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Bare vs effective pairing forces: A microscopic finite-range interaction
for Hartree-Fock-Bogolyubov calculations in coordinate space
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We propose a microscopic effective interaction to treat pairing correlations itSthehannel. It is intro-
duced by recasting the gap equation written in terms of the bare force into a fully equivalent pairing problem.
Within this approach, the proposed interaction reproduces the pairing properties provided by the realistic AV18
force very accurately. Written in the canonical basis of the actual Bogolyubov transformation, the force takes
the form of an off-shell in-medium two-body matrix in the superfluid phase multiplied by a BCS occupation
number 2., This interaction is finite-ranged, nonlocal, total-momentum dependent, and density dependent.
The factor 2, emerging from the recast of the gap equation provides a natural cutoff and makes zero-range
approximations of the effective vertex meaningful. Performing such an approximation, the roles of the range
and of the density dependence of the interaction can be disentangled. The isoscalar and isovector density
dependences deriveab initio provide the pairing force with a strong predictive power when extrapolated
toward the drip lines. Although finite ranged and nonlocal, the proposed interaction makes Hartree-Fock-
Bogolyubov calculations of finite nuclei in coordinate space tractable. Through the two-basis method, its
computational cost is of the same order as for a zero-range force.
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[. INTRODUCTION Bogolyubov(HFB) type, while the considered beyond-mean-

field calculations deal typically with symmetry restorations

(projected mean-field methpdnd with large amplitude col-
3ctive motion in nucle{generator coordinate methob,6].

The structure of the nucleus and the properties of ex
tended nuclear systems strongly depend on their possible s

perflwd. nature. In finite nuclei, nucleon[c pairing has aThus, one has to identify the appropriate vertices to be used
strong influence on all low-energy properties of the system

) _ ) ‘in each of these cases. The same question arises, for instance,
This encompasses masses, separation energies, deformatipny. - ntext of the shell modgF]

individual excitation spectra, and collective excitation modes |y concentrate here on the mean-field treatment. While
such as rotation or vibration. The role of pairing correlationsy, . \ ariational derivation of the HEB equations cannot help
is particularly emphasized when going toward the drip lines;| defining the appropriate vertex, the Green function or
This is due to the proximity of the Fermi surface to the G4 yqtone formalisms are able to do so. Such many-body
single-particle continuum. Indeed, the scattering of Virtualtheories show unambiguously that the irreducible vertex to
pairs into the continuum gives rise to a variety of new pheye ,qeq in the pairing channel at lowest order is the bare
nomena as regards the properties of ground and eXCit%cleon-nucleor(Nl\l) force [8-11). At the next order, the
states of nuclef1]. o L irreducible pairing vertex involves the so-called polarization
In neutron stars, a good description of pairing is also rejiaqrams. This situation is in contrast to the particle-hole
quired. The neutron-neutrdi$, pairing drives the physics of | 2one \where one cannot avoid regularizing the repulsive

heutron star crusts, while at_higher densities_, that is, f_rom t€ore of the bare interaction from the outset through the defi-
inner crust to two or three times the saturation density, NeUzition of an in-medium two-body matrix. This stresses the

o : ; 3
tlron ind pr?ton pairing olccursdor;]nnantlyﬂm.éﬁéﬁ— Fa a_n?l fact that the effective forces in the particle-hole and particle-
S channels, respectivelig]. Such superfluid phases influ- - vicle channels are different. In particular, the direct use in

ence the dynamical and thermal evolution of the star. Indeeq},, gap equation of an in-medium vertex such as the Brueck-
postglitching timing observatior8] and the cooling history ner G matrix leads to double countirg1,12
[4] strongly depend on the presence or absence of pairing in Thus, the mean-field energy defined in this context is a

the system. . . functional of one-body normal and abnormal density matri-
To treat pairing, one needs to specify t.he many-body teCh(:es and do not refer to the mean value of a given Hamil-

fonian in a product state. However, the strategy used consists

calculation at that_cho_sen level of approximation. The Iattermc motivating the low-energy functional from a many-body
depends on the situation and on the system. In the prese

L L Q%pansion and thus, consists of keeping an explicit link to the
case, our aim is eventually to perform nonrelativistic Self'bareNN force. With this approach, the theory is not neces-
consistent mean-field and beyond-mean-field calculations i . !

fini lei. M field calculati tthe H F I(Qarily local and the mean-field functional does not include
Inite nuclel. Mean-field calculations are of the Hartree-Fock-,46 correlations than provided by the irreducible vertices in

the particle-hole and particle-particle channels. Also, one has
to come back to the many-body expansion to enrich the func-
*Email address: duguet@theory.phy.anl.gov tional if going beyond the mean-field approddt3]. Even if
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the final goal is the same, this differs from the strategy usedormed where experimental data are available. Extrapolating
in the so-called(local) density functional theory14,15.  the use of these interactions toward the drip lines is question-
Note also that calculations based on the extension of Gorkable. To correct for this defect, few DDDIs were fitted to
ov's formalism to the relativistic case are also performedreproduce the gap provided by realistN forces in infinite
[16—198. Recently, the effects of polarization leading to the matter[38,39. However, the necessary density dependence
screening of nucleon and meson propagators have been stuahd cutoff were still treated phenomenologically.
ied in infinite matter[19]. The reduction of the gap was In fact, the present knowledge about the pairing force and
found to be much larger than in the nonrelativistic case, corthe nature of pairing correlations in nuclei is quite poor.
recting to some extent for the excessive gap found at firsProperties such as the range of the effective pairing interac-
order. tion, its link to the bare force, its possible surface character
As regards HFB calculations in finite nuclei, only phe- in finite nuclei, and its density dependence, in particular, is-
nomenological forces have been used in the spin-singletdvector, still have to be clarified. As noticed as early as 30
isospin-triplet pairing channel so far. One example is theyears ago[40] and pointed out several times since
finite-range, density-independent Gogny foli@d], whose [1,13,29,31,32,41—-430btaining proper density dependences
restriction to the spin-singlet/isospin-triplet channel can beof particle-hole and particle-particle effective forces at a
written as given level of approximation is difficult but of great impor-
tance to meet modern high-precision experiments. The prob-
lem dealing with the cutoff to be used in the pairing channel
in connection with zero-range vertices has been solved re-
cently [44,45. The idea was to identify the divergences
and is to be averaged over the angle between the incomingemming from the use of a local gap and regularize them
and outgoing relative momenta if dealing with tBewvave  through a well-defined renormalization scheme. That scheme
only. In Eg. (1), P, is the spin-exchange operator while the has to be understood in the context of the local density func-
Coulomb part of the Gogny force has not been consideredional theory[29] (which is perfectly fing rather than as a
The other commonly used pairing interaction is (density-  mean-field approximation arising at lowest order of some

2
1-P e
UE: )\IT e—\rl—rz\zlaiz’ (1)
i=1

Vfogny(Fl, r92) =

dependenté interaction(DDDI) [21-25: many-body expansion.
NN The present work concentrates on the mean-field treat-
<r1+ rz) 7 ment of pairing at relatively low energy and low density in
.. 1-P, 2 . the isotropic, spin-singlet and isospin-triplet channels. The

VL) =X, 2 1- o A=), aim of this study is manifold. In Sec. II, we define an appro-
¢ 2) priate simple version of the bare force in ti& channel and
explain in detail its fitting procedure. Then, an in-medium
wherep denotes the matter density local scalar-isoscalar Pairing interactionEq. (21)] equivalent to the bare force is
part of the one-body density matyix introduced in Sec. lll A. The corresponding diagrammatic
The latter, usually used when solving the problem in co-fésummation authorizes the study of the finite-ranged effec-

ordinate space, must be complemented with a cutoff in thélve force and of its zero-range approximation on the same
gap equation to avoid divergences. Studies of the rotationdPoting. This is discussed in Sec. Ill B where the roles of the
bands of superdeformed nuc[&6,22 and actinide$23,27, range and of the density dependence of the pairing interac-
of halo nuclei[21], and of the evolution of charge radii tion are disentangled. In the particular case of the zero-range
across magic numbei28,29 have helped to establish the approximation for the vertex, the scheme proposed presents
success and the surface-peaked character of the DDDI in tHérong similarities with the regularization procedure intro-
pairing channel. Recently, more systematic studies ofiuced in Refs[44,45. We will actually discuss this particu-
asymptotic matter and pair densities of exotic nufB], of lar point in a forthcoming publication. Ultimately, the inter-
the evolution of the pairing gap toward the neutron drip line@ction is to be used in calculations performed in coordinate
[31], and the average behavior of the odd-even mass diffesPace by solving the HFB equations on a three-dimensional
ences over the mass taljg2] have allowed a refinement of Mesh[46—48. Although finite ranged and nonlocal, the pro-
the DDDI. The optimal compatibility between experimental Posed interaction is shown in Sec. Ill C to make these calcu-
data and mean-field calculations was obtained for a forcétions tractable. The formulas defining completely the new
between surface and voluni23,32, with p.~2p.,, where effective pairing force can be found in the same section.
psa=0.16 fnT3is the saturation density of symmetric nuclear Some important points are discussed in Sec. IV while our
matter. The great sensitivity of matter and pair densities tgonclusions are given in Sec. V.

