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Gamow and R-matrix approach to proton emitting nuclei
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Proton emission from deformed nuclei is described within the nonadiabatic weak coupling model which
takes into account the coupling tovibrations around the axially symmetric shape. The coupled equations are
derived within the Gamow state formalism. A new method, based on the combination Rfntiagrix theory
and the oscillator expansion technique, is introduced that allows for a substantial increase of the number of
coupled channels. As an example, we study the deformed proton eliftter.
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[. INTRODUCTION ample, the resonance Nilsson-orbit model with a triaxial
potential[15] (i.e., nonzeroy deformation cannot be trivi-
Theoretical models applied to the description of non-a|ly related to a weak-coupling model extended to triaxial
spherical proton emitters can be divided into two groups. Thelegrees of freedorfi 6].
core-plus-particle models describe the radioactive parent If the coupled-channel model with the rotational coupling
nucleus in terms of a single proton interacting with a coreis applied to the nucleu¥'Ho, the ground-state decay char-
(i.e., the daughter nucleudUsually, the core is represented acteristicg(half-life time and branching ratjcare poorly de-
by some phenomenological collective model, e.g., the Bohrscribed[2,3]. There are several explanations possible. For
Mottelson(geometrig model. Depending on the structure of example, it may be that the Coriolis mixing is too strgB8g
the daughter nucleus, rotationgl-3] or vibrational [4,5] ~ This can be partly cured if pairing is introduc¢ti3]. An-
couplings are assumed. The models belonging to this grougther possibility, explored in this work, is the coupling to
employ the Coup|ed_channe| forma”sm Of reaction theorytr|ax|al Vlbl’atlonS. Indeed, N partlc|e-p|us-l’0t0l’ Ca|Cu|atI0nS,

which has been developed in the context of elastic or ineladhe best deszlcription of the experimentally observed band
tic scattering. structures of*'Ho can be explained if deformation is con-

i idered[17]. In addition, in the neighboring nuclei, such as
Models belonging to the second group employ the frame% 1 i
work of the deformed shell model. In the simplest case, the °Sm and*%d, there are low-lying 2and 3 levels[18]

proton resonance corresponds to a Nilsson state of a dé«h'Ch have been interpretedl9] as members of a

) : - -vibrational band. There are also other indications that in
formed mean field[6—12. Approaches belonging to this YVl . . S
group can be generalized to include the BCS paifitg]. this mass region the coupling to triaxial modes can play a

We may refer to the first group of models as Weak_role [20,27. The possibility that triaxiality influences the de-

. cay of *IHo was investigated in our earlier wofk6] and
coupling models or coupled-channel models. For the secongflso in the recent Ref§15,27 based on an adiabatic model

group of models, we reserve the term resonance Nilssorﬁssuming a triaxially deformed mean field.
orbit (or adiabatig models. The term “adiabatic” requires an |, this work, we present nonadiabatic calculations in

explanation. It is very difficult to relate both groups of mod- which the excitations of the daughter nucleus are properly
els to each other, because they operate on different approxisyen into account. Unlike in Ref22], we do not assume a

mation levels. In special situations, however, this relat'on'permanenty deformation of the core, but rather we consider

ship can be revealed. For instance, in the limit of the infinitey vibrations around the axially symmetric deformed shape.
moment of inertia of the gmal weak-coupling mocdmjhlch_ The ground-state rotational band ¥y has recently
implies degenerate rotational bands and strong rotationglgaep observe3,24. In addition, in our work we assume
coupling [14]), one recovers the resonance Nilsson-Orbity, 5 1400y has thek=2 y-vibrational band. This structure
model [.16]' So one may say than this casethe_ ad|abe_1t|c can be coupled to the ground-state band if the proton-
model is an approximation to the weak-couplinadia- 45 ghter interaction in the body-fixed system deviates from
batic) picture. Generally, however, the relation between adiagg axjal symmetry. The experimentally observed rotational
batic and nonadiabatic descriptions is not simple. For eXpand of the parent nucleus is assumed to K&a7/2" band
[17] built upon the[523]y-7,» Nilsson level. In the strong-
coupling picture the presence of theband in'*®Dy implies
*Electronic address: atk@chaos.atomki.hu the existence of two additional rotational bands4to with
"Electronic address: witek@mail.ornl.gov K=Q+2,i.e.,K™=3/2 andK™=11/2.
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In the weak-coupling model, proton emission is described h2
by means of a coupled set of differential equations which are Hrot=Hqg~ EnA’ + VeI, @), (1)
solved assuming appropriate boundary conditions. The most
obvious way to describe the proton emission is to assumehere Hy is the (collective Hamiltonian of the daughter
outgoing boundary conditions. This immediately leads to thenucleus, the second term represents the relative proton-
notion of the Gamow or resonant states, the generalizegaughter kinetic energy, and is the proton-core interac-

eigenstates of the time-independent Schrodinger equatiofon, which depends on the position of the protoand the
which are regular at the origin and satisfy purely outgoinggrientationw of the core.

