforward to account for the Pauli principle. The ap-
proach of Heisenberg and Mihaila[11–14] starts with a con-
figuration space description and relies on an expansion in the
inverse particle-hole energy spacings. Both these groups start
with bare interactions.

In this work the aim is to use an effective interaction
which accounts for the short-range features of the bare
nucleon-nucleon interaction. The hope is that this may yield
a better convergence. Furthermore, with aG-matrix approach
in configuration space there is no restriction on the form of
the nucleon-nucleon interaction. Nonlocal interactions for-
mulated in momentum space or purely local interaction in
coordinate space can be employed with equal ease.

An additional feature is the fact that the present method
can rely on the vast formalism that has been developed by
quantum chemists, especially on the inclusion of more com-
plicated many-body terms such as three-body forces. Work
along these lines is already in progress[34].

We must first bring the Hamiltonian into normal ordered
form with respect to the reference stateuC0l. The Hamil-
tonian then becomes

Heffsvd = t + Gsvd = o
pq

fpqhap
†aqj +

1

4 o
pqrs

kpquurslhap
†aq

†asarj

+ kC0uHeffsvduC0l = HN + E0, s22d

whereE0=kC0uHeffsvduC0l and the Fock-matrix element is
given by

FIG. 4. Binding energyE from third-order perturbation theory
for 4He as function of the number of major harmonic oscillator
shellsN and the oscillator energy"v. ForN=8 we have the optimal
value of E=−20.83 MeV at "v=13.3 MeV. The experimental
value isE=−28.30 MeV.

FIG. 5. Binding energy per particleE/A from third-order per-
turbation theory for16O as function of the number of major har-
monic oscillator shellsN and the oscillator energy"v. ForN=8 we
have the optimal value ofE/A=−7.12 MeV at"v=13.6 MeV. The
experimental value isE/A=−7.98 MeV.
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fpq = kputuql + o
i

kpiuuri l. s23d

To simplify notation, we will usekpquursl=kpquGsvdursl. We
employ bracket notationhj to indicate normal ordering with
respect to the reference state. As stated previously, we use
the notation thatp,q,r ,s refers to all single-particle states
and i , j ,k, l index all sums below the fermi surface. In addi-
tion we leta,b,c,d index all sums above the fermi surface.
The total number of single-particle states in the model space
is Ns=Np+Nh where Np refers to the number of particle
states, andNh is the number of hole states. Hereafter we
simply useH for Heffsvd.

Formally, the coupled-cluster method begins by postulat-
ing that the correlated many-body wave function is given by

uCl = expsTduC0l, s24d

where we define the the correlation operator as

T = T1 + T2 + T3 + ¯ + TA. s25d

The correlation operators are defined in terms ofn-particle
n-hole (np-nh) excitation amplitudes as

T1 = o
i,«f,a.«f

ti
aaa

+ai , s26d

T2 = o
i,j,«f;ab.«f

ti j
abaa

+ab
+ajai , s27d

and higher order terms forT3 to TA. Coupled-cluster theory
may thus be hierarchically improved upon by increasing the
number ofTi operators one computes. We will call the theory
in which only T1 and T2 operators are present, CCSD, or
coupled-clusters at the single and double excitation level.
CCSDT means thatT3 is retained in the correlation operator,
while CCSDTQ refers to keeping bothT3 andT4 correlation
operators. In this uncoupled representation, the correlation
amplitudes must obey the fermion-symmetry relations which
for theT2 correlation operators yieldtij

ab=−tji
ab=−tij

ba= tji
ba. We

will use the short-hand notationt1 and t2 to represent the
array of all 1p-1h and 2p-2h operators.

We compute the expectation value of the energy from

E = kC0u exps− TdH expsTduC0l. s28d

Because the energy is computed using projective, asymmet-
ric techniques, an important question concerns the physical
reality of the coupled-cluster energy. Quantum mechanics
requires that physical observables should be expectation
values of Hermitian operators. The coupled-cluster
energy expression contains the non-Hermitian operator
fexps−TdH expsTdg. However, if T is not truncated, the
similarity-transformed operator exhibits an energy-
eigenvalue spectrum that is identical to the original Hermit-
ian operator,H, thus justifying its formal use. From a prac-
tical point of view, the coupled-cluster energy tends to follow
the expectation value result(if the theory is reformulated as a
variational theory), even whenT is truncated.