pairing in the low-density regime seemed to favor &%

=<1. . Simplified bare force
Although successful in describing low-energy nuclear -
structure over théknown) mass tablg6,22,23,33-3] the A. Fitting procedure

two previous phenomenological pairing interactions lack a Screening effects beyond the mean-field approximation
link to the bare nucleon-nucleon interaction. They were di-due to density and spin fluctuations are known to strongly
rectly fitted to finite nuclei data, and may thus renormalizedecrease the pairing gap in neutron matter, both for singlet
beyond-mean-field effects. In addition, their fits were per-and triplet pairing2,49-53. Whether it is justified to extend
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this statement to finite nuclei is still an open question. In-suggesting that the bare interaction itself is to a good ap-
deed, the dressing of the vertex could change significantlproximation separable and nonlocal at low enef@i].
when going from neutron matter to symmetric maf88].  Thus, we start from the definition of the interactikléi% in
Also, including the induced interaction and off-shell self- the plane-wave basis

energy effects due to the exchange of surface vibrations be-
tween time-reversed states seems to increase the pairing gap

in finite nuclei compared to that generated by the bare force
[26,54,55. In addition, the influence of the restoration of

particle number and pairing vibrations still have to be char—through
acterized from systematic self-consistent calculations in even 1-p

and odd nuclei. The situation as regards beyond-mean-field <|2131|2252‘ —"Vi§°
effects is unclear at this stage and one can simply state that a 2 P
significant cancellation between the effects of screening and 1 o e g oo
of surface vibrations on singlet pairing should take place in = —<klk2|VS§?jk3k4>S(5315355254— 6515455253),
finite nuclei. As a result, two strategies seem reasonable 2

when dealing with the definition of a pairing interaction to be

used in mean-field calculations. e NSOl ey = (RN SOl 39D _ P
Sticking to the pure mean-field picture, one can define the <k1k2|Vse,Jk3k4> <k|Vse,Jk Y(2m &P - P, “@

i_nteraction by reproducing pr.o'perties c.)f the bm interac- where its center of mass part is approximated by
tion. If necessary, the possibility remains to include beyond-
mean-field effects explicitly in a consistent way when using Aol — ,
an interaction mimicking the bare force. (KIVsdK') = o (Ko (k). (5
A second strategy consists of fitting the interaction di- Lo L
rectly to finite nuclei data through mean-field calculations While k degotgs Ehe morpen}urg of a particle in the labo-
[22]. This strategy has been the most popular so far whefatory frame,P=ki+k; and k=(k—k;)/2 are the total and
dealing with phenomenological forces to be used in selfrelative momenta of a pair, respectively. The stdi&s)}
consistent  Hartree-Fock—Bardeen-Cooper-Schrieffer ~ angpan the tensor product of momentum and Sﬁn:i%)
HFB calculations[20,22. Such a procedure aims at renor- single-particle Hilbert spaces and are orthonormalized
malizing the beyond-mean-field effects which possibly dothrougH
not cancel out. Of course, the use of such a force in calcula-
tions going explicitly beyond the mean field is suspicious. e e A 3 oh L
As a first attempt, and because we want to separate mean (s ¢kjsi> = (2m)* ok k1)5%51' (6)
field from beyond-mean-field effects, we follow the first |50, the subscripta ands in Eq. (4) denote antisymme-
strategy. Note that no isospin symmetry breaking effects duized and symmetrized matrix elements, respectively. A ma-
to Coulomb or charge-independence breaking of the nuclegfix element with no subscript is neither symmetrized nor
part of the interaction is considered in the present study. Intisymmetrized. The isospin quantum number has not been

was shown to have no effect on the gap in ¥ channel  gpecified since the form of the matrix elements in ffie
[56]. Also, we do not consider the neutron-proton component 1 T = +1} channels is trivial.

of the force in this channel.

Bis () = (F ki) = €47, 3

k353k434>

a

C. Connection with scattering phase shifts
B. Form of Viﬁ% gp

As already said, the bafN interaction has to be consid- The link between the bare force and M phase shifts is

ered in the pairing channel at lowest order in irreducibleObtained by treating the_tvvp-body problem_in the center of
vertices. However, the full complexity of any realisfiN mass frame. To make this I|nk,. it is convenient to introduce
force mékes syste'matic HFB calculations in finite nuclei un-the epergy-dependent scatteringmatrix. The Lippmann-
. . . Schwinger equatiorj61] defining it in the uncoupledS,
tractable from the computational point of view. We thus have
: S S ) channel takes the form

to define a simplified bare force retaining the essential phys-
ics provided by the fulNN interaction as regards pairing.

A particular feature of theNN force in thelS, channel <l2|t150(s)|l2’> :<l2|V150|IZ’> +f
is the corresponding very large, negative scattering length.
The empirical values for neutron-neutron, neutron-proton,
and proton-proton scattering length aI,EO:—l&SiOA fm
[57] (-18.7£0.6 fm in a recent experimert8]), aiﬁo
=-23.749+0.008 fm[59], and a;%:—7.806310.0026 fm
[60], respectively. This indicates that tHeN interaction
holds a virtual state in the vacuum at almost zero scattering ‘Because of the convention used to define plane waves, integrals
energy in the'S, channel. In the vicinity of the virtual state, in momentum space are characterizedfbi§k/ (2)3. We also use
the scattering matrix can be written in a separable form, the conventiong?=1.

K -
(277)3<k|v130| K')F 5(9)

X (K]t So(9)|K'), (7)

whereP is the conserved total momentum of the pair and
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proceed, however, through the resolution of the inverse scat-
8 tering problem. Indeed, a simple analytic formwak) will
eventually be necessary to perform HFB calculations of fi-
is the noninteracting two-particles propagator in free spacaite nuclei. We choose a simple form fofk) and try to
appropriate for outgoing boundary conditions. In B8, M yeproduces So(k) as well as possible. We consider the Gauss-
is the nucleon bare mass asits the energy of the interacting a3 form
pair in its center of mas@otal energy subtracted dg?/4m).

It is worth noting thafF ! is independent oP and diagonal in v(k) =¥, (12)

t
Fi= — ——
) s—kim+ie

k. where « is the second parameter of the force. This choice
Because of the rank-1 separable form chosen for the bagijll be shown later to be appropriate.

force, the Lippmann-Schwinger equation is exactly solvable

andt S takes for any triplets,k,k’) the separable forrf61]
D. 1S, pairing gap
- 1 - Zdk K"22(K") : : A et
(Kit'S(g)[k"y = )\v(k)v(k’)/{l _)\f _2—} We have introduced a simple force to mimic the realistic
0 2m*s—k?m+ie NN interaction in the'S, channel. Starting from this inter-
9) action defined in the vacuum, one can go to the mediurzn and
compute the pairing gap through the BCS gap equd86h
While the full scattering problem is expressible in termsThis scheme corresponds to the lowest order in the
of the half on-shellt matrix, the phase shifts carrying the Goldstone-Brueckner-Bogolyubov  perturbation  theory
information about the two-body wave function at long dis-[10,11], or in the Galitskii-Gorkov Green function method
tances relate to the fully on-shell parttofs=k?/m=k’2/m).  [8,66], and defines a meaningful mean-field picture. The sim-
With the convention chosen to define the plane-wave basiglest medium to consider at this stage is infinite nuclear mat-

this link can be written explicitly under the form ter. Indeed, its translational invariance strongly simplifies the
treatment and avoids the additional effects associated with

(IZ|t(k2/m)|lz’) —_ 4_772 (21 + 1)&%®sing (k) P (cok - K'), the finiteness of the nucleus. Of course, it is to some extent a
mk~, toy model, even if neutron stars can be considered as being

(10) closely connected with it.

In infinite matter, the favored Bogolyubov transformation
where 8(k) denotes the phase shifts for a relative orbitalcorrelates pairs of nucleons with zero total moméiite
angu|ar momenturh We have not considered in Ed.0) the gap equation written in the plane-wave basis is of the usual
coupling between different channels as provided by the BCS form and reads in th&s, channel as
tensor force. Focusing dr=0 and using the separakiena-

. “ dk’ -1 - A
trix, one gets Ar c=A :—f — KKV D[k —— 1
. K-k = Ak o 202 (kIVeed >2Ek’, (13
. o ,k” v (k//)
tan & (k) = - xmar kvz(k)/lﬂz— 2xm Pfo dk 12— K2 }  whereE,=/(g-u)?+AZ is a quasiparticle energy; being

the in-medium on-shell single-particle energy associated
(1) with the stateg; and u the chemical potential. To be consis-
- . tent, u should be calculated iteratively by constraining the
whereP denotes the principal value of the integral, density of the system, whilg, should be defined after regu-

. . SN]
Since _the sep_arable for_m of the bare interaction in ﬂi})e larizing the repulsive core of the bare force and by taking the
channel is physically motivated, one can hope to define ar

efficient and simple enough interaction by plugging themfluence of pairing correlations explicitly into account. This

e L would typically require the use of the on-shell self-energy
!mown phase shifts into EqL1) to f'x. Its parameters. Inldeed, I'y computed from the Galitskil matrix or the Brueckneg
it has been shown that th&, gap in nuclear matter is en- X

tirely determined by theNN scattering phase shifts in the matrix_ defined in' the superflqid ph‘?‘ﬁm'l?’m- A corre-
vacuum[56,62. Of course, a rank-1 separable interactionspOndlng mean-field scheme IS c!ep|cted dlagranjmat'lcallly n
cannot reproduce the phase shifts up to infinite energy in thiE'g' 1. Such_a_procedure IS very involved, especially if using
channel since they change sign around 250 M&6,63. mod.er.n. reahshd\leorges in aII(.S,'T) chanqels. It becomesf
One could use a rank-2 separable form to take care of thigrohibitive when dealing with finite nuclei. Thus, approxi-
[63]. However, an overall reproduction of the phase shifts ugnate schemes making use of the Brueck@ef71] or the
t0 Ej,p=250 MeV~ k=1.73 fn* should be sufficient to de- Feynman—Ge_llltsknT.[Gﬁ] ‘matrices in the normal fluid are
scribe pairing at relatively low density. Indeed, the kernel ofuSually considered in infinite matter.
the gap equation is strongly peakedkat

The inverse scattering problem, which corresponds to the 2solving the gap equation using a separable force was done as
determination of a two-particle potential from the knowledgeearly as 196464]. In that work, qualitatively similar results as

of the phase shifts at all energies, is exactly and uniquelyhose we derive in infinite matter were obtained using Yukawa-type
solvable for rank-1 separable potentigdd]. Thus, given the interactions.

phase shifts, a unique solution exists fdk). We do not 3Some exceptions exist however. See REFZ—69.
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Es ks 2 tion takes the form\,=A, v(k), with the gap at zero momen-
' L. >G_( E_+E_) lvk252| tum A, satisfying the equatiof56]
.................................. Y = WL\ZQ © dk }\kz 2 k
> 1=- F/ 2 zv(i 2 201 (14)
R c o 47 \(k72m - kg/2m) + Agu(k)
ks 1%

After solving Eg.(14), the gap at the Fermi surface is
obtained through,_=A, v(kg).