boundary conditions. Together with nonresonant scattering

states, Gamow states form a complete set, the so-called

Berggren ensemblg25], which can be used in a variety of

applications[26], including the recently developed Gamow It is straightforward to defin¥in the body-fixed frame,

shell model[27-29. in which one can define the deformed mean field. By ex-
Unfortunately, the number of coupled equations rapidlypanding the nuclear radius in multipoles and assuming quad-

increases with the number of excited states of the daught%pme deformations 0n|y’ one obtains

nucleus taken into account. In addition, the solution of the

eigenvalue problem of a very large set of coupled equations R(6',¢") = RyC(ag,ap{1 +agY, o(6') + a[ Y, A0, ¢")

becomes numerically unstable at some point. This is espe- Y, A0, ?)

cially true if one keeps in mind that there is a 20-order-of- 2-27 ’

magnitude difference between the real and imaginary part ofyhere C(ay,a,) is the volume conservation factor. The in-

the energy of the Gamow-state which describes the protoftinsic deformed field is defined using a Saxon-Woods form
decay of 1*Ho. A possible way out is to consider the factor

R-matrix theory. However, even in this case, one has to deal

with large sets of coupled differential equations. V1,0 ') = — Vo 3)
In order to avoid the difficulty of solving large sets of defi™ 1+exd[r-R(&,¢")]a}

coupled differential equations, one may use the Rayleigh- . ' . .

Ritz variational principle and apply the basis expansionEXPanding to the first order ia,, one obtains

method. In this paper, the spherical harmonic oscillator wave Ve, 0/ ') = Va(r,0) + aVy(r, ) Yo A0, ')

functions are used as basis functions. It was recognized a

long time ago that by using the basis expansion method the +Yo A6, ¢)]. 4)

positions of narrow resonances can be determined. In pafhe form factol/y(r, @) is the same as E¢3) except thah,

tif:_ular, t.h? signature of a narrow resonance is. that the SP&s put equal to zero. The form factor of the second term is
cific positive energy solution is locally stable with respect togiven by

the change of the size of the bag3¥-37. Several proposals

exist in the literature on how to determine the width of the VOR(H’,¢’)e[r‘R(9'v‘/")’a]
resonance in this method. They are called stabilization Vo(r,0') = = R a2
methods[34]. (The name comes from the fact that only a[1+é ' ]
square integrable functions are used in the expansiothis  where, againa,=0 in R(¢’, ¢'). The deformed form factors
paper we will introduce a new method which is a combina-y, (v ¢') and V,(r, ¢') still depend ona,. After performing

tion of the oscillator expansion method and tRematrix multipole decomposition 0¥, andV,, one obtains the intrin-
formalism. This method is very simple and proves to be acg;. potential:

curate enough for very narrow proton resonances.
The paper is organized as follows. We begin in Sec. Il Vyedr, 6 ¢') =V§,1gf(r,0’) +a2V32e)f(r,0’¢’)
with an overview of the weak-coupling model applied to the

A. The proton-daughter interaction

, (5

. . . B . — (1) ! / 2) ! ’ !
case of rotational motion angt vibrations. Section Il re- —va (NYy,0(0") +322V(x (NIYr 28" ¢")
views different methods to calculate the position and width r »
of a resonance state: the theory of Gamow states, the stan- +Y] _,(6,9")]. (6)

dard R-matrix formalism, and the new method which com- . _ 1) 2
bines the oscillator expansion method with Renatrix for-  FOr explicit expressions fov,"(r) andV\"(r) see, e.g., Ref.
malism. Finally, Sec. IV contains results of numerical [39]. It can be shown that in the laboratory system the
calculations. We check the accuracy of the new method anglaughter-proton interaction is given by
demonstrate how the position of excited states in the daugh- /D (2)

. - . Vel =Vyedr + AVl
ter nucleus can influence predictions of the weak-coupling defl1, @) = VT, ) + 2Ved1 )

model. We also present results for the proton emission in =EV§1)(r)D*0Y>\ ()
IHo. Finally, Sec. V contains the conclusions of this work. iV S
Il. WEAK-COUPLING MODEL +a,2, V(1) (D), + D) )Y, (). (7)

The proton-emitting parent nucleus is described here in e

terms of a single proton coupled to a deformed core. Then addition to the nuclear potential, there is also a long-range
model Hamiltonian can be written as Coulomb interaction between the deformed core and the pro-
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ton. The deformed Coulomb form factond’ and V', are  structure model of the daughter nucleus enters the formalism
discussed in the Appendix. through the reduced matrix elemergs andC, [38,39.

B. The coupled channel equations [ll. CALCULATION OF RESONANCE PARAMETERS

The states of the daughter nucleus are eigenvectdrg.of ~ The coupled differential equationi$2) can be turned into
In this work, we adopt the rotational-vibrational collective an eigenvalue problem by specifying boundary conditions. It
model. The wave functions of the coré,,, are given by ?s always assumed that the solutions are re_gular at_the origin,
the standard ansaft4] i.e., Uu,(0)=0. (From now on, the channel indexéklj are
abbreviated by the symbal)

=\ DY+ (- DD Dy (@0l
Prac = 16772(6K’0+ 1) KK uriIXkn,82)19-S7 A. Gamow states
(8) To be a Gamow state, the radial wave function must as-
where Xan(az) is a y-vibrational wave function. The wave ymptotically behave as an outgoing Coulomb wave:
function of the parent nucleus can be written in the weak- large 1 .
coupling form Uc(r) ——— Oy(m,rke) = Gi(m,rky) +iF (7,rko), (15
W (1) where kK2=(2m/4?)(£,-Ey) and nk.=(m/A?)Ze%. Such
M= (9)  boundary conditions are only satisfied for a discrete set of
IKIj complex wave numberk. which define the generalized ei-
PR genvaluesE=&, of Eq. (12). These eigenvalues correspond
where the channel function is given by to the poles of the scattering matfix6,40. The correspond-
Dyt = > (Ol IMYY ' 10 ing solutions are either bound states with negative real ener-
M %G HIM)Vjadru (10 gies £,=E,<0 and pure imaginary wave numbeks=iy,

(y.>0), or resonance state§,=Es~i(['ed2), with non-

and zero imaginary part$,.s# 0, andk,=k.—i7y..
- 1o o\l A The asymptotic behavior of the radial wave functions are
Yio %Omzshml Yim(Dx12(9) 1D etermined byk.. For Gamow states these functions show

) ) S ~oscillating behavior at large values 050 one must define a
arises from the coupling of the proton spin with the orbitalnew normalization scheme. Berggren propof2 a gener-
angular momentum. In our earlier weak-coupling calcula-alized scalar product and introduced a regularization proce-

tions [1,2] there was no summation ovérin Eq. (9); only  dure(Reg). With this generalization the norm is
the K=0 term was considered. Due to the nonaxial symmet-

ric form of the proton-daughter interactiai@), the ground - o
stateK=0 and they vibrationalK=2 band both contribute. ; Reg 0 [u(rJdr=1. (16)
The radial functionsu,JK” (r) are solutions of the set of
coupled-channel equations: Once the resonance energy and radial wave function have
been determined, there are different methods to calculate the
ﬁ_2<_ & . I(+ 1)>UJ width of the state. The simplest method is to take twice the
2m\ dr? r2 IKIj imaginary part of the energy of the resonance. However, for
_ _ .3 narrow resonances the accurate numerical calculation of
+ 2 AT DB KOV Upriqrrjr Im[&,] is difficult. Therefore, other methods are often used.
A One possibility is to calculate the partial width for each
+ S A1 1717, 3)C, (K ,K,,az)V§\2>U]J/Kr|;j; channel from the so-called current expresdié]|
MUK PN e
b I =il (DU(r) = Us(MUe(r). (17
= (E-Eui;» 12

2 RN
| | >, J e/ (1) el
whereE is the energy of the daughter state described by the 0
wave func.tlon(8.). The r-independent coupling coefﬂc[ents where the sum of the partial widths
can be written in terms of the reduced nuclear matrix ele-

ments Tres= 2 Telr) (18)
B\(11"K) = (i [IDX]l b1 110) (13 ¢
gives the total decay width. Although valueslg{r) depend
onr in the region where the coupling potential terms are not
CA(IKI'K',ay) = (i lla(D% + D)l drcr). (1) negligible, the total width(18) is independent of, which
’ ’ reflects flux conservation.
The explicit expressions for the geometric coefficients In practice, the Gamow boundary condition given by Eg.
Aj,1'1"j",J) are given, e.g., in Ref[38]. The nuclear (15) can be implemented in the form

and
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u(,:(ras): Oll(nsraskc)
Ue(rad  Oi(mrakd)’

wherer 4 is the channel radiugthe off-diagonal couplings and define the so-called reduced width amplitudes
are negligible forr >r,g). Using Eq.(19), the partial decay

(19 E[Llﬁaﬂ%rzl, (23

. . s ﬁ2 1/2
width can be written at the poimt as ')’)\c:< ) 9 (@) (24)
i utradl? o
. c\' a
Pe(rad = I_M Mo The resultingR matrix has a simple form
kS | o e L
AC /\C!
‘ot Re(E)=X = —F (25)
X [kpol (ﬂyraskc)ol(ﬂyraskc) A A
— kO (7,7 2k O (7,T 3k ]. (20) but it is related to the physically important scatteri@gna-

trix in a complicated way42]. Let us emphasize that the

calculatedS matrix is independent from both the boundary

condition parameterB, and from the channel radiws only

if all the R-matrix states are taken into account in E2p).
h2k, ug(r 9 Assuming that in a given energy region only one term

[e(rad = = . dominates in theR matrix and making further approxima-

H |o|(,7,kcras)|22d f lug/(r")[2dr’ tions(see p. 322 of Re[_.42]),.Lane and Thomas showed that

0 the S matrix can be written in the form

If one neglects the imaginary part ki, the square bracket in
Eq. (20) becomes —Rand the expression for the partial de-
cay width can be written in a simple form:

(21) B So ir)\C(E):L/ZF)\Cr(E)l/Z
Equation(20) and its approximate forr¢21) are strictly valid Soo(B) = S0 (B} S0 i
only at the pointr,c where the boundary condition is given. Ex+AB) -E- EF)\(E)
We emphasize at this point that if the coupled equations are
solved with the Gamow boundary condition, then the total (26)
width can be calculated at any value rofising exactrela-
tions (17) and(18). The partial decay width defined by Eq.
(17) depends omr if it is calculated in the inner regiokr I'\(E) = 2P, (E)Vic (27
<r,J. The reliability of the calculation is checked by de- ¢
manding thaf"(r,) should be independent fromif r,gis ~ give the total width
large enough.

where the partiaR-matrix widths

I\(E)= X T\ (E). (29)

B. R-matrix method In Eq. (26), function A, (E) is given by

For completeness, we summarize those important aspects
of the R-matrix theory[42] which are relevant to our work. A\(E) = > A, (E), (29)
In the R-matrix theory one also deals with a set of radial ¢
functionsg.(r). These functions are regular at the origin and
satisfy the same coupled equatiqi®) as the Gamow states
but with the following boundary conditions A\(E) =~ [SC(E) - Bz, (30)

where

The penetratiorP|C(E) and shiftSC(E) functions are related
to the CoulombF, and G, functions (see p. 270 of Ref.
[42)).

9¢(a) _
a—— =
9c(a)
where the parameterB; are arbitrary real numbers. Itis ="y o0 oo (26), the complex-energy reso-
assumed that the short-range diagonal and off-diagonahl nce olesprz)f & matrix E’R:ER —(i/2p)1“R sati%:y the
proton-core interactions can be neglected beyond the channg:"fluatio'?1 TP Tres res
radiusa. Consequentlya has the same meaning as the pa- q
rameter ,;of the Gamow theory. It is worth noting, however,

B, (22

i
thata is always real, whileg ,can be complex. Choosing, Ex+A\(ED) & - Erx(f';) =0. (31
to be complex in the Gamow-states description means that
the exterior complex scaling meth¢dl] is applied. Here, we used the upper ind&in order to distinguish this

The boundary conditioi22) defines the complete set of R-matrix approximation for the resonance energy from the
functions inside the channel surface. The real eigenvalues @nergy of the corresponding Gamow state. In order to sim-
the coupled-channel equations are denotedEpyand the plify the solution of the nonlinear equatia81), one often
corresponding eigenfunctions lofi(r). They are normalized introduces further approximations and assumptions for the
to one inside the channel surface, calculation of the functiond,(E) and T, (E).
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In the method of Thoma$43], the functionA,(E) is
expanded around the-matrix eigenvaluee,

