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Proton emission from deformed nuclei is described within the nonadiabatic weak coupling model which
takes into account the coupling tog vibrations around the axially symmetric shape. The coupled equations are
derived within the Gamow state formalism. A new method, based on the combination of theR-matrix theory
and the oscillator expansion technique, is introduced that allows for a substantial increase of the number of
coupled channels. As an example, we study the deformed proton emitter141Ho.
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I. INTRODUCTION

Theoretical models applied to the description of non-
spherical proton emitters can be divided into two groups. The
core-plus-particle models describe the radioactive parent
nucleus in terms of a single proton interacting with a core
(i.e., the daughter nucleus). Usually, the core is represented
by some phenomenological collective model, e.g., the Bohr-
Mottelson(geometric) model. Depending on the structure of
the daughter nucleus, rotational[1–3] or vibrational [4,5]
couplings are assumed. The models belonging to this group
employ the coupled-channel formalism of reaction theory
which has been developed in the context of elastic or inelas-
tic scattering.

Models belonging to the second group employ the frame-
work of the deformed shell model. In the simplest case, the
proton resonance corresponds to a Nilsson state of a de-
formed mean field[6–12]. Approaches belonging to this
group can be generalized to include the BCS pairing[13].

We may refer to the first group of models as weak-
coupling models or coupled-channel models. For the second
group of models, we reserve the term resonance Nilsson-
orbit (or adiabatic) models. The term “adiabatic” requires an
explanation. It is very difficult to relate both groups of mod-
els to each other, because they operate on different approxi-
mation levels. In special situations, however, this relation-
ship can be revealed. For instance, in the limit of the infinite
moment of inertia of the axial weak-coupling model(which
implies degenerate rotational bands and strong rotational
coupling [14]), one recovers the resonance Nilsson-orbit
model [16]. So one may say thatin this casethe adiabatic
model is an approximation to the weak-coupling(nonadia-
batic) picture. Generally, however, the relation between adia-
batic and nonadiabatic descriptions is not simple. For ex-

ample, the resonance Nilsson-orbit model with a triaxial
potential[15] (i.e., nonzerog deformation) cannot be trivi-
ally related to a weak-coupling model extended to triaxial
degrees of freedom[16].

If the coupled-channel model with the rotational coupling
is applied to the nucleus141Ho, the ground-state decay char-
acteristics(half-life time and branching ratio) are poorly de-
scribed [2,3]. There are several explanations possible. For
example, it may be that the Coriolis mixing is too strong[3].
This can be partly cured if pairing is introduced[13]. An-
other possibility, explored in this work, is the coupling to
triaxial vibrations. Indeed, in particle-plus-rotor calculations,
the best description of the experimentally observed band
structures of141Ho can be explained ifg deformation is con-
sidered[17]. In addition, in the neighboring nuclei, such as
136Sm and140Gd, there are low-lying 22

+ and 3+ levels [18]
which have been interpreted[19] as members of a
g-vibrational band. There are also other indications that in
this mass region the coupling to triaxial modes can play a
role [20,21]. The possibility that triaxiality influences the de-
cay of 141Ho was investigated in our earlier work[16] and
also in the recent Refs.[15,22] based on an adiabatic model
assuming a triaxially deformed mean field.

In this work, we present nonadiabatic calculations in
which the excitations of the daughter nucleus are properly
taken into account. Unlike in Ref.[22], we do not assume a
permanentg deformation of the core, but rather we consider
g vibrations around the axially symmetric deformed shape.

The ground-state rotational band of140Dy has recently
been observed[23,24]. In addition, in our work we assume
that 140Dy has theK=2 g-vibrational band. This structure
can be coupled to the ground-state band if the proton-
daughter interaction in the body-fixed system deviates from
the axial symmetry. The experimentally observed rotational
band of the parent nucleus is assumed to be aKp=7/2− band
[17] built upon thef523gV=7/2 Nilsson level. In the strong-
coupling picture the presence of theg band in140Dy implies
the existence of two additional rotational bands in141Ho with
K=V±2, i.e.,Kp=3/2− andKp=11/2−.
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In the weak-coupling model, proton emission is described
by means of a coupled set of differential equations which are
solved assuming appropriate boundary conditions. The most
obvious way to describe the proton emission is to assume
outgoing boundary conditions. This immediately leads to the
notion of the Gamow or resonant states, the generalized
eigenstates of the time-independent Schrödinger equation,
which are regular at the origin and satisfy purely outgoing
boundary conditions. Together with nonresonant scattering
states, Gamow states form a complete set, the so-called
Berggren ensemble[25], which can be used in a variety of
applications[26], including the recently developed Gamow
shell model[27–29].

Unfortunately, the number of coupled equations rapidly
increases with the number of excited states of the daughter
nucleus taken into account. In addition, the solution of the
eigenvalue problem of a very large set of coupled equations
becomes numerically unstable at some point. This is espe-
cially true if one keeps in mind that there is a 20-order-of-
magnitude difference between the real and imaginary part of
the energy of the Gamow-state which describes the proton
decay of 141Ho. A possible way out is to consider the
R-matrix theory. However, even in this case, one has to deal
with large sets of coupled differential equations.