E. Fit

We perform a combined fit of the force on the neutron-
neutron scattering phase shifts and on the pairing gap in
infinite matter provided by the modern AVI8N interaction
[73]. Among other features, AV18 fits the proton-proton and
neutron-proton phase shifts up to 350 MeV, as well as
neutron-neutron low-energy parametdigattering length
the self-energy at lowest order in irreducible vertices. Combining‘md effective ra”g)e'” the 180 channel. Thus, the _neum)n'
these definitions with the usual expressions of the BCS occupatioﬁeutr(_)n phase shifts that V\_’e use beyond_lthe validity of the
numbersu? and v2, obtained from the compensation of the so- efféctive range approximatiofi- k=0.2 fm™) are state of
called dangerous diagramat lowest order, provides the BCS gap the art theoretical predictions.
equation[9-11]. The irreducible kernel entering the definition of ~ Thus, Egs.(11) and (14) are solved for several set of
I';, at lowest order is thg-matrix summing particle-particle lad- parameterg\,«). The results are compared with those de-
ders. The two-body propagator characterizing the intermediatgived from AV18 with the same. The gapAkF is plotted_in
states in the ladder is the product of one-body mean-field Greethe right panel of Fig. 2 for several values of the range
functions defined in the superfluid system. The irreducible kernethe intensity\ being chosen in order to obtain the maximum
entering the definition o\, at lowest order is the baféN force. gt 3 MeV. Indeed, this is a solid prediction from all modern
The reason why thg matrix or the7 matrix cannot enter the gap realistic forces[12,56,74,7h Note that the'S, gap calcu-
equation originates from the necessity to avoid double countingated with free kinetic energies is very similar for all modern
whep compgnsating for the danggrous diagrams. It reguires thg Sorces [12,56,74,75 This is due to the fact that they all
cIu5|on_ of isolated partlcle-pgrtlc_le and hole-hple '”termed'atereproduce the phase shifts very accurately. One can see that
states in those vacuum-to-pair diagrams involving an abnormay,, gap strongly depends an As the pairing gap probes the
contraction. interaction in a very sensitive way, requiring the precise re-

When performing extensive mean-field calculations of fi-Production ofA,_ derived from AV18 allows little latitude
nite nuclei, a phenomenological effective vertex such as thand determines the parameters of the separable force quite
Gogny[20] or the Skyrme[41,77 force is employed in the uniquely. This is a nice feature. For the best set of parameters
particle-hole channel to approximate one of the previous in{A=-840 MeV fn?, «=+0.52 fm), Ay is reproduced almost
medium matrices. They usually incorporate additional pheperfectly up to the gap closure. In particular, the bump is
nomenology(and to some extent the effect of higher orderobtained at the right density and energy. This is a nontrivial
termg by fitting some experimental data at the mean-fieldresult in view of the very simple form of our bare force. The
level. As we are not looking for refined calculations at thissuccess of the procedure comes back to the justification of its
stage, and because we want to use a clean theoretical quaseparable form and to the overall reproduction of the phase
tity to adjust the separable interaction, we simply insert freeshifts.
single-particle energies=k?/2minto Eq.(13). We also take The phase shifts calculated using the same sets of param-
w to be equal tok?/2m, whereks=(372p)® is the Fermi  eters are compared to those predicted by AV18 in the left
momentum of one kind of nucleons in the free gas at thegpanel of Fig. 2. The simplicity of the force used seems to be
densityp. more critical as regards a precise reproduction of the phase

Considering these approximations and inserting the sepahifts. Also, this quantity hardly constraints the parameters in
rable interaction into Eq(13), the solution of the gap equa- an obvious way. This justifies the complementary use of the

A\
-k-s ks
2 2 22

FIG. 1. Definition of the normal’y, and abnormahkl parts of

0.9  eemeeee AV18 o’ =09

02
1k Separable force | r 3 FIG. 2. Left panel: comparison between the
g of (fm”) = neutron-neutron'S, scattering phase shifts ob-
e r 22 tained from AV18 and from the rank-1 separable
O ] ~ force for several sets of paramete&ks «). Right
w? L 13 panel: same comparison for tR&, pairing gap.
/ In both cases, the range of the force is varied
L e [ eecoe AVIS N while the intensity is chosen accordingly to ob-
0 02040608 1 12 14 1.6 18 0 02 04 068 08 1 12 L& 16 tain a maximum gap at 3 MeV.

k (fm’") k, (fm’)
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FIG. 3. Matrix elements in momentum space
of AV18 (full line), Vo k (dashed ling our sepa-
rable force(dotted ling, and the Gogny force
with the D1S parametrizatiof81] (dashed-dotted
line) in the 1S, channel. Left panel: diagonal ma-
trix elements. Right panel: nondiagonal matrix el-
. ements ak’ =0.009 fni™.

1S0
k>

<k| V| k> (10° MeV fm’)
<k’ =.0091V

k (fm™)

pairing gap to fit the interaction. Interestingly enough, theaction and characterizes our scheme as a low-energy effec-
gap is well reproduced at very low density when using ourtive theory of nuclear matter valid below3pg,. Note that
best set of parametefthick curve on both panelswhile the  while the matrix elements of modern realistic forces are scat-
phase shifts are poorly reproduced bekw0.4 fmL. In par-  tered, thei,,, | partners all look the san{&9]. In the same

ticular, not reproducing the large scattering lengif? does ~ Way: the previous fitting procedure would lead to very simi-
not seem to be a major problem to obtain excellent gaps, 4 r separable interactions by starting from other modern re-

long as 8"(k) is correctly treated beyon=0.4 frr! as dlistic forces. 1

seen in the left panel of Fig. 2. It is known that .concentratin As seen in Fig._3, the- range and the nonlocality/gﬁg are
P 9 ) . Yot very good quality while its intensity at smallcharacter-

on the very Iow-energ”y part of thde phasg sh(ﬁtsef][ecr:]twe ized by A\=-840 MeV fn? is slightly too low. It originates

range approximationallows a good reproduction of the gap " i

up toke=0.5 fmi! but fails badly beyond that poiri&6]. As from the poor description of the phase shifts beldw

lon th ibound state exists in #8 channel t =0.4 fml, that is, from missing the virtual state at almost
ong as ine quasibound state exists g channet 1o oo energy. This could not be avoided because of the simple
motivate the separable form of the force, it seems nonesse

. . : N ®aussian form used far(k). Note that keeping the range
tial to obtain a precise value of its eigenenelgglated to . ) .
'S that i he sl S0 at k fixed, a pole at zero energy would have been obtained in the
= 1
?“”  that is, to the slope o ™(k) at _0)' It seems more t matrix derived fromvsg% for A=—950 MeV fn?. Last but
important to get an overall reproduction 6%50(k) which,

i _ not least, the'S, gaps obtained in infinite matter with our
through the on-shell matrix, relates to the wave function of force and withV,,,, , are quite similar[80]. However, as

the virtual state at intermediate distand€d]. This result  pajring is exponentially sensitive to the force intensity, the
agrees W!th the conplys!ons of R¢T4] and balances those slightly stronger diagonal matrix elements 4, , up to k
obtained in the relativistic contex18]. =1.5 fmi! translate into a slight overshoot of the gap pro-
vided by AV18 or by our forcg80].
F. Analysis ofvigg The C_;ogny intgraction can be_ consi(_:iered asa benchmgrk
concerning  pairing  properties in  finite  nuclei
%,20,42,82—8]5 As regards the calculation of tH&, gap in
infinite matter, it was shown to behave almost like a bare
Sforce, especially when using the DI81] parametrization
[38,39. To address more precisely whether the Gogny force
mimics the bare force in théS, channel, its diagonal and
nondiagonal matrix elemen{86] are also plotted in Fig. 3
for the D1S parametrizatiof81]. The Gogny force appears

. e o to be similar to theV,y, i interaction and to our separable
action[76] or monyatmg thg description of nuclear matter bare force. The underestimation at very low momenta is of
through effective field theorieg’7,78. Of course, we only . - . 1 o
take care of théS, channel here, we do not integrate out the " importance for pairing as discussed ¥ag}, The similar-
high relative momentum components of the bare force exily With Vi,  and V3 seems to explain why the Gogny
plicitly and thus, we do not look for a high precision poten- force provides equivalent gaps to those obtained from the
tial model. In Fig. 3, the matrix elements of our separablebare force. Looking more into detail, a slight overshoot of
interaction in momentum space are compared with those dhe gap provided by, ,, and thus by AV18, is obtained
AV18 and those of the non-Hermitiav,,, , obtained from  with Gogny beyond-=0.8 fm™ [38,80. This can be related
AV18 [79]. The cutoff used fol,,,  is A=2.1 farL, Our  toits slightly too large diagonal matrix eIemenlts compared to
Viio is very close toVi., , and quite different from AV18 those of our separable force beyokd0.75 fn*. As densi-

itself * It clarifies the physical content of our separable inter-U€S beyondkz=0.8 fm * dominate in finite nuclei, such an
overshoot could be sufficient to explain why the bare force
- would not provide enough pairing in these systems and char-
4\/23% andV,,, « differ from AV18 by a constant shift in momen- acterize the necessary beyond-mean-field effects. We will
tum space equivalent to a contact term in coordinate space. Thigome back to this in Sec. IV. Let us mention that we found
contact term properly deals with the short range part of XiNe  the matrix elements of the Gogny force in tH2, channel to

interaction at low energy. be very similar to those 0¥, . Consequently, the Gogny

As already mentioned, the rank-1 separable form does n
allow the description of the negative part of th&, phase
shifts at high energy. As seen in the left panel of Fig. 2, thi
translates into an overshoot of the phase shifts beyond
=1.4 fr%, but only into a slight overestimation of the gap at
ke=1.4 fmi. Roughly speaking, the justification for not re-
solving explicitly the hard core of the realistic bare force is
similar to the one providing the grounds for thg,, | inter-
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Let us start from the gap equation written at lowest order
in a given single-particle basig/}:

BTN\ AV18 .
Z 5l Separable force | A= 2(” VImamn= 2 G IVIMNFR0A,
s L. mnqr
2 ] (15
o0

wherei,j,k,... areconvenient labels to denote that single-
particle basis an¥ is the bare\N force. We define\ and «

as the energy-independent pairing field and antisymmetric
pairing tensor, respectivelik,,=(P|a,a,P), where|d) is

the unperturbed quasiparticle HFB vacuuiror future con-

venience we have also introduced a two-body propadator
FIG. 4. A obtained from AV18 and from the rank-1 separable through knp==, anqr(O)Aqr
force for three different densities. Let us now introduce a two-body amplitudin the me-
dium through the equatién
force does not provide any artificial pairing in that partial
wave. Such a good agreement in thewave was not ex- <|J|R(s)|kl> GiIVIKly + > <'J|R(5)|m”>anqr(3)<qr|V|k|>a
pected since the Gogny force was, as any phenomenological mngr
force in finite nuclei, adjusted without taking great care of its (16)
partial-wave content.

