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In a macroscopic approach to giant dipole resonance(GDR) in hot and rotating nuclei, the observables are
related to the nuclear free energy surface with consideration of thermal shape fluctuations. This formalism is
revisited with more exact methods. The Nilsson-Strutinsky(NS) method extended to high spin and temperature
is used for free energy calculations. Various approaches to calculate shell corrections at finite temperature and
spin are compared. The GDR built on the states determined by the NS method is studied with a macroscopic
model comprising anisotropic harmonic oscillator potential with separable dipole-dipole interaction. Methods
to parametrize the free energy, such as the Landau theory, for easier evaluation of thermal fluctuations, are
discussed along with a scheme to evaluate thermal fluctuations exactly. The Landau theory is found to work
well even in the extreme limits of spin, however, in the absence of strong shell effects. GDR as a probe for
Jacobi transition leading to hyperdeformation is analyzed in the case of zirconium isotopes.
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I. INTRODUCTION

The study of structural transitions as a function of both
angular momentum and temperature has been among one of
the fascinating aspects of highly excited nuclei in recent
years[1–4]. The giant dipole resonance(GDR) studies have
been proved to be a powerful tool to study such hot and
rotating nuclei[5] and recently the domain of GDR spread
rapidly over different areas of theoretical and experimental
interest. For instance, from the GDRg decay, it was possible
to extract the information of the lifetime of hot superheavy
systems such as272Hs [6]. By populating the isomeric states
in the decay of the GDR, better information about the iso-
mers could be extracted[7]. The measurement of GDR
gamma rays from highly excited nuclei could be utilized[8]
to check the level density prescriptions. In general, the GDR
observations provide us information about the geometry as
well as the dynamics of nuclei even at extreme limits of
temperaturesTd, spin sId, and isospinstd. Several experi-
ments have been carried out recently[1–3,9] to study the
influence of angular momentum and temperature, by observ-
ing the gamma rays from the GDR states from hot rotating
nuclei. The behavior of GDR width as a function of tempera-
ture has been an interesting phenomenon and the GDR mea-
surements at extreme spins render information about highly
deformed structures. In this work we address these two is-
sues with our theoretical results with more exact methods for
shell corrections and thermal fluctuations.

In the theory front the microscopic approaches[10,11] (in
which GDR can be described as a coherent superposition of
particle-hole excitations, often calledp-h doorway reso-
nance) as well as the macroscopic approaches[12–14] (in
which GDR can be coupled to the quadrupole shape degrees
of freedom) are successful in explaining most of the GDR

features. In the macroscopic approaches, structure of the
GDR cross section can be linked with the deformation pa-
rameters defining the shape of nuclei. This relation is not
straightforward especially in hot nuclei where large-
amplitude thermal fluctuations of the nuclear shape play an
important role. In this work we employ a macroscopic ap-
proach towards GDR with the consideration of thermal fluc-
tuations as well as the quantal fluctuations(shell effects).
The theoretical framework thus comprises three parts,
namely,(1) a model for nuclear shape calculations that gives
the nuclear shape at any given temperature and spin,(2) a
model that relates the nuclear shape, at finite temperature and
spin, to the GDR cross section, and(3) a formalism that
takes care of thermal fluctuations and modifies GDR cross
sections accordingly.

After this introduction, in Sec. II we outline the Nilsson-
Strutinsky(NS) method extended to finiteT and I for calcu-
lating the deformation energies. Most of the previous works
[13,15] comprise NS calculations extended to finite tempera-
tures without the cranking part. In some works[13,16] shell
corrections at finite temperature have been calculated by ap-
proximation methods. We revisit the shell correction meth-
ods at finite temperature and outline their extension to finite
spin. In Sec. III we outline a simple model[17,18] for cal-
culating the GDR width and cross sections at a givenT, I,
and shapesb ,gd. The treatment of thermal fluctuations is
discussed in Sec. IV. For time-saving calculations the free
energy surface atI =0" were parametrized using the Landau
theory [19] and later on an improved parametrization was
proposed[14,15]. After outlining the above two methods, we
discuss an exact method[20] and bring out the differences
between these methods. In Sec.V we present the results of
our calculations. First we test our formalism with the results
for nuclei for which both experimental and theoretical num-
bers are reported. The sources of difference/conformity is
brought out. Finally we discuss Jacobi transition in Zr iso-
topes occasionally leading to hyperdeformation. Concluding
remarks are laid out in the last section.
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II. FINITE TEMPERATURE CRANKED
NILSSON-STRUTINSKY METHOD

The Strutinsky method of shell corrections[21–23] has
been successfully used in calculations of the nuclear defor-
mation energy, with the concept of dividing the total nuclear
binding energy into a smooth liquid-drop energysELDMd and
an oscillating shell correction energysdFd,

FTOT = ELDM + o
p,n

dF. s1d

In the case of rotating nuclei the above expression becomes
[24]

