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We propose a microscopic effective interaction to treat pairing correlations in the1S0 channel. It is intro-
duced by recasting the gap equation written in terms of the bare force into a fully equivalent pairing problem.
Within this approach, the proposed interaction reproduces the pairing properties provided by the realistic AV18
force very accurately. Written in the canonical basis of the actual Bogolyubov transformation, the force takes
the form of an off-shell in-medium two-body matrix in the superfluid phase multiplied by a BCS occupation
number 2rm. This interaction is finite-ranged, nonlocal, total-momentum dependent, and density dependent.
The factor 2rm emerging from the recast of the gap equation provides a natural cutoff and makes zero-range
approximations of the effective vertex meaningful. Performing such an approximation, the roles of the range
and of the density dependence of the interaction can be disentangled. The isoscalar and isovector density
dependences derivedab initio provide the pairing force with a strong predictive power when extrapolated
toward the drip lines. Although finite ranged and nonlocal, the proposed interaction makes Hartree-Fock-
Bogolyubov calculations of finite nuclei in coordinate space tractable. Through the two-basis method, its
computational cost is of the same order as for a zero-range force.

DOI: 10.1103/PhysRevC.69.054317 PACS number(s): 21.60.2n, 21.30.2x

I. INTRODUCTION

The structure of the nucleus and the properties of ex-
tended nuclear systems strongly depend on their possible su-
perfluid nature. In finite nuclei, nucleonic pairing has a
strong influence on all low-energy properties of the system.
This encompasses masses, separation energies, deformation,
individual excitation spectra, and collective excitation modes
such as rotation or vibration. The role of pairing correlations
is particularly emphasized when going toward the drip lines.
This is due to the proximity of the Fermi surface to the
single-particle continuum. Indeed, the scattering of virtual
pairs into the continuum gives rise to a variety of new phe-
nomena as regards the properties of ground and excited
states of nuclei[1].

In neutron stars, a good description of pairing is also re-
quired. The neutron-neutron1S0 pairing drives the physics of
neutron star crusts, while at higher densities, that is, from the
inner crust to two or three times the saturation density, neu-
tron and proton pairing occur dominantly in the3P2-

3F2 and
1S0 channels, respectively[2]. Such superfluid phases influ-
ence the dynamical and thermal evolution of the star. Indeed,
postglitching timing observations[3] and the cooling history
[4] strongly depend on the presence or absence of pairing in
the system.

To treat pairing, one needs to specify the many-body tech-
nique used and the appropriate interaction to insert into the
calculation at that chosen level of approximation. The latter
depends on the situation and on the system. In the present
case, our aim is eventually to perform nonrelativistic self-
consistent mean-field and beyond-mean-field calculations in
finite nuclei. Mean-field calculations are of the Hartree-Fock-

Bogolyubov(HFB) type, while the considered beyond-mean-
field calculations deal typically with symmetry restorations
(projected mean-field method) and with large amplitude col-
lective motion in nuclei(generator coordinate method) [5,6].
Thus, one has to identify the appropriate vertices to be used
in each of these cases. The same question arises, for instance,
in the context of the shell model[7].

We concentrate here on the mean-field treatment. While
the variational derivation of the HFB equations cannot help
in defining the appropriate vertex, the Green function or
Goldstone formalisms are able to do so. Such many-body
theories show unambiguously that the irreducible vertex to
be used in the pairing channel at lowest order is the bare
nucleon-nucleon(NN) force [8–11]. At the next order, the
irreducible pairing vertex involves the so-called polarization
diagrams. This situation is in contrast to the particle-hole
channel where one cannot avoid regularizing the repulsive
core of the bare interaction from the outset through the defi-
nition of an in-medium two-body matrix. This stresses the
fact that the effective forces in the particle-hole and particle-
particle channels are different. In particular, the direct use in
the gap equation of an in-medium vertex such as the Brueck-
ner G matrix leads to double counting[11,12].

Thus, the mean-field energy defined in this context is a
functional of one-body normal and abnormal density matri-
ces and do not refer to the mean value of a given Hamil-
tonian in a product state. However, the strategy used consists
of motivating the low-energy functional from a many-body
expansion and thus, consists of keeping an explicit link to the
bareNN force. With this approach, the theory is not neces-
sarily local and the mean-field functional does not include
more correlations than provided by the irreducible vertices in
the particle-hole and particle-particle channels. Also, one has
to come back to the many-body expansion to enrich the func-
tional if going beyond the mean-field approach[13]. Even if*Email address: duguet@theory.phy.anl.gov
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the final goal is the same, this differs from the strategy used
in the so-called(local) density functional theory[14,15].
Note also that calculations based on the extension of Gork-
ov’s formalism to the relativistic case are also performed
[16–18]. Recently, the effects of polarization leading to the
screening of nucleon and meson propagators have been stud-
ied in infinite matter[19]. The reduction of the gap was
found to be much larger than in the nonrelativistic case, cor-
recting to some extent for the excessive gap found at first
order.

As regards HFB calculations in finite nuclei, only phe-
nomenological forces have been used in the spin-singlet/
isospin-triplet pairing channel so far. One example is the
finite-range, density-independent Gogny force[20], whose
restriction to the spin-singlet/isospin-triplet channel can be
written as

Vt
GognysrW1,rW2d =

1 − Ps

2 o
i=1

2

lt
i e−urW1 − rW2u2/ai

2
, s1d

and is to be averaged over the angle between the incoming
and outgoing relative momenta if dealing with theS wave
only. In Eq. (1), Ps is the spin-exchange operator while the
Coulomb part of the Gogny force has not been considered.
The other commonly used pairing interaction is the(density-
dependent) d interaction(DDDI) [21–25]:

Vt

1S0srW1,rW2d = lt

1 − Ps

2
31 −1rS rW1 + rW2

2
D

rc
2

g

4 dsrW1 − rW2d,

s2d

wherer denotes the matter density(= local scalar-isoscalar
part of the one-body density matrix).

The latter, usually used when solving the problem in co-
ordinate space, must be complemented with a cutoff in the
gap equation to avoid divergences. Studies of the rotational
bands of superdeformed nuclei[26,22] and actinides[23,27],
of halo nuclei [21], and of the evolution of charge radii
across magic numbers[28,29] have helped to establish the
success and the surface-peaked character of the DDDI in the
pairing channel. Recently, more systematic studies of
asymptotic matter and pair densities of exotic nuclei[30], of
the evolution of the pairing gap toward the neutron drip line
[31], and the average behavior of the odd-even mass differ-
ences over the mass table[32] have allowed a refinement of
the DDDI. The optimal compatibility between experimental
data and mean-field calculations was obtained for a force
between surface and volume[23,32], with rc<2rsat, where
rsat=0.16 fm−3 is the saturation density of symmetric nuclear
matter. The great sensitivity of matter and pair densities to
pairing in the low-density regime seemed to favor 1/2øg
ø1.

Although successful in describing low-energy nuclear
structure over the(known) mass table[6,22,23,33–37], the
two previous phenomenological pairing interactions lack a
link to the bare nucleon-nucleon interaction. They were di-
rectly fitted to finite nuclei data, and may thus renormalize
beyond-mean-field effects. In addition, their fits were per-

formed where experimental data are available. Extrapolating
the use of these interactions toward the drip lines is question-
able. To correct for this defect, few DDDIs were fitted to
reproduce the gap provided by realisticNN forces in infinite
matter [38,39]. However, the necessary density dependence
and cutoff were still treated phenomenologically.

In fact, the present knowledge about the pairing force and
the nature of pairing correlations in nuclei is quite poor.
Properties such as the range of the effective pairing interac-
tion, its link to the bare force, its possible surface character
in finite nuclei, and its density dependence, in particular, is-
ovector, still have to be clarified. As noticed as early as 30
years ago [40] and pointed out several times since
[1,13,29,31,32,41–43], obtaining proper density dependences
of particle-hole and particle-particle effective forces at a
given level of approximation is difficult but of great impor-
tance to meet modern high-precision experiments. The prob-
lem dealing with the cutoff to be used in the pairing channel
in connection with zero-range vertices has been solved re-
cently [44,45]. The idea was to identify the divergences
stemming from the use of a local gap and regularize them
through a well-defined renormalization scheme. That scheme
has to be understood in the context of the local density func-
tional theory[29] (which is perfectly fine) rather than as a
mean-field approximation arising at lowest order of some
many-body expansion.

The present work concentrates on the mean-field treat-
ment of pairing at relatively low energy and low density in
the isotropic, spin-singlet and isospin-triplet channels. The
aim of this study is manifold. In Sec. II, we define an appro-
priate simple version of the bare force in the1S0 channel and
explain in detail its fitting procedure. Then, an in-medium
pairing interaction[Eq. (21)] equivalent to the bare force is
introduced in Sec. III A. The corresponding diagrammatic
resummation authorizes the study of the finite-ranged effec-
tive force and of its zero-range approximation on the same
footing. This is discussed in Sec. III B where the roles of the
range and of the density dependence of the pairing interac-
tion are disentangled. In the particular case of the zero-range
approximation for the vertex, the scheme proposed presents
strong similarities with the regularization procedure intro-
duced in Refs.[44,45]. We will actually discuss this particu-
lar point in a forthcoming publication. Ultimately, the inter-
action is to be used in calculations performed in coordinate
space by solving the HFB equations on a three-dimensional
mesh[46–48]. Although finite ranged and nonlocal, the pro-
posed interaction is shown in Sec. III C to make these calcu-
lations tractable. The formulas defining completely the new
effective pairing force can be found in the same section.
Some important points are discussed in Sec. IV while our
conclusions are given in Sec. V.