Due to the previous comparison, we have enough configheres is an external energy parameter & a two-body
dence inVg 50 to consider more detailed pairing properties. propagator which will be specified later. Combining Egs.
Beyond the ability of our force to reprodudg_, it is worth  (16) and(15), one can write
analyzing the momentum dependence of the gap at fixed
In Fig. 4, A obtaine(_j from AV18_ gnd from our force are > <|J|R(S)|k|>':k|qr = > <|1|R(s)|kI>Fk,qr(s)
compared for three different densitig¥/]. The agreement is Kiqr qurmnst
excellent in the energy and density intervals of intergst
<15 fmt ke <ki*=1.33 fnY). The rank-1 separable force XUV [SOFgimd O Amn, (17)
is not designed to reprodudg for k=2 fm™1, where theNN
phase shifts become negative. However, this is not a S|gn|f|tI
cant problem to describe pairing at low energy and density.
Note that the momentum dependence of the gap is quite
insensitive to the realistic interaction used, at least at low
energy[12,74.

The good reproduction af, shows the ability of the force No approximation has been done to derive B®) from
to describe fine pairing properties. It confirms that our choiceEq. (15), and the derivation is valid whatever the two-body
for v(k) is appropriate and that its range has been properlpropagatofF” is. The solution of the pairing problem has to
fitted. This comes back to the fact that the dag Ay v(k) is  be the same by either using E{.5) or the set of coupled
directly determined by the half on-shetl matrix at s  equations(16) and(18). The previous rewriting of the gap
=0[=v(K)], that is, by the vertex function of the virtual state equation is not restncted to the mean-field level. The propa-
in the 'S, channel[18]. gatorsF* andF 2 may include off-shell nucleon propagation
(fully or through a quasiparticle approximatioat finite tem-
peraturg88,90. Equation(18) still holds in that case. As we
are interested in the mean-field treatment of the system at
zero temperature, we will only propagate the nucleons on-
shell. Including dispersive effects in both the single-particle

From the previous discussion, the property of the Gognyself-energy and the gap equatipf0] constitutes a more ad-
force as being close to a reduction of the bare force fovanced treatment of the many-body problem which is not
low-energy phenomena can be understood. On the comra@pnceivable nowadays for extensive calculations of finite nu-
in spite of their success as phenomenological pairing interclei. We have not tried to proceed to the same recast by
actions, DDDI cannot be interpreted as direct approximastarting from an irreducible vertex beyond the bare force.
tions of the bare force. One needs to understand them as
effective vertices, which requwes the derivation of an appPro- s\ make use of discrete sums in E)6). Of course, an appro-
priate scheme. Also, OLVsep bare force is still too compli- priate integral is to be considered when dealing with continuous
cated to be used in coordinate space HFB calculations. Tquantum numbers. The specification to iSg channel of the inter-
deal with these two issues, we now recast the pairing probaction is implicit in the present work even in Ed.6) is valid in the
lem in a slightly different manner. general case.

which, combined once more, allows recasting the gap equa-
on under the form

= 2 (GiROIMNFR0(0) — Frrog(9]1Ag.  (18)

mnqr

Ill. Effective pairing interaction at the mean-field level

A. Formalism
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This could be done, in particular, if using a quasiparticlecorrespond to the summation of hole-hole ladder diagrams as
approximation and/or considering a static limit for the they appear in the expansion of the ground-state energy of
higher-order terms in the interaction. the system.

The R matrix is specified as soon as the choice of the In the gap equation, it is appropriate to UgED fully
two-body propagatoF® is made. Several choices are pos-off-shell ats=02 Eventually, Eq(18) simplifies for the two
sible and selecting a particular one is simply a matter ofconsidered reaction matrices into
convenience and of formal consistency. For several reasons A
discussed beIovy, we require th:_;\t the two-bo_dy effective ver- A=A=- > (i |D(0)|mm2pn—
tex R treats particles and holes in a symmetric way and takes m 2E
the superfluidity of the medium into account. More specifi- A
cally, we defineF”? in such a way thaR sums through Eq. - il - Zm
(16) particle-particle and hole-hole ladders in firesenceof % (i[O mm2(1 pm)meEm' (20

pairing correlations. L _ .
By considering the canonical basis associated with the #dain, different choices could have been made in(&6)

actual Bogolyubov transformation solution of the problem " the two-body propagator, amounting to using other two-
and the hypothesis that time-reversal symmetry is conseR0dy vertices than th@/D matrices. For instance, choosing

ed® FR {s) andE.2 (s) read ag10.11, 70" the plane-wave basis, reducing Ei6) to the center of mass
Y S matS 1 9 frame of the interacting pair and using E@) for the two-

. _ (1-pw(L-pp) B PrrPn body .propagator,. Ec{16). would reduc_e into the I__|ppman_n—

anqr(s) = —Em+ E, +2s Mo + —Em+ E.+ 255mq5m, Schwinger equation defining thiematrix. Our choice can in

fact be seen as an extension to the superfluid medium of the
regularizing procedures consisting of reexpressing the gap
equation in terms of the scattering leng#1—93 or of thet
matrix in the vacuuni53,74. The latter choices are of par-
ticular interest in the low-density regime where they allow
where pn= pnm=[1-(en—u)/El/ 2=pr embodies thedi-  the derivation of analytical formula for the gap in terms of
agona) one-body density matrix and E,=E;  known physical quantities. Equatioi®0) are not as useful
=\(en—w)2+A2_ is a quasiparticle energy. The indices in the low-density limit since the off-shefl/ D(0) matcha S
(m,m) characterize the paired states in the canonical basignly after the superfluity has disappeared.
The diagonal matrix elements of the single-particle mean However, takingZ/D(0) is a formally optimal choice
field €, involved in E,, are defined using an appropriate when studying nuclei at low energy. Such systems cover den-
scheme as already discussed in Sec. Il D. Because of thties ranging from 0 tgs,, where theS-wave like-particle
hypothesis we have made concerning the Bogolyubov transuperfluidity evolves from the weak to the intermediate BCS
formation, only the diagonal matrix elements,; will be regimes, before coming back to the weak coupling. Thus, it
nonzero, selecting in Eqgl8) and(19) the matrix elements makes sense to use a two-body scattering matrix taking the
of R andF® involving paired two-body states of the same varying density and superfluidity into account. Also, consid-
sort. ering the in-medium vertex at the thresha@d0 makes the
The first term entering the definition fo?nnqr in Eq.(19)  effective gap equation as given by Ed8) to have its sim-
sums particle-particlép-p) ladders as in th& matrix except  plest possible analytical form€Eqgs. (20)]. The latter prop-
for the fact that BCS occupation numbers and quasiparticlerty is partly due to the fact th&/ D matrices treat particles
energies appear because of the superfluid nature of the sysad holes on the same footing which is reasonable when
tem[10]. The same is true for the second term dealing withdealing with pairing correlations. For that reason, it should
hole-hole(h-h) ladders. Two different signs are considered tobe preferred to the Brueckn& matrix [62], even if calcu-
sum the diagrams associated with h-h ladderRinThe “=”  lated in the superfluid systef0]. One could also have used
sign corresponds to what can be denoted asZtheatrix in ~ the T matrix in the normal phase. However, this vertex pre-
the superfluid system sincR reduces in that case to the sents, such as th® matrix, a pole at the threshold- s=u
usual Galitskii T matrix in the normal phase. This choice for the standard definition of its energy dependéengkich
corresponds to summing the h-h ladders as they actually agignals the appearance of a Cooper bound state in the me-
pear in the expansion of the ground-state energy when takindium [62,94-96. As the aim of the gap equation is precisely
abnormal contractions into account in the the¢ip,11. to take care of the correlations associated with existing Coo-
Then, we will denote the in-medium matrix associated withper pairs, it should be combined with a regular vertex sum-
the “+” sign as theD matrix. Note that even if the definition ming two-body correlations in the medium, except for those
of this D matrix through Eq(16) is fully valid, it does not

Fongl® == (19)

m%qﬁnﬁnm

- 8n Eq. (16), a half or fully on-shell matrix element dR corre-
To be more specific, expressio(i®) are rigorously valid only if  sponds to 8=E,+E;. The choices=0 corresponds to particular
the third part of the Bogolyubov transformatip89] is trivial. off-shell matrix elements since it cannot be obtained by inserting
7In(:Iuding off-shell propagation through a quasiparticle approxi-any single-particle energies, and ¢ into 2s=E,+E,, as long as
mation would provide an additional fact@;Z,, wherez; is the pairing correlations are present. Indeed, the quasiparticle energies
quasiparticle strengtf88]. are always different from zero in such a case.
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related to the possible bound state. In fact, the Bogolyubov B. Infinite matter
transformation aims to remove the pole from the scattering
amplitude by defining a nonsingul@matrix at the threshold

1. Calculation of theD matrix

(s=0 in the definition used aboyewhile treating pairing Let us use the previous scheme_ to attack the infinite mat-
correlations  explicity through the gap equation ter problem. The plane-wave basis corresponds to the ca-
[10,11,70,97. nonical basis associated with the Bogolyubov transformation