The correlation energy is quite easy to calculate and is
given by

Ecorr = E − E0 = o
ia

f iati
a +

1

4o
aibj

ki j uuabltij
ab +

1

2o
aibj

ki j uuablti
atj

b.

s29d

For two-body Hamiltonians, this equation is general and is
not restricted to the CCSD approximation since higher-order
cluster operators such asT3 and T4 cannot produce fully
contracted terms with the Hamiltonian and therefore contrib-
ute zero to the energy. Higher-order operators can contribute
to the energy indirectly through the equations used to deter-
mine these amplitudes. The three terms in Eq.(29) are usu-
ally referred to as theT1, T2, and T1

2 contributions to the
correlation energy.

The equations for amplitudes are found by left projection
of excited Slater determinants so that

0 = kCi
auexps− TdHNsTduC0l, s30d

0 = kCi j
abuexps− TdHNsTduC0l. s31d

The Baker-Hausdorf relation may be used to rewrite the
similarity transformation as

exps− TdHNsTd = HN + fHN,T1g + fHN,T2g + 1
2ffHN,T1g,T1g

+ 1
2ffHN,T2g,T2g + ffHN,T1g,T2g + ¯ .

s32d

The expansion terminates exactly at quadruply nested com-
mutators when the Hamiltonian contains at most two-body
terms, and at six nested commutators when three-body terms
are present. We stress that this termination is exact, thus
allowing for a derivation of exact expressions for thet1 and
t2 amplitudes. To derive these equations is straightforward
but tedious work. For example, one of the amplitude terms is
given by

kCi j
abusGNT1

2T2dcuC0l = o
pqrs

o
kc

o
ld

o
mnef

tk
ctl

dtmn
ef ,

kC0uhai
+aj

+abaajhap
+aq

+asarj,

hac
+akjhac

+akjhad
+aljhae

+af
+anamjuC0l s33d

for which Wick’s theorem may be used to calculate the ex-
pectation matrix element. HereGN is the normal ordered
G-matrix operator, and the subscriptc indicates only con-
nected diagrams enter into the computation of the expecta-
tion value.

The t1 amplitude equations are given by

D. J. DEAN AND M. HJORTH-JENSEN PHYSICAL REVIEW C69, 054320(2004)

054320-8



0 = fai + o
c

facti
c − o

k

fkitk
a + o

kc

kkauuciltk
c + o

kc

fkctik
ac +

1

2o
kcd

kkauucdltki
cd−

1

2o
klc

kkluuciltkl
ca − o

kc

fkcti
ctk

a − o
klc

kkluuciltk
ctl

a

+ o
kcd

kkauucdltk
cti

d− o
klcd

kkluucdltk
cti

dtl
a + o

klcd

kkluucdltk
ctli

da −
1

2o
klcd

kkluucdltki
cdtl

a −
1

2o
klcd

kkluucdltkl
cati

d. s34d

This equation is nonlinear in thet1 amplitudes, and linear in thet2 amplitudes.
The t2 amplitude equations are given by