II. Simplified bare force

A. Fitting procedure

Screening effects beyond the mean-field approximation
due to density and spin fluctuations are known to strongly
decrease the pairing gap in neutron matter, both for singlet
and triplet pairing[2,49–52]. Whether it is justified to extend
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this statement to finite nuclei is still an open question. In-
deed, the dressing of the vertex could change significantly
when going from neutron matter to symmetric matter[53].
Also, including the induced interaction and off-shell self-
energy effects due to the exchange of surface vibrations be-
tween time-reversed states seems to increase the pairing gap
in finite nuclei compared to that generated by the bare force
[26,54,55]. In addition, the influence of the restoration of
particle number and pairing vibrations still have to be char-
acterized from systematic self-consistent calculations in even
and odd nuclei. The situation as regards beyond-mean-field
effects is unclear at this stage and one can simply state that a
significant cancellation between the effects of screening and
of surface vibrations on singlet pairing should take place in
finite nuclei. As a result, two strategies seem reasonable
when dealing with the definition of a pairing interaction to be
used in mean-field calculations.

Sticking to the pure mean-field picture, one can define the
interaction by reproducing properties of the bareNN interac-
tion. If necessary, the possibility remains to include beyond-
mean-field effects explicitly in a consistent way when using
an interaction mimicking the bare force.

A second strategy consists of fitting the interaction di-
rectly to finite nuclei data through mean-field calculations
[22]. This strategy has been the most popular so far when
dealing with phenomenological forces to be used in self-
consistent Hartree-Fock–Bardeen-Cooper-Schrieffer and
HFB calculations[20,22]. Such a procedure aims at renor-
malizing the beyond-mean-field effects which possibly do
not cancel out. Of course, the use of such a force in calcula-
tions going explicitly beyond the mean field is suspicious.

As a first attempt, and because we want to separate mean
field from beyond-mean-field effects, we follow the first
strategy. Note that no isospin symmetry breaking effects due
to Coulomb or charge-independence breaking of the nuclear
part of the interaction is considered in the present study. It
was shown to have no effect on the gap in the1S0 channel
[56]. Also, we do not consider the neutron-proton component
of the force in this channel.

B. Form of Vsep

1S0

As already said, the bareNN interaction has to be consid-
ered in the pairing channel at lowest order in irreducible
vertices. However, the full complexity of any realisticNN
force makes systematic HFB calculations in finite nuclei un-
tractable from the computational point of view. We thus have
to define a simplified bare force retaining the essential phys-
ics provided by the fullNN interaction as regards pairing.

A particular feature of theNN force in the 1S0 channel
is the corresponding very large, negative scattering length.
The empirical values for neutron-neutron, neutron-proton,

and proton-proton scattering length areann

1S0=−18.5±0.4 fm

[57] (−18.7±0.6 fm in a recent experiment[58]), anp

1S0

=−23.749±0.008 fm[59], and app

1S0=−7.8063±0.0026 fm
[60], respectively. This indicates that theNN interaction
holds a virtual state in the vacuum at almost zero scattering
energy in the1S0 channel. In the vicinity of the virtual state,
the scatteringt matrix can be written in a separable form,

suggesting that the bare interaction itself is to a good ap-
proximation separable and nonlocal at low energy[61].
Thus, we start from the definition of the interactionVsep

1S0 in
the plane-wave basis

fkWisi
srWd = krW ukW isil = eikWi·rWx1/2

si , s3d

through

KkW1s1kW2s2U1 − Ps

2
Vsep

1S0UkW3s3kW4s4L
a

=
1

2
kkW1kW2uVsep

1S0ukW3kW4lssds1s3
ds2s4

− ds1s4
ds2s3

d,

kkW1kW2uVsep

1S0ukW3kW4l = kkWuVsep

1S0ukW8ls2pd3dsPW − PW 8d, s4d

where its center of mass part is approximated by

kkWuVsep

1S0ukW8l = lvskdvsk8d. s5d

While kW i denotes the momentum of a particle in the labo-

ratory frame,PW =kW i +kW j and kW =skW i −kW jd /2 are the total and

relative momenta of a pair, respectively. The stateshukW isilj
span the tensor product of momentum and spinssi = ± 1

2
d

single-particle Hilbert spaces and are orthonormalized
through1

kfkWisi
ufkW jsj

l = s2pd3 dskW i − kW jddsisj
. s6d

Also, the subscriptsa ands in Eq. (4) denote antisymme-
trized and symmetrized matrix elements, respectively. A ma-
trix element with no subscript is neither symmetrized nor
antisymmetrized. The isospin quantum number has not been
specified since the form of the matrix elements in thehT
=1,Tz= ±1j channels is trivial.

C. Connection with scattering phase shifts

The link between the bare force and theNN phase shifts is
obtained by treating the two-body problem in the center of
mass frame. To make this link, it is convenient to introduce
the energy-dependent scatteringt matrix. The Lippmann-
Schwinger equation[61] defining it in the uncoupled1S0
channel takes the form

kkWut
1S0ssdukW8l = kkWuV

1S0ukW8l +E d3kW9

s2pd3kkWuV
1S0ukW9lFPW kW9

t ssd

3kkW9ut
1S0ssdukW8l, s7d

wherePW is the conserved total momentum of the pair and

1Because of the convention used to define plane waves, integrals

in momentum space are characterized byed3kW / s2pd3. We also use
the conventions"2=1.
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F
PW kW
t ssd =

1

s− k2/m+ ie
s8d

is the noninteracting two-particles propagator in free space
appropriate for outgoing boundary conditions. In Eq.(8), m
is the nucleon bare mass ands is the energy of the interacting
pair in its center of mass(total energy subtracted byP2/4m).
It is worth noting thatF t is independent ofPW and diagonal in

kW.
Because of the rank-1 separable form chosen for the bare

force, the Lippmann-Schwinger equation is exactly solvable
andt

1S0 takes for any tripletss,k,k8d the separable form[61]

kkWut
1S0ssdukW8l = lvskdvsk8d/F1 − lE

0

` dk9

2p2

k92v2sk9d
s− k92/m+ ieG .

s9d

While the full scattering problem is expressible in terms
of the half on-shellt matrix, the phase shifts carrying the
information about the two-body wave function at long dis-
tances relate to the fully on-shell part oft ss=k2/m=k82/md.
With the convention chosen to define the plane-wave basis,
this link can be written explicitly under the form

kkWutsk2/mdukW8l = −
4p

mk
o

l

s2l + 1deidlskdsindlskdPlscosk̂ ·k8̂d,

s10d

where dlskd denotes the phase shifts for a relative orbital
angular momentuml. We have not considered in Eq.(10) the
coupling between differentl channels as provided by the
tensor force. Focusing onl =0 and using the separablet ma-
trix, one gets

tan d
1S0skd = − lmp k v2skd/Fp2 − 2lm PE

0

`

dk9
k92v2sk9d
k2 − k92 G ,

s11d

whereP denotes the principal value of the integral.
Since the separable form of the bare interaction in the1S0

channel is physically motivated, one can hope to define an
efficient and simple enough interaction by plugging the
known phase shifts into Eq.(11) to fix its parameters. Indeed,
it has been shown that the1S0 gap in nuclear matter is en-
tirely determined by theNN scattering phase shifts in the
vacuum [56,62]. Of course, a rank-1 separable interaction
cannot reproduce the phase shifts up to infinite energy in this
channel since they change sign around 250 MeV[56,63].
One could use a rank-2 separable form to take care of this
[63]. However, an overall reproduction of the phase shifts up
to Elab=250 MeV⇔k=1.73 fm−1 should be sufficient to de-
scribe pairing at relatively low density. Indeed, the kernel of
the gap equation is strongly peaked atkF.

The inverse scattering problem, which corresponds to the
determination of a two-particle potential from the knowledge
of the phase shifts at all energies, is exactly and uniquely
solvable for rank-1 separable potentials[61]. Thus, given the
phase shifts, a unique solution exists forvskd. We do not

proceed, however, through the resolution of the inverse scat-
tering problem. Indeed, a simple analytic form ofvskd will
eventually be necessary to perform HFB calculations of fi-
nite nuclei. We choose a simple form forvskd and try to

reproduced
1S0skd as well as possible. We consider the Gauss-

ian form

vskd = e−a2k2
, s12d

where a is the second parameter of the force. This choice
will be shown later to be appropriate.

D. 1S0 pairing gap

We have introduced a simple force to mimic the realistic
NN interaction in the1S0 channel. Starting from this inter-
action defined in the vacuum, one can go to the medium and
compute the pairing gap through the BCS gap equation[65].2

This scheme corresponds to the lowest order in the
Goldstone-Brueckner-Bogolyubov perturbation theory
[10,11], or in the Galitskii-Gorkov Green function method
[8,66], and defines a meaningful mean-field picture. The sim-
plest medium to consider at this stage is infinite nuclear mat-
ter. Indeed, its translational invariance strongly simplifies the
treatment and avoids the additional effects associated with
the finiteness of the nucleus. Of course, it is to some extent a
toy model, even if neutron stars can be considered as being
closely connected with it.

In infinite matter, the favored Bogolyubov transformation
correlates pairs of nucleons with zero total momenta.3 The
gap equation written in the plane-wave basis is of the usual
BCS form and reads in the1S0 channel as

DkW,−kW ; Dk = −E
0

` dk8

2p2k82kkWuVsep

1S0ukW8l
Dk8

2Ek8
, s13d

whereEk=Îsek−md2+Dk
2 is a quasiparticle energy;ek being

the in-medium on-shell single-particle energy associated
with the statefkW andm the chemical potential. To be consis-
tent, m should be calculated iteratively by constraining the
density of the system, whileek should be defined after regu-
larizing the repulsive core of the bare force and by taking the
influence of pairing correlations explicitly into account. This
would typically require the use of the on-shell self-energy
GkW1

computed from the GalitskiiT matrix or the BruecknerG
matrix defined in the superfluid phase[10,11,70]. A corre-
sponding mean-field scheme is depicted diagrammatically in
Fig. 1. Such a procedure is very involved, especially if using
modern realisticNN forces in allsS,Td channels. It becomes
prohibitive when dealing with finite nuclei. Thus, approxi-
mate schemes making use of the BruecknerG [71] or the
Feynman-GalitskiiT [66] matrices in the normal fluid are
usually considered in infinite matter.