An immediate by-product of the previous derivation is to solution of the probl_em. Usin.g transparent notations, the
show explicitly that none of the previously discussed in-W0-Pody propagator involved in the equation of tema-

medium matrices can be used in the gap equation withodfi reads as

rewriting the latter accordingly12]. Aside from further as- e
1-ppk—pp«

pects, the purpose of our recasting procedure is to incorpo- = (= (22)
rate the virtual high-energy transitions which appear in the Pk EpxtEp—«t2s

original gap equation into the in-medium interaction. While A a

doing so, the important pair scattering around the Fermi sur- Performing the averaging over the angk k),

face are treated explicitly through EO). This is reason- .

able since the gap equation is almost linear in the high mo- = . _ L [T 5 .

mentum regime while it is highly nonlinear aroukgl Note Fpus) = ZTJ(!::O f(#o Fpkcose(S) sinodéde

that another recasting procedure was used in R&%98 to N

get stable solutions of the gap equation when solved with :f dx F2. (s) (23)
realistic bareNN interactions. By summing virtual transitions <=0 Pk

above a sharp energy cutoff, an effective pairing interaction

acting in a valence space was defifé@,99. It was antici- 4 considering the separable form\tiﬁ% D' can be in-

pated and shown that the microscopic effective force was, . ied exolicitly. Expressin®’® in the center of mass
close to the off-shelll matrix at the threshol{iLl2,10Q. This fregme yieldsp y. EXp ®

result is not surprising in view of the previous discussion.
The present scheme can now be translated into the defi- R R Ao (Ko (k')

nition of a microscopic effective pairing interaction to be <k|plso(kp,p,s)|k'>= —

used in the standard gap equation. By comparing ECS. 1 _)\f ﬂkﬁzvz(ku)? (s)

and (20), we introduce two versions of such an effective 0 27 Pk

vertex whose matrix elements in the canonical basis read as

(24)
(GiVE! M = (il [D"S(0) | mm)2pm, =\o(Kh(ke, P,9u (k). (25)
(21) Starting from our separable force, E4) shows that the
<ii_|veTff|mﬁ\> = <ii—|7lso(o)|mﬂ2(1 = Prm) Prn- in-medium vertexD S is also separable in the three vari-

ables(k,P,k’). One has to check that usiriglSO in the gap
quation as given by E@20) provides the same gap as ob-
ained in Sec. Il D. Since only pairs with a zero total mo-
entum occur in nuclear matter and since the integration of
for P=0 does not require the angle averaging procedure,
Shis reproduction must be exact. We have checked that it is

Each of these two versions includes a smooth cutoff a
well as in-medium correlations. The cutoffs have appeare
naturally when recasting the gap equation and will adap
self-consistently to the amount of pairing in the system. TheyD
do not have to be additionally chosen or optimized. They ar

measured with respect @ and not with respect to the bot- .

tom of the mean-field potential and thus, evolve with density.]:c’on’ bo.th for the gap at thedFerm| enerztg% fandhforfAk. Ir.] thﬁ

Note that usingZ has led to the appearance of a symmetric 0 owmg,_V\_/e want to study angarametrizethe un(_:tlon_

cutoff on both sides of the Fermi energy whil® comes characterizing the defegndencefmjiso on_k,: andP_. ThIS will _

together with a single cutoff above the Fermi energy. Again,be necessary to ud€" in HFB calculations of finite nuclei.

one should stress that the effective interactions defined by .

Eqg.(21) result from a rearrangement of the gap equation and 2. Density dependence a So(0)

that no approximation has been done in the mean-field treat-

g?)z:n?;tﬁ)?:rwzgs%neirghi?cm% ee;f Zﬁttﬁiiyggii:hat level of ap nite_ matter. It eEters the effective pairing force as a factor
The two versions 0¥ have been studied. In the follow- 9€fined aC(ke)=h(ke,0,0). N

ing, we only present the results obtained by using The This function, derived usin¥, Egs.(24) and(25) and

matrix. The reason for this is that tizmatrix is slightly less  free single-particle energies, is shown in the left panel of Fig.

sensitive to the self-energy effects when those are included i. The many-body effects i 0 are such that the magnitude

the calculation as will be discussed in Sec. Ill B 4. However,of the in-medium interaction decreases with increasing den-

any important conclusion drawn in the following for td®2  sity and saturates fokz=1 fm™%. Within the usual frame-

matrix is valid for the7 matrix. work of the local density approximatiqhDA), this property

We now study the density dependencen)l\SO(O) in infi-
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oL —— Cp=hk00 ] L — "k ]
Y I — Fitin(k)"™ => Gterms) | [ | - Fitin (k™ => (2 terms) ]
T CFiti 0 _ FIG. 5. Left panel: derived density depen-
& T Fitin(nlg)” => Gems) 7 Ftin (kg => Geems) 5 dence of the effz,ctive pairing force i)r: infi?lite
© 3 T ] matter (full line). Two different fits are also
2F - . given. Right panel: same for the zero-range ap-
1k L ] proximation of the effective pairing vertex.

0 02 04 06 08 1 12 14 16 0 02 04 06 038 12 14 16

1
k (fm™) ke (fm™)
translates into a pairing force which is slightly enhanced atdependence. This shows why the in-medium effects re-
the surface of the nucleus- ke=~0.8-1.1 fm?) as com- summed in the effective pairing force are correlated with the
pared to the centef kgatz 1.33 frd). cutoff emgrging through the recast of the gap equ_ation. Note
In infinite matter, the density dependence of the force ha$hat only in the case of such an effective interaction resum-
of course no link whatsoever with a surface effect. It is aming off-diagonal processesip to high energy if starting
pure density effect generated by the in-medium coupling of/Om @ realistic bar&\N force) the gap is indeed very much
mean-field particles. It is only through the language of thed€termined by the matrix elementskat This would be par-
LDA that one would talk about position-dependerinterac- tlgularly true '.f using 7 instead ofD, smce.then the off- .
tion in the nucleus. The present study clarifies this characteq'agonal matrix elements are cut on both sides of the_ Fermi
of the effective interaction at the mean-field level. Additional €"€r9Y as shown by E_q20). Only this property authorizes
effects, coming, for instance, from the induced interactionthe use of Weak-c_oupllng formul4s2]. . .
generated by the exchange of surface vibrations in finite nu- Later on, we will need:(kp) as an analytical function of
clei, have to be considered on top of the mean-field approxikF: FOr that purpose, we fi€(kg). One should stress that
mation [55]. such a fitting pro_cedure dc_;e_s_ not correspo_nd to the use of
The diagonal matrix elements €' at k- are compared free parameters in the definition of the pairing interaction.
with those ofV,,, « and of our separable force in Fig. 6. e S'Tply reproducen(kg, 0,0), derived with no freedom
Generally speaking, the pairing gap_ is not determined by from VSE?, itself fitted on scattering properties and on tisg
the diagonal matrix elements of the forcelkatonly [74].  pairing gap provided by AV18. As the gap is exponentially
Otherwise, the effective interaction, our separable bare forcgensitive to the strength of the interaction, a fine fiCokg)
and AV18 could hardly give the same gaps. Obtaining thds required to reproduca,_ with high accuracy. Two differ-
same gaps is possible because the different nature of thednt fits are compared with the exact functiotkg) in the left
diagonal matrix elements is compensated by different offpanel of Fig. 5. The gap recalculated using the fit defined
diagonal characters. For instance, the reduced influence dfirough powers of Irkz is compared with the gap derived
the off-diagonal processes in the case of the effective forcécom the bare force in Fig. 7. They are identical.
embodied by the cutoff 2, is accompanied by an enhance- The two fits displayed in Fig. 5 have a quite different
ment of its diagonal matrix elements through the densityanalytical character. Using enough terms, one can actually
propose a large set of precise fits making use of very differ-

o . LI— ' . ent power series. For a given number of terms, some expan-
mg ««««««« sions are more precise than others. For instance, an expan-
; sion in powers ofkg requires a large number of terms
é’ | / i T T T A T T T T T ]

o -5 <k |V, k>  —— FR bare e FR effect. |
= / 3r S ]
A : .................... <kF|Vsep|kF> ; E
T <k |D(© |k >2p, T S o ]
2 : o = |
- | B
o o A
= <k |V |kp>2ka =R 1
'M -
\ “15F I I I 4 b £ L 7R (2 param)

0 0.5 1 1.5 2 - 7o ZRQGpaam) - R

k. (fm™) 0- 02 04 06 08 I 12 14 16
k, (fm™)

FIG. 6. Diagonal matrix elements of different interactionkgat
in the 'S, channel as a function & in infinite matter:V,y,,  (full FIG. 7. 1S, pairing gaps obtained from the bare fo(éell line),
line), the separable bare for¢dashed-dotted linethe finite-range  the effective forcadashed ling and its zero-range approximation
effective pairing interactioidashed ling and its zero-range ap- with two different fits of its density dependen@otted and dotted-
proximation(dotted ling. dashed lines
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whereas expansions in powers d_{F or k;l""... converge pronounced than in the case of the finite-range original ver-
much faster. Whatever the chosen expansion, the importasion. Quantitatively speaking, whilé(kg) is multiplied by a
feature is to reproduce precisely the behaviolCok:) de-  factor 1.4 betweenki*'=1.33 fni? and k.=0.8 fni?t
rived from V'S, (=psai 5), C¥(ke) is multiplied by a factor 3.6. The zero-
The fit making use of powers of k- provides an excel- range vertex has a behavior between surface and volume.
lent approximation ofC(kg) with only three terms and pre- This confirms the results obtained from refined phenomeno-
sents the particular feature that adding other powers & In 10gical studies performed with these kinds of vertices
does not improve the fit significantly. As this was not the[23,30-32. _ N
case for any other expansion we have tried, we consider this The different behaviors of the finite-range and zero-range
function as an “exact” analytical form @®(kg). This func-  forces can be understood in the following way. The density
tion rises in the limitk-— 0. This agrees with the fact that dependence saturates when the size of the Fermi sea is of the

DlSO(O) tends to the off-shelt'® matrix ats=0, which al- order of the inverse of the interaction range. Beyond that

most diverges because of the virtual state in the vacuum oint the range governs the coupling inside the Fermi sea.