In order to avoid the difficulty of solving large sets of
coupled differential equations, one may use the Rayleigh-
Ritz variational principle and apply the basis expansion
method. In this paper, the spherical harmonic oscillator wave
functions are used as basis functions. It was recognized a
long time ago that by using the basis expansion method the
positions of narrow resonances can be determined. In par-
ticular, the signature of a narrow resonance is that the spe-
cific positive energy solution is locally stable with respect to
the change of the size of the basis[30–37]. Several proposals
exist in the literature on how to determine the width of the
resonance in this method. They are calledL2 stabilization
methods[34]. (The name comes from the fact that only
square integrable functions are used in the expansion.) In this
paper we will introduce a new method which is a combina-
tion of the oscillator expansion method and theR-matrix
formalism. This method is very simple and proves to be ac-
curate enough for very narrow proton resonances.

The paper is organized as follows. We begin in Sec. II
with an overview of the weak-coupling model applied to the
case of rotational motion andg vibrations. Section III re-
views different methods to calculate the position and width
of a resonance state: the theory of Gamow states, the stan-
dard R-matrix formalism, and the new method which com-
bines the oscillator expansion method with theR-matrix for-
malism. Finally, Sec. IV contains results of numerical
calculations. We check the accuracy of the new method and
demonstrate how the position of excited states in the daugh-
ter nucleus can influence predictions of the weak-coupling
model. We also present results for the proton emission in
141Ho. Finally, Sec. V contains the conclusions of this work.

II. WEAK-COUPLING MODEL

The proton-emitting parent nucleus is described here in
terms of a single proton coupled to a deformed core. The
model Hamiltonian can be written as

Hrot = Hd −
"2

2m
Dr + Vdefsr ,vd, s1d

where Hd is the (collective) Hamiltonian of the daughter
nucleus, the second term represents the relative proton-
daughter kinetic energy, andVdef is the proton-core interac-
tion, which depends on the position of the protonr and the
orientationv of the core.

A. The proton-daughter interaction

It is straightforward to defineVdef in the body-fixed frame,
in which one can define the deformed mean field. By ex-
panding the nuclear radius in multipoles and assuming quad-
rupole deformations only, one obtains

Rsu8,f8d = R0Csa0,a2dh1 + a0Y2,0su8d + a2fY2,2su8,f8d

+ Y2,−2su8,f8dgj, s2d

where Csa0,a2d is the volume conservation factor. The in-
trinsic deformed field is defined using a Saxon-Woods form
factor

Vdefsr,u8f8d = −
V0

1 + exphfr − Rsu8,f8dg/aj
. s3d

Expanding to the first order ina2, one obtains

Vdefsr,u8f8d = V1sr,u8d + a2V2sr,u8dfY2,2su8,f8d

+ Y2,−2su8,f8dg. s4d

The form factorV1sr ,u8d is the same as Eq.(3) except thata2

is put equal to zero. The form factor of the second term is
given by

V2sr,u8d = −
V0Rsu8,f8defr−Rsu8,f8d/ag

af1 + efr−Rsu8,f8d/agg2
, s5d

where, again,a2=0 in Rsu8 ,f8d. The deformed form factors
V1sr ,u8d and V2sr ,u8d still depend ona0. After performing
multipole decomposition ofV1 andV2, one obtains the intrin-
sic potential:

Vdefsr,u8f8d = Vdef
s1dsr,u8d + a2Vdef

s2dsr,u8f8d

= o
l

Vl
s1dsrdYl,08 su8d + a2o

l

Vl
s2dsrdfYl,28 su8,f8d

+ Yl,−28 su8,f8dg. s6d

For explicit expressions forVl
s1dsrd andVl

s2dsrd see, e.g., Ref.
[39]. It can be shown that in the laboratory system the
daughter-proton interaction is given by

Vdefsr ,vd = Vdef
s1dsr ,vd + a2Vdef

s2dsr ,vd

= o
lm

Vl
s1dsrdDm0

l Yl,msr̂d

+ a2o
lm

Vl
s2dsrdsDm2

l + Dm−2
l dYl,msr̂d. s7d

In addition to the nuclear potential, there is also a long-range
Coulomb interaction between the deformed core and the pro-
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ton. The deformed Coulomb form factors,VC
s1d andVC

s2d, are
discussed in the Appendix.