2Solving the gap equation using a separable force was done as
early as 1964[64]. In that work, qualitatively similar results as
those we derive in infinite matter were obtained using Yukawa-type
interactions.

3Some exceptions exist however. See Refs.[67–69].

T. DUGUET PHYSICAL REVIEW C 69, 054317(2004)

054317-4



When performing extensive mean-field calculations of fi-
nite nuclei, a phenomenological effective vertex such as the
Gogny [20] or the Skyrme[41,72] force is employed in the
particle-hole channel to approximate one of the previous in-
medium matrices. They usually incorporate additional phe-
nomenology(and to some extent the effect of higher order
terms) by fitting some experimental data at the mean-field
level. As we are not looking for refined calculations at this
stage, and because we want to use a clean theoretical quan-
tity to adjust the separable interaction, we simply insert free
single-particle energiesek=k2/2m into Eq.(13). We also take
m to be equal tokF

2 /2m, wherekF=s3p2rd1/3 is the Fermi
momentum of one kind of nucleons in the free gas at the
densityr.

Considering these approximations and inserting the sepa-
rable interaction into Eq.(13), the solution of the gap equa-

tion takes the formDk=D0 vskd, with the gap at zero momen-
tum D0 satisfying the equation[56]

1 = −E
0

` dk

4p2

lk2v2skd
Îsk2/2m− kF

2/2md2 + D0
2v2skd

. s14d

After solving Eq. (14), the gap at the Fermi surface is
obtained throughDkF

=D0 vskFd.

E. Fit

We perform a combined fit of the force on the neutron-
neutron scattering phase shifts and on the pairing gap in
infinite matter provided by the modern AV18NN interaction
[73]. Among other features, AV18 fits the proton-proton and
neutron-proton phase shifts up to 350 MeV, as well as
neutron-neutron low-energy parameters(scattering length
and effective range) in the 1S0 channel. Thus, the neutron-
neutron phase shifts that we use beyond the validity of the
effective range approximations⇔kù0.2 fm−1d are state of
the art theoretical predictions.

Thus, Eqs.(11) and (14) are solved for several set of
parameterssl ,ad. The results are compared with those de-
rived from AV18 with the sameek. The gapDkF

is plotted in
the right panel of Fig. 2 for several values of the rangeÎa;
the intensityl being chosen in order to obtain the maximum
at 3 MeV. Indeed, this is a solid prediction from all modern
realistic forces[12,56,74,75]. Note that the1S0 gap calcu-
lated with free kinetic energies is very similar for all modern
forces [12,56,74,75]. This is due to the fact that they all
reproduce the phase shifts very accurately. One can see that
the gap strongly depends ona. As the pairing gap probes the
interaction in a very sensitive way, requiring the precise re-
production ofDkF

derived from AV18 allows little latitude
and determines the parameters of the separable force quite
uniquely. This is a nice feature. For the best set of parameters
sl=−840 MeV fm3,a=Î0.52 fmd, DkF

is reproduced almost
perfectly up to the gap closure. In particular, the bump is
obtained at the right density and energy. This is a nontrivial
result in view of the very simple form of our bare force. The
success of the procedure comes back to the justification of its
separable form and to the overall reproduction of the phase
shifts.

The phase shifts calculated using the same sets of param-
eters are compared to those predicted by AV18 in the left
panel of Fig. 2. The simplicity of the force used seems to be
more critical as regards a precise reproduction of the phase
shifts. Also, this quantity hardly constraints the parameters in
an obvious way. This justifies the complementary use of the

FIG. 1. Definition of the normalGkW1
and abnormalDk1

parts of
the self-energy at lowest order in irreducible vertices. Combining
these definitions with the usual expressions of the BCS occupation
numbersuki

2 and vki

2 , obtained from the compensation of the so-
called dangerous diagramsat lowest order, provides the BCS gap
equation[9–11]. The irreducible kernel entering the definition of
GkW1

at lowest order is theG-matrix summing particle-particle lad-
ders. The two-body propagator characterizing the intermediate
states in the ladder is the product of one-body mean-field Green
functions defined in the superfluid system. The irreducible kernel
entering the definition ofDk1

at lowest order is the bareNN force.
The reason why theG matrix or theT matrix cannot enter the gap
equation originates from the necessity to avoid double counting
when compensating for the dangerous diagrams. It requires the ex-
clusion of isolated particle-particle and hole-hole intermediate
states in those vacuum-to-pair diagrams involving an abnormal
contraction.

FIG. 2. Left panel: comparison between the
neutron-neutron1S0 scattering phase shifts ob-
tained from AV18 and from the rank-1 separable
force for several sets of parameterssl ,ad. Right
panel: same comparison for the1S0 pairing gap.
In both cases, the range of the force is varied
while the intensity is chosen accordingly to ob-
tain a maximum gap at 3 MeV.
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pairing gap to fit the interaction. Interestingly enough, the
gap is well reproduced at very low density when using our
best set of parameters(thick curve on both panels), while the
phase shifts are poorly reproduced belowk=0.4 fm−1. In par-

ticular, not reproducing the large scattering lengthann

1S0 does
not seem to be a major problem to obtain excellent gaps, as
long as d

1S0skd is correctly treated beyondk=0.4 fm−1 as
seen in the left panel of Fig. 2. It is known that concentrating
on the very low-energy part of the phase shifts(= effective
range approximation) allows a good reproduction of the gap
up tokF=0.5 fm−1 but fails badly beyond that point[56]. As
long as the quasibound state exists in the1S0 channel to
motivate the separable form of the force, it seems nonessen-
tial to obtain a precise value of its eigenenergy(related to

ann

1S0, that is, to the slope ofd
1S0skd at k=0). It seems more

important to get an overall reproduction ofd
1S0skd which,

through the on-shellt matrix, relates to the wave function of
the virtual state at intermediate distances[61]. This result
agrees with the conclusions of Ref.[74] and balances those
obtained in the relativistic context[18].

F. Analysis of Vsep

1S0

As already mentioned, the rank-1 separable form does not
allow the description of the negative part of the1S0 phase
shifts at high energy. As seen in the left panel of Fig. 2, this
translates into an overshoot of the phase shifts beyondk
=1.4 fm−1, but only into a slight overestimation of the gap at
kF=1.4 fm−1. Roughly speaking, the justification for not re-
solving explicitly the hard core of the realistic bare force is
similar to the one providing the grounds for theVlow k inter-
action [76] or motivating the description of nuclear matter
through effective field theories[77,78]. Of course, we only
take care of the1S0 channel here, we do not integrate out the
high relative momentum components of the bare force ex-
plicitly and thus, we do not look for a high precision poten-
tial model. In Fig. 3, the matrix elements of our separable
interaction in momentum space are compared with those of
AV18 and those of the non-HermitianVlow k obtained from
AV18 [79]. The cutoff used forVlow k is L=2.1 fm−1. Our

Vsep

1S0 is very close toVlow k and quite different from AV18
itself.4 It clarifies the physical content of our separable inter-

action and characterizes our scheme as a low-energy effec-
tive theory of nuclear matter valid below<3rsat. Note that
while the matrix elements of modern realistic forces are scat-
tered, theirVlow k partners all look the same[79]. In the same
way, the previous fitting procedure would lead to very simi-
lar separable interactions by starting from other modern re-
alistic forces.

As seen in Fig. 3, the range and the nonlocality ofVsep

1S0 are
of very good quality while its intensity at smallk character-
ized by l=−840 MeV fm3 is slightly too low. It originates
from the poor description of the phase shifts belowk
=0.4 fm−1, that is, from missing the virtual state at almost
zero energy. This could not be avoided because of the simple
Gaussian form used forvskd. Note that keeping the range
fixed, a pole at zero energy would have been obtained in the

t matrix derived fromVsep

1S0 for l=−950 MeV fm3. Last but
not least, the1S0 gaps obtained in infinite matter with our
force and withVlow k are quite similar[80]. However, as
pairing is exponentially sensitive to the force intensity, the
slightly stronger diagonal matrix elements ofVlow k up to k
=1.5 fm−1 translate into a slight overshoot of the gap pro-
vided by AV18 or by our force[80].

The Gogny interaction can be considered as a benchmark
concerning pairing properties in finite nuclei
[6,20,42,82–85]. As regards the calculation of the1S0 gap in
infinite matter, it was shown to behave almost like a bare
force, especially when using the D1S[81] parametrization
[38,39]. To address more precisely whether the Gogny force
mimics the bare force in the1S0 channel, its diagonal and
nondiagonal matrix elements[86] are also plotted in Fig. 3
for the D1S parametrization[81]. The Gogny force appears
to be similar to theVlow k interaction and to our separable
bare force. The underestimation at very low momenta is of

no importance for pairing as discussed forVsep

1S0. The similar-

ity with Vlow k and Vsep

1S0 seems to explain why the Gogny
force provides equivalent gaps to those obtained from the
bare force. Looking more into detail, a slight overshoot of
the gap provided byVlow k, and thus by AV18, is obtained
with Gogny beyondkF=0.8 fm−1 [38,80]. This can be related
to its slightly too large diagonal matrix elements compared to
those of our separable force beyondk=0.75 fm−1. As densi-
ties beyondkF=0.8 fm−1 dominate in finite nuclei, such an
overshoot could be sufficient to explain why the bare force
would not provide enough pairing in these systems and char-
acterize the necessary beyond-mean-field effects. We will
come back to this in Sec. IV. Let us mention that we found
the matrix elements of the Gogny force in the1D2 channel to
be very similar to those ofVlow k. Consequently, the Gogny

4Vsep

1S0 andVlow k differ from AV18 by a constant shift in momen-
tum space equivalent to a contact term in coordinate space. This
contact term properly deals with the short range part of theNN
interaction at low energy.