. . L I his is visible in the left panel of Fig. 5 where the finite-
approximately zero scattering energy. This is seen in Fig. 6.an e interaction saturates be 1/Va~1.4 frL. For
As no real bound state exists in this channel, the pairin 9 ydgd=1/va=1. '

collapses accordingly in thie-— 0 limit as seen in Fig. 7. he Z?Jo‘ra"‘ge vertex_ the same only happeqs wken
— 1/Va= where the interaction goes to zero in order to

3. Zero-range approximation compensate for its artificial constant couplingkispace.

An appealing property of the scheme developed here is itan It becomes clear in the present context that the surface

suitability for studying a zero-range approximation of the hancement of & zero-range pairing vertex takes care to
y ying ge appb “some extent of the finite range of the nucleon-nucleon inter-

e;ffective pai_ring_ interaction. Since the high-energy transi- ction. The effect of the range, although noticeable, seems to
t|on§ appegrmg inthe gap equ§t|on have peen resummed in 2 renormalizable at the mean-field level. This is seen in Fig.
the in-medium vertexD', no divergence is expected when g where the diagonal matrix elements of the two interactions
taking its zero-range limit. This is embodied by the presencey the Fermi surface are compared. They are nearly identical.
of the cutoff 2 in the gap equation. The possible renormalization of the range conveys that

Expanding(k|D So(k=,P,0)[k’) in the range and in the nuclear matter presents a so-called weak-coupling BCS re-

nonlocality leads to an effective pairing interaction readinggime over the density range of interest characterized by the

in momentum space as size of the Cooper pairs being much larger than the interpar-
R R ticle distance and the range of the force. Such a result pro-
(KV#(kg) K'Y = 2NC*'(Kg) i - (26)  vides the grounds to the local density functional theory

. . . [14,15 in the context of superfluid nuclear mattet4,45,

Ong is simply I.Eﬂ with a densﬂy-dependent force, CON"eyen if the context is slightly different in that case since all
Stant ink anq varying agy, wherek IS the momentum of . beyond-mean-field effects are included in the in-medium
the intermediate state in the gap equation. The approxmatlo&)up"ng constants.

L S ;
consisting O.f takingv#' independent of IS sr_\oyvn. to be However, the fact that the range and the nonlocality of the
appropriate in Sec. |11 B 5. The gap equation in infinite mat-¢, .o 4o not need to be resolved has to be confirmed in finite
ter associated with the forcgr defined through E26) pro-  p,cje;. Indeed, a zero-range vertex carries less information
vides a constant solutioh =4 o than the finite-range force does; this being embodied in the

The structure of the zero-range approximation of the efpresent case by the different nondiagonal matrix elements of
fective pairing force we obtain here provides a formal justi-gyr finite- and zero-range forces. While the zero-range ver-
fication for the use of_DDDI complemer_1ted_ with a smoothsjon is able to reproduce the gap at the Fermi level as a
cutoff above the Fermi enerdt02]. Considering theZ’ ma-  function of the density, it predicts constant gaps as a function
trix instead of theD matrix would allow a similar justifica-  of momentum at a given density. Such an approximation is
tion for those DDDI which have peen used with a symmetricqoubtful, especially around the Fermi energy where the gap
cutoff on each side of the Fermi enerf#z]. is rapidly varying[12], as seen in Fig. 4. Treating the range

We now extract the functiorC* (k). This is done by and the nonlocality of the force affects the state-dependent
matchingAj” with A obtained from AV18 as a function of pairing gaps, the particle width of deep-hole states in finite
ke. The functionC#(kg) is plotted in the right panel of Fig. 5. nuclei, and translates to some extent into the spatial character
As expected, no difference is seen at very low density beef the pairing field[42]. It may also be of importance to
tween C(kz) and C#(kz), whereas the effect of the finite describe excited states in nuclei. Resolving this issue re-
range becomes more and more important with increasinguires an excursion far from the valley gfstability [42].
density. WhileC(kg) was almost flat and nonzero when ap-  Using C*'(kg) within the LDA requires the identification
proaching the saturation density of nuclear matter, the zeroef its analytical dependence ok:. Unlike the function
range in-medium pairing interaction goes to zero. In otheiC(kg), derived from the bare force through the calculation of
words, the present calculatigoredicts (through the LDA  the D matrix, fitting C*'(kz) amounts to fixing the free pa-
that, when approximated by a zero-range-like vertex, the eframeters entering the definition of the phenomenological
fective pairing interaction has to be renormalized by azero-range vertex. Two examples are plotted in the right
density-dependent intensity whose surface character is mopanel of Fig. 5. The overall multiplication by in Eq. (26)
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osh - 13 FIG. 8. Left panel: neutron effective mass in

o S neutron (dashed ling and symmetric(full line)
E06F L s matter for the SLy4 Skyrme force. Right panel:
j:M_ —— Symmetric matter ~ 1S, gaps calculated with three choices of single-

E ) — Neutron matter L 1 =1 particle energies; free kinetic energi@sll line),
~02r 41 0 /- m (k) Neut. matt.": effective mass approximation in neutron matter
-------- m (k) Sym. matt. 3, (dashed ling and effective mass approximation

02040608 I [21416 18 2 0 02 04 08 08 T 12 14 16 in symmetric mattefdotted-dashed line
k, (fm") k! (fm’)

does not correspond to adding another free parameter. Namsymmetry, respectively. Quantities relating to a particular

parameter is needed to specify the cutoff. isospin value present an indeyeither specified as andp or
Figure 7 displays the gap recalculated by inserting the twiyy 1/2 and —-1/2 when dealing with neutron and proton,

used fits into Eq(26). The three-parameter fit allows a sat- respectively.

isfactory reproduction of the gaps derived from the finite- e use the effective mass as given by a standard param-

range interaction. The fit employing two parameters does Naitrization of the Skyrme forcgL03]. Such an effective mass

provide sufficiently precise results. This last parametrizationnimics an average of the Brueckner-Hartree-FEBKF) k
overshoots the gap around its maximum by half a MeV andyss,

undershoots it beyonk-=1.25 fni?,

The number of parameters usually used in connection n md e\
with zero-range forces is two for a pure-volume pairing and — (KK, B) = KF—k )
three for a density-dependent pairif{,22,38,39,10L The m J
reproduction of the gap in nuclear mat{@8,39 as well as  over the Fermi sea. It is independentptmaller than one at
recent calculations in finite nucl¢l01,23 favor a density gl densities and of the order of 0.7 at saturation density of
dependence. In such studies, the exponent of the density hggmmetric nuclear mattef104. The Skyrme effective
sometimes been varied, in which case it could be ConSiderQQ]asseS in symmetric and neutron matter are p|otted in the
as an additional free parameter. Even if the presently derivegft panel of Fig. 8 for the SLy4 parametrizatigh03]. As
zero-range force also makes use of three parameters, it cofeen, self-energy effects are larger in symmetric matter than
responds to a cleaner parametrization since the cutoff apn neutron matter at a given density because of the stronger
peared naturally and the adjustment of the force is simply @&eutron-proton interaction.
matter of reproducing a fixed, derived function. As the gap equation is particularly sensitive to the density

Following the path of a range expansion, one could in-of states at the Fermi surface, the use of an averagedss
clude correction terms irk®,k'?,k**k’%... and obtain the which does not reflect the bump at the Fermi surface of the
corresponding density dependence by using the previougctual BHFk mass is questionable. When dealing with pair-
method. Finally, it is worth noting that the finite-range effec-ing, one should, maybe, consider the BKnass atk in-
tive interaction makes use of only two parameters for anstead[105], or the complete BHF single-particle energies.
even better quality of results. However, two arguments are in favor of the averaged effec-
tive masses. First, the bump of tkenass akg is smoothed
o } o out to some extent by the presence of pairing correlations

The logarithmic density dependence of the effective inter1106]. Second, the main purpose of the present section is to
action has peen deriveq from the integrgtion ofmmatrix include self-energy effects i 'S which should not be as
to all ordersin the bare interaction. This integration includes ensitive as the gap to the density of statekcat

both hole-hole and particle-particle ladders in the superfluidS The corresponding gaps for symmetric and neutron matter

phase and trea@s. the energy denqminator Of. the tWO'bOere compared in the right panel of Fig. 8 to the one obtained
propagator explicitly. However, while everything has been

consistently compared so far using free single-particle enerusing free kinetic energies. The gaps are plotted as a function
) o ; ) of the Fermi momentum of the speciggutrons or protons
gies, the parametrizations of the functiddég) and C*(kg) pecigw proton

! . . . concerned by the pairing. As expected, the inclusion of on-
obtained without including self-energy effects are of COUrsgpa| self-energies reduces the gap. However, the effective
approximate. As mean-field calculations of finite nuclei will

: mass obtained from the SLy4 parametrization is such that the
eventually be performed, the functidi(ke) should be de- o, ction of the gap in neutron matter is too strong compared

rived accordingly. Consequently, we recalculate the effectivgy, the one obtained using realistic bare interactions and BHF
mtera_wtlon including on-s_hell self-energy ef_fects_ through Asingle-particle energiefl2,107. On the other hand, the re-
density-dependent effective mass approximation for they,ction is slightly too small in symmetric matter, especially
single-particle energies: at low density[12,107. This corresponds to isoscalar and
k2 isovector parts of the effective mass which are, respectively,
ko,B(k):m*'skF,ﬁ(o)’ (27) too large and too small. In any case, the global effect is
e present at the densities of interest. This should be sufficient
where k2=372p/2=[(k1)3+(kP)%]/2 and B=(pn—pp)/p  to discuss the effects of the self-energy on the effective pair-
=[(k!)3-(kR)%]/2kE are the Fermi momentum and the mattering interaction.

(28)

4. On-shell self-energy and isospin dependencele%SO(O)
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The modified function<C(ki) and C*(k?) have been re- 3 ; T ; T ; T T T
calculated for neutron and symmetric matter. They are nearly
identical to those derived using free kinetic energies, atleas
up to saturation density. Therefore, one can safely state the
the vertex only depends on the density of the interacting
nucleonspy=ki/3m?=p[1+(-1)¥2796]/2 and is not influ- & 3
enced by the surrounding nucleons of the other species. This _
result offers a microscopic answer to the issue dealing with§ s
the isovector density dependence of the effective pairing
force at the mean-field level. A dependence on the total den
sity as used so far is not justified from the microscopic point
of view. This could of course change beyond the mean field
[53].