0 = kabuui j l + o
c

sfbctij
ac − factij

bcd − o
k

sfkjtik
ab − fkitjk

abd+
1

2o
kl

kkluui j ltkl
ab +

1

2o
cd

kabuucdltij
cd + Psi j dPsabdo

kc

kkbuucjltik
ac

+ Psi j do
c

kabuucjlti
c − Psabdo

k

kkbuui j ltk
a+

1

2
Psi j dPsabdo

klcd

kkluucdltik
actlj

db +
1

4o
klcd

kkluucdltij
cdtkl

ab −
1

2
Psabdo

klcd

kkluucdltij
actkl

bd

−
1

2
Psi j do

klcd

kkluucdltik
abtjl

cd+
1

2
Psabdo

kl

kkluui j ltk
atl

b +
1

2
Psi j do

cd

kabuucdlti
ctj

d − Psi j dPsabdo
kc

kkbuuicltk
atj

c+ Psabdo
kc

fkctk
atij

ab

+ Psi j do
kc

fkcti
ctjk

ab− Psi j do
klc

kkluuciltk
ctlj

ab + Psabdo
kcd

kkauucdltk
ctij

db + Psi j dPsabdo
kcd

kakuudclti
dtjk

bc+ Psi j dPsabdo
klc

kkluuicltl
atjk

bc

+
1

2
Psi j do

klc

kkluucjlti
ctkl

ab −
1

2
Psabdo

kcd

kkbuucdltk
atij

cd−
1

2
Psi j dPsabdo

kcd

kkbuucdlti
ctk

atj
d +

1

2
Psi j dPsabdo

klc

kkluucjlti
ctk

atl
b

− Psi j do
klcd

kkluucdltk
cti

dtlj
ab − Psabdo

klcd

kkluucdltk
ctl

atij
db +

1

4
Psi j do

klcd

kkluucdlti
ctj

dtkl
ab+

1

4
Psabdo

klcd

kkluucdltk
atl

btij
cd + Psi j dPsabd

3o
klcd

kkluucdlti
ctl

btkj
ad +

1

4
Psi j dPsabdo

klcd

kkluucdlti
ctk

atj
dtl

b. s35d

The permutation operatorP yields

Psi j dfsi j d = fsi j d − fs ji d. s36d

The equations of thet2 amplitudes are nonlinear in botht1
and t2 terms. While these equations appear quite lengthy,
they are solvable through iterative techniques that we will
discuss below. We note that the amplitude equations include
terms that allow for 4p-4h excitations. Indeed, while we
speak of doubles in terms of amplitudes, the class of dia-
grams involved in the theory include fourth-order terms. This
is a very important difference and distinction between the
shell model with up to 2p-2h excitations and CCSD. Further-
more, when the energy is computed in CCSD, all terms are
linked and connected.

In order to calculate expectation values of operators we
may use the Hellmann-Feynman theorem[35] which states
that if we perturb our Hamiltonian such thatH8=H+lV,
wherel is a small quantity andV is the operator(either bare
or effective) of interest, then the energy changes only by a
small amount from its original value ofEsl=0d. As a func-
tion of l, the energy becomesE8=Esl=0d+ldE/dl, and the
expectation value of the operator is given by

kVl =
dEsl = 0d

dl
. s37d

V. CCSD CALCULATIONS FOR HELIUM
AND OXYGEN

A. Iteration of the equations

Several computational challenges arise when we imple-
ment the CCSD equation solver. One problem involves
memory requirements for theG matrix, which in its un-
coupled form is a four-index tensor and therefore requires a
large amount of storage. In order to maintain fast computa-
tion, we do not employ storage compression of theG matrix
at this stage. Thus, for example, anN=7 calculation requires
100 GB of storage for theG-matrix elements. Present-day
parallel computing systems use distributed memory architec-
tures that allow for the storage of such large sets of data. Our
implementation in distributing theG matrix is to store the
third and fourth indices across processors in submatrix
blocks. In doing this, we are able to take advantage of the
large available memory for storing the matrix elements.

We use an iterative method to generate solutions to thet1
and t2 amplitude equations. In this paper, we are concerned
with closed shell nuclei. In this case, a slight rearrangement
of Eqs.(34) and(35) gives a second-order perturbative initial
solution for the amplitudes. For thet1 amplitude, we rear-
range the first few terms by pulling out the diagonal in the
first two sums and defining 1p-1h and 2p-2h energy denomi-
nators as

Di
a = f ii − faa, s38d
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Dij
ab = f ii + f j j − faa − fbb. s39d

The first terms in thet1 and t2 amplitude equations then
become

Di
ati

a = fai + o
c

s1 − dcadfacti
c − o

k

s1 − dikdf iktk
a + ¯ ,

s40d

Dij
abtij

ab = kabuui j l + Psabdo
c

s1 − dbcdfbctij
ac

+ Psi j do
k

s1 − dkjdfkjti j
ab + ¯ . s41d

While these are exactly the same equations as given in Eqs.
(34) and(35), we may use them to begin an iterative solution
by initially setting all amplitudes on the left-hand side to
zero. We then obtain for initial amplitudes

ti
a =

fai

Di
a , s42d

tij
ab =

kabuui j l
Dij

ab . s43d

We now need to compute the various terms in Eq.(37) to
obtain the new amplitudes. Since ourG-matrix elements are
distributed across processors, we will have partial sums on
certain indices. For clarity, we do not show this complication
in the following. We demonstrate the numerical procedure by
considering one of the terms in the two-particle two-hole
amplitude equation, Eq.(35):

fsab,i j d = o
kl,cd

kkluucdltij
cdtkl

ab. s44d

We perform the following mapping to matricesM, N, andO,
P, andQ:

Ma,b = tkl
ab,

Nb,g = kkluucdl,

Og,d = tij
cd,

Qa,d = fsab,i j d, s45d

where we map the indicesa=sa,bd, b=sk, ld, g=sc,dd, and
d=si , jd. Our computation then becomes two matrix-matrix
multiplications:

Pa,g = o
b

Ma,bNb,g,

Qa,d = o
g

Pa,gOg,d, s46d

followed by a mapping ofQa,d to fsab, i j d. All terms in the
amplitude equations can be formulated in this way and three
important consequences follow. First, the computational

work scales from one computation of orderOsNp
4Nh

4d to two
computations ofOsNp

4Nh
2d. Second, by formulating the algo-

rithm in this manner, we take advantage of highly optimized
basic linear algebra subprograms[36]. This represents a sig-
nificant reduction in effort when contrasted with the naive
equations. We see that a calculation16O should require 16
times more computational time when compared to a calcula-
tion of 4He in the same model space. Due to the longer loop
structure in 16O the time required to complete a single-
oxygen run is only a factor of 10 larger than the He case.
Third, because we have subblocked the interaction ampli-
tudes, we can spread the work across numerous processors.
In doing so, we must perform a global reduction operation(a
global sum) in order to generate the new amplitudes for the
next iteration. We show in Table I some details of the com-
putational sizes of them-scheme problems that we have un-
dertaken in this paper. The number of unknowns for which
we are solving is approximately the number of two-particle
two-hole amplitudes. Therefore, in our largest calculation for
16O we are actually solving approximately 176300 equations
per iteration. We also list the total number of nonzero
G-matrix elements in Table I.

Equation(43) represents the terms that one uses to com-
pute the energy in second-order perturbation theory of the
Møller-Plesset type[37]. We show in Table II the energy
obtained from the zerothEs0d iteration and the final iteration
EsFd as a function of increasing oscillator levels in the16O
system. Note that the difference between the converged
CCSD energies and the initial zeroth order energies increases
as the basis space increases. The converged summation of
the CCSD equations yields approximately 10 MeV(or
0.6 MeV per particle) in extra binding. These findings are

TABLE I. Various memory scalings for the He and O systems as
a function of the number of major oscillator shells,N. Listed are the
number of uncoupled single-particle states, the two-particle two-
hole amplitudes in4He, the number of nonzeroG-matrix elements,
and the number of nonzero two-particle two-hole amplitudes in16O.

N Ns
4He G (in millions) 16O

4 80 1,792 0.93 24,960

5 140 4,000 7.23 77,880

6 224 7,976 40.4 176,240

7 336 14,112 178.5 345,160

TABLE II. Comparisons of the zeroth-order energyEs0d and the
converged CCSD resultsEsFd for 16O as a function of increasing
model space. The results are also compared with many-body per-
turbation theory to second and third order,EMBPT

2nd and EMBPT
3rd , re-

spectively. All energies are in MeV. No center-of-mass corrections
are included in these calculations.

N s"vd Es0d EMBPT
2nd EMBPT

3rd EsFd

4 14 −135.12 −132.06 −129.92 −140.47

5 14 −124.79 −124.84 −121.52 −127.79

6 14 −121.36 −121.48 −118.23 −119.73
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corroborated by those from many-body perturbation theory
from Sec. III. It is therefore worth comparing these results
with those from second-order and third-order many-body
perturbation theory as well. These are labeledEMBPT

2nd and
EMBPT

3rd in the same table. The reader should notice that the
zeroth iterations of the coupled-cluster schemes already in-
cludes corrections to the one-body amplitudest1. However,
the energy denominators used in the computation of the
second-order diagrams of Fig. 3(diagrams 2 and 3) have
hole states determined by Eq.(14). The agreement with the
zeroth-order iteration and second-order perturbation theory is
very good, especially for five and six major shells, as can be
seen from Table II. However, for third-order perturbation
theory one clearly sees fairly large differences compared
with the coupled-cluster results. Typically, the relation be-
tween first- and second-order in perturbation theory for16O
is given by a factor of,5–6. For example,N=5 and"v
=14 MeV, we have −329.12 MeV from first order and
−47.72 from second order. To third order we obtain a repul-
sive contribution of 3.32 MeV, to be contrasted with the al-
most 3 MeV of attraction given by higher-order terms in the
coupled-cluster expansion. This indicates that many-body
perturbation theory to third order is most likely not a con-
verged result. An interesting feature to be noted from many-
body perturbation theory calculations is that higher terms
loose their importance as the size of system is increased. For
4He the relation between first-order and second-order pertur-
bation theory is given by a factor of,3–4, depending on the
value of"v. Calculations for40Ca not reported here indicate
a relation of,7–9 between first-order and second-order per-
turbation theory. This is somewhat expected since theG ma-
trix is smaller for larger systems, although the energy de-
nominators becomes smaller.