B. The coupled channel equations

The states of the daughter nucleus are eigenvectors ofHd.
In this work, we adopt the rotational-vibrational collective
model. The wave functions of the core,fImK, are given by
the standard ansatz[14]

fImK =Î 2I + 1

16p2sdK,0 + 1d
fDmK

I* + s− 1dIDm−K
I* gxKn2

sa2dug.s.l,

s8d

wherexKn2
sa2d is a g-vibrational wave function. The wave

function of the parent nucleus can be written in the weak-
coupling form

CJM = o
IKlj

uIKlj
J srd

r
FJMIKlj , s9d

where the channel function is given by

FJMIKlj = o
Vm

k jVImuJMlYl j VfImK, s10d

and

Yl j V = o
ms

klm1
2su jVli lYlmsr̂dx1/2ssd s11d

arises from the coupling of the proton spin with the orbital
angular momentum. In our earlier weak-coupling calcula-
tions [1,2] there was no summation overK in Eq. (9); only
the K=0 term was considered. Due to the nonaxial symmet-
ric form of the proton-daughter interaction(7), the ground
stateK=0 and theg vibrationalK=2 band both contribute.

The radial functionsuIKlj
J srd are solutions of the set of

coupled-channel equations:

"2

2m
S−

d2

dr2 +
lsl + 1d

r2 DuIKlj
J

+ o
lI8l8 j8

AlsIl j ,I8l8 j8,JdBlsII 8KdVl
s1duI8Kl8 j8

J

+ o
lI8K8l8 j8

AlsIl j ,I8l8 j8,JdClsIKI 8K8,a2dVl
s2duI8K8l8 j8

J

= sE − EIKduIKlj
J , s12d

whereEIK is the energy of the daughter state described by the
wave function(8). The r-independent coupling coefficients
can be written in terms of the reduced nuclear matrix ele-
ments

BlsII 8Kd = kfIKiD;0
l ifI8Kl s13d

and

ClsIKI 8K8,a2d = kfIKia2sD;2
l + D;−2

l difI8K8l. s14d

The explicit expressions for the geometric coefficients
AlsIl j ,I8l8 j8 ,Jd are given, e.g., in Ref.[38]. The nuclear

structure model of the daughter nucleus enters the formalism
through the reduced matrix elementsBl andCl [38,39].

III. CALCULATION OF RESONANCE PARAMETERS

The coupled differential equations(12) can be turned into
an eigenvalue problem by specifying boundary conditions. It
is always assumed that the solutions are regular at the origin,
i.e., ucs0d=0. (From now on, the channel indexesIKlj are
abbreviated by the symbolc.)

A. Gamow states

To be a Gamow state, the radial wave function must as-
ymptotically behave as an outgoing Coulomb wave:

ucsrd ——→
large r

Olsh,rkcd = Glsh,rkcd + iFlsh,rkcd, s15d

where kc
2=s2m/"2dsEp−EIKd and hkc=sm/"2dZe2. Such

boundary conditions are only satisfied for a discrete set of
complex wave numberskc which define the generalized ei-
genvaluesE=Ep of Eq. (12). These eigenvalues correspond
to the poles of the scattering matrix[26,40]. The correspond-
ing solutions are either bound states with negative real ener-
gies Ep=Eb,0 and pure imaginary wave numberskc= igc
sgc.0d, or resonance states,Ep=Eres− isGres/2d, with non-
zero imaginary partsGresÞ0, andkc=kc− igc.

The asymptotic behavior of the radial wave functions are
determined bykc. For Gamow states these functions show
oscillating behavior at large values ofr so one must define a
new normalization scheme. Berggren proposed[25] a gener-
alized scalar product and introduced a regularization proce-
dure sRegd. With this generalization the norm is

o
c

RegE
0

`

fucsrdg2dr = 1. s16d

Once the resonance energy and radial wave function have
been determined, there are different methods to calculate the
width of the state. The simplest method is to take twice the
imaginary part of the energy of the resonance. However, for
narrow resonances the accurate numerical calculation of
ImfEpg is difficult. Therefore, other methods are often used.
One possibility is to calculate the partial width for each
channel from the so-called current expression[40]

Gcsrd = i
"2

2m

uc8
*srducsrd − uc8srduc

*srd

oc8 E
0

r

uuc8sr8du
2dr8

, s17d

where the sum of the partial widths

Gres= o
c

Gcsrd s18d

gives the total decay width. Although values ofGcsrd depend
on r in the region where the coupling potential terms are not
negligible, the total width(18) is independent ofr, which
reflects flux conservation.

In practice, the Gamow boundary condition given by Eq.
(15) can be implemented in the form
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uc8srasd
uc8srasd

= kc

Ol8sh,raskcd
Olsh,raskcd

, s19d

where ras is the channel radius(the off-diagonal couplings
are negligible forr . ras). Using Eq.(19), the partial decay
width can be written at the pointras as

Gcsrasd = i
"2

2m

uucsrasdu2

uOlsh,kcrasdu2oc8 E
0

ras

uuc8sr8du
2dr8

3 fkp
*Ol8

*sh,raskcdOlsh,raskcd

− kcOl8sh,raskcdOl
*sh,raskcdg. s20d

If one neglects the imaginary part ofkc, the square bracket in
Eq. (20) becomes −2i and the expression for the partial de-
cay width can be written in a simple form:

Gcsrasd <
"2kc

m

uucsrasdu2

uOlsh,kcrasdu2oc8 E
0

ras

uuc8sr8du
2dr8

.

s21d

Equation(20) and its approximate form(21) are strictly valid
only at the pointras where the boundary condition is given.
We emphasize at this point that if the coupled equations are
solved with the Gamow boundary condition, then the total
width can be calculated at any value ofr using exact rela-
tions (17) and (18). The partial decay width defined by Eq.
(17) depends onr if it is calculated in the inner regionsr
! rasd. The reliability of the calculation is checked by de-
manding thatGcsrasd should be independent fromras if ras is
large enough.