At the present stage, the best logarithmic fit of the density
dependence of the finite-range effective pairing interaction is
given, when using three terms, by

1 .
_ 2 FIG. 9. Total momentum dependence of the® matrix for
Clke) = 0.978 444 - 0.682 204 ke + 0.761 575(In ke)®, several densitiedull lines). A comparison is done with the function

(29  C(k%e P2 (dashed lines
while in the case of its zero-range approximation, we find
faster thanC(k})f(P) as a function ofP. While the param-
C”'(ke) = 0.420 637 - 1.012 900 |k + 0.708 922(In ke)>.  etrization works well for typical surface densities, it de-
(30) creases too quickly as a function Bfaround saturation den-
) ) ) ) _sity. Of course, a pair of nucleons formed in finite nuclei has
Using these fits with the Skyrme effective mass approxingnzero components for all values Bf In addition, the in-
mation, the gaps obtained in neutron and symmetric mattggnsity of the interaction correlating the pair for each of these
reproduce well those shown in Fig. 8. Finally, note that thecomponents must be seen as an average over all densities. As
energy functional of normal and abnormal densities obtaineg yesylt, we expect to have a good description of the com-
with such density-dependent vertices in the particle-particlgyned density and total-momentum dependences of the effec-
(T=1,T,=+1) channels is isospin symmetric. tive pairing force by parametrizingi(kd,P,0) through
q
5. Total-momentum dependence GDlSO(O) C(kF)f(P)'
We now study the dependence of flematrix on the total _ o o _
momentumP of the interacting nucleons. As nucleons with C. Effective pairing interaction in coordinate space
nonzero total momenta can be paired in finite systems, it is

important to get insights into the corresponding Componen}*naturally from the bare force expressed in the plane-wave

S:éhz iﬁﬁg;’igeﬂogzr;gi%dﬁgé? %%tiﬂg;fbrg?fvréxe;o{hz relab_asis and derived the effective pairing interaction accord-
tive and total momenta of the pair in the intermediate statemgly' To perform calculations in finite nuclei, and especially

. i solving the problem in coordinate space, it is necessary to

haﬁ'rt\):?gnzfiggLTk%dF!nOI)E%?)IIotted in Fig. 9 as a function _have th_e expression of Fhe interaction as a func_tion of the

DL s L interacting nucleon positions. As already mentioned, the
of P, “_Fi to Pq_2'5 fm 1 for densities rangmqlfronkﬁ force presently used is finite ranged and nonlocal. Conse-
=0.2 1t to ke=1.4 im". The value P=2.5 1" corre- quently, it depends on the four position vectfg, iy, 3, s}
spongis to the maximun® a p?'lr of nucleans inside the of the incoming and outgoing interacting nucleons. Also, the
Fermi sea can have fgh=1.25 fm .ThePdependence b effective nature of the force has been characterized by its
is significant at ext_remely Iow density, whereas it become%lensi,[y dependence(ki). As the spin-isospin part of the
Ie_ss pron.ounced. W'th mcreasm_ng. Around saturation den- force is trivial, let us consider the spatial part of the two-
sity, the interaction is almost independent Bf Also, the body interaction under the form
interaction is strongly modified at lo® when increasing the
density while it is less sensitive to the medium for a pair

To obtain the previous results in infinite matter, we started

having a large total momentum. . A
For a reason which will be clarified later, we need to test <F1F2|DqS°(O)IF3F4> = f df C(pg(F))
the hypothesis thati(kg, P, 0) is separable ittk, P) and that (2m) e
the total momentum dependence can be parametrized by 4 o
f(P)=e"*"P*2, o being the same range as before. As a matter xexp = .21 F-rfil2e? |, (31

of comparison, the producf’r:(k,‘i)e‘“zpz’2 and the function
h(kd,P,0) are plotted in Fig. 9. The agreement is not satis-
fying at extremely low density wheré decreases much where
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C(py()) = 1.179 341 + 0.345 992 Ipy(1) particular, it has allowed us to derive fine details of the in-
) teraction, such as its nonanalytical low-density or isovector
+0.084 619 In py(r)] (32 character, which are otherwise difficult to identify by looking

. . . . directly at total energy differences because of our presently
is the form factor resulting from the local-density approxi- limited experimental knowledggL10].

"?a“O” of t'he functionC(ict) der'ived in infinite matter and One of the most important properties of the newly defined
discussed in Sec. I.”E’ 2. The f{;sexpressed through(EQ)_ pairing interaction can be identified by calculating its anti-
and the relat|onsh|p<F:(3n2pq) has been used to write symmetrized matrix elements in any given single-particle ba-
Eq. (32). . ) ) _ sis. To be explicit, we define a bagis, .} where(n,p,{,q)

The form given by Eq(31) is reasonable SInce, if one yenote the principal quantum number, the parity,Zlsggna-
forget§ about the densny dgpend_erﬁoetakes it to be con- ture, and the isospin of the state, respectively. This is typical
stant in spagg the following identity holds: of the HF or canonical basis of @riaxial, rotating, odg

\ 4 deformed nucleus. Specifying,,s as the component af

L X P ; ;

P ol D S0(0)|Faf ) = exp | - F—rl28a? | haw_ng a goqd pro!ec'gloq of the spin on.tha aX|s.(defor—

(F3f2 Dy (Ol (257%)%2° p[ % IFi=ri[*/8a mation axis in the intrinsic framethe antisymmetrized ma-
(33) trix elements of the effective pairing force as defined through

Egs.(21) and(31) read as

Hence the interaction simply generalizes the Gaussian
form to the nonlocal case. The matrix elements of the inter-vﬁ“ =\ (o + f dF Clo (PN e P
action defined by Eq31) calculated in the plane-wave basis (Vg i = Moy p')g (Po(M) 85,5051 Pryp, 05 ()
take the form ~ 3 5 5

R o iy o o X {(Pnjpjgqu(f)ﬁon|p|§|qs’(|:) - (Pnjpjgqu’(ﬂ‘Pnlp|§|qs(f)},
(Kikao| D, ¥(0) ksky) = (2m)3NC(Ke K FT2 D 5P — p7), (35)

(34) wheree, s is defined as

1
This is precisely thé)qSD matrix derived in infinite matter

H H H ~ 1 > —IF=7"13 a2 )
from our separable bare force and studied in previous sec- Prpcad N = ——— f direlr -2 g 7). (36)
tions. To reach such a form, one single approximation deal- (V2ma)
. . 1 .
ing with the P dependence oD, was performed in Sec.  Restricting the pairing to states of opposite signatures in

IlIB. Thus, Eq.(34) clarifies why the approximate depen- {he Bogolyubov transformation provides the matrix element
dence orP was needed in order to write the effective pairing 35 with an additional factoﬁ_;_gk iy Writing the matrix
i i

interaction in coordinate space. Note that the parameters %flements in the HF basis requires the use of the cugft

Fhe force have bgen flxed_m |'nf_|n|te matter and that no room+p,) instead of 2., in the canonical basis. This is a natural,
is left for any adjustment in finite systems.

. - . but not fully rigorous extension as can be realized by going
It is worth characterizing the physical content of the LDA . .
used for the functiore(k%) in Eq. (31). The particle-particle back to the recasting procedure proposed in Sec. Il A. One

and hole-hole ladder@ncluding all high-energy processes should preferably work in the canonical basis.

ated with two-bodsgcatteringin th o Solving the HFB problem in coordinate space is a nice
associated with two-bodgcatteringin the medium are ré- o .,re since it allows a natural treatment of all kinds of

surr;med n }he eff;a(r:]tlve Interaction ?y.tconsuljermg t[‘tedeformations and is well suited to describe exotic systems
NUCIEUS as Slices ol homogeneous, Infinite nuclear mattef, ., picp asymptotic properties of individual wave functions
However, the scattering of pairs around the Fermi surfac

@nd densities must be considered carefully. However, the na-
responsible for the formation of tH®ound statesn the me- y !

dium are treated explicitly in the finite system through theive use of a finite-range interaction in this context is numeri-
) . I hibitive [5,46,111. Indeed, solving the BCS
resolution of the HFB equations. Also, the quantum sheIICa y prohibitive [ 1. Indeed, solving the gap

. . . . equation is too costly for practical applications, while the
effects which strongly influence the latter pair scatterings are,-p problem takes the form of a coupled set of integro-
taken into account explicitly. All along the way, the finite

) . S . differential equations, also untractable for systematic studies.
range and the nonlocality of the interaction is fully consid- d y

This is the main reason why zero-range forces have been

ered. Wte gxpgt!ﬁt tt\;]/e Ig))c(;:ll apprt(tjxmatltongor th(ta_ (;Orrtelat'on%xtensively used so fg21,54. The matrix elements of our
associated wi 0-body sgattering o be sausfactory an nite-range, nonlocal effective pairing interaction look very

the inclusion of gradient termgo improve onitto be rather .- “ihose obtained from a zero-range fof&2]. The
unnecessary10g. Th_e fact that the LDA is performe_d on only additional cost is to replace the single-particle wave
the effective vertex itself makes the present approximation}, ,ciong ®npegs DY their convoluted counterpart as defined
different from a so-galled se_mmlassmal treatmgtdd) or through EqQ.(36). This property makes the corresponding
from the local density functional theorf14,15,44,4% In ep opiem in(three dimensionscoordinate space trac-
table through the two-basis methp#i7,112,113 and almost
®This is of course to be differentiated from gradient terms simu-€quivalent computationally to the use of a local, zero-range
lating beyond-mean-field effects such as the exchange of surfaderce. In fact, only trivial modifications of HFB codes using
modes. this method are required to implement the proposed micro-
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scopic pairing interaction. Adding a routine to convolute thewill provide a weaker pairing when going toward the drip
HF wave functions, using the proposed density dependendies than standard DDDI depending on the total density and
and inserting the factafp;+p;) when calculating the matrix adjusted around the valley of stability. One can expect these
elements of the pairing field in the HF basis is necessary. Oproperties of the force to significantly influence matter den-
course, the pairing field provided by our force is nonlocal.Sities, pair densities, individual excitation spectra, low-

This feature prevents from solving the HFB problem through€nergy vibrational collective modes, rotational properties,
a direct diagonalization of the HFB matrix in coordinate @d the odd-even mass differences in exotic nuclei as well as

space[46,114. the position of the neutron drip line. It was shown that the
It is also worth noting that the derivative of the pairing pairing gap is extremely sensitive to the details of the force

; : ; P when dealing with neutron rich nuclgs1,115. Also, while
energy with respect to the density matfpg} when minimiz- e S ' ’
ing the total energy to obtain the HFB equations must not bthe position of the proton drip line appears to be quite robust,

: : . . the position of the neutron drip line was shown to be shifted
_con_S|dered_W|th the present force. Indeed, our_effectlve_palrby up to 25 mass units depending on whether the so-called
ing interaction is equivalent to the _bare for_ce in the pairindyolume or surface pairing force was usdd5). This is one
channel and its dependence @iy} simply arises through a o the achievements of the present work to propose a pairing
recasting of the gap equation originally written in terms ofjnteraction whoseab initio derivation should make its ex-
the bare force. Of course, this statement is no longer valigrapolated use to exotic systems reliable and subject to less
when going to higher orders, when renormalizing the effecuncertainty.
of the three-body forcg29] or when using the philosophy of At the mean-field level, thiab initio character deals with
the density functional theory. the bare force. This is the first essential piece since, unlike
As an alternative to our finite-range and nonlocal micro-for normal superconductors in condensed matter, theNire
scopic effective vertex, one can use its zero-range approxforce provides pairing between the constituents of the
mation studied in Sec. Ill B 3. When performing the zero-nucleus. However, the question arises of its contribution
range limit appropriately, the convolution used in E86)  compared to the pairing generated by collective effects. Re-
becomes the identity operation. Consequently, the matrix eleently, the BCS gap provided by the realistic AVIU8I force
ements of the zero-range vertex take the form given by Egwas shown to account for only half of the experimental odd-
(35) with @, p g5 replaced by, s and C(py(1)) replaced  even mass staggering H°Sn[55]. This was interpreted as a
by the LDA of the functionC#(kl) parametrized accord- necessity to go beyond the mean field to introduce the off-
ingly. shell nucleon propagation associated with the particle-
Last but not least, it is essential to note that the separableibration coupling and the induced interaction generated by
bare force defined through E¢p) does not lead to simple the exchange of the same surface vibrations between time-
calculations in coordinate space. Its finite range and particureversed states. Including those processes, the experimental
lar form of nonlocality make it numerically untractable in odd-even mass staggering was reproduced®n[55]. This
such a context. This is only by going to the in-medium vertexexchange of surface vibrations should provide the effective

that one obtains an interaction as given by B{). pairing force with an additional surface-peaked character and
some isospin dependence due to the appearance of new vi-
IV. DISCUSSION brational modes toward the neutron drip line. On the other

hand, the same category of diagrams is known to decrease

While very low densities are not essential for stable nuthe gap in the bulk{2,49-523; even if the corresponding
clei, they become increasingly important when going to ex-dressing of the vertex could change significantly when going
otic systems. Indeed, nuclei close to the neutron drip lindrom neutron matter to symmetric mattgs3]. The latter
develop extended low-density halos or skins where pairingvould add up another dependence of the interaction on the
correlations play a crucial role. This is also true in neutronnuclear asymmetry. Thus, the situation concerning the net
stars’ crust. Thus, the behavior of the pairing force at lowinfluence of beyond-mean-field effects on pairing in finite
density is of great interest for the study of these systems. It iauclei is unclear. Let us repeat that, as already discussed in
clear that usual DDDIs miss the very low-density part ofSec. Il F, calculations performed with the Gogny interaction
C”(kg) discussed in Sec. IlI B 3. In Ref31], strongly in-  enforce the idea that medium renormalizations on top of the
creasing interactions at low density were simulated througlvare force in théf'=1 channel should not be that large when
small exponents in Eq. (2). Such pairing interactions were going to finite systems.
disregarded, notably because of the unrealistic reduction of However, one has to consider more elements before con-
the two-neutron separation energy across the magic numbeluding. First, the effect of three-body force on pairing
N=82. However, these interactions were used together with ahould be treated if one works with microscopic interactions
phenomenological cutoff at a maximal fixed energy in theas proposed here. The three-body force has been shown to
single-particle spectrum. In the present case, the cuiff 2 decrease the gap in infinite matter non-negligibly fer
derived in connection with the density dependence will=0.8 fm! [107]. Including the three-body force in the pair-
weight the low-density content of the force in a very differ- ing channel could also be necessary to reproduce delicate
ent way. phenomena such as the odd-even staggering and the kinks of

Also, the isovector character of the pairing force shoulddifferential charge radij29]. Second, one has to include the
manifest itself when studying drip-line systems. The depenCoulomb force in the proton-proton pairing channel. From
dence of our force on the density of the interacting nucleonshe comparison between proton-proton and neutron-neutron
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scattering phase shifts in tA&, channe[73], one would not It possesses a clear link to the bare force. The effective
expect a strong antipairing effect from the Coulomb interacdinteraction provides the same pairing properties as the bare
tion. This is particularly true since the very low-energy re-force at the mean-field level, as required from many-body
gime where the Coulomb force is active does not seem ttheories. The gap at the Fermi energy obtained in infinite
matter so much when dealing with pairing as discussed imatter from the realistic AV18 interaction is perfectly repro-
Sec. Il E. However, it was shown that the self-consistency ofluced by the new force. Going into further detail, the mo-
the HFB calculations makes the Coulomb antipairing effecimentum dependence of the gap is also very well described in
quite significant in finite nuclej116)]. the density range of interest.

Thus, pairing correlations and details of the effective pair- The effective force is finite ranged, nonlocal, total-
ing interaction are far from being understood in nuclei. Sys-momentum dependent, and density dependent. While the ef-
tematic microscopic calculations including all previously fective interaction is almost constant for densities ranging
mentioned effects are required. However, this is unconceivirom saturation to typical surface densities, it is strongly en-
able in finite nuclei at this stage. As a first step, performinghanced at very low density. The isoscalar and isovector den-
systematic HFB calculations with our effective interactionsity dependences of the pairing force are also obtained
offers a unique opportunity to understand in detail the conthrough theab initio derivation. While phenomenological
tribution of the bare force to pairing in nuclei. density-dependent pairing interactions used so far depend on

Let us now discuss the range of the effective pairingthe total density, the one derived here depends on the density
force. Indeed, it would be nice to have an interaction allow-of the interacting nucleons onlgi.e., protonsor neutrons
ing for large scale microscopic calculations of nuclearsince the present work deals with like-particle pairing only
masses[35,37]. Performing self-consistent mean-field or  This effective pairing force is defined by recasting the gap
beyond-mean-field calculations, the size of the singleequation written in terms of the bare force into a fully
particle basis necessary to get converged results should be eguivalent pairing problem. Through this rewriting proce-
small as possible to make such large scale calculations tradure, the matrix elements of the effective force are provided
table. The required size is directly related to the range of thevith a natural cutoff 2,, wherep,, is a BCS occupation
force in the pairing channel. For instance, the shorter rangaumber. This makes the definition of zero-range approxima-
of the Gogny force(0.7 fm) makes the convergence of the tions meaningful and no adhoc cutoff has to be additionally
guantities related to pairing quite slow. One needs to includehosen and optimized. Performing such a zero-range ap-
states up to 100 MeV in the quasiparticle spectrum to do sproximation and asking for identical pairing gaps at the
[111]. It can be seen from Fig. 3 that our effective interactionFermi surface in infinite matter, the appropriate density de-
is softer than the Gogny force. The range to be comparegendence of the zero-range force is obtained. This procedure,
with the 0.7 fm of Gogny is in the present ca@n~1 fm.  free of any phenomenological cutoff allows us to disentangle
This translates into a kinetic energy of about 70 MeV which,the roles played by the range and the density dependence of
once the depth of the single-particle potential has been sulfhe pairing interaction. Surprisingly, the enhancement of the
tracted(=50 MeV), gives a value of the order of 20 MeV. force at typical surface densities as compared to the satura-
Taking the effect of the cutoffp;+p) in the gap equation tion density is much more pronounced than for the finite-
into account, it should be sufficient to include single-particlerange vertex. This result shows unambiguously that the sur-
states up to 10—20 MeV of positive energy in the canonicaface character of usual zero-range forces is, to a large extent,
basis to get converged HFB calculations. Thus, this pairingt Way of taking care of the range of the interaction. Precisely,
interaction should be simple and soft enough to perfornthe zero-range vertex is predicted to have a behavior between
large scale calculations of nuclear masses, avoiding at thgurface and volume. It also undergoes a large increase of its
same time the problem related to the phenomenologicdntensity at very low density.
choice of the cutoff dealing with the zero range of the DDDI ~ The last essential feature of the force can be identified
[37]. Checking this statement is the aim of a forthcomingWhen going from infinite matter to finite nuclei. Indeed, deal-
publication [117]. Note that the induced interaction is ex- ing with a finite-range and nonlocal interaction is far from
pected to be long rangg&2,53. being trivial when solving the HFB equations in coordinate

Once the softness of the pairing interaction has been espace. However, the particular analytical structure of our ef-
tablished, it will be important to understand the significancefective force makes such calculations possible within the so-
of the range and the nonlocality of the force and whether icalled two-basis method. In fact, the corresponding compu-
must be treated explicitly in nuclei. It amounts to studyingtational cost is of the same order as for zero-range forces.
the influence of the nonlocality of the pairing field. Being Performing exploratory calculations in finite nuclei with this
able to use the microscopic nonlocal finite-range interactiof€w interaction is the aim of a forthcoming publication
and a gap-equivalent local zero-range force within a singld117].
scheme offers a unique opportunity to answer such a ques-
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