We show typical convergence curves for our coupled-
cluster calculations in Fig. 6 for16O for theN=4,5,6oscil-
lator shell-model spaces. In this figure,EsId is the energy at
the Ith iteration, whileEsFd is the final energy of the system.
We obtain convergence within 50 iterations in most cases.
The curves also exhibit an exponentially convergent behav-
ior.

Since the CCSD amplitude equations are nonlinear, we
investigated the results obtained by using different initial ref-

erence states. The naive choice foruC0l is to fill the lowest
oscillator states for a given system. For example, we define
uC0l as the filled 0s state for4He and the filled 0s-0p states
for 16O. This choice is fine for closed-shell nuclei since none
of the energy denominators discussed above becomes zero,
but for other nuclei this would be a problem. As an alterna-
tive procedure, we start with the Hartree-Fock ground-state
Slater determinant for a given system. We solve the Hartree-
Fock equations in the oscillator basis in order to obtain trans-
formation matricesD that take us from the oscillator to the
Hartree-Fock basis. We then transform the Hamiltonian to
the Hartree-Fock basis using the relationai

†=oa Daica
†,

whereai andai
† annihilate and create particles in the oscilla-

tor basis, andca andca
† annihilate and create particles in the

Hartree-Fock basis. Note thatD†D=1. While a complete di-
agonalization ofH in either basis would yield the same re-
sults, the CCSD amplitude equations are not invariant under
this transformation since states below and above the fermi
surface will be mixed. Furthermore, at the Hartree-Fock
level, rotational symmetry of the Hamiltonian is broken, al-
though correlations including those at the CCSD level will
restore much of this symmetry. Although we do not discuss
in this paper open-shell systems, the Hartree-Fock solution
offers a clean way obtain a reference Slater determinant for
those cases.

We show in Fig. 6 the convergence of the CCSD equa-
tions in both the oscillator and Hartree-Fock basis forN=4
major shells. In both cases, convergence at the 10−5 level is
reached before 40 iterations. A more quantitative assessment
of how the choice of reference state affects the final results is
seen in Table III. In the oscillator basis, the 1p-1h amplitudes
carry a significant fraction of the correlation energy, while in
the Hartree-Fock basis these terms do not contribute to the
energy. The difference between the Hartree-Fock and oscil-
lator total energies is 0.9%. We note that if one completely
ignores the 1p-1h amplitudes in the Hartree-Fock basis, the
energy becomes −138.64 MeV, a difference of 0.4%. In the
oscillator basis, a much larger error of 5.7% is obtained if
one ignores the 1p-1h amplitudes. Furthermore, the CCD
equations(ignoring the 1p-1h amplitudes) sometimes exhibit
numerical instabilities similar to ignoring the Hartree-Fock
insertions in many-body perturbation theory discussed
above.

FIG. 6. The convergence of the ground-state energy as a func-
tion of the CCSD iterations for16O.

TABLE III. Comparisons of CCSD results in16O when using
naively filled oscillator reference state, or when using the Hartree-
Fock reference state. No center-of-mass correction is taken into
account in this comparison.

Term Oscillator(MeV) Hartree-Fock(MeV)

E0 −109.45 −122.51

T1 −8.86 5310−5

T1
2 −1.50 −0.3310−3

T2 −20.66 −16.73

Ecorr −31.02 −16.76

ETotal −140.47 −139.26
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B. 4He and 16O ground states

We now return to a discussion of4He and16O by provid-
ing a description of their ground-state energies using the
CCSD formalism. As in the many-body perturbation theory
section of this paper, we wish to demonstrate how the
coupled-cluster theory converges as a function of increasing
model space. We are currently able to perform this study for
up to seven major oscillator shells in helium and up to six
shells in oxygen. While these studies do not address the
starting-energy dependence of theG matrix, they do indicate
the convergence of the calculations as a function of model
space, and they indicate the softening of the"v dependence
as one moves to larger spaces. The"v dependence of the
ground-state energy of4He as a function of the model space
is shown in Fig. 7 for theN=4,5,6,7major oscillator shells
with no center-of-mass correction. These curves generally
exhibit a parabolic character.