B. R-matrix method

For completeness, we summarize those important aspects
of the R-matrix theory[42] which are relevant to our work.
In the R-matrix theory one also deals with a set of radial
functionsgcsrd. These functions are regular at the origin and
satisfy the same coupled equations(12) as the Gamow states
but with the following boundary conditions

a
gc8sad
gcsad

= Bc, s22d

where the parametersBc are arbitrary real numbers. It is
assumed that the short-range diagonal and off-diagonal
proton-core interactions can be neglected beyond the channel
radiusa. Consequently,a has the same meaning as the pa-
rameterrasof the Gamow theory. It is worth noting, however,
thata is always real, whileras can be complex. Choosingras
to be complex in the Gamow-states description means that
the exterior complex scaling method[41] is applied.

The boundary condition(22) defines the complete set of
functions inside the channel surface. The real eigenvalues of
the coupled-channel equations are denoted byEl and the
corresponding eigenfunctions bygc

lsrd. They are normalized
to one inside the channel surface,

o
c
E

0

a

ugc
lsrdu2dr = 1, s23d

and define the so-called reduced width amplitudes

glc = S "2

2mca
D1/2

gc
lsad. s24d

The resultingR matrix has a simple form

Rcc8sEd = o
l

glcglc8

El − E
s25d

but it is related to the physically important scatteringS ma-
trix in a complicated way[42]. Let us emphasize that the
calculatedS matrix is independent from both the boundary
condition parametersBc and from the channel radiusa only
if all the R-matrix states are taken into account in Eq.(25).

Assuming that in a given energy region only one term
dominates in theR matrix and making further approxima-
tions(see p. 322 of Ref.[42]), Lane and Thomas showed that
the S matrix can be written in the form

Scc8sEd < Scc8
0 sEd3dc,c8 +

iGlcsEd1/2Glc8sEd1/2

El + DlsEd − E −
i

2
GlsEd4 ,

s26d

where the partialR-matrix widths

GlcsEd = 2Plc
sEdglc

2 s27d

give the total width

GlsEd = o
c

GlcsEd. s28d

In Eq. (26), function DlsEd is given by

DlsEd = o
c

DlcsEd, s29d

where

DlcsEd = − fSlc
sEd − Bcgglc

2 . s30d

The penetrationPlc
sEd and shiftSlc

sEd functions are related
to the CoulombFlc

and Glc
functions (see p. 270 of Ref.

[42]).
Within approximation (26), the complex-energy reso-

nance poles of theS matrix, Ep
R=Eres

R −si /2dGres
R , satisfy the

equation

El + DlsEp
Rd − Ep

R −
i

2
GlsEp

Rd = 0. s31d

Here, we used the upper indexR in order to distinguish this
R-matrix approximation for the resonance energy from the
energy of the corresponding Gamow state. In order to sim-
plify the solution of the nonlinear equation(31), one often
introduces further approximations and assumptions for the
calculation of the functionsDlsEd andGlsEd.
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In the method of Thomas[43], the functionDlcsEd is
expanded around theR-matrix eigenvalueEl

DlcsEd < − fSlc
sEd − Bcg − Ṡlc

sEldsE − Eld, s32d

where the dot denotes energy derivative. Furthermore, theE
dependence ofGlcsEd is neglected andGlcsEd is replaced by
the corresponding value atEl. Under these assumptions one
obtains

Eres
R =

El + oc
fBc − Slc

sEldgglc
2

1 + oc
Ṡlc

sEldglc
2

s33d

and

Gres
R =

GlsEld

1 + oc
Ṡlc

sEldglc
2

. s34d

In order to simplify (33) we may require that the chosen
boundary condition parameters satisfy the condition

Bc = Slc
sEld. s35d

If the Ṡlc
sEld terms are negligible, then the resonance energy

corresponds to theR-matrix eigenvalue

Eres
R = El s36d

and the width can be calculated with the well-known expres-
sion

Gres
R = o

c

2Plc
sEldglc

2 . s37d

Two variants of Thomas’s procedure can be found in a
later paper of Lane and Thomas[42] where they give differ-
ent expressions forEres

R andGres
R .

