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Giant dipole resonance and Jacobi transition with exact treatment of fluctuations
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In a macroscopic approach to giant dipole resondf&®R) in hot and rotating nuclei, the observables are
related to the nuclear free energy surface with consideration of thermal shape fluctuations. This formalism is
revisited with more exact methods. The Nilsson-Strutind&g) method extended to high spin and temperature
is used for free energy calculations. Various approaches to calculate shell corrections at finite temperature and
spin are compared. The GDR built on the states determined by the NS method is studied with a macroscopic
model comprising anisotropic harmonic oscillator potential with separable dipole-dipole interaction. Methods
to parametrize the free energy, such as the Landau theory, for easier evaluation of thermal fluctuations, are
discussed along with a scheme to evaluate thermal fluctuations exactly. The Landau theory is found to work
well even in the extreme limits of spin, however, in the absence of strong shell effects. GDR as a probe for
Jacobi transition leading to hyperdeformation is analyzed in the case of zirconium isotopes.
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I. INTRODUCTION features. In the macroscopic approaches, structure of the

Th dv of | . f , fb hGDR cross section can be linked with the deformation pa-
e study of structural transitions as a function of both ., \eters defining the shape of nuclei. This relation is not

angular momentum and temperature has been among one gf aightforward especially in hot nuclei where large-

the fascinating aspects of highly excited nuclei in recent, i .
; ; . plitude thermal fluctuations of the nuclear shape play an
years[1-4]. The giant dipole resonan¢&DR) studies have inarant role. In this work we employ a macroscopic ap-

been proved .to be a powerful tool to gtudy such hot an roach towards GDR with the consideration of thermal fluc-
rotating nuclei[5] and recently the domain of GDR spread v 5iions as well as the quantal fluctuatiogshell effects.
rapidly over different areas of theoretical and experimenta he theoretical framework thus comprises three parts
Interest, Forr] m_st?nce, f_rom :(h?]GID.fd U.ecay,fnhwas posshlble namely,(1) a model for nuclear shape calculations that gives
to extract the information of the lifetime of hot superheavy . 1 \clear shape at any given temperature and $pjra

systems such a§?Hs [6]. By populating the isomeric states model that relates the nuclear shape, at finite temperature and

in the decay of the GDR, better information about the iso-spin to the GDR cross section, an@) a formalism that
mers could be ext_racte@l7]._The mez?\surement O_f_ GDR takes care of thermal fluctuations and modifies GDR cross
gamma rays from highly excited nuclei could be utiliZ&]

; I sections accordingly.
to check the level density prescriptions. In general, the GDR After this introduction, in Sec. Il we outline the Nilsson-

observations provid_e us informgtion about the geometry a%trutinsky(NS) method extended to finit€ and| for calcu-

well as the ?_ynamlcsl of méd.e' even atsextremle I|m|t§ OfIating the deformation energies. Most of the previous works
temperaturé(T), spin (1), and isospin(r). Several experi- 13 15 comprise NS calculations extended to finite tempera-
ments have been carried out recerfly-3,9 to study the  ,re5 without the cranking part. In some wois8,1§ shell
influence of angular momentum and temperature, by 0bsen,rections at finite temperature have been calculated by ap-

ing the gamma rays from the GDR states from hot rotating,5yimation methods. We revisit the shell correction meth-
nuclei. The behavior of GDR width as a function of tempera-,qg g finite temperature and outline their extension to finite
ture has been an interesting phenomenon and the GDR Me&sin. In Sec. Il we outline a simple modgl7,1§ for cal-

surements at extreme spins render information about high'Xulating the GDR width and cross sections at a given
deform_ed structures.. In this Work_ we address these two is5q shape3,v). The treatment of thermal fluctuations is
sues with our theoretical results with more exact methods fof;o - ,ssed in Sec. IV. For time-saving calculations the free
shell corrections and thermal fluctuations. energy surface dt=0% were parametrized using the Landau

In the theory front the microscopic approactie, 11 (in theory [19] and later on an improved parametrization was

which GDR can be described as a coherent superposition %froposec[l4 15. After outlining the above two methods, we
particle-hole excitations, often calleg-h doorway reso- i ’

I h ; 14 (i discuss an exact methd@0] and bring out the differences
nak\]ncr? gSDF\éve a; the mlatarosc?]pm ap dproacll’[légh— 1 (('jn between these methods. In Sec.V we present the results of
whic can be coupled to the quadrupole shape degrees, ca\cylations. First we test our formalism with the results

of freedom are successful in explaining most of the GDR ¢, ¢l for which both experimental and theoretical num-

bers are reported. The sources of difference/conformity is

brought out. Finally we discuss Jacobi transition in Zr iso-

*Present address: Institute of Physics, Sachivalaya Margtopes occasionally leading to hyperdeformation. Concluding
Bhubaneswar—751 005, India. Electronic address: aru@iopb.res.itiemarks are laid out in the last section.
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II. FINITE TEMPERATURE CRANKED *
NILSSON-STRUTINSKY METHOD S=-> [nInn - (L-n)In(1-n)]. (7)
i=1
The Strutinsky method of shell correctiofidl-23 has
been successfully used in calculations of the nuclear deforn the following sections we discuss the various methods to
mation energy, with the concept of dividing the total nuclearevaluate the shell corrections at finite temperature and spin.

binding energy into a smooth liquid-drop enerd@y py) and

an oscillating shell correction energyr), A. Numerically exact method
Fror=Eipw + > OF. (1) The shell correction is given in terms of the single particle
PN level density a§22,23
In the case of rotating nuclei the above expression becomes ~ A X
[24] SF=F-F=| egede-| eWYede (8)

2 Ne) is the total number of particles that can be accommo-

The liquid-drop energy is calculated by summing up thedated by t_he energy !evels with their_enepgye. A an_d)\ are
Coulomb and surface energi¢25,2§ corresponding to a the chemical potentials corresponding to the discrete and

triaxially deformed shape defined by the deformation paramsmooth single-particle distributions, respectively.and X
etersB and y. As we are interested in calculating only the can be calculated using the constraié\)=N and N(\)
relative deformation energies, we neglect the temperature de=N, respectively. We can also write

pendence of the liquid-drop parameters whose shape depen-

dence is very weak. The classical part of sfifssical 1S dNV(N)
obtained from the rigid-body moment of inertia with surface gle) = Tdn
diffuseness correctiof26]. The shell correction is the differ-

ence between the deformation energy evaluated with a digsrom Egs. (6) and (9), we can write the temperature-

crete single-particle spectrum and the deformation energgependent single-particle level density[28,29
evaluated with a smoottaverageg spectrum corresponding

to that discrete single-particle spectrum:

Fror=Eipm + > oF + 1w<|classical+ > 51) . (2) whereg(e)=dN(e)/deis the single-particle level density and
p,n p,n

ISLUICEN

9
A=e =1 d\

A=e

1

90 =2 s e— ezt

SF=F-F. (3) i=1

The natural way of applying Strutinsky averagifgg] to
the level density is to convolutg(e) with the averaging
function

sl=1-T. (4) 3 1 (" fe—g
To calculate the shell corrections corresponding to energy 9(e)= ;Sf_x f( Ye )g(e yde'. (11

and spin, we employ the triaxially deformed Nilsson model

together with the Strutinsky prescription. The single-particleWe use the averaging function
energies(g) and the spin projectioném;) are obtained by

diagonalizing the triaxial Nilsson Hamiltonian in cylindrical ~ .1 )

representatiori27] up to the first 12 major shells. At finite fo) = I exp(=x )E_O CrnHm(), (12)
temperatures the free energy is given by m

(10

Similarly the shell correction corresponding to the spin is
given by

p

w0 w0 whereC,,=(-1)™2/2™(m/2)! if mis even andC,=0 if mis
F=Yen-TX>s, (5) odd; x=(e-e)/ys 7s i~s the smearing parameter satisfying
i=1 i=1 the plateau conditiodF/dy;=0; p=6 is the order of smear-

. : i H the Hermit I ials.
wheres are the single-particle entropy amdare the occu- ing andHy,(x) are the Hermite polynomials

pation numbers that follow Fermi-Dirac distribution given by ~ Substituting Eq(11) in the expression foF in Eq. (8),
and using Eq(5), we have[28]

1

©

n; = ~f(x)x2 m(x)dx, (13

a) © F=Sen-155+

1+ exp('?

The chemical potentiak is obtained using the constraint Where

>Z,n =N, whereN is the total number of particles. The total w

entropyS=2/Z; s can be represented in terms of occupation i = f ?(x)ni(x)dx, (14)
numbers as —o
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«—B—

g = f F(x)s(x)dx. (15)

Usually the third term in Eq(13) is equated talF/dys and
can be neglectefl9] using the plateau condition. However
the inclusion of this term in the calculations leads to a more
stable plateau and hence legsdependent results. The inte-
grals appearing in Eq13) are evaluated numerically using .
the Hermite-Gauss quadrature. Apart from the numerical @ 18.32 MeV 08pp
evaluation of integrals, this method gives exact temperature: y=-120° y=-60°
dependent shell corrections.

For the spin distribution, the Strutinsky smoothed spin  FIG. 1. Shape dependence@in the nucleug®®b. The shaded

can be derived in a similar way leading to the expresgion circle represents the minimum and the contour line spacing is

-100° -80°

=37, mf; and hence the shell correction for spin is 0.1 Mev.
3= mn— > m. (16) SF(T)=F(T) - E(T=0). (21)
i=1 i=1

The difference between this method and the maximum term
approximation is the terr@T2. To study the shape depen-
_ o dance ofa, we have plotted in Fig. 1 the contours@fas a
B. Maximum term approximation function of the deformation parameters for the nucl&8b.
This method proposed by Civitaresé al. [30] provides  From the figure it is clear that the shape dependence is very
an approximate solution for the integrals given in Et@)  weak. The difference in free energy due to the tém?
using the “maximum term approximation” of quantum statis-between the deformation8=0.0 andg=1.0 is only around
tical mechanics. The final result of the application of this0.7T% This difference does not have much impact on the
approximation reads equilibrium state but has a role to play in the fluctuation
~ calculations.
SF=E(T)-TS-E(T=0)+a(\y)T?, (17)

where D. Statistical method

2 Ramamurthyet al. [32] first identified that the statistical
A= —g(\o). (18) theory can explain the ground state shell corrections. It has
6 been found that the study of variation &f as a function of
L , . i E" at asymptotic limits gives information about the smooth

The termg is given by Eq.(11), which has analytical solu (liquid-drop) behavior and, at lower excitation energies,

tion at T=0. It is to be noted that in this method there is no bout the shell structure. When one blots these two quanti-
need to perform any smoothing at finite temperatures, whic o ) €p . 4
. . . les, it is seen that the curve deviates considerably from a
is an advantage of this method over the numerically exac& ! ' 2 JaE .
method. The shell correction in this approximation is WrittenStralght line of the forn® =43k, expecteg from the Fermi

' gas model. However at excitation energies>30-40 MeV,

as there exists an asymptotic behavior of the form
Sl :Zmini—zmiﬁi, (19) F=4a(E + AE), (22)
=t =t where AE represents the magnitude of the intercepts on the
wheren; are evaluated af=0. energy axis of the asymptotic straight lines, and + refers to

the two cases of positive and negative shell corrections, re-
spectively. In this framework, after choosing the optimum
C. Cold-nucleus approximation asymptotic temperaturé¢~4 MeV) we just have to fit a

Starting with the expressions for the smoothed quantitiestraight line for the asymptotical part of te vs E curve
E=3T2 and S=25T we can write the expression for the and deduct shell corrections at fixed temperatime fixed
smoothed free enérgy as P entropy by simply calculating the difference between the

excitation energies given by the actual curve and the fitted

|~:(T) :E(T: 0) - &T2. (20) line. Shell corrections evaluated_in this way are numerically
close to the values calculated using the Strutinsky procedure.
Within the cold-nucleus approximatidi9,31], the quantity In Fig. 2, we present the comparison of shell corrections

A is assumed to be shape independent and can be neglectalculated using different methods for the nucleéd®b.
while calculating the relative deformation energy. Hence theé=rom the extension of this calculation to nuclei lying in dif-
smoothed free energy at finite temperature is assumed to lferent mass regions, we have found that both the maximum
equal to the zero-temperature Strutinsky-smoothed energyerm approximation method and the statistical method lead to
ie., growing positive shell corrections at higher temperatures,
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4 T I L} I T I T I L} I/ Cd §
r -7 ] H.(Q) =2, h,(Q), 24
2 -— 208Pb Neutrons .- - ] : av( ) = V( ) ( )
0 az2l
- 1 where
s °F i
- b 2
L _ p~ m
3 T ] h(Q) =5+ (il +ofy’ + ;) - 0, (29)
m -6 — Numerically Exact —
© 8 [ = = -Maximum Term Approximation ] and
L - - - - Statistical i
10 b ] A
12 i I | 1 | I | | | 1 | i I-Z: E lZ(V)
L L A L L By =1
2 |-208 PR . , . .
[~ Pb Protons -] is the operator of rotation about theaxis andQ) is the
0 N e e B cranking frequency. The effective dipole interaction has the
2 L y - form
S i i
v -4 — 2| A 2
| i Mw; v
S oL ] Himp=7 2 [E 7 >xi(v>] : (26)
% =2 § i=x,y,z v=1
-8 -
- . Wheref(;) is the third projection of the Pauli isospin matrix
-10 C 7] and 7 is a parameter that characterizes the isovector compo-
12 VIR NN S [ S S S — nent of the neutron and proton average field. The frequencies
0 1 2 3 4 5 of the GDR in a rotating nucleus can be obtained by diago-
Temperature (MeV) nalizing analytically the Hamiltonia23) with the effective

interaction (26) within the framework of the standard
FIG. 2. Comparison of shell corrections calculated using differ-random-phase approximation. Including the splitting of the
ent methods for%Pb. GDR frequencies due to rotation, the final set of GDR fre-
quencies in laboratory frame are obtained B5,19

which is rather unrealistic. On the other hand, the numeri-
cally exact method displays the proper asymptotic behavior,
but the results are not stable at very low temperatures ,
(T<0.5 MeV) due to numerical instabilities. However this _ _ = W, + o , 1 2 2 20
method consumes lot of computing time when compared to “2 " Q=11+ 2 0%+ 5[(1 +n)wy ~ o))
other methods. For low mass nuclei, evaluation of shell cor- 12

rections by the statistical method is found to be less staple. +802(1 + ﬂ)(w§+ w)2()]1/2 T Q. (28)
From these arguments we conclude that, for calculating

temperature-dependent shell corrections ugTts:3 MeV),

the maximum term approximation method can be used. At {

w,=(1+n)Yw,, 27

2, 2
w,+w 1
L+~ +0%- Z[(1+ 90} - w)?

higher temperatures the shell correction term may be ne- w3+ Q = > >

glected or the numerically exact method can be opted.

1/2
+80%(1 + 7)(w}+ wﬁ)]l’z} FQ. (29
Ill. GIANT DIPOLE RESONANCE CROSS SECTIONS

Having discussed the methods to yield deformation enerAll five of these frequencies do not exist for all nuclei. The
gies and hence equilibrium shapes, in this section we briefijjumber of existing frequencies depends on the shape of the
outline the model employed in this work for calculating the nucleus[18,33. One can have five GDR components corre-
observables of GDR built on those shapes. In this model thgponding to the frequenciés,, w,—(, w,+, w3-(, and
GDR cross sections are obtained using a rotating anisotropies* 2, for collectively rotating triaxial nuclei. For prolate
harmonic oscillator potential and a separable dipole-dipoléuclei (w=wy,> w,) rotating about an axis perpendicular to
residual interactiori17,1§. The Hamiltonian describing the its symmetry axis, all five of the above frequencies will exist.
model is given by But for the oblate nuclelw,=w,<w,) rotating about its

symmetry axis, as shown first by Hilton in R¢83], only
H=H,,+Hinp (23)  two frequencies, namelyp; and w,—Q =w;+€, will exist
and thus all effects due to rotation vanish and only those
whereH,, is the average potential corresponding to the tri-purely due to deformation will be left. For the spherical nu-
axial harmonic oscillator andH;,, represents the effective clei (w=w,=w,), which comes under the latter category, one
dipole interaction: gets only one frequency, nameby; =w,— Q =w;+.
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By the semiclassical theory of the interaction of photons By T A R
with nuclei, the shape of a fundamental resonance in the Dlale™ P79 (oI @)™ 0
absorption cross section is that of the Lorentz curve (O)gy0=

, (33
f D[a]e—F(TJ;B,y,Q)/T(&\) T &)_3/2

o(E)= T (30)

T 1+(E2-ER)YET

where Lorentz parametef,, o,, andl" are the resonance WhereQ=(¢,6,4) are the Euler angles specifying the intrin-
energy, peak cross section, and full width at half maximum§$ic orientation of the system. The quantityZ - o is the mo-
respectively. Heré represents the number of components ofment of inertia about the rotation axisgiven in terms of the
the GDR and is determined from the shape of the nucleus. Rrincipal moments of inerti&/, Iy, andl,, as

is to be noted that these Lorentz lines are noninterfering, but
I'; is assumed to depend on energy. The energy dependence
of the GDR width can be approximated [34]

[OR

T @=lyy COS G SI? O+l Sir? psir? @
I, =~ 0.026"7, (31) +1,, cog 6. (34)

whereE; are the GDR energies. The peak cross sectiQis
given by The volume elemenD[a]=%|sin 3y| d3 dy sin #d6 de.
o NZ1 The study of thermal fluctuations by numerical evaluation
_ Nz L of Eg. (33) in general requires an exploration of five-
Im= 607_7 AT 0.861 +a), (32 dimensional space spanned by the deformation and orienta-
tion degrees of freedom, in which a large number of points
wherea is an adjustable parameter that takes care of the surare required in order to assure sufficient accur@specially
rule. The GDR cross-section calculations involve two paramat finite angular momentumThe corresponding NS calcula-
etersa and n. The parametes, which takes care of the sum tion for each point consumes much time. Hence some param-
rule, is fixed at 0.3 for all the nuclei considered in this work. etrizations were developed to represent the free energy using
The a has more effect on the peak cross section. In most ofunctions that mimic the behavior of the NS calculation as
the cases as we normalize the peak with the experimentalosely as possible. Two such parametrizations and the exact
data, the choice o& has less effect on the results. The otherevaluation are discussed in the following sections.
parametery, which denotes the strength of the dipole-dipole
interaction, is varied for all the nuclei to obtain the proper
ground state GDR centroid energy. The choices aré*®c, A. Extended Landau theory
7=2.1; for °%Zr, ®Mo, and*?°Sn, »=2.6; and for'®*g and
20%pp, »=3.4. For calculating the GDR width, only the Inthe Landau theory of phase transitions in nuclei, devel-
power law (31) is used in this work and no ground state oped by Alhassid and collaboratdi35-37, the free energy
width is assumed. is expanded in terms of certain temperature-dependent con-
stants that are to be extracted by fitting with the NS free
energy calculations at fixed temperatures by the NS method.
Moreover once the fits involving free energy and moment of
Fluctuations around mean field values are not negligibldnertia are made for the nonrotating case, the calculations can

in finite nuclear systemf35]. Hence for hot nuclei, instead Pe extended macroscopically to high spin states also. Hence
of calculating the equilibrium values of the observable bythis theory offers an economic parametrization to study the
minimizing the free energy it would be more appropriate tohot rotating nuclei. Initially[37,38, the free energy expan-
calculate the expectation value of the observable over th&ion is made up to the fourth power in the deformation pa-
deformation space. This is primarily due to the broadening ofameters. The extended Landau theofy6,19 includes ex-

free energy landscapes as the free energy distributions riRNsion up to the sixth power ¢f given by

longer show a crisp minimum at finite temperature. When the

nucleus is observed at finite excitation energy, the effective

GDR cross sections carry information on the relative time F(T,w=0;8,7) =Fq+F,8%2+F38° cos 3y+F,3*

scales for shape rearrangements. Hence in the case of hot 5 1) 6 2) 6

nuclei, for a meaningful comparison of experimental and the- +Fsff® cos 3y + Fg p2+ FeY 5 cos 3y + -+,
oretical values, the large amplitude thermal fluctuations (39
should be taken care of properly. In the case of hot and

rotating nuclei there can be fluctuations in the orientation of

the nuclear symmetry axis with respect to the rotation axiswhereFy,F,,... are thetemperature-dependent Landau pa-
The general expression for the expectation value of an obrameters, which are obtained by least square fitting to the
servableO incorporating both thermal and orientation fluc- free energy surfaces calculated by the NS method. The gen-
tuations is given by36] eral expression for moment of inertig,, is given by

IV. THERMAL AND ORIENTATION FLUCTUATIONS
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FIG. 3. GDR cross sections
and free energy surfaces for the
nuclei °Zr and °°Mo. Left: Ex-
perimental data represented by

“zr ;’ \ solid squares are taken from Ref.

100 7 Y ] [39]. The solid lines represent cal-
5 T=18MeV / \ culations with orientation and

% 1=227 / 3 thermal fluctuations, dashed lines
50| / e correspond to thermal fluctuations

Ly =lo+ 1y Bcosy+ IS g2+15) g2 sir? y
+1$Y g% cos 3y+12 gEcosy+1 g
+1%2) g* cos 3ycosy+15Y p* sir? .

The constantdg, |4, ...

alone, and the dash-dotted lines
correspond to most probable
shapes. Right: The contour line
separation is 0.5 MeV and the
most probable shape is repre-
sented by a solid circle. The first
two minima are shaded.

The extended Landau fit for adyand to the second order
in  in terms of the parameters,, (8, and() is given by

(36)

F(T,w;a,,) =F(T,w=0;8,7) - %(&) T-0)w?. (37)

arealso evaluated using the fitting |¢ is enough to calculate,, for rotations around a principal

procedure. axisz' and the other moments of inertia are then given by

LR B BN LR IR B IS — T
12 [ ] " |
B - - 120 i
- gy 1 s —— ]
i ] 12+ T=18MeV .
s 0F 5 - i 1
> L - S i 1
s ] 2 10} .
o = 3 1
B8 °r - ] 5 I ]
L # J = g .
6 . [ —— ]
i 1 6 - ]
Lo o v b v b b by o by v vy v g 1y L N

00 05 10 15 20 25 30 0 20 40 60

T (MeV) Spin ()

FIG. 4. GDR width at different temperatures for the nucleus FIG. 5. GDR width at different angular momentum for the
1205n obtained by NS calculatior(solid line), liquid-drop model  nucleus'?°Sn. The experimental data points represented by solid
calculationgdashed lingin comparison with the experimental data squares are taken from R€#1]. The theoretical results are repre-
points[40] (solid squares sented by the solid line.
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8 |-
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= 6
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3 I 194
— L Hg
4 | T=13MeV N - 10 - s d I=13h 3 1=18.5%
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2 [T R T RS o 50F ' T -+ T T =
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FIG. 6. The GDR width at different spins for the nuclédg.
The experimental GDR widths represented by solid squares are
taken from Ref.[42]. The solid line represents our theoretical
results.

Lyt (T3 B, V)=l (T; B,y = 2713),

Iyryr(T;B, ’}/)ZIZ!Z!(T;B,’)/+ 27T/3) (38)

In the saddle point approximation the free energy at constant
spin is obtained by a Legendre transfofh3]

PHYSICAL REVIEW C 69, 054313(2004)

20 30 10 20

E, (MeV)

30

At larger deformations, it is well known that the NS cal-
culation gives much stiffer free energy. As the Landau theor

F(T,l;0,) =F(T,0=0;8,7) +

B. Parametrization of Ormand et al.

(1+1/2)?
20 -7 &

(39)

FIG. 8. Comparison between the experimental GDR cross sec-
tions in hot*°Sc at different temperatures and spins. The experi-
mental data denoted by solid squares are taken from[R&f. The
theoretical results from exact fluctuation calculations are denoted by
solid lines and those obtained using Landau theory are denoted by
dashed lines.

yattempts to combine both the liquid-drop free energy and

shell correctionsgF=F—F, into the same parametrization,
the Landau theory is expected to be inadequate. An alterna-

12 ! ' ' ' tive approach was proposed by Ormagtdal. [14], in which
only the shell corrections are parametrized using a function
10 L 208py, _ of rotational invariants. Such a parametrization gives
r TABLE I. Jacobi transition in Zr isotopes d=0 MeV.
3 8 — . _
= Liquid-drop model Nilsson-Strutinsky
©

§ 6 A Spin(h) B Y Spin(h) B Y
80 48 0.3 -—180 46 04 —180
50 0.5 —140 48 0.8 —120
4 82 50 0.3 -—180 48 04 —180
o b b b e 1 52 0.5 —140 50 09 —120
0.0 05 1.0 1.5 20 84 52 03 —180 50 0.4 —180
T (MeV) 54 05 —140 52 09 —120
FIG. 7. GDR width at different temperatures for the nucleus >2 03 ~180 >2 04 ~180
208py obtained in present calculations \F/)vith Landau the@iash- 54 05 ~140 54 1.0 —120
dotted line$ and exact methodsolid lineg in comparison with 88 o4 0.3 —180 56 0.3 —180
other theoretical values from RdfL4] (dashed lingsand Ref.[40] 56 0.5 -140 58 1.0 -120
(dotted line$. Black and gray correspond to the NS and liquid-drop 90 56 0.3 —180 56 0.2 -—-180
calculations, respectively. The experimental datalid squarepare 58 05 —140 58 1.0 —120

those from Ref[40].
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FIG. 9. Hodographs depicting the shape transitions occurring in rapidly rotélfrgat different temperatures. The solid squares

represent the most probable shapes and the open circle and solid circles represent the thermal averaged shapes calculated with Landau theol
and exact method, respectively.

SF(B,7.T)= X Aji(BACT /sinh(C/T) 8 (B, T) = 2 Alji(BBCT/SINNCT)
1=0 1=0
odd odd
+ >, Aji(B,B)cog3y)C T /sinh(CT), + >, Alj(B]B)cog3y)C| T/sinh(C|T)
1=3 1=3
(40) +> aji(xB)cos y + 2m/3) pTsinh 7 T),
|1=1

(42)
where thej, are spherical Bessel functions, Bj, andC, are  \where the paramete#ﬂ, BI', C}, a;, k;, and 7, were deter-
obtained by numerical fit to the NS calculations. The Shenmined by numerical fit to the NS calculations. The free en-

corrections to the rigid-body moments of inertia were calcu-ergy for rotating nuclei are calculated using the expressions
lated to get the renormalized moment of inertia as (37)~(39).

C. Exact fluctuation calculations

3 = Jrigid g A— = Jrigia + 63 (42) With advanced computing systems, nowadays it is pos-
sible to perform the thermal fluctuation calculations exactly
by numerically computing the integrations in E&3) with
the free energies, moments of inertia, and the observables

The parametrization of shell corrections to the moments otalculated exactly at the deformations corresponding to the
inertia gives integration(mesh points. In this work we have performed
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FIG. 10. Same as Fig. 9, but for the nucl€§ar.

such calculations, however, neglecting the orientation fluctemperature and spin using the Landau theory are consistent
tuations. This enables us to perform the integration in thevith those reported earli¢B6] and hence justify our formal-
deformation space only, which at present is two dimensionalism. The increase in the noncollective oblate shape with the
having the deformation parametegsand y. We first com-  Spin resembles the behavior of a rotating liquid drop that can
pute the free energies at fixed spin and temperature by var@/so _be inferred fr(_)m the potentlal energy surfaces. Similar to
ing the deformation corresponding to the integration pointsPrevious observation86], from Fig. 3, we see that the ther-
We perform a 32-point Gaussian quadrature and hence fgpal fluctuations play a crucial role whereas the orientation
one spin and one temperaturex332 free energies should be fluctuations are negligible while calculating the GDR cross
calculated by the NS method and stored. Then we perfonﬁectlons. This is true for most of the cases considered here
the integration involving any observable sucheaat differ- ~ &nd Justify our omission of orientation fluctuations in the
ent GDR gamma energies. While performing fluctuation calexact method. The significant findifg0] in these cases is

culations in this way, the free energy, GDR cross section, ana:Ztntqgecrroes‘c’cu(lts’iCo;;?eeng'e%rrﬁ;g;ﬁtfhaetgn ;ﬁl((;l#]ae“o?essgﬁ'tngx_
width at any given spin are obtained by tuning the cranking P Y P

frequency to get the desired spin. Comparison of results fro ct approach are exactly simildhey exactly overlap in Fig.

this procedure and those obtained using the extended Land ?évgtogvﬁ\g% tt?]ee tiggtaléatlzﬁlc;rt)i/orrgs%tso griﬂé%q'g] tLOe
theory are presented in the next section. ’

nucleus®Mo and these deviations are attributed to the shell
effects driven by the spin. The Landau theory or the later
parametrizatioril4] could not account for these shell effects,
which can vary with spin. In both methods the free energy at
In Fig. 3 we show for the hot rotatin§’zr and ®®Mo finite spin is obtained from the free energy and moment of
nuclei, the results of our GDR cross-section calculationsnertia atl=0% using Eq.(39).
along with the experimental resul{89]. The free energy To examine GDR widths at high spins we study them in
surfaces on which the GDR calculations are built have bee#?°Sn, where the GDR widths have been extracted experi-
shown in the right panel. The most probable shapes and thementally. In Fig. 4, we show the comparison between the
mally averaged shapes evaluated by[R6] at the shown theoretical and experimental widths for the nuclétf$n. In

V. RESULTS AND DISCUSSION
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this nucleus the shell corrections from protons and neutronsxistence of Jacobi transition. To enable comparison with
more or less cancel each other and hence the NS calculati@xperimental data the GDR cross sections are calculated for
and the liquid-drop model calculations lead to similar resultsan average temperature and spin using the spin distribution
The overall fit is good and the increase in discrepancy wittgiven in Ref.[44]. From the results shown in Fig. 8, the
the increase in temperature may be due to the domination @bility of the present theoretical formalism to explain the
particle evaporation widths at higher temperatuféd], experimental data is justified. Moreover, we can see that
whose contributions are not taken care of in the present cakven at critical spins, the Landau theory does well in par
culations. It has to be noted that the comparison of GDRwith the exact calculations. It has to be noted that the mar-
width from experiment and theory does not require any norginal difference in the cross sections from these two methods
malization. In the case of?°Sn also the results of Landau is well quenched while calculating the widths.
theory and exact fluctuation calculations are found to be ex- From the first identification of Jacobi transition in the fi-
actly similar. To examine this similarity at high spins we nite nucleus™Sc, several theoretical and experimental inves-
have performed a case study wiHSn and'®Hg for which  tigations[13,26,45,4% were undertaken to survey the exis-
experimental widths are extract¢dl1,42 as a function of tence of this phenomenon in other nuclei. With the
spin at fixed temperature. The results are shown in Figs. &vailability of new experimental facilities these studies have
and 6. Again the results of Landau theory were found to begathered momentum recently. From our calculations, we
exactly similar to the results of exact calculations. Thesehave identified[47] the Zr region to be a fertile region to
calculations are very much in accordance with experiment.detect Jacobi transition, which can lead to very highly de-
In Fig. 7 we show the calculated GDR widths ¥Pb  formed nuclei, such as hyperdeformed nuclei. In Table | we
along with other theoretical and experimental results. Thepresent the results of our calculationsTat0 MeV for Zr
presence of strong shell corrections for spherical shape résotopes with 86< A<90. From the results of NS calcula-
sults in large difference in the deformation energies betweetions it can be seen that in most of the cases the Jacobi
spherical and deformed configurations. This leads to attenuransition leads to hyperdeformation. It is interesting to see
ation of thermal fluctuations at lower temperature and hencthat even though the liquid-drop modglDM) predicts Ja-
we get widths that are much lower than liquid-drop calcula-cobi transition it does not give rise to hyperdeformation in
tions [14]. In the presence of strong shell effects at lowerthese cases. For example #fiZr the LDM calculations show
temperatures, the Landau theory results deviate from the réhe Jacobi transition occurring at spinf48& 504 changing
sults of the exact methof0]. Above T~ 1.5 the results the deformations from 0.3 to 0.5. However, the NS calcu-
from the two methods are the same. Hence it is clear that thiations predict Jacobi transition i#Zr altered by spin 2
parametrization of the Landau theory is good enough to exand changes the deformatigifrom 0.4 to 0.8. In the case of
plain the GDR properties of hot rotating nuclei only in the °°Zr the LDM predicts a critical spin F6with 8 changing
absence of strong shell effects. It is well known that at largefrom 0.3 to 0.6. The NS calculations predict the critical spin
deformations, the free energy obtained by the Landau theorip be 56 and the change in deformatighto be 0.2 to 1.0.
deviates from the NS calculatiofi$4]. Such differences are Hence the quantal fluctuations strongly modify the deforma-
suppressed at higher temperatures due to the weakening $n of the nuclei during the Jacobi transition. However the
shell effects and the thermal fluctuations. In Fig. 7 we havegritical spin at which the transition takes place is marginally
plotted also the reported resuf#0] from the Landau theory ~affected. These are the observations at cold stdfus
calculations(with cold-nucleus approximation to evaluate =0 MeV). It is interesting to see whether the Jacobi transi-
shell correctiongas well as the results of Ormaedlal. (with  tion and the hyperdeformed structures survive thermal fluc-
proper treatment of shell corrections and improved paramtuations at higher temperatures. From our present theoretical
etrization. The difference in the results from the liquid-drop analysis we infer that the hyperdeformed structures in the Zr
model clearly suggest that the major part of the differencasotopes considered here do not survive high temperatures. In
comes through the different methods adopted for calculatingigs. 9 and 10 we show the hodographs at different tempera-
GDR properties rather than the different parametrizationsures for the nuclef*zr and °%Zr to represent the scenario.
used to deal thermal fluctuations or the proper treatment 6fhe most probable shapes and thermally averaged shapes are
shell corrections. The other part of the difference can beshown in the above-mentioned plots. A+ 1 MeV the aver-
ascribed to the variation in liquid-drop parametrizations. aged shapes at high spins calculated using the NS method are
In the region of critical spin also we test our formalism by compared with the Landau theory results. The shell effects
applying it to explain the Jacobi transition in the nucleusstill dominate atT=1 MeV and lead to the difference be-
453¢, which is established by experimeid3] and theory tween the results of the Landau theory and the exact method.
[44]. Jacobi transition is a sudden phase transition occurrin@his difference is washed out at high temperatures. Apart
at high angular momentum leading to a transition from afrom suppressing the sharpness of Jacobi transition, the ther-
noncollective oblate shape to a triaxial collective shapemal fluctuations do not favor hyperdeformed states.
which is close to a prolate shape. This transition is analogous This can be understood if we consider hyperdeformation
to the Jacobi transition occurring in gravitating rotating starsas a manifestation of shell effects at high spins. As the tem-
[25]. In Ref.[44] it has been argued that if the Jacobi tran-perature increases the shell effects melt and one should ex-
sition is not assumed, the calculations do not agree with thpect the liquid-drop behavior. It is interesting to see that the
experiment and hence the Jacobi transition could exist in thdacobi transition, which was assisted by shell effect3 at
case of4°Sc. Our present calculations also give good fit to=0 MeV in °%Zr, seems to be strongly attenuated by the ther-
the experimental data as shown in Fig. 8, supporting thenal effects. The indication for Jacobi transition can be seen
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FIG. 11. Theoretical GDR cross sections for the nucféis at FIG. 12. Same as Fig. 11 but af=2.0 MeV and
T=0.5 MeV andT=1.0 MeV using the Landau theorgdashed T=3.0 MeV.
lines) and exact methodsolid lineg for thermal fluctuations. The
existence of the Jacobi transition is clearly seen from the magnitude VI. CONCLUSIONS
of splitting.

In this work we have presented in detail our theoretical

mework to study the GDR properties at finite temperature

8nd spin. Shell effects causing the quantal fluctuations are
eated with exact temperature and spin dependence. Thermal
uctuations are dealt in an exact way without any parameter

in this nucleus only at high temperatures where the shel{ra
corrections would have started vanishing. To see how th
shell effects are reflected in the GDR cross sections, wi
present the GDR cross sections in Figs. 11 and 12, whic

could explain the situation at high temperatures also. The. . i . S
theoretical GDR cross sections f8r at high temperatures 1'ting. Comparison of our present approach with other simi-
and spin clearly depict that there is a strong splitiing in the!ar approaches, like the thermal fluctuation models compris-

GDR peaks at high spins, which is even stronger than it wat'd Landau theory and the parametrization of Ormanell,

in the case of5Sc. As the shell effects play a vital role in Nas been brought out. We have carried out a systematic study
leading to a hyperdeformed shape at low temperatures and @f the GDR properties in the nuclétSc, °°Zr, ®Mo, **%Sn,
very high sping50-604), we see the Landau theory results ***Hg, and*®b, and our results are well in conformity with
deviating considerably from the exact calculations at veryexperimental results. The Landau theory is found to be good
high spins. In these situations, the Landau theory seems ®nough to explain GDR properties, even at very high spins,
overestimate the width of the GDR. This discrepancy vanin the absence of strong shell effects. We have identified the
ishes with the vanishing shell corrections at higher temperazirconium region as a very fertile region to detect Jacobi
tures. In the exact calculations 8+0.5 MeV, the averaged transition. At lower temperatures the Jacobi transition leads
deformation parameter§B,7y) during the transition from to hyperdeformation in proton-rich zirconium isotopes. Even
=58 to 60h change from (0.42,-156.2} to (0.88, though the Jacobi transition survives higher temperatures, it
-129.4°. This hints at the existence of Jacobi transitionmay not lead to hyperdeformation.

leading to hyperdeformation even in hot nuclei. This transi-

tion is well reflected in the GDR cross sections glsiy. 11)

by the strong splitting of the GDR peaks. This splitting, even ACKNOWLEDGMENTS
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