We applied the center-of-mass correction described above
to the He calculations. We demonstrate how this procedure
behaves when one solves the CCSD equations in Fig. 8 for
4He as a function of increasing model space for different
values of the starting energy but with fixed"v as determined
from the minima in Fig. 7. While starting energies larger
than −10 MeV are affected by the growing model space(due
to the proximity of the deuteron pole), for starting energies
below about −20 MeV results change by less than 1% as we
increase the model space fromN=6 to N=7. The ground-
state energy using Idaho-A was quoted as −27.40 MeV by
Navratil and Ormand in Ref.[29]. At the level of CCSD, a
result of around −26.5 MeV would be desired, thus leaving
room for additional binding coming from triples correlations
[34]. We obtain this result for a starting energy of approxi-
mately −35.0 MeV. Such a value for the starting energy
would also be in good agreement with the fact that it is
meant, within the context of perturbative many-body meth-
ods, to represent the unperturbed energy of two nucleons.
However, a better approach would be to determine this en-
ergy self-consistently. We discuss such alternatives in the

conclusion. In these calculations we have not included the
contribution from the Coulomb interaction.

In this initial study we performed calculations of the16O
ground state for up to seven major oscillator shells as a func-
tion of "v. Figure 9 indicates the level of convergence of the
energy per particle forN=4,5,6,7shells. The experimental
value resides at 7.98 MeV per particle. This calculation is
practically converged. By seven oscillator shells, the"v de-
pendence becomes rather minimal and we find a ground-state
binding energy of 7.52 MeV per particle in oxygen using the
Idaho-A potential. Since the Coulomb interaction should
give approximately 1 MeV/nucleon of repulsion, and is not
included in this calculation, we actually obtain approxi-
mately 6.60 MeV of nuclear binding in the 7 major shell
calculation which is somewhat above the experimental value.
We note that the entire procedure(G matrix plus CCSD)
tends to approach from below converged solutions.

We have also performed calculations with other nucleon-
nucleon interactions, such as theV18 interaction model of the

FIG. 7. Dependence of the ground-state energy of4He on"v as
a function of increasing model space. No center-of-mass correction
is taken into account in this calculation.

FIG. 8. The total energy of4He as a function of increasing
model-space size, for different values of the starting energy. Here,
we include the center-of-mass correction.

FIG. 9. Dependence of the ground-state energy of16O on"v as
a function of increasing model space.
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Argonne group[18]. This potential yields less binding than
the Idaho-A interaction, mainly due to the stronger tensor
force of V18 model. Typical numbers are(for six major
shells and no center-of-mass correction) and for 4He
E=−20.95 MeV for "v=8 MeV and E=−20.96 MeV for
"v=9 MeV. The corresponding numbers for Idaho-A are
E=−21.47 MeV and E=−21.37 MeV, respectively. The
trend for16O is similar. A more detailed comparison for other
nucleon-nucleon interactions will be presented elsewhere.

VI. CONCLUSIONS AND PERSPECTIVES

Our goal in this paper has been to describe a nonpertur-
bative method of solution to the many-body problem that
sums classes of diagrams built upon low order(up to fourth
order in this paper) many-body perturbation theory diagrams.
We have shown how to calculate nuclear ground states using
coupled-cluster methods. In this paper, we concentrated on
CCSD equations. We used aG matrix as our two-body inter-
action and we expanded in the spherical harmonic-oscillator
basis. We reiterate that CCSD is a nonperturbative approach
to the many-body problem: we sum classes of diagrams to
infinite order in order to calculate various nuclear properties.
The coupled-cluster method discussed here clearly demon-
strates the need of summing many-body correlations to infi-
nite order. This is seen when comparing the coupled-cluster
results to many-body perturbation theory. Furthermore, the
latter is hard to extend beyond third order without a self-
consistent single-particle potential and beyond fourth order
with a self-consistent potential. Our results show that aG
matrix based approach exhibits signs of convergence of the
binding energy for4He and 16O at around seven to eight
major shells, a result which is in qualitative agreement with
many-body perturbation theory. This is indeed a promising
result. In quantum chemistry the coupled-cluster method en-
joys considerable success in reproducing excited states and
properties of valence particle systems as well. This may open
for interesting theoretical studies in connection with data
from the proposed Rare Isotope Accelerator. Data from, e.g.,
weakly bound medium mass nuclei represent a considerable
challenge to present many-body schemes in theoretical
nuclear physics. To go beyond a major shell in shell-model
calculations for medium heavy nuclei is still beyond reach of
present day technology. We believe that the coupled-cluster
theory is a particularly promising approach for such studies
due to its enormous success in quantum chemistry.