FIG. 3. Matrix elements in momentum space
of AV18 (full line), Vlow k (dashed line), our sepa-
rable force (dotted line), and the Gogny force
with the D1S parametrization[81] (dashed-dotted
line) in the 1S0 channel. Left panel: diagonal ma-
trix elements. Right panel: nondiagonal matrix el-
ements atk8=0.009 fm−1.
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force does not provide any artificial pairing in that partial
wave. Such a good agreement in theD wave was not ex-
pected since the Gogny force was, as any phenomenological
force in finite nuclei, adjusted without taking great care of its
partial-wave content.

Due to the previous comparison, we have enough confi-

dence inVsep

1S0 to consider more detailed pairing properties.
Beyond the ability of our force to reproduceDkF

, it is worth
analyzing the momentum dependence of the gap at fixedkF.
In Fig. 4, Dk obtained from AV18 and from our force are
compared for three different densities[87]. The agreement is
excellent in the energy and density intervals of interestsk
ø1.5 fm−1,kFøkF

sat=1.33 fm−1d. The rank-1 separable force
is not designed to reproduceDk for kù2 fm−1, where theNN
phase shifts become negative. However, this is not a signifi-
cant problem to describe pairing at low energy and density.
Note that the momentum dependence of the gap is quite
insensitive to the realistic interaction used, at least at low
energy[12,74].

The good reproduction ofDk shows the ability of the force
to describe fine pairing properties. It confirms that our choice
for vskd is appropriate and that its range has been properly
fitted. This comes back to the fact that the gapDk=D0 vskd is
directly determined by the half on-shellt matrix at s
=0 f~vskdg, that is, by the vertex function of the virtual state
in the 1S0 channel[18].

III. Effective pairing interaction at the mean-field level

A. Formalism

From the previous discussion, the property of the Gogny
force as being close to a reduction of the bare force for
low-energy phenomena can be understood. On the contrary,
in spite of their success as phenomenological pairing inter-
actions, DDDI cannot be interpreted as direct approxima-
tions of the bare force. One needs to understand them as
effective vertices, which requires the derivation of an appro-

priate scheme. Also, ourVsep

1S0 bare force is still too compli-
cated to be used in coordinate space HFB calculations. To
deal with these two issues, we now recast the pairing prob-
lem in a slightly different manner.

Let us start from the gap equation written at lowest order
in a given single-particle basishai

†j:

Di j = o
mn

ki j uV umnlkmn; o
mnqr

ki j uV umnlFmnqr
D s0dDqr,

s15d

where i , j ,k, . . . areconvenient labels to denote that single-
particle basis andV is the bareNN force. We defineD andk
as the energy-independent pairing field and antisymmetric
pairing tensor, respectively(kmn=kFuanamuFl, where uFl is
the unperturbed quasiparticle HFB vacuum). For future con-
venience we have also introduced a two-body propagatorF D

throughkmn;oqrFmnqr
D s0dDqr.

Let us now introduce a two-body amplitudeR in the me-
dium through the equation5

ki j uRssdukll = ki j uV ukll + o
mnqr

ki j uRssdumnlFmnqr
R ssdkqruV ukll,

s16d

wheres is an external energy parameter andFR a two-body
propagator which will be specified later. Combining Eqs.
(16) and (15), one can write

o
klqr

ki j uRssdukllFklqr
R ssdDqr = o

klqrmnst

ki j uRssdukllFklqr
R ssd

3kqruV ustlFstmn
D s0dDmn, s17d

which, combined once more, allows recasting the gap equa-
tion under the form

Di j = o
mnqr

ki j uRssdumnlfFmnqr
D s0d − Fmnqr

R ssdgDqr. s18d

No approximation has been done to derive Eq.(18) from
Eq. (15), and the derivation is valid whatever the two-body
propagatorFR is. The solution of the pairing problem has to
be the same by either using Eq.(15) or the set of coupled
equations(16) and (18). The previous rewriting of the gap
equation is not restricted to the mean-field level. The propa-
gatorsFR andF D may include off-shell nucleon propagation
(fully or through a quasiparticle approximation) at finite tem-
perature[88,90]. Equation(18) still holds in that case. As we
are interested in the mean-field treatment of the system at
zero temperature, we will only propagate the nucleons on-
shell. Including dispersive effects in both the single-particle
self-energy and the gap equation[70] constitutes a more ad-
vanced treatment of the many-body problem which is not
conceivable nowadays for extensive calculations of finite nu-
clei. We have not tried to proceed to the same recast by
starting from an irreducible vertex beyond the bare force.

5We make use of discrete sums in Eq.(16). Of course, an appro-
priate integral is to be considered when dealing with continuous
quantum numbers. The specification to the1S0 channel of the inter-
action is implicit in the present work even in Eq.(16) is valid in the
general case.

FIG. 4. Dk obtained from AV18 and from the rank-1 separable
force for three different densities.
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This could be done, in particular, if using a quasiparticle
approximation and/or considering a static limit for the
higher-order terms in the interaction.

The R matrix is specified as soon as the choice of the
two-body propagatorFR is made. Several choices are pos-
sible and selecting a particular one is simply a matter of
convenience and of formal consistency. For several reasons
discussed below, we require that the two-body effective ver-
texR treats particles and holes in a symmetric way and takes
the superfluidity of the medium into account. More specifi-
cally, we defineFR in such a way thatR sums through Eq.
(16) particle-particle and hole-hole ladders in thepresenceof
pairing correlations.

By considering the canonical basis associated with the
actual Bogolyubov transformation solution of the problem
and the hypothesis that time-reversal symmetry is conser-
ved,6 Fmnqr

R ssd andFmnqr
D ssd read as[10,11,70]7

Fmnqr
R ssd = −

s1 − rmds1 − rnd
Em + En + 2s

dmqdnr 7
rmrn

Em + En + 2s
dmqdnr,

Fmnqr
D ssd = −

1

Em + En + 2s
dmqdnrdnm̄, s19d

where rm;rmm=f1−sem−md /Emg /2=rm̄ embodies the(di-
agonal) one-body density matrix and Em=Em̄

=Îsem−md2+Dmm̄
2 is a quasiparticle energy. The indices

sm,m̄d characterize the paired states in the canonical basis.
The diagonal matrix elements of the single-particle mean
field em involved in Em are defined using an appropriate
scheme as already discussed in Sec. II D. Because of the
hypothesis we have made concerning the Bogolyubov trans-
formation, only the diagonal matrix elementsDmm̄ will be
nonzero, selecting in Eqs.(18) and(19) the matrix elements
of R and FR involving paired two-body states of the same
sort.

The first term entering the definition ofFmnqr
R in Eq. (19)

sums particle-particle(p-p) ladders as in theG matrix except
for the fact that BCS occupation numbers and quasiparticle
energies appear because of the superfluid nature of the sys-
tem [10]. The same is true for the second term dealing with
hole-hole(h-h) ladders. Two different signs are considered to
sum the diagrams associated with h-h ladders inR. The “−”
sign corresponds to what can be denoted as theT matrix in
the superfluid system sinceR reduces in that case to the
usual GalitskiiT matrix in the normal phase. This choice
corresponds to summing the h-h ladders as they actually ap-
pear in the expansion of the ground-state energy when taking
abnormal contractions into account in the theory[10,11].
Then, we will denote the in-medium matrix associated with
the “+” sign as theD matrix. Note that even if the definition
of this D matrix through Eq.(16) is fully valid, it does not

correspond to the summation of hole-hole ladder diagrams as
they appear in the expansion of the ground-state energy of
the system.

In the gap equation, it is appropriate to useT /D fully
off-shell ats=0.8 Eventually, Eq.(18) simplifies for the two
considered reaction matrices into

Di ; Diī = − o
m

kiī uDs0dumm̄l2rm
Dm

2Em

= − o
m

kiī uTs0dumm̄l2s1 − rmdrm
Dm

2Em
. s20d

Again, different choices could have been made in Eq.(16)
for the two-body propagator, amounting to using other two-
body vertices than theT /D matrices. For instance, choosing
the plane-wave basis, reducing Eq.(16) to the center of mass
frame of the interacting pair and using Eq.(7) for the two-
body propagator, Eq.(16) would reduce into the Lippmann-
Schwinger equation defining thet matrix. Our choice can in
fact be seen as an extension to the superfluid medium of the
regularizing procedures consisting of reexpressing the gap
equation in terms of the scattering length[91–93] or of thet
matrix in the vacuum[53,74]. The latter choices are of par-
ticular interest in the low-density regime where they allow
the derivation of analytical formula for the gap in terms of
known physical quantities. Equations(20) are not as useful
in the low-density limit since the off-shellT /Ds0d matcha

1S0

only after the superfluity has disappeared.
However, takingT /Ds0d is a formally optimal choice

when studying nuclei at low energy. Such systems cover den-
sities ranging from 0 torsat, where theS-wave like-particle
superfluidity evolves from the weak to the intermediate BCS
regimes, before coming back to the weak coupling. Thus, it
makes sense to use a two-body scattering matrix taking the
varying density and superfluidity into account. Also, consid-
ering the in-medium vertex at the thresholds=0 makes the
effective gap equation as given by Eq.(18) to have its sim-
plest possible analytical forms[Eqs. (20)]. The latter prop-
erty is partly due to the fact theT /D matrices treat particles
and holes on the same footing which is reasonable when
dealing with pairing correlations. For that reason, it should
be preferred to the BruecknerG matrix [62], even if calcu-
lated in the superfluid system[10]. One could also have used
the T matrix in the normal phase. However, this vertex pre-
sents, such as theG matrix, a pole at the threshold(⇔s=m
for the standard definition of its energy dependence) which
signals the appearance of a Cooper bound state in the me-
dium [62,94–96]. As the aim of the gap equation is precisely
to take care of the correlations associated with existing Coo-
per pairs, it should be combined with a regular vertex sum-
ming two-body correlations in the medium, except for those

6To be more specific, expressions(19) are rigorously valid only if
the third part of the Bogolyubov transformation[89] is trivial.

7Including off-shell propagation through a quasiparticle approxi-
mation would provide an additional factorZmZn, whereZi is the
quasiparticle strength[88].