FTOT = ELDM + o
p,n

dF +
1

2
vSIClassical+ o

p,n
dID . s2d

The liquid-drop energy is calculated by summing up the
Coulomb and surface energies[25,26] corresponding to a
triaxially deformed shape defined by the deformation param-
etersb and g. As we are interested in calculating only the
relative deformation energies, we neglect the temperature de-
pendence of the liquid-drop parameters whose shape depen-
dence is very weak. The classical part of spinsIClassicald is
obtained from the rigid-body moment of inertia with surface
diffuseness correction[26]. The shell correction is the differ-
ence between the deformation energy evaluated with a dis-
crete single-particle spectrum and the deformation energy
evaluated with a smooth(averaged) spectrum corresponding
to that discrete single-particle spectrum:

dF = F − F̃. s3d

Similarly the shell correction corresponding to the spin is
given by

dI = I − Ĩ . s4d

To calculate the shell corrections corresponding to energy
and spin, we employ the triaxially deformed Nilsson model
together with the Strutinsky prescription. The single-particle
energiesseid and the spin projectionssmid are obtained by
diagonalizing the triaxial Nilsson Hamiltonian in cylindrical
representation[27] up to the first 12 major shells. At finite
temperatures the free energy is given by

F = o
i=1

`

eini − To
i=1

`

si , s5d

wheresi are the single-particle entropy andni are the occu-
pation numbers that follow Fermi-Dirac distribution given by

ni =
1

1 + expSei − l

T
D . s6d

The chemical potentiall is obtained using the constraint
oi=1

` ni =N, whereN is the total number of particles. The total
entropyS=oi=1

` si can be represented in terms of occupation
numbers as

S= − o
i=1

`

fni ln ni − s1 − nidlns1 − nidg. s7d

In the following sections we discuss the various methods to
evaluate the shell corrections at finite temperature and spin.

A. Numerically exact method

The shell correction is given in terms of the single particle
level density as[22,23]

dF = F − F̃ =E
−`

l

e gsedde−E
−`

l̃
e g̃sedde, s8d

wheregsed=dNsed /de is the single-particle level density and
Nsed is the total number of particles that can be accommo-

dated by the energy levels with their energyøe. l andl̃ are
the chemical potentials corresponding to the discrete and

smooth single-particle distributions, respectively.l and l̃

can be calculated using the constrainsNsld=N and Ñsl̃d
=N, respectively. We can also write

gsed =UdNsld
dl

U
l=e

= o
i=1

`Udnisei,ld
dl

U
l=e

. s9d

From Eqs. (6) and (9), we can write the temperature-
dependent single-particle level density as[28,29]

gsed = o
i=1

`
1

4T cosh2fse− eid/2Tg
. s10d

The natural way of applying Strutinsky averaging[29] to
the level density is to convolutegsed with the averaging
function

g̃sed =
1

gs
E

−`

`

f̃Se− e8

gs
Dgse8dde8. s11d

We use the averaging function

f̃sxd =
1

Îp
exps− x2do

m=0

p

CmHmsxd, s12d

whereCm=s−1dm/2/2msm/2d! if m is even andCm=0 if m is
odd; x=se−eid /gs, gs is the smearing parameter satisfying

the plateau conditiondF̃/dgs=0; p=6 is the order of smear-
ing andHmsxd are the Hermite polynomials.

Substituting Eq.(11) in the expression forF̃ in Eq. (8),
and using Eq.(5), we have[28]

F̃ = o
i

eiñi − To
i

s̃i + gsE
−`

`

f̃sxdxo
i

nisxddx, s13d

where

ñi =E
−`

`

f̃sxdnisxddx, s14d
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s̃i =E
−`

`

f̃sxdsisxddx. s15d

Usually the third term in Eq.(13) is equated todF̃/dgs and
can be neglected[29] using the plateau condition. However
the inclusion of this term in the calculations leads to a more
stable plateau and hence lessgs-dependent results. The inte-
grals appearing in Eq.(13) are evaluated numerically using
the Hermite-Gauss quadrature. Apart from the numerical
evaluation of integrals, this method gives exact temperature-
dependent shell corrections.

For the spin distribution, the Strutinsky smoothed spin

can be derived in a similar way leading to the expressionĨ
=oi=1

` miñi and hence the shell correction for spin is

dI = o
i=1

`

mini − o
i=1

`

miñi . s16d

B. Maximum term approximation

This method proposed by Civitareseet al. [30] provides
an approximate solution for the integrals given in Eq.(13)
using the “maximum term approximation” of quantum statis-
tical mechanics. The final result of the application of this
approximation reads

dF = EsTd − TS− ẼsT = 0d + ãsl0dT2, s17d

where

ã =
p2

6
g̃sl0d. s18d

The termg̃ is given by Eq.(11), which has analytical solu-
tion at T=0. It is to be noted that in this method there is no
need to perform any smoothing at finite temperatures, which
is an advantage of this method over the numerically exact
method. The shell correction in this approximation is written
as

dI = o
i=1

`

mini − o
i=1

`

miñi , s19d

whereñi are evaluated atT=0.

C. Cold-nucleus approximation

Starting with the expressions for the smoothed quantities

Ẽ= ãT2 and S̃=2ãT, we can write the expression for the
smoothed free energy as

F̃sTd = ẼsT = 0d − ãT2. s20d

Within the cold-nucleus approximation[19,31], the quantity
ã is assumed to be shape independent and can be neglected
while calculating the relative deformation energy. Hence the
smoothed free energy at finite temperature is assumed to be
equal to the zero-temperature Strutinsky-smoothed energy,
i.e.,

dFsTd = FsTd − ẼsT = 0d. s21d

The difference between this method and the maximum term
approximation is the termãT2. To study the shape depen-
dance ofã, we have plotted in Fig. 1 the contours ofã as a
function of the deformation parameters for the nucleus208Pb.
From the figure it is clear that the shape dependence is very
weak. The difference in free energy due to the termãT2

between the deformationsb=0.0 andb=1.0 is only around
0.7T2. This difference does not have much impact on the
equilibrium state but has a role to play in the fluctuation
calculations.

D. Statistical method

Ramamurthyet al. [32] first identified that the statistical
theory can explain the ground state shell corrections. It has
been found that the study of variation ofS2 as a function of
E* at asymptotic limits gives information about the smooth
(liquid-drop) behavior and, at lower excitation energies,
about the shell structure. When one plots these two quanti-
ties, it is seen that the curve deviates considerably from a
straight line of the formS2=4aE* , expected from the Fermi
gas model. However at excitation energiesE* .30–40 MeV,
there exists an asymptotic behavior of the form

S2 = 4asE* ± D Ed, s22d

whereDE represents the magnitude of the intercepts on the
energy axis of the asymptotic straight lines, and ± refers to
the two cases of positive and negative shell corrections, re-
spectively. In this framework, after choosing the optimum
asymptotic temperatures,4 MeVd we just have to fit a
straight line for the asymptotical part of theS2 vs E* curve
and deduct shell corrections at fixed temperature(or fixed
entropy) by simply calculating the difference between the
excitation energies given by the actual curve and the fitted
line. Shell corrections evaluated in this way are numerically
close to the values calculated using the Strutinsky procedure.

In Fig. 2, we present the comparison of shell corrections
calculated using different methods for the nucleus208Pb.
From the extension of this calculation to nuclei lying in dif-
ferent mass regions, we have found that both the maximum
term approximation method and the statistical method lead to
growing positive shell corrections at higher temperatures,

FIG. 1. Shape dependence ofã in the nucleus208Pb. The shaded
circle represents the minimum and the contour line spacing is
0.1 MeV.
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which is rather unrealistic. On the other hand, the numeri-
cally exact method displays the proper asymptotic behavior,
but the results are not stable at very low temperatures
sT,0.5 MeVd due to numerical instabilities. However this
method consumes lot of computing time when compared to
other methods. For low mass nuclei, evaluation of shell cor-
rections by the statistical method is found to be less stable.
From these arguments we conclude that, for calculating
temperature-dependent shell corrections up tosT<3 MeVd,
the maximum term approximation method can be used. At
higher temperatures the shell correction term may be ne-
glected or the numerically exact method can be opted.

III. GIANT DIPOLE RESONANCE CROSS SECTIONS

Having discussed the methods to yield deformation ener-
gies and hence equilibrium shapes, in this section we briefly
outline the model employed in this work for calculating the
observables of GDR built on those shapes. In this model the
GDR cross sections are obtained using a rotating anisotropic
harmonic oscillator potential and a separable dipole-dipole
residual interaction[17,18]. The Hamiltonian describing the
model is given by

H = Hav + Hint, s23d

whereHav is the average potential corresponding to the tri-
axial harmonic oscillator andHint represents the effective
dipole interaction:

HavsVd = o
n=1

A

hnsVd, s24d

where

hsVd =
p2

2m
+

m

2
svx

2x2 + vy
2y2 + vz

2z2d − V lz s25d

and

Lz = o
n=1

A

lzsnd

is the operator of rotation about thez axis andV is the
cranking frequency. The effective dipole interaction has the
form

Hint = h o
i=x,y,z

mvi
2

2A Fo
n=1

A

t3
sndxisndG2

, s26d

wheret3
snd is the third projection of the Pauli isospin matrix

andh is a parameter that characterizes the isovector compo-
nent of the neutron and proton average field. The frequencies
of the GDR in a rotating nucleus can be obtained by diago-
nalizing analytically the Hamiltonian(23) with the effective
interaction (26) within the framework of the standard
random-phase approximation. Including the splitting of the
GDR frequencies due to rotation, the final set of GDR fre-
quencies in laboratory frame are obtained as[17,18]

ṽz = s1 + hd1/2vz, s27d

ṽ2 7 V = Hs1 + hd
vy

2 + vx
2

2
+ V2 +

1

2
fs1 + hd2svy

2 − vx
2d2

+ 8V2s1 + hdsvy
2 + vx

2dg1/2J1/2

7 V , s28d

ṽ3 7 V = Hs1 + hd
vy

2 + vx
2

2
+ V2 −

1

2
fs1 + hd2svy

2 − vx
2d2

+ 8V2s1 + hdsvy
2 + vx

2dg1/2J1/2

7 V . s29d

All five of these frequencies do not exist for all nuclei. The
number of existing frequencies depends on the shape of the
nucleus[18,33]. One can have five GDR components corre-
sponding to the frequenciesṽ1, ṽ2−V, ṽ2+V, ṽ3−V, and
ṽ3+V, for collectively rotating triaxial nuclei. For prolate
nuclei svx=vy.vzd rotating about an axis perpendicular to
its symmetry axis, all five of the above frequencies will exist.
But for the oblate nucleisvx=vy,vzd rotating about its
symmetry axis, as shown first by Hilton in Ref.[33], only
two frequencies, namely,ṽ1 and ṽ2− V =ṽ3+V, will exist
and thus all effects due to rotation vanish and only those
purely due to deformation will be left. For the spherical nu-
clei svx=vy=vzd, which comes under the latter category, one
gets only one frequency, namely,ṽ1=ṽ2− V =ṽ3+V.

FIG. 2. Comparison of shell corrections calculated using differ-
ent methods for208Pb.
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By the semiclassical theory of the interaction of photons
with nuclei, the shape of a fundamental resonance in the
absorption cross section is that of the Lorentz curve

ssEgd = o
i

smi

1 + sEg
2 − Emi

2 d2/Eg
2Gi

2 , s30d

where Lorentz parametersEm, sm, andG are the resonance
energy, peak cross section, and full width at half maximum,
respectively. Herei represents the number of components of
the GDR and is determined from the shape of the nucleus. It
is to be noted that these Lorentz lines are noninterfering, but
Gi is assumed to depend on energy. The energy dependence
of the GDR width can be approximated by[34]

Gi < 0.026Ei
1.9, s31d

whereEi are the GDR energies. The peak cross sectionsm is
given by

sm = 60
2

p

NZ

A

1

G
0.86s1 + ad, s32d

wherea is an adjustable parameter that takes care of the sum
rule. The GDR cross-section calculations involve two param-
etersa andh. The parametera, which takes care of the sum
rule, is fixed at 0.3 for all the nuclei considered in this work.
The a has more effect on the peak cross section. In most of
the cases as we normalize the peak with the experimental
data, the choice ofa has less effect on the results. The other
parameterh, which denotes the strength of the dipole-dipole
interaction, is varied for all the nuclei to obtain the proper
ground state GDR centroid energy. The choices are for45Sc,
h=2.1; for 90Zr, 92Mo, and120Sn,h=2.6; and for194Hg and
208Pb, h=3.4. For calculating the GDR width, only the
power law (31) is used in this work and no ground state
width is assumed.

IV. THERMAL AND ORIENTATION FLUCTUATIONS

Fluctuations around mean field values are not negligible
in finite nuclear systems[35]. Hence for hot nuclei, instead
of calculating the equilibrium values of the observable by
minimizing the free energy it would be more appropriate to
calculate the expectation value of the observable over the
deformation space. This is primarily due to the broadening of
free energy landscapes as the free energy distributions no
longer show a crisp minimum at finite temperature. When the
nucleus is observed at finite excitation energy, the effective
GDR cross sections carry information on the relative time
scales for shape rearrangements. Hence in the case of hot
nuclei, for a meaningful comparison of experimental and the-
oretical values, the large amplitude thermal fluctuations
should be taken care of properly. In the case of hot and
rotating nuclei there can be fluctuations in the orientation of
the nuclear symmetry axis with respect to the rotation axis.
The general expression for the expectation value of an ob-
servableO incorporating both thermal and orientation fluc-
tuations is given by[36]

kOlb,g,V =
E Dfage−FsT,I;b,g,Vd/Tsv̂ ·I · v̂d−3/2O

E Dfage−FsT,I;b,g,Vd/Tsv̂ ·I · v̂d−3/2

, s33d

whereV=sf ,u ,cd are the Euler angles specifying the intrin-
sic orientation of the system. The quantityv̂ ·I ·v̂ is the mo-
ment of inertia about the rotation axisv̂ given in terms of the
principal moments of inertiaIx8x8, Iy8y8, andIz8z8 as

v̂ ·I · v̂ = Ix8x8 cos2 f sin2 u + Iy8y8 sin2 f sin2 u

+ Iz8z8 cos2 u. s34d

The volume elementDfag=b4usin 3g u db dg sin u du df.
The study of thermal fluctuations by numerical evaluation

of Eq. (33) in general requires an exploration of five-
dimensional space spanned by the deformation and orienta-
tion degrees of freedom, in which a large number of points
are required in order to assure sufficient accuracy(especially
at finite angular momentum). The corresponding NS calcula-
tion for each point consumes much time. Hence some param-
etrizations were developed to represent the free energy using
functions that mimic the behavior of the NS calculation as
closely as possible. Two such parametrizations and the exact
evaluation are discussed in the following sections.

A. Extended Landau theory

In the Landau theory of phase transitions in nuclei, devel-
oped by Alhassid and collaborators[35–37], the free energy
is expanded in terms of certain temperature-dependent con-
stants that are to be extracted by fitting with the NS free
energy calculations at fixed temperatures by the NS method.
Moreover once the fits involving free energy and moment of
inertia are made for the nonrotating case, the calculations can
be extended macroscopically to high spin states also. Hence
this theory offers an economic parametrization to study the
hot rotating nuclei. Initially[37,38], the free energy expan-
sion is made up to the fourth power in the deformation pa-
rameterb. The extended Landau theory[16,19] includes ex-
pansion up to the sixth power ofb given by

FsT,v = 0;b,gd = F0 + F2b2 + F3b3 cos 3g + F4b4

+ F5b5 cos 3g + F6
s1d b6 + F6

s2d b6 cos2 3g + ¯ ,

s35d

whereF0,F2, . . . are thetemperature-dependent Landau pa-
rameters, which are obtained by least square fitting to the
free energy surfaces calculated by the NS method. The gen-
eral expression for moment of inertiaIz8z8 is given by
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Iz8z8 = I0 + I1 b cosg + I2
s1d b2 + I2

s3d b2 sin2 g

+ I3
s1d b3 cos 3g + I3

s2d b3 cosg + I4
s1d b4

+ I4
s2d b4 cos 3g cosg + I4

s3d b4 sin2 g. s36d

The constantsI0,I1, . . . arealso evaluated using the fitting
procedure.

The extended Landau fit for anyT and to the second order
in v in terms of the parametersa2m (b ,g andV) is given by

FsT,v;a2md = FsT,v = 0;b,gd −
1

2
sv̂ ·I · v̂dv2. s37d

It is enough to calculateIz8z8 for rotations around a principal
axis z8 and the other moments of inertia are then given by

FIG. 3. GDR cross sections
and free energy surfaces for the
nuclei 90Zr and 92Mo. Left: Ex-
perimental data represented by
solid squares are taken from Ref.
[39]. The solid lines represent cal-
culations with orientation and
thermal fluctuations, dashed lines
correspond to thermal fluctuations
alone, and the dash-dotted lines
correspond to most probable
shapes. Right: The contour line
separation is 0.5 MeV and the
most probable shape is repre-
sented by a solid circle. The first
two minima are shaded.

FIG. 4. GDR width at different temperatures for the nucleus
120Sn obtained by NS calculations(solid line), liquid-drop model
calculations(dashed line) in comparison with the experimental data
points [40] (solid squares).

FIG. 5. GDR width at different angular momentum for the
nucleus120Sn. The experimental data points represented by solid
squares are taken from Ref.[41]. The theoretical results are repre-
sented by the solid line.

P. ARUMUGAM, G. SHANMUGAM, AND S. K. PATRA PHYSICAL REVIEW C69, 054313(2004)

054313-6



Ix8x8sT;b,gd=Iz8z8sT;b,g − 2p/3d,

Iy8y8sT;b,gd=Iz8z8sT;b,g + 2p/3d. s38d

In the saddle point approximation the free energy at constant
spin is obtained by a Legendre transform[13]

FsT,I ;a2md = FsT,v = 0;b,gd +
sI + 1/2d2

2v̂ ·I · v̂
. s39d

B. Parametrization of Ormand et al.

At larger deformations, it is well known that the NS cal-
culation gives much stiffer free energy. As the Landau theoryattempts to combine both the liquid-drop free energy and

shell corrections,dF=F−F̃, into the same parametrization,
the Landau theory is expected to be inadequate. An alterna-
tive approach was proposed by Ormandet al. [14], in which
only the shell corrections are parametrized using a function
of rotational invariants. Such a parametrization gives

TABLE I. Jacobi transition in Zr isotopes atT=0 MeV.

Liquid-drop model Nilsson-Strutinsky

A Spin s"d b g Spin s"d b g

80 48 0.3 2180 46 0.4 2180

50 0.5 2140 48 0.8 2120

82 50 0.3 2180 48 0.4 2180

52 0.5 2140 50 0.9 2120

84 52 0.3 2180 50 0.4 2180

54 0.5 2140 52 0.9 2120

86 52 0.3 2180 52 0.4 2180

54 0.5 2140 54 1.0 2120

88 54 0.3 2180 56 0.3 2180

56 0.5 2140 58 1.0 2120

90 56 0.3 2180 56 0.2 2180

58 0.5 2140 58 1.0 2120

FIG. 6. The GDR width at different spins for the nucleus194Hg.
The experimental GDR widths represented by solid squares are
taken from Ref.[42]. The solid line represents our theoretical
results.

FIG. 7. GDR width at different temperatures for the nucleus
208Pb obtained in present calculations with Landau theory(dash-
dotted lines) and exact method(solid lines) in comparison with
other theoretical values from Ref.[14] (dashed lines) and Ref.[40]
(dotted lines). Black and gray correspond to the NS and liquid-drop
calculations, respectively. The experimental data(solid squares) are
those from Ref.[40].

FIG. 8. Comparison between the experimental GDR cross sec-
tions in hot 45Sc at different temperatures and spins. The experi-
mental data denoted by solid squares are taken from Ref.[43]. The
theoretical results from exact fluctuation calculations are denoted by
solid lines and those obtained using Landau theory are denoted by
dashed lines.
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dFsb,g,Td = o
l=0

even

Al j lsBlbdClT /sinhsClTd

+ o
l=3

odd

Al j lsBlbdcoss3gdClT /sinhsClTd,

s40d

where thej l are spherical Bessel functions,Al , Bl, andCl are
obtained by numerical fit to the NS calculations. The shell
corrections to the rigid-body moments of inertia were calcu-
lated to get the renormalized moment of inertia as

J = Jrigid + Jshell− J̃ = Jrigid + dJ. s41d

The parametrization of shell corrections to the moments of
inertia gives

dIz8z8sb,g,Td = o
l=0

even

Al
I j lsBl

IbdCl
IT/sinhsCl

ITd

+ o
l=3

odd

Al
I j lsBl

Ibdcoss3gdCl
IT/sinhsCl

ITd

+ o
lù1

al j lsklbdcossg + 2p/3dhlT/sinhshlTd,

s42d

where the parametersAl
I , Bl

I , Cl
I , al , kl, andhl were deter-

mined by numerical fit to the NS calculations. The free en-
ergy for rotating nuclei are calculated using the expressions
(37)–(39).

C. Exact fluctuation calculations

With advanced computing systems, nowadays it is pos-
sible to perform the thermal fluctuation calculations exactly
by numerically computing the integrations in Eq.(33) with
the free energies, moments of inertia, and the observables
calculated exactly at the deformations corresponding to the
integration(mesh) points. In this work we have performed

FIG. 9. Hodographs depicting the shape transitions occurring in rapidly rotating84Zr at different temperatures. The solid squares
represent the most probable shapes and the open circle and solid circles represent the thermal averaged shapes calculated with Landau theory
and exact method, respectively.
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such calculations, however, neglecting the orientation fluc-
tuations. This enables us to perform the integration in the
deformation space only, which at present is two dimensional,
having the deformation parametersb and g. We first com-
pute the free energies at fixed spin and temperature by vary-
ing the deformation corresponding to the integration points.
We perform a 32-point Gaussian quadrature and hence for
one spin and one temperature 32332 free energies should be
calculated by the NS method and stored. Then we perform
the integration involving any observable such ass at differ-
ent GDR gamma energies. While performing fluctuation cal-
culations in this way, the free energy, GDR cross section, and
width at any given spin are obtained by tuning the cranking
frequency to get the desired spin. Comparison of results from
this procedure and those obtained using the extended Landau
theory are presented in the next section.

V. RESULTS AND DISCUSSION

In Fig. 3 we show for the hot rotating90Zr and 92Mo
nuclei, the results of our GDR cross-section calculations
along with the experimental results[39]. The free energy
surfaces on which the GDR calculations are built have been
shown in the right panel. The most probable shapes and ther-
mally averaged shapes evaluated by us[20] at the shown

temperature and spin using the Landau theory are consistent
with those reported earlier[36] and hence justify our formal-
ism. The increase in the noncollective oblate shape with the
spin resembles the behavior of a rotating liquid drop that can
also be inferred from the potential energy surfaces. Similar to
previous observations[36], from Fig. 3, we see that the ther-
mal fluctuations play a crucial role whereas the orientation
fluctuations are negligible while calculating the GDR cross
sections. This is true for most of the cases considered here
and justify our omission of orientation fluctuations in the
exact method. The significant finding[20] in these cases is
that the results of the thermal fluctuation calculations using
the macroscopic extended Landau theory and the present ex-
act approach are exactly similar(they exactly overlap in Fig.
3). However the Landau theory results are found[20] to
deviate from the exact calculations atT=0.5 MeV for the
nucleus92Mo and these deviations are attributed to the shell
effects driven by the spin. The Landau theory or the later
parametrization[14] could not account for these shell effects,
which can vary with spin. In both methods the free energy at
finite spin is obtained from the free energy and moment of
inertia atI =0" using Eq.(39).

To examine GDR widths at high spins we study them in
120Sn, where the GDR widths have been extracted experi-
mentally. In Fig. 4, we show the comparison between the
theoretical and experimental widths for the nucleus120Sn. In

FIG. 10. Same as Fig. 9, but for the nucleus90Zr.
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this nucleus the shell corrections from protons and neutrons
more or less cancel each other and hence the NS calculation
and the liquid-drop model calculations lead to similar results.
The overall fit is good and the increase in discrepancy with
the increase in temperature may be due to the domination of
particle evaporation widths at higher temperatures[14],
whose contributions are not taken care of in the present cal-
culations. It has to be noted that the comparison of GDR
width from experiment and theory does not require any nor-
malization. In the case of120Sn also the results of Landau
theory and exact fluctuation calculations are found to be ex-
actly similar. To examine this similarity at high spins we
have performed a case study with120Sn and194Hg for which
experimental widths are extracted[41,42] as a function of
spin at fixed temperature. The results are shown in Figs. 5
and 6. Again the results of Landau theory were found to be
exactly similar to the results of exact calculations. These
calculations are very much in accordance with experiment.

In Fig. 7 we show the calculated GDR widths of208Pb
along with other theoretical and experimental results. The
presence of strong shell corrections for spherical shape re-
sults in large difference in the deformation energies between
spherical and deformed configurations. This leads to attenu-
ation of thermal fluctuations at lower temperature and hence
we get widths that are much lower than liquid-drop calcula-
tions [14]. In the presence of strong shell effects at lower
temperatures, the Landau theory results deviate from the re-
sults of the exact method[20]. Above T,1.5 the results
from the two methods are the same. Hence it is clear that the
parametrization of the Landau theory is good enough to ex-
plain the GDR properties of hot rotating nuclei only in the
absence of strong shell effects. It is well known that at larger
deformations, the free energy obtained by the Landau theory
deviates from the NS calculations[14]. Such differences are
suppressed at higher temperatures due to the weakening of
shell effects and the thermal fluctuations. In Fig. 7 we have
plotted also the reported results[40] from the Landau theory
calculations(with cold-nucleus approximation to evaluate
shell corrections) as well as the results of Ormandet al. (with
proper treatment of shell corrections and improved param-
etrization). The difference in the results from the liquid-drop
model clearly suggest that the major part of the difference
comes through the different methods adopted for calculating
GDR properties rather than the different parametrizations
used to deal thermal fluctuations or the proper treatment of
shell corrections. The other part of the difference can be
ascribed to the variation in liquid-drop parametrizations.

In the region of critical spin also we test our formalism by
applying it to explain the Jacobi transition in the nucleus
45Sc, which is established by experiment[43] and theory
[44]. Jacobi transition is a sudden phase transition occurring
at high angular momentum leading to a transition from a
noncollective oblate shape to a triaxial collective shape,
which is close to a prolate shape. This transition is analogous
to the Jacobi transition occurring in gravitating rotating stars
[25]. In Ref. [44] it has been argued that if the Jacobi tran-
sition is not assumed, the calculations do not agree with the
experiment and hence the Jacobi transition could exist in the
case of45Sc. Our present calculations also give good fit to
the experimental data as shown in Fig. 8, supporting the

existence of Jacobi transition. To enable comparison with
experimental data the GDR cross sections are calculated for
an average temperature and spin using the spin distribution
given in Ref. [44]. From the results shown in Fig. 8, the
ability of the present theoretical formalism to explain the
experimental data is justified. Moreover, we can see that
even at critical spins, the Landau theory does well in par
with the exact calculations. It has to be noted that the mar-
ginal difference in the cross sections from these two methods
is well quenched while calculating the widths.

From the first identification of Jacobi transition in the fi-
nite nucleus45Sc, several theoretical and experimental inves-
tigations [13,26,45,46] were undertaken to survey the exis-
tence of this phenomenon in other nuclei. With the
availability of new experimental facilities these studies have
gathered momentum recently. From our calculations, we
have identified[47] the Zr region to be a fertile region to
detect Jacobi transition, which can lead to very highly de-
formed nuclei, such as hyperdeformed nuclei. In Table I we
present the results of our calculations atT=0 MeV for Zr
isotopes with 80øAø90. From the results of NS calcula-
tions it can be seen that in most of the cases the Jacobi
transition leads to hyperdeformation. It is interesting to see
that even though the liquid-drop model(LDM ) predicts Ja-
cobi transition it does not give rise to hyperdeformation in
these cases. For example, in80Zr the LDM calculations show
the Jacobi transition occurring at spin 48" to 50" changing
the deformationb from 0.3 to 0.5. However, the NS calcu-
lations predict Jacobi transition in80Zr altered by spin 2"
and changes the deformationb from 0.4 to 0.8. In the case of
90Zr the LDM predicts a critical spin 56" with b changing
from 0.3 to 0.6. The NS calculations predict the critical spin
to be 56" and the change in deformationb to be 0.2 to 1.0.
Hence the quantal fluctuations strongly modify the deforma-
tion of the nuclei during the Jacobi transition. However the
critical spin at which the transition takes place is marginally
affected. These are the observations at cold statussT
=0 MeVd. It is interesting to see whether the Jacobi transi-
tion and the hyperdeformed structures survive thermal fluc-
tuations at higher temperatures. From our present theoretical
analysis we infer that the hyperdeformed structures in the Zr
isotopes considered here do not survive high temperatures. In
Figs. 9 and 10 we show the hodographs at different tempera-
tures for the nuclei84Zr and 90Zr to represent the scenario.
The most probable shapes and thermally averaged shapes are
shown in the above-mentioned plots. AtT=1 MeV the aver-
aged shapes at high spins calculated using the NS method are
compared with the Landau theory results. The shell effects
still dominate atT=1 MeV and lead to the difference be-
tween the results of the Landau theory and the exact method.
This difference is washed out at high temperatures. Apart
from suppressing the sharpness of Jacobi transition, the ther-
mal fluctuations do not favor hyperdeformed states.

This can be understood if we consider hyperdeformation
as a manifestation of shell effects at high spins. As the tem-
perature increases the shell effects melt and one should ex-
pect the liquid-drop behavior. It is interesting to see that the
Jacobi transition, which was assisted by shell effects atT
=0 MeV in 90Zr, seems to be strongly attenuated by the ther-
mal effects. The indication for Jacobi transition can be seen
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in this nucleus only at high temperatures where the shell
corrections would have started vanishing. To see how the
shell effects are reflected in the GDR cross sections, we
present the GDR cross sections in Figs. 11 and 12, which
could explain the situation at high temperatures also. The
theoretical GDR cross sections for84Zr at high temperatures
and spin clearly depict that there is a strong splitting in the
GDR peaks at high spins, which is even stronger than it was
in the case of45Sc. As the shell effects play a vital role in
leading to a hyperdeformed shape at low temperatures and at
very high spinss50–60" d, we see the Landau theory results
deviating considerably from the exact calculations at very
high spins. In these situations, the Landau theory seems to
overestimate the width of the GDR. This discrepancy van-
ishes with the vanishing shell corrections at higher tempera-
tures. In the exact calculations atT=0.5 MeV, the averaged
deformation parameterssb ,gd during the transition from
I =58" to 60" change from s0.42,−156.2°d to s0.88,
−129.4°d. This hints at the existence of Jacobi transition
leading to hyperdeformation even in hot nuclei. This transi-
tion is well reflected in the GDR cross sections also(Fig. 11)
by the strong splitting of the GDR peaks. This splitting, even
though attenuated, is present at higher temperatures. Hence
the highly deformed shape following Jacobi transition is ex-
pected to survive higher temperatures but it may not lead to
hyperdeformed shapes. The low temperaturesT&1.0 MeVd
GDR measurements are expected to reveal the presence of
hyperdeformation.

VI. CONCLUSIONS

In this work we have presented in detail our theoretical
framework to study the GDR properties at finite temperature
and spin. Shell effects causing the quantal fluctuations are
treated with exact temperature and spin dependence. Thermal
fluctuations are dealt in an exact way without any parameter
fitting. Comparison of our present approach with other simi-
lar approaches, like the thermal fluctuation models compris-
ing Landau theory and the parametrization of Ormandet al.,
has been brought out. We have carried out a systematic study
of the GDR properties in the nuclei45Sc, 90Zr, 92Mo, 120Sn,
194Hg, and208Pb, and our results are well in conformity with
experimental results. The Landau theory is found to be good
enough to explain GDR properties, even at very high spins,
in the absence of strong shell effects. We have identified the
zirconium region as a very fertile region to detect Jacobi
transition. At lower temperatures the Jacobi transition leads
to hyperdeformation in proton-rich zirconium isotopes. Even
though the Jacobi transition survives higher temperatures, it
may not lead to hyperdeformation.
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FIG. 11. Theoretical GDR cross sections for the nucleus84Zr at
T=0.5 MeV and T=1.0 MeV using the Landau theory(dashed
lines) and exact method(solid lines) for thermal fluctuations. The
existence of the Jacobi transition is clearly seen from the magnitude
of splitting.

FIG. 12. Same as Fig. 11 but atT=2.0 MeV and
T=3.0 MeV.
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