Before closing this paper, we would like to discuss several
steps that we will take during the course of this research.

One improvement upon the method will be to include the
calculation of triples excitations(called CCSDT or approxi-
mations to it). We indicated that the three-particle three-hole
diagrams likely give repulsion and are important for the de-
scription of ground-state properties. Since the CCSD equa-
tions do not include the 3p-3h diagrams completely, and
since we have seen that these diagrams are important, we
will eventually need to include the triples amplitudes into our
equations. Various methods that include triples diagrams
have been investigated by quantum chemists and we will

investigate which of these methods are appropriate for the
nuclear problem.

The effort to perform a complete solution to the quantum
many-body problem grows exponentially as one adds par-
ticles. Combined with the difficulty of methods we suffer in
nuclear physics from interactions that are not completely de-
termined. Thus, our methods and techniques for solution
typically develop in lock step with our understanding of the
nuclear Hamiltonian. While several sets of two-nucleon of
interactions that fit nucleon scattering perfectly have been
developed over the last 10 years, their many-body character-
istics (in particular, their ability to obtain nuclear ground-
state masses) indicate that they are insufficient. Three-
nucleon interactions become necessary even to fit the triton
and4He. To date, no derivations of CCSD(or CCSDT) equa-
tions exist that incorporate a three-body interaction. We will
pursue this effort in future research.

CCSD and its extensions can be used to obtain excited

state information by diagonalizingH̄=exps−TdH expsTd in
the space of all singly and doubly excited determinants
where the amplitudes are obtained directly from the con-
verged CCSD amplitudes. This will be an important step in
the development of the coupled-cluster method for nuclear
science.

Finally, our results do depend on the starting energy of the
effective interaction. We demonstrated this in Fig. 8 for the
4He. For16O and four oscillator shells and"v=14 MeV, our
result is −140.47 MeV with the starting energy of −80 MeV,
while we obtain −143.53 MeV with a starting energy of
−60 MeV. The dependence is therefore weak, but still
present. The dependence is more crucial in helium since the
binding energy is much lower, and ourG matrix is not de-
fined for positive starting energies. One could choose a start-
ing energy which gives a binding energy close to other
works, however, one would then loose the possibility of hav-
ing a self-consistent starting point.

There are two possible ways to overcome this problem.
One is to use the similarity transformation of Lee and Su-
zuki, following closely the no-core approach of Barrett,
Navratil, and co-workers[26–28]. This yields a Hermitian
and starting energy independent interaction for a large space.
However, in this case the effective interaction is often deter-
mined by solving a two-body problem. The two-body eigen-
values and eigenvectors are thence used to generate an effec-
tive two-body interaction to be used in a no-core shell-model
calculation and thereby a smaller space via a similarity trans-
formation. In that case the effective interaction is defined by
the two-body eigenvalues although a mass dependence is
included via center-of-mass corrections. In principle, when
one uses such similarity transformations, one should repeat
this calculation for each new nucleus. It is an open and in-
teresting question how much such an interaction would
change compared to one generated from the two-body sys-
tem only. We plan to investigate this in the future.

Alternatively, one can compute self-consistently the
single-particle energies using aG matrix defined for both
positive and negative starting energies. Thereafter, a starting
energy independent interaction can be obtained using, e.g.,
the prescription of Eq.(15), but for both holes and particles.
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This approach allows, through techniques such as a multival-
ued starting energy dependent interaction to, in principle,
account for many-body effects when one uses the effective
two-body interaction in the medium. Our final goal is how-
ever to have effective interaction for both positive and nega-
tive starting energies in order to be able to study weakly
bound systems using the coupled cluster approach. This is
beyond the scope of the present paper. These approaches will
be investigated by us in future works.
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