8In Eq. (16), a half or fully on-shell matrix element ofR corre-
sponds to 2s=Ek+El. The choices=0 corresponds to particular
off-shell matrix elements since it cannot be obtained by inserting
any single-particle energiesek and el into 2s=Ek+El, as long as
pairing correlations are present. Indeed, the quasiparticle energies
are always different from zero in such a case.
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related to the possible bound state. In fact, the Bogolyubov
transformation aims to remove the pole from the scattering
amplitude by defining a nonsingularT matrix at the threshold
(s=0 in the definition used above), while treating pairing
correlations explicitly through the gap equation
[10,11,70,97].

An immediate by-product of the previous derivation is to
show explicitly that none of the previously discussed in-
medium matrices can be used in the gap equation without
rewriting the latter accordingly[12]. Aside from further as-
pects, the purpose of our recasting procedure is to incorpo-
rate the virtual high-energy transitions which appear in the
original gap equation into the in-medium interaction. While
doing so, the important pair scattering around the Fermi sur-
face are treated explicitly through Eq.(20). This is reason-
able since the gap equation is almost linear in the high mo-
mentum regime while it is highly nonlinear aroundkF. Note
that another recasting procedure was used in Refs.[12,98] to
get stable solutions of the gap equation when solved with
realistic bareNN interactions. By summing virtual transitions
above a sharp energy cutoff, an effective pairing interaction
acting in a valence space was defined[12,99]. It was antici-
pated and shown that the microscopic effective force was
close to the off-shellT matrix at the threshold[12,100]. This
result is not surprising in view of the previous discussion.

The present scheme can now be translated into the defi-
nition of a microscopic effective pairing interaction to be
used in the standard gap equation. By comparing Eqs.(15)
and (20), we introduce two versions of such an effective
vertex whose matrix elements in the canonical basis read as

kiī uVD
ef fumm̄l ; kiī uD1S0s0dumm̄l2rm,

s21d
kiī uVT

ef fumm̄l ; kiī uT1S0s0dumm̄l2s1 − rmdrm.

Each of these two versions includes a smooth cutoff as
well as in-medium correlations. The cutoffs have appeared
naturally when recasting the gap equation and will adapt
self-consistently to the amount of pairing in the system. They
do not have to be additionally chosen or optimized. They are
measured with respect tom and not with respect to the bot-
tom of the mean-field potential and thus, evolve with density.
Note that usingT has led to the appearance of a symmetric
cutoff on both sides of the Fermi energy whileD comes
together with a single cutoff above the Fermi energy. Again,
one should stress that the effective interactions defined by
Eq. (21) result from a rearrangement of the gap equation and
that no approximation has been done in the mean-field treat-
ment of pairing and that no effect beyond that level of ap-
proximation has been included at this point.

The two versions ofVef f have been studied. In the follow-
ing, we only present the results obtained by using theD
matrix. The reason for this is that theD matrix is slightly less
sensitive to the self-energy effects when those are included in
the calculation as will be discussed in Sec. III B 4. However,
any important conclusion drawn in the following for theD
matrix is valid for theT matrix.

B. Infinite matter

1. Calculation of theD matrix

Let us use the previous scheme to attack the infinite mat-
ter problem. The plane-wave basis corresponds to the ca-
nonical basis associated with the Bogolyubov transformation
solution of the problem. Using transparent notations, the
two-body propagator involved in the equation of theD ma-
trix reads as

F
PW ,kW
D ssd = −

1 − rPW ,kW − rPW ,−kW

EPW ,kW + EPW ,−kW + 2s
. s22d

Performing the averaging over the anglesPŴ ,kŴd,

F̄P,k
D ssd =

1

4p
E

f=0

2p E
u=0

p

FP,k,cosu
D ssd sinududf

=E
x=0

1

dx FP,k,x
D ssd, s23d

and considering the separable form ofVsep

1S0, D1S0 can be in-
tegrated explicitly. ExpressingD1S0 in the center of mass
frame yields

kkWuD1S0skF,P,sdukW8l =
lvskdvsk8d

1 − lE
0

` dk9

2p2k92v2sk9dF̄P,k9
D ssd

s24d

;lvskdhskF,P,sdvsk8d. s25d

Starting from our separable force, Eq.(24) shows that the
in-medium vertexD1S0 is also separable in the three vari-
ablessk,P,k8d. One has to check that usingD1S0 in the gap
equation as given by Eq.(20) provides the same gap as ob-
tained in Sec. II D. Since only pairs with a zero total mo-
mentum occur in nuclear matter and since the integration of
D for P=0 does not require the angle averaging procedure,
this reproduction must be exact. We have checked that it is
so, both for the gap at the Fermi energyDkF

and forDk. In the
following, we want to study andparametrizethe functionh
characterizing the dependence ofD1S0 on kF andP. This will
be necessary to useVef f in HFB calculations of finite nuclei.

2. Density dependence ofD1S0
„0…

We now study the density dependence ofD1S0s0d in infi-
nite matter. It enters the effective pairing force as a factor
defined asCskFd;hskF ,0 ,0d.

This function, derived usingVsep

1S0, Eqs.(24) and (25) and
free single-particle energies, is shown in the left panel of Fig.
5. The many-body effects inD1S0 are such that the magnitude
of the in-medium interaction decreases with increasing den-
sity and saturates forkFù1 fm−1. Within the usual frame-
work of the local density approximation(LDA ), this property
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translates into a pairing force which is slightly enhanced at
the surface of the nucleuss⇔kF<0.8−1.1 fm−1d as com-
pared to the centers⇔kF

sat<1.33 fm−1d.
In infinite matter, the density dependence of the force has

of course no link whatsoever with a surface effect. It is a
pure density effect generated by the in-medium coupling of
mean-field particles. It is only through the language of the
LDA that one would talk about aposition-dependentinterac-
tion in the nucleus. The present study clarifies this character
of the effective interaction at the mean-field level. Additional
effects, coming, for instance, from the induced interaction
generated by the exchange of surface vibrations in finite nu-
clei, have to be considered on top of the mean-field approxi-
mation [55].

The diagonal matrix elements ofVD
ef f at kF are compared

with those ofVlow k and of our separable force in Fig. 6.
Generally speaking, the pairing gapDkF

is not determined by
the diagonal matrix elements of the force atkF only [74].
Otherwise, the effective interaction, our separable bare force,
and AV18 could hardly give the same gaps. Obtaining the
same gaps is possible because the different nature of their
diagonal matrix elements is compensated by different off-
diagonal characters. For instance, the reduced influence of
the off-diagonal processes in the case of the effective force
embodied by the cutoff 2rk is accompanied by an enhance-
ment of its diagonal matrix elements through the density

dependence. This shows why the in-medium effects re-
summed in the effective pairing force are correlated with the
cutoff emerging through the recast of the gap equation. Note
that only in the case of such an effective interaction resum-
ming off-diagonal processes(up to high energy if starting
from a realistic bareNN force) the gap is indeed very much
determined by the matrix elements atkF. This would be par-
ticularly true if usingT instead ofD, since then the off-
diagonal matrix elements are cut on both sides of the Fermi
energy as shown by Eq.(20). Only this property authorizes
the use of weak-coupling formulas[52].

Later on, we will needCskFd as an analytical function of
kF. For that purpose, we fitCskFd. One should stress that
such a fitting procedure does not correspond to the use of
free parameters in the definition of the pairing interaction.
We simply reproducehskF ,0 ,0d, derived with no freedom

from Vsep

1S0, itself fitted on scattering properties and on the1S0
pairing gap provided by AV18. As the gap is exponentially
sensitive to the strength of the interaction, a fine fit ofCskFd
is required to reproduceDkF

with high accuracy. Two differ-
ent fits are compared with the exact functionCskFd in the left
panel of Fig. 5. The gap recalculated using the fit defined
through powers of lnkF is compared with the gap derived
from the bare force in Fig. 7. They are identical.

The two fits displayed in Fig. 5 have a quite different
analytical character. Using enough terms, one can actually
propose a large set of precise fits making use of very differ-
ent power series. For a given number of terms, some expan-
sions are more precise than others. For instance, an expan-
sion in powers ofkF requires a large number of terms

FIG. 5. Left panel: derived density depen-
dence of the effective pairing force in infinite
matter (full line). Two different fits are also
given. Right panel: same for the zero-range ap-
proximation of the effective pairing vertex.

FIG. 6. Diagonal matrix elements of different interactions atkF

in the 1S0 channel as a function ofkF in infinite matter:Vlow k (full
line), the separable bare force(dashed-dotted line), the finite-range
effective pairing interaction(dashed line), and its zero-range ap-
proximation(dotted line).

FIG. 7. 1S0 pairing gaps obtained from the bare force(full line),
the effective force(dashed line), and its zero-range approximation
with two different fits of its density dependence(dotted and dotted-
dashed lines).
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whereas expansions in powers ofÎkF or kF
−1/4. . . converge

much faster. Whatever the chosen expansion, the important
feature is to reproduce precisely the behavior ofCskFd de-

rived from V
1S0.

The fit making use of powers of lnkF provides an excel-
lent approximation ofCskFd with only three terms and pre-
sents the particular feature that adding other powers of lnkF
does not improve the fit significantly. As this was not the
case for any other expansion we have tried, we consider this
function as an “exact” analytical form ofCskFd. This func-
tion rises in the limitkF→0. This agrees with the fact that
D

1S0s0d tends to the off-shellt
1S0 matrix at s=0, which al-

most diverges because of the virtual state in the vacuum at
approximately zero scattering energy. This is seen in Fig. 6.
As no real bound state exists in this channel, the pairing
collapses accordingly in thekF→0 limit as seen in Fig. 7.

3. Zero-range approximation

An appealing property of the scheme developed here is its
suitability for studying a zero-range approximation of the
effective pairing interaction. Since the high-energy transi-
tions appearing in the gap equation have been resummed into
the in-medium vertexD1S0, no divergence is expected when
taking its zero-range limit. This is embodied by the presence
of the cutoff 2rk in the gap equation.