C. R-matrix method using oscillator expansion

In this section we propose a simple method, based on the
R-matrix formalism, to estimate the parameters of a reso-
nance. The advantage of this method is that it avoids solving
a large set of coupled differential equations. The method is
based on the expansion of the radial functionsuIKlj srd in the
single-particle basisfnl

HOsrd of the spherical harmonic oscil-
lator. In this basis, the total wave function(9) can be written
in the form

CJM = o
IKlj

o
n

CIKnlj
J fnl

HOsrd
r

FJMIKlj . s38d

The coefficientsCIKnlj
J can be obtained from the matrix ei-

genvalue equation:

o
n8

kfnl
HOu

"2

2m
S−

d2

dr2 +
lsl + 1d

r2 Dufn8l
HOlCIKn8l j

J

− sEl
HO − EIKdCIKnlj

J + o
lI8n8l8 j8

AlsIl j ,I8l8 j8,JdBlsII 8Kd

3kfnl
HOuVl

s1dufn8l8
HO lCI8Kn8l8 j8

J

+ o
lI8K8n8l8 j8

AlsIl j ,I8l8 j8,JdClsIKI 8K8,a2d

3kfnl
HOuVl

s2dufn8l8
HO lCI8K8n8l8 j8

J = 0. s39d

In the following, the corresponding real eigenvalues are de-
noted asEl

HO.
In the R-matrix theory, the coupled equations(12) are

solved with imposed boundary conditions(22). However, as
discussed in the following, this procedure can be reversed. In
the first step, we solve the algebraic eigenvalue problem(39)
for the coefficientsCIKnlj

J . The resulting radial functionsgcsrd
define theboundary condition functionat the pointr:

Bcsrd = BIKlj srd = rSo
n

CIKnlj
J fnl

HOsrdD8/o
n

CIKnlj
J fnl

HOsrd.

s40d

Having determined the boundary condition parameter at each
r, theR-matrix formalism can now be applied. In particular,
after replacingEl with El

HO in expressions(33) and (34),
they can be used to compute the position and the width of a
resonance at each value ofr:

Eres
HOsrd =

El
HO + oc

fBcsrd − Slc
sEl

HOdgglcsrd2

1 + oc
Ṡlc

sEl
HOdglcsrd2

s41d

and

Gres
HOsrd =

GlsEl
HOd

1 + oc
Ṡlc

sEl
HOdglcsrd2

, s42d

where ther-dependent reduced width amplitudes(24) are
given by

glcsrd = S "2

2mcr
D1/2

o
n

CIKnlj
J fnl

HOsrd. s43d

This algorithm is further referred to as theR-matrix method
based on harmonic oscillator expansion(RMHO). In
RMHO, the energy and width of the resonance explicitly
depend onr. However, for sufficiently large values ofr, this
dependence is expected to be extremely weak. It is to be
noted that since expression(37) is derived under specific
assumption(35), it is not valid in the RMHO method.

The derived boundary condition parameters(40) do not
depend on the actual normalization used. However, this is no
longer true for the reduced width amplitudes(24). In order to
apply theR-matrix method at eacha=r, the radial functions
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gcsrd = gIKlj srd = o
n=0

nmax

CIKnlj
J fnl

HOsrd s44d

have to be renormalized to one inside the channel surface
according to Eq.(23).

IV. RESULTS

The numerical tests have been carried out for the de-
formed proton emitter141Ho, viewed as a proton-plus-core
system, with the daughter nucleus140Dy being the collective
core. We employed the same successful parametrization of
the Woods-Saxon(WS) optical potential as in earlier Ref.
[2].

A. Resonance width in RMHO

Let us first assume that the core is axially deformedsa2

=0d. In the calculations, all the states in the g.s.(ground-
state) rotational band in the daughter nucleus up toI =12
were considered. In our weak-coupling calculations, the ex-
perimental excitation energies of140Dy were used for states
with I ,10, and the energies of the remaining states were
obtained by the variable-moment-of-inertia(VMI ) fit to the
data. That is, for the g.s. band we took the values: 0.203,
0.567, 1.044, 1.597, 2.218, and 2.894 MeV. The deformation
parametera0 was set to the value of 0.244, which is consis-
tent with earlier investigations[17,23]. The WS strength was
adjusted to reproduce the experimental position of theJp

=7/2− resonance at 1.19 MeV. The number of coupled chan-
nels in this variant is 46. This number is sufficiently small to
carry out the reliable calculation of the Gamow-state energy
eigenvalue. The resulting resonance width is 0.208
310−19 MeV. We accept this number as the exact, or refer-
ence, value.

The harmonic oscillator basis is characterized by a single
parameter, the oscillator lengthb. The upper part of Fig. 1
shows the resonance width(42) calculated in RMHO as a
function of r. For each partial wave,M =nmax+1=12 har-
monic oscillator functions were used in the expansion(44)
and the value ofb was varied. As expected, a clear plateau
appears at large values ofr. The extent of the plateau de-
pends on the size ofb: the greater oscillator length(i.e., the
rms oscillator radius), the greater the extent of the plateau.
The reason for the rapid decrease of the width function
Gres

HOsrd at very large values ofr lies in the fact that the radial
channel function is approximated by a linear combination of
a finite number of oscillator functions, each having the
Gaussian asymptotic behavior. Therefore, by increasing the
number of states in the basis, the extent of the plateau is
expected to increase. This is illustrated in Fig. 1(lower por-
tion) which shows RMHO results obtained at a fixed value of
b=1.8 fm for several values ofM. It is seen that forM =24
snmax=23d the width function becomes independent ofr in a
very wide interval ofr. In the interval betweenr =9 and
12 fm the RMHO width exhibits tiny oscillations(practically
invisible in Fig. 1). Therefore, to obtain a well-defined value,
we divide this interval equidistantly with a step size of

0.1 fm and calculate the averageḠres
HO=s1/Nrdoi=1

Nr Gres
HOsr id,

which will be considered as the RMHO width in the follow-
ing.

In order to assess the quality of the RMHO method, Fig. 2
shows the relative errors of the real and imaginary part of the
energy of the resonance as a function of the WS potential
depth V0. The reference values were obtained by the
Gamow-state coupled-channel procedure. In the considered
region ofV0, the resonance width changes by four orders of

FIG. 1. The width of theJp=7/2− resonance in141Ho at
1.19 MeV calculated in RMHO as a function ofr. Top: dependence
on the oscillator length parameterb (the number of basis states is
M =12). Bottom: dependence onM sb=1.8 fmd.

FIG. 2. The relative error of the real(solid line) and imaginary
(dashed line) energy of theJp=7/2− resonance in141Ho calculated
in RMHO sM =24d as a function of the WS potential depthV0. The
reference(exact) values are taken from the Gamow states calcula-
tion. In the considered range ofV0, the resonance width changes by
four orders of magnitude. Note that the solid curve has been mul-
tiplied by a factor of 100.
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magnitude; however, the relative error of RMHO is less than
1.7%. The accuracy of RMHO for the real part of the energy
is much better: the relative error is always smaller than
0.0025%. The results presented in Figs. 1 and 2 convincingly
demonstrate that the RMHO formalism can be safely used to
calculate isolated narrow proton resonances. The RMHO
method is based on the one levelR-matrix approximation.
Using the present form of the HO expansion it is not possible
to go beyond this approximation so we expect that in general
the RMHO method works well only for very narrow reso-
nances.

B. Proton decay of141Ho

In this section we investigate the influence ofg vibrations
on the process of proton emission from141Ho. All results
presented in this section are obtained with the RMHO
method usingM =20 oscillator functions for each partial
wave. The oscillator length was assumed to beb=1.8 fm.
Using the results of the VMI fit for the g.s. band, the as-
sumed energies of the members of theg band are 0.750,
0.934, 1.144, 1.378, 1.633, 1.907, 2.198, 2.504, 2.825, 3.159,
and 3.507 MeV forI =2,3,4, . . . ,12. Thechosen position of
the 22

+ band head of theg-vibrational band, 750 keV, was
taken according to the systematic trends aroundN=74.

When one includes theK=2 g-vibrational band in addi-
tion to the g.s. band, the number of coupled channels in-
creases from 46 to 130(assuming that the maximum spin is
Imax=12 in both bands). For that reason, we decided to carry
out the RMHO calculations instead of the weak-coupling
Gamow analysis. We have checked, however, that forImax
=10, where the coupled-channel calculations with theK=2
band can be done, the RMHO results coincide with those of
the coupled-channel method.

1. Structure of Jp=7/2− states

The simplest model of the g.s. decay of141Ho is based on
the adiabatic resonant Nilsson-orbit picture of Sec. II B of
Ref. [2]. Here, the valence proton occupies aVp=7/2−

Gamow state in an axially deformed mean field. Let us con-
sider this scenario first. In our WS model, there is only one
V=7/2− state in the energy regions−3 MeV,1 MeVd and
deformation sa0,0.244,a2=0d. The calculated energy of
this f523g7/2 state is 0.426 MeV. There are three more nega-
tive parity Nilsson states originating from theh11/2 proton
intruder shell, with energies −2.678 MeVsf550g1/2d,
−2.141 MeVsf541g3/2d, and −1.105 MeVsf532g5/2d. If we
now apply the weak-coupling model(i.e., we assume that the
daughter nucleus has a g.s. rotational band with the finite
moment of inertia), we calculate oneJp=1/2− state, two
3/2− states, three 5/2− states, and four 7/2− states in the
considered energy region. Of those four 7/2− states, only one
can be associated with the 7/2− band head from which the
proton emission takes place. The remaining three are rota-
tional excitations associated with theKpar.=V=1/2,3/2, and
5/2 bands built upon the deformed Nilsson levels mentioned
above. Table I displays the structure of theJp=7/2− states
calculated in the non-adiabatic approach. TheV decomposi-
tion of the states[2] clearly identifies the Nilsson orbit upon

which the rotational g.s. band of the parent nucleus is built.
The situation becomes more complex if, in addition to the

g.s. band, one also considers theK=2 rotational band in the
daughter nucleus(i.e., if one takes the nonzero triaxial cou-
pling a2). The coupling tog vibrations immediately results in
an increase of the numbers of predicted bands. Indeed, since
the g band can be built upon eachKpar.=V structure, one
obtains twelve bands with quantum numbersKpar.,Kpar.+2,
anduKpar.−2u in the energy interval considered. Among those
twelve bands, only two have aJp=7/2− band head. One is
the previously discussedf523g7/2 band while the other cor-
responds to ag phonon built upon thef541g3/2 Nilsson
orbital. Table II displays theV decomposition of the four
states of Table I in the presence of a smallg coupling sa2

=0.05d. It is seen that the single-proton band head is clearly
identified.

2. Proton emission from the ground state of141Ho

Earlier investigations[2,16] have demonstrated that in the
weak coupling model there is a sensitivity of the resonance’s
parameters to the number of states in the rotational bands of
the daughter nucleus taken into account. Figure 3 shows cal-
culated energies of theJp=7/2− states in141Ho as a function
of the coupling constanta2 sa0=0.244d for several values of
Imax.

Figure 3 shows that for bound states the convergence is
already very satisfactory forImax=10; however, this is not
true for the 7/2− band head. For instance, ata2=0.1 one
obtains for the energy of lowest bound state: −3.254, −3.264,
−3.265, −3.265, and −3.265 MeV forImax=8,10,12,14, and
16, respectively. In contrast, for the 7/2− g.s. (marked by
thicker lines in Fig. 3) the analogous numbers are 1.297,
1.171, 1.062, 1.062, and 1.062 MeV. That is, in this case,
going from Imax=10 to Imax=12 the energy changes by as

TABLE I. V decomposition of theJp=7/2− states in141Ho in
the energy regions−3 MeV,1 MeVd calculated in the nonadiabatic
approach. The axial deformationsa0=0.244,a2=0d is assumed.

Er (MeV) V=1/2 V=3/2 V=5/2 V=7/2

−2.255 0.828 0.163 0.009 0.000

−1.066 0.168 0.694 0.135 0.003

−0.103 0.006 0.144 0.808 0.042

1.190 0.000 0.001 0.045 0.954

TABLE II. Same as in Table I but in the presence of small
triaxial couplingsa2=0.05d.

Er K=0 K=2

(MeV) V=1/2 V=3/2 V=5/2 V=7/2 V=1/2 V=3/2

−2.616 0.691 0.232 0.029 0.007 0.034 0.007

−1.184 0.015 0.323 0.004 0.014 0.429 0.215

0.122 0.028 0.078 0.529 0.214 0.134 0.017

1.153 0.015 0.003 0.018 0.902 0.002 0.060
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much as 109 keV. This variation is significant since the
width of the resonance is extremely sensitive to its energy. In
our previous paper[16], we made the pilot studies of the
coupling to theg band on proton emission in141Ho. Unfor-
tunately, in this early analysis based on the coupled-channel
method, we tookImax=10; hence the conclusions of this pa-
per have to be revised(see below).

The width of the 7/2− band head was computed using the
RMHO method assumingImax=12. At each value ofa2 we
have adjusted the potential depth so as to get the position of
the resonance at 1.19 MeV. The calculated half-life of the
resonance and the branching ratio for the decay to the 21

+

state in140Dy are displayed in Fig. 4. It is seen that when
increasing the coupling to theg band, both the lifetime and
the 21

+ branching ratio increase, and the agreement with ex-
periment gets worse.

In order to understand the behavior shown in Fig. 4, we
analyzed the components of the wave function. Figure 5
shows the weights of various partial wavessIKlj d in the 7/2−

g.s. of 141Ho,

uCIKlj u2 =E
0

`

uIKlj
2 srddr, s45d

as functions ofa2. According to our calculations, the ampli-
tudes associated with the coupling to the 01

+ g.s. and 21
+ state

in 140Dy are fairly small; most of the strength lies in higher-
lying states including the channels that are energetically
closed for proton emission. Thes01

+, f7/2d amplitude, solely
determining the 7/2−→01

+ decay, gradually decreases with
a2. Interestingly, while thetotal f7/2 strengthincreaseswith
a2 as expected(the h11/2 and f7/2 shells are strongly coupled

by triaxial field), most of this strength is pushed up to higher-
lying states.

Figure 6 displays partial widthsGc (17) corresponding to
various channels of decay to the 01

+ and 21
+ states in140Dy.

The gradual decrease of thes01, f7/2d partial width(hence the
increase of the half-life of141Ho) with a2 can be explained in
terms of thes01, f7/2d amplitude in Fig. 5. The 2+ branching
ratio is almost completely determined by thes21, f7/2d partial
width; the second-order contribution from thep3/2 wave is
much smaller(cf. inset in Fig. 5).

FIG. 3. The position of the bound and resonanceJp=7/2− states
in 141Ho calculated in the weak coupling model as a function of the
triaxial coupling constanta2 for Imax=10 and 12(Imax is the maxi-
mum value of angular momentum considered in the g.s. band and in
the gamma band of the daughter nucleus140Dy). The results for
Imax=12 are fully converged, i.e., a further increase of the number
of states does not change results in the scale of this figure. The axial
results without coupling theg band(cf. Table I) are marked by the
dots. The 7/2− ground state of141Ho is marked by thick lines.

FIG. 4. Half-life (top) and branching ratio for the decay to the
21

+ state in140Dy (bottom) for the 7/2− g.s. of141Ho as a function of
the triaxial couplinga2. Experimental data(T1/2=4 ms and branch-
ing ratio 0.7%) are taken from Refs.[11,44]. The spectroscopic
factor(BCS occupation coefficient) was assumed to beu2=0.84[2].

FIG. 5. Weights(45) of the sI =21, l =5,j =11/2d, s01,3,7/2d,
s21,5,9/2d, ands21,1,3/2d partial waves of the 7/2− g.s. of141Ho
as a function ofa2.
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V. CONCLUSIONS

This work contains the first application of the triaxial
nonadiabatic weak coupling approach to the description of
proton-emitting nuclei. The resulting coupled-channel equa-
tions take into account the coupling to theK=2 band repre-
senting collectiveg vibrations.

The inclusion of theg band into the weak-coupling for-
malism increases the number of the coupled channel equa-
tions significantly. This makes it very difficult to solve accu-
rately the multitude of coupled differential equations with
Gamow boundary condition. In order to overcome this diffi-
culty, we developed a new formalism, dubbed RMHO, which
incorporates the variational oscillator expansion method into
the R-matrix theory. Within RMHO, it is possible to signifi-
cantly increase the number of states in the daughter nucleus
to guarantee the convergence of the solution.

As an example, the RMHO formalism has been applied to
the g.s. proton emission from141Ho, in which there have
been some experimental hints(e.g., large signature splitting
in the g.s. rotational band or presence of low-lying
g-vibrational states in the neighboring even-even nuclei) for
triaxiality. Our calculations show that while the coupling tog
vibrations can in general influence decay characteristics
(half-life, branching ratios), in the case of141Ho the resulting
trend is opposite to what has been observed experimentally.
From this point of view, our results support conclusions
drawn in the recent work[22] based on the adiabatic particle-
rotor approach. An important piece of physics which is still
missing in our nonadiabatic formalism is the inclusion of
quasiparticle pairing. We are currently working on incorpo-
rating the Hartree-Fock-Bogoliubov couplings[45] into our
model.
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APPENDIX: TRIAXIAL COULOMB POTENTIAL

The Coulomb interaction between the proton and the
daughter nuclei is

VCsr d =E rsr 8d
ur − r 8u

dr 8, sA1d

where the charge density reads

rsr d =
r0

1 + exphfr − RsVdg/aj
sA2d

and the nuclear surfaceRsVd is given by Eq.(2). To the first
order ina2 the Coulomb potential is

VCsr d = VC
s1dsr dua2=0 + a2VC

s2dsr d. sA3d

The first term,VC
s1d, is the Coulomb potential due to an axial

symmetric charge density. It is given by a simple expression
derived in, e.g., Ref.[46]. The second term,VC

s2d, is of the
form

VC
s2dsr d =E ] rsr 8d

] a2

1

ur − r 8u
dr 8. sA4d

Calculating the derivative of the charge density and taking
the limit of the sharp charge distributionsa→0d, one obtains

VC
s2dsr d = R0r0Csa0,a2d

3E Ra
2sV8dfY2,2sV8d + Y2,−2sV8dg

ÎRa
2sV8d + r2 − 2RasV8dr cosj

dV8,

sA5d

where

cosj = cosu cosu8 + sin u sin u8 cossf − f8d sA6d

andRasV8d=RsV8dua2=0. This can be reduced to

VC
s2dsr d = R0r0Csa0,a2dÎ 15

8p
E

−1

1

dtRa
2stds1 − t2d

3E
0

2p

df8
2cos2f8 − 1

ÎRa
2std + r2 − 2Rastdr cosj

, sA7d

wheret=cosu8. The integral overf8 can be calculated ana-
lytically, and the final result can be expressed in terms of a
simple one-dimensional integral

FIG. 6. Partial widthsGc (17) corresponding to various 01
+ and

21
+ decay channels as functions ofa2.

GAMOW AND R-MATRIX APPROACH TO PROTON… PHYSICAL REVIEW C 69, 054311(2004)

054311-9



VC
s2dsr d = R0r0Csa0,a2dÎ 15

8p
coss2fdE

−1

1

dtRa
2stds1 − t2d

3
4

3b2Îa + b
hs4a2 − b2dKskd − 4asa + bdEskdj,

sA8d

where

a = Ra
2std + r2 − 2Rastdr cosu cosu8, sA9d

b = 2Rastdr sin u sin u8, sA10d

and

k =Î 2b

a + b
. sA11d

In Eq. (A8), Kskd andEskd are the complete elliptic integral
of the first and second kind, respectively.
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