ExpandingkkWuD1S0skF ,P,0dukW8l in the range and in the
nonlocality leads to an effective pairing interaction reading
in momentum space as

kkWuVzrskFdukW8l < 2lCzrskFdrk8. s26d

One is simply left with a density-dependent force, con-
stant ink and varying asrk8, wherek8 is the momentum of
the intermediate state in the gap equation. The approximation
consisting of takingVzr independent ofP is shown to be
appropriate in Sec. III B 5. The gap equation in infinite mat-
ter associated with the force defined through Eq.(26) pro-
vides a constant solutionD=DkF

zr .
The structure of the zero-range approximation of the ef-

fective pairing force we obtain here provides a formal justi-
fication for the use of DDDI complemented with a smooth
cutoff above the Fermi energy[102]. Considering theT ma-
trix instead of theD matrix would allow a similar justifica-
tion for those DDDI which have been used with a symmetric
cutoff on each side of the Fermi energy[22].

We now extract the functionCzrskFd. This is done by
matchingDkF

zr with DkF
obtained from AV18 as a function of

kF. The functionCzrskFd is plotted in the right panel of Fig. 5.
As expected, no difference is seen at very low density be-
tween CskFd and CzrskFd, whereas the effect of the finite
range becomes more and more important with increasing
density. WhileCskFd was almost flat and nonzero when ap-
proaching the saturation density of nuclear matter, the zero-
range in-medium pairing interaction goes to zero. In other
words, the present calculationpredicts (through the LDA)
that, when approximated by a zero-range-like vertex, the ef-
fective pairing interaction has to be renormalized by a
density-dependent intensity whose surface character is more

pronounced than in the case of the finite-range original ver-
sion. Quantitatively speaking, whileCskFd is multiplied by a
factor 1.4 between kF

sat=1.33 fm−1 and kF=0.8 fm−1

s<rsat/5d, CzrskFd is multiplied by a factor 3.6. The zero-
range vertex has a behavior between surface and volume.
This confirms the results obtained from refined phenomeno-
logical studies performed with these kinds of vertices
[23,30–32].

The different behaviors of the finite-range and zero-range
forces can be understood in the following way. The density
dependence saturates when the size of the Fermi sea is of the
order of the inverse of the interaction range. Beyond that
point the range governs the coupling inside the Fermi sea.
This is visible in the left panel of Fig. 5 where the finite-
range interaction saturates beyondkFù1/Îa<1.4 fm−1. For
the zero-range vertex the same only happens whenkF

→1/Îa;` where the interaction goes to zero in order to
compensate for its artificial constant coupling ink space.

It becomes clear in the present context that the surface
enhancement of a zero-range pairing vertex takes care to
some extent of the finite range of the nucleon-nucleon inter-
action. The effect of the range, although noticeable, seems to
be renormalizable at the mean-field level. This is seen in Fig.
6 where the diagonal matrix elements of the two interactions
at the Fermi surface are compared. They are nearly identical.
The possible renormalization of the range conveys that
nuclear matter presents a so-called weak-coupling BCS re-
gime over the density range of interest characterized by the
size of the Cooper pairs being much larger than the interpar-
ticle distance and the range of the force. Such a result pro-
vides the grounds to the local density functional theory
[14,15] in the context of superfluid nuclear matter[44,45],
even if the context is slightly different in that case since all
beyond-mean-field effects are included in the in-medium
coupling constants.

However, the fact that the range and the nonlocality of the
force do not need to be resolved has to be confirmed in finite
nuclei. Indeed, a zero-range vertex carries less information
than the finite-range force does; this being embodied in the
present case by the different nondiagonal matrix elements of
our finite- and zero-range forces. While the zero-range ver-
sion is able to reproduce the gap at the Fermi level as a
function of the density, it predicts constant gaps as a function
of momentum at a given density. Such an approximation is
doubtful, especially around the Fermi energy where the gap
is rapidly varying[12], as seen in Fig. 4. Treating the range
and the nonlocality of the force affects the state-dependent
pairing gaps, the particle width of deep-hole states in finite
nuclei, and translates to some extent into the spatial character
of the pairing field[42]. It may also be of importance to
describe excited states in nuclei. Resolving this issue re-
quires an excursion far from the valley ofb stability [42].

Using CzrskFd within the LDA requires the identification
of its analytical dependence onkF. Unlike the function
CskFd, derived from the bare force through the calculation of
the D matrix, fitting CzrskFd amounts to fixing the free pa-
rameters entering the definition of the phenomenological
zero-range vertex. Two examples are plotted in the right
panel of Fig. 5. The overall multiplication byl in Eq. (26)
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does not correspond to adding another free parameter. No
parameter is needed to specify the cutoff.

Figure 7 displays the gap recalculated by inserting the two
used fits into Eq.(26). The three-parameter fit allows a sat-
isfactory reproduction of the gaps derived from the finite-
range interaction. The fit employing two parameters does not
provide sufficiently precise results. This last parametrization
overshoots the gap around its maximum by half a MeV and
undershoots it beyondkF=1.25 fm−1.

The number of parameters usually used in connection
with zero-range forces is two for a pure-volume pairing and
three for a density-dependent pairing[21,22,38,39,101]. The
reproduction of the gap in nuclear matter[38,39] as well as
recent calculations in finite nuclei[101,23] favor a density
dependence. In such studies, the exponent of the density has
sometimes been varied, in which case it could be considered
as an additional free parameter. Even if the presently derived
zero-range force also makes use of three parameters, it cor-
responds to a cleaner parametrization since the cutoff ap-
peared naturally and the adjustment of the force is simply a
matter of reproducing a fixed, derived function.

Following the path of a range expansion, one could in-
clude correction terms ink2,k82,k2* k82. . . and obtain the
corresponding density dependence by using the previous
method. Finally, it is worth noting that the finite-range effec-
tive interaction makes use of only two parameters for an
even better quality of results.

4. On-shell self-energy and isospin dependence ofD1S0
„0…

The logarithmic density dependence of the effective inter-
action has been derived from the integration of theD matrix
to all orders in the bare interaction. This integration includes
both hole-hole and particle-particle ladders in the superfluid
phase and treats the energy denominator of the two-body
propagator explicitly. However, while everything has been
consistently compared so far using free single-particle ener-
gies, the parametrizations of the functionsCskFd andCzrskFd
obtained without including self-energy effects are of course
approximate. As mean-field calculations of finite nuclei will
eventually be performed, the functionCskFd should be de-
rived accordingly. Consequently, we recalculate the effective
interaction including on-shell self-energy effects through a
density-dependent effective mass approximation for the
single-particle energies:

ekF,bskd =
k2

2m*skF,bd
+ «kF,bs0d, s27d

where kF
3 =3p2r /2=fskF

nd3+skF
pd3g /2 and b=srn−rpd /r

=fskF
nd3−skF

pd3g /2kF
3 are the Fermi momentum and the matter

asymmetry, respectively. Quantities relating to a particular
isospin value present an indexq either specified asn andp or
by 1/2 and −1/2 when dealing with neutron and proton,
respectively.

We use the effective mass as given by a standard param-
etrization of the Skyrme force[103]. Such an effective mass
mimics an average of the Brueckner-Hartree-Fock(BHF) k
mass,

m*

m
sk,kF,bd = Sm

k

] ekF,b
BHFskd

] k
D−1

, s28d

over the Fermi sea. It is independent ofk, smaller than one at
all densities and of the order of 0.7 at saturation density of
symmetric nuclear matter[104]. The Skyrme effective
masses in symmetric and neutron matter are plotted in the
left panel of Fig. 8 for the SLy4 parametrization[103]. As
seen, self-energy effects are larger in symmetric matter than
in neutron matter at a given density because of the stronger
neutron-proton interaction.

As the gap equation is particularly sensitive to the density
of states at the Fermi surface, the use of an averagedk mass
which does not reflect the bump at the Fermi surface of the
actual BHFk mass is questionable. When dealing with pair-
ing, one should, maybe, consider the BHFk mass atkF in-
stead[105], or the complete BHF single-particle energies.
However, two arguments are in favor of the averaged effec-
tive masses. First, the bump of thek mass atkF is smoothed
out to some extent by the presence of pairing correlations
[106]. Second, the main purpose of the present section is to
include self-energy effects inD1S0 which should not be as
sensitive as the gap to the density of states atkF.

The corresponding gaps for symmetric and neutron matter
are compared in the right panel of Fig. 8 to the one obtained
using free kinetic energies. The gaps are plotted as a function
of the Fermi momentum of the species(neutrons or protons)
concerned by the pairing. As expected, the inclusion of on-
shell self-energies reduces the gap. However, the effective
mass obtained from the SLy4 parametrization is such that the
reduction of the gap in neutron matter is too strong compared
to the one obtained using realistic bare interactions and BHF
single-particle energies[12,107]. On the other hand, the re-
duction is slightly too small in symmetric matter, especially
at low density[12,107]. This corresponds to isoscalar and
isovector parts of the effective mass which are, respectively,
too large and too small. In any case, the global effect is
present at the densities of interest. This should be sufficient
to discuss the effects of the self-energy on the effective pair-
ing interaction.

FIG. 8. Left panel: neutron effective mass in
neutron (dashed line) and symmetric(full line)
matter for the SLy4 Skyrme force. Right panel:
1S0 gaps calculated with three choices of single-
particle energies; free kinetic energies(full line),
effective mass approximation in neutron matter
(dashed line), and effective mass approximation
in symmetric matter(dotted-dashed line).
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The modified functionsCskF
qd and CzrskF

qd have been re-
calculated for neutron and symmetric matter. They are nearly
identical to those derived using free kinetic energies, at least
up to saturation density. Therefore, one can safely state that
the vertex only depends on the density of the interacting
nucleonsrq=kF

q /3p2=rf1+s−1d1/2−qbg /2 and is not influ-
enced by the surrounding nucleons of the other species. This
result offers a microscopic answer to the issue dealing with
the isovector density dependence of the effective pairing
force at the mean-field level. A dependence on the total den-
sity as used so far is not justified from the microscopic point
of view. This could of course change beyond the mean field
[53].

At the present stage, the best logarithmic fit of the density
dependence of the finite-range effective pairing interaction is
given, when using three terms, by

CskFd < 0.978 444 − 0.682 204 lnkF + 0.761 575sln kFd2,

s29d

while in the case of its zero-range approximation, we find

CzrskFd < 0.420 637 − 1.012 900 lnkF + 0.708 922sln kFd2.

s30d

Using these fits with the Skyrme effective mass approxi-
mation, the gaps obtained in neutron and symmetric matter
reproduce well those shown in Fig. 8. Finally, note that the
energy functional of normal and abnormal densities obtained
with such density-dependent vertices in the particle-particle
sT=1,Tz= ±1d channels is isospin symmetric.

5. Total-momentum dependence ofD1S0
„0…

We now study the dependence of theD matrix on the total
momentumP of the interacting nucleons. As nucleons with
nonzero total momenta can be paired in finite systems, it is
important to get insights into the corresponding component
of the effective force. In order to obtain theD matrix for P
Þ0, a numerical averaging over the angle between the rela-
tive and total momenta of the pair in the intermediate states
has been performed in Eq.(23).

The functionhskF
q ,P,0d is plotted in Fig. 9 as a function

of P, up to P=2.5 fm−1, for densities ranging fromkF
q

=0.2 fm−1 to kF
q =1.4 fm−1. The value P=2.5 fm−1 corre-

sponds to the maximumP a pair of nucleons inside the
Fermi sea can have atkF

q =1.25 fm−1. TheP dependence ofD
is significant at extremely low density, whereas it becomes
less pronounced with increasingkF

q. Around saturation den-
sity, the interaction is almost independent ofP. Also, the
interaction is strongly modified at lowP when increasing the
density while it is less sensitive to the medium for a pair
having a large total momentum.

For a reason which will be clarified later, we need to test
the hypothesis thathskF ,P,0d is separable inskF ,Pd and that
the total momentum dependence can be parametrized by
fsPd;e−a2P2/2, a being the same range as before. As a matter

of comparison, the productCskF
qde−a2P2/2 and the function

hskF
q ,P,0d are plotted in Fig. 9. The agreement is not satis-

fying at extremely low density whereh decreases much

faster thanCskF
qdfsPd as a function ofP. While the param-

etrization works well for typical surface densities, it de-
creases too quickly as a function ofP around saturation den-
sity. Of course, a pair of nucleons formed in finite nuclei has
nonzero components for all values ofP. In addition, the in-
tensity of the interaction correlating the pair for each of these
components must be seen as an average over all densities. As
a result, we expect to have a good description of the com-
bined density and total-momentum dependences of the effec-
tive pairing force by parametrizinghskF

q ,P,0d through
CskF

qdfsPd.

C. Effective pairing interaction in coordinate space

To obtain the previous results in infinite matter, we started
naturally from the bare force expressed in the plane-wave
basis and derived the effective pairing interaction accord-
ingly. To perform calculations in finite nuclei, and especially
if solving the problem in coordinate space, it is necessary to
have the expression of the interaction as a function of the
interacting nucleon positions. As already mentioned, the
force presently used is finite ranged and nonlocal. Conse-
quently, it depends on the four position vectorshrW1,rW2,rW3,rW4j
of the incoming and outgoing interacting nucleons. Also, the
effective nature of the force has been characterized by its
density dependenceCskF

qd. As the spin-isospin part of the
force is trivial, let us consider the spatial part of the two-
body interaction under the form

krW1rW2uDq

1S0s0durW3rW4l =
l

s2pd6a12E drW C„rqsrWd…

3expF− o
i=1

4

urW − rWiu2/2a2G , s31d

where

FIG. 9. Total momentum dependence of theD1S0 matrix for
several densities(full lines). A comparison is done with the function
CskF

qde−a2P2/2 (dashed lines).
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C„rqsrWd… = 1.179 341 + 0.345 992 lnrqsrWd

+ 0.084 619fln rqsrWdg2 s32d

is the form factor resulting from the local-density approxi-
mation of the functionCskF

qd derived in infinite matter and
discussed in Sec. III B 2. The fit expressed through Eq.(29)
and the relationshipkF

q =s3p2rqd1/3 has been used to write
Eq. (32).

The form given by Eq.(31) is reasonable since, if one
forgets about the density dependence(or takes it to be con-
stant in space), the following identity holds:

krW1rW2uDq

1S0s0durW3rW4l =
l

s25p3d3/2a9expF− o
i, j

4

urWi − rW ju2/8a2G .

s33d

Hence the interaction simply generalizes the Gaussian
form to the nonlocal case. The matrix elements of the inter-
action defined by Eq.(31) calculated in the plane-wave basis
take the form

kkW1kW2uDq

1S0s0dukW3kW4l = s2pd3lCskF
qde−a2sk2+P2/2+k82ddsPW − PW 8d.

s34d

This is precisely theDq

1S0 matrix derived in infinite matter
from our separable bare force and studied in previous sec-
tions. To reach such a form, one single approximation deal-

ing with the P dependence ofDq

1S0 was performed in Sec.
III B. Thus, Eq. (34) clarifies why the approximate depen-
dence onP was needed in order to write the effective pairing
interaction in coordinate space. Note that the parameters of
the force have been fixed in infinite matter and that no room
is left for any adjustment in finite systems.

It is worth characterizing the physical content of the LDA
used for the functionCskF

qd in Eq. (31). The particle-particle
and hole-hole ladders(including all high-energy processes)
associated with two-bodyscattering in the medium are re-
summed in the effective interaction by considering the
nucleus as slices of homogeneous, infinite nuclear matter.
However, the scattering of pairs around the Fermi surface
responsible for the formation of thebound statesin the me-
dium are treated explicitly in the finite system through the
resolution of the HFB equations. Also, the quantum shell
effects which strongly influence the latter pair scatterings are
taken into account explicitly. All along the way, the finite
range and the nonlocality of the interaction is fully consid-
ered. We expect the local approximation for the correlations
associated with two-body scattering to be satisfactory and
the inclusion of gradient terms9 to improve on it to be rather
unnecessary[108]. The fact that the LDA is performed on
the effective vertex itself makes the present approximation
different from a so-called semiclassical treatment[109] or
from the local density functional theory[14,15,44,45]. In

particular, it has allowed us to derive fine details of the in-
teraction, such as its nonanalytical low-density or isovector
character, which are otherwise difficult to identify by looking
directly at total energy differences because of our presently
limited experimental knowledge[110].

One of the most important properties of the newly defined
pairing interaction can be identified by calculating its anti-
symmetrized matrix elements in any given single-particle ba-
sis. To be explicit, we define a basishwnpzqj wheresn,p,z ,qd
denote the principal quantum number, the parity, thez signa-
ture, and the isospin of the state, respectively. This is typical
of the HF or canonical basis of a(triaxial, rotating, odd)
deformed nucleus. Specifyingwnpzqs as the component ofw
having a good projections of the spin on thez axis (defor-
mation axis in the intrinsic frame), the antisymmetrized ma-
trix elements of the effective pairing force as defined through
Eqs.(21) and (31) read as

sVq
ef fdikjl = lsr j + rldo

ss8

E drW C„rqsrWd…w̃nipiziqs
* srWdw̃nkpkzkqs8

* srWd

3 hw̃njpjz jqssrWdw̃nlplzlqs8srWd − w̃njpjz jqs8srWdw̃nlplzlqssrWdj,

s35d

wherew̃npzqs is defined as

w̃npzqssrWd =
1

sÎ2pad3 E drW8e−urW − rW8u2/2a2
wnpzqssrW8d. s36d

Restricting the pairing to states of opposite signatures in
the Bogolyubov transformation provides the matrix element
35 with an additional factord−zizk

d−z jzl
. Writing the matrix

elements in the HF basis requires the use of the cutoffsr j

+rld instead of 2rm in the canonical basis. This is a natural,
but not fully rigorous extension as can be realized by going
back to the recasting procedure proposed in Sec. III A. One
should preferably work in the canonical basis.

Solving the HFB problem in coordinate space is a nice
feature since it allows a natural treatment of all kinds of
deformations and is well suited to describe exotic systems
for which asymptotic properties of individual wave functions
and densities must be considered carefully. However, the na-
ive use of a finite-range interaction in this context is numeri-
cally prohibitive [5,46,111]. Indeed, solving the BCS gap
equation is too costly for practical applications, while the
HFB problem takes the form of a coupled set of integro-
differential equations, also untractable for systematic studies.
This is the main reason why zero-range forces have been
extensively used so far[21,54]. The matrix elements of our
finite-range, nonlocal effective pairing interaction look very
similar to those obtained from a zero-range force[112]. The
only additional cost is to replace the single-particle wave
functions wnpzqs by their convoluted counterpart as defined
through Eq.(36). This property makes the corresponding
HFB problem in (three dimensions) coordinate space trac-
table through the two-basis method[47,112,113], and almost
equivalent computationally to the use of a local, zero-range
force. In fact, only trivial modifications of HFB codes using
this method are required to implement the proposed micro-

9This is of course to be differentiated from gradient terms simu-
lating beyond-mean-field effects such as the exchange of surface
modes.
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scopic pairing interaction. Adding a routine to convolute the
HF wave functions, using the proposed density dependence
and inserting the factorsr j +rld when calculating the matrix
elements of the pairing field in the HF basis is necessary. Of
course, the pairing field provided by our force is nonlocal.
This feature prevents from solving the HFB problem through
a direct diagonalization of the HFB matrix in coordinate
space[46,114].

It is also worth noting that the derivative of the pairing
energy with respect to the density matrixhr jij when minimiz-
ing the total energy to obtain the HFB equations must not be
considered with the present force. Indeed, our effective pair-
ing interaction is equivalent to the bare force in the pairing
channel and its dependence onhr jij simply arises through a
recasting of the gap equation originally written in terms of
the bare force. Of course, this statement is no longer valid
when going to higher orders, when renormalizing the effect
of the three-body force[29] or when using the philosophy of
the density functional theory.

As an alternative to our finite-range and nonlocal micro-
scopic effective vertex, one can use its zero-range approxi-
mation studied in Sec. III B 3. When performing the zero-
range limit appropriately, the convolution used in Eq.(36)
becomes the identity operation. Consequently, the matrix el-
ements of the zero-range vertex take the form given by Eq.
(35) with w̃nlplzlqs replaced bywnlplzlqs andC(rqsrWd) replaced
by the LDA of the functionCzrskF

qd parametrized accord-
ingly.

Last but not least, it is essential to note that the separable
bare force defined through Eq.(5) does not lead to simple
calculations in coordinate space. Its finite range and particu-
lar form of nonlocality make it numerically untractable in
such a context. This is only by going to the in-medium vertex
that one obtains an interaction as given by Eq.(31).

IV. DISCUSSION

While very low densities are not essential for stable nu-
clei, they become increasingly important when going to ex-
otic systems. Indeed, nuclei close to the neutron drip line
develop extended low-density halos or skins where pairing
correlations play a crucial role. This is also true in neutron
stars’ crust. Thus, the behavior of the pairing force at low
density is of great interest for the study of these systems. It is
clear that usual DDDIs miss the very low-density part of
CzrskFd discussed in Sec. III B 3. In Ref.[31], strongly in-
creasing interactions at low density were simulated through
small exponentsg in Eq. (2). Such pairing interactions were
disregarded, notably because of the unrealistic reduction of
the two-neutron separation energy across the magic number
N=82. However, these interactions were used together with a
phenomenological cutoff at a maximal fixed energy in the
single-particle spectrum. In the present case, the cutoff 2rm
derived in connection with the density dependence will
weight the low-density content of the force in a very differ-
ent way.

Also, the isovector character of the pairing force should
manifest itself when studying drip-line systems. The depen-
dence of our force on the density of the interacting nucleons

will provide a weaker pairing when going toward the drip
lines than standard DDDI depending on the total density and
adjusted around the valley of stability. One can expect these
properties of the force to significantly influence matter den-
sities, pair densities, individual excitation spectra, low-
energy vibrational collective modes, rotational properties,
and the odd-even mass differences in exotic nuclei as well as
the position of the neutron drip line. It was shown that the
pairing gap is extremely sensitive to the details of the force
when dealing with neutron rich nuclei[31,115]. Also, while
the position of the proton drip line appears to be quite robust,
the position of the neutron drip line was shown to be shifted
by up to 25 mass units depending on whether the so-called
volume or surface pairing force was used[115]. This is one
of the achievements of the present work to propose a pairing
interaction whoseab initio derivation should make its ex-
trapolated use to exotic systems reliable and subject to less
uncertainty.

At the mean-field level, thisab initio character deals with
the bare force. This is the first essential piece since, unlike
for normal superconductors in condensed matter, the bareNN
force provides pairing between the constituents of the
nucleus. However, the question arises of its contribution
compared to the pairing generated by collective effects. Re-
cently, the BCS gap provided by the realistic AV18NN force
was shown to account for only half of the experimental odd-
even mass staggering in120Sn [55]. This was interpreted as a
necessity to go beyond the mean field to introduce the off-
shell nucleon propagation associated with the particle-
vibration coupling and the induced interaction generated by
the exchange of the same surface vibrations between time-
reversed states. Including those processes, the experimental
odd-even mass staggering was reproduced in120Sn[55]. This
exchange of surface vibrations should provide the effective
pairing force with an additional surface-peaked character and
some isospin dependence due to the appearance of new vi-
brational modes toward the neutron drip line. On the other
hand, the same category of diagrams is known to decrease
the gap in the bulk[2,49–52]; even if the corresponding
dressing of the vertex could change significantly when going
from neutron matter to symmetric matter[53]. The latter
would add up another dependence of the interaction on the
nuclear asymmetry. Thus, the situation concerning the net
influence of beyond-mean-field effects on pairing in finite
nuclei is unclear. Let us repeat that, as already discussed in
Sec. II F, calculations performed with the Gogny interaction
enforce the idea that medium renormalizations on top of the
bare force in theT=1 channel should not be that large when
going to finite systems.

However, one has to consider more elements before con-
cluding. First, the effect of three-body force on pairing
should be treated if one works with microscopic interactions
as proposed here. The three-body force has been shown to
decrease the gap in infinite matter non-negligibly forkF
ù0.8 fm−1 [107]. Including the three-body force in the pair-
ing channel could also be necessary to reproduce delicate
phenomena such as the odd-even staggering and the kinks of
differential charge radii[29]. Second, one has to include the
Coulomb force in the proton-proton pairing channel. From
the comparison between proton-proton and neutron-neutron
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scattering phase shifts in the1S0 channel[73], one would not
expect a strong antipairing effect from the Coulomb interac-
tion. This is particularly true since the very low-energy re-
gime where the Coulomb force is active does not seem to
matter so much when dealing with pairing as discussed in
Sec. II E. However, it was shown that the self-consistency of
the HFB calculations makes the Coulomb antipairing effect
quite significant in finite nuclei[116].

Thus, pairing correlations and details of the effective pair-
ing interaction are far from being understood in nuclei. Sys-
tematic microscopic calculations including all previously
mentioned effects are required. However, this is unconceiv-
able in finite nuclei at this stage. As a first step, performing
systematic HFB calculations with our effective interaction
offers a unique opportunity to understand in detail the con-
tribution of the bare force to pairing in nuclei.

Let us now discuss the range of the effective pairing
force. Indeed, it would be nice to have an interaction allow-
ing for large scale microscopic calculations of nuclear
masses[35,37]. Performing self-consistent mean-field or
beyond-mean-field calculations, the size of the single-
particle basis necessary to get converged results should be as
small as possible to make such large scale calculations trac-
table. The required size is directly related to the range of the
force in the pairing channel. For instance, the shorter range
of the Gogny forces0.7 fmd makes the convergence of the
quantities related to pairing quite slow. One needs to include
states up to 100 MeV in the quasiparticle spectrum to do so
[111]. It can be seen from Fig. 3 that our effective interaction
is softer than the Gogny force. The range to be compared
with the 0.7 fm of Gogny is in the present caseÎ2a<1 fm.
This translates into a kinetic energy of about 70 MeV which,
once the depth of the single-particle potential has been sub-
tracteds<50 MeVd, gives a value of the order of 20 MeV.
Taking the effect of the cutoffsr j +rld in the gap equation
into account, it should be sufficient to include single-particle
states up to 10–20 MeV of positive energy in the canonical
basis to get converged HFB calculations. Thus, this pairing
interaction should be simple and soft enough to perform
large scale calculations of nuclear masses, avoiding at the
same time the problem related to the phenomenological
choice of the cutoff dealing with the zero range of the DDDI
[37]. Checking this statement is the aim of a forthcoming
publication [117]. Note that the induced interaction is ex-
pected to be long ranged[52,55].

Once the softness of the pairing interaction has been es-
tablished, it will be important to understand the significance
of the range and the nonlocality of the force and whether it
must be treated explicitly in nuclei. It amounts to studying
the influence of the nonlocality of the pairing field. Being
able to use the microscopic nonlocal finite-range interaction
and a gap-equivalent local zero-range force within a single
scheme offers a unique opportunity to answer such a ques-
tion [117].

V. CONCLUSIONS

In this paper, we have proposed a microscopic effective
interaction to describe pairing in the1S0 channel. The new
features of the interaction are numerous.

It possesses a clear link to the bare force. The effective
interaction provides the same pairing properties as the bare
force at the mean-field level, as required from many-body
theories. The gap at the Fermi energy obtained in infinite
matter from the realistic AV18 interaction is perfectly repro-
duced by the new force. Going into further detail, the mo-
mentum dependence of the gap is also very well described in
the density range of interest.

The effective force is finite ranged, nonlocal, total-
momentum dependent, and density dependent. While the ef-
fective interaction is almost constant for densities ranging
from saturation to typical surface densities, it is strongly en-
hanced at very low density. The isoscalar and isovector den-
sity dependences of the pairing force are also obtained
through theab initio derivation. While phenomenological
density-dependent pairing interactions used so far depend on
the total density, the one derived here depends on the density
of the interacting nucleons only(i.e., protonsor neutrons
since the present work deals with like-particle pairing only).

This effective pairing force is defined by recasting the gap
equation written in terms of the bare force into a fully
equivalent pairing problem. Through this rewriting proce-
dure, the matrix elements of the effective force are provided
with a natural cutoff 2rm, where rm is a BCS occupation
number. This makes the definition of zero-range approxima-
tions meaningful and no adhoc cutoff has to be additionally
chosen and optimized. Performing such a zero-range ap-
proximation and asking for identical pairing gaps at the
Fermi surface in infinite matter, the appropriate density de-
pendence of the zero-range force is obtained. This procedure,
free of any phenomenological cutoff allows us to disentangle
the roles played by the range and the density dependence of
the pairing interaction. Surprisingly, the enhancement of the
force at typical surface densities as compared to the satura-
tion density is much more pronounced than for the finite-
range vertex. This result shows unambiguously that the sur-
face character of usual zero-range forces is, to a large extent,
a way of taking care of the range of the interaction. Precisely,
the zero-range vertex is predicted to have a behavior between
surface and volume. It also undergoes a large increase of its
intensity at very low density.

The last essential feature of the force can be identified
when going from infinite matter to finite nuclei. Indeed, deal-
ing with a finite-range and nonlocal interaction is far from
being trivial when solving the HFB equations in coordinate
space. However, the particular analytical structure of our ef-
fective force makes such calculations possible within the so-
called two-basis method. In fact, the corresponding compu-
tational cost is of the same order as for zero-range forces.
Performing exploratory calculations in finite nuclei with this
new interaction is the aim of a forthcoming publication
[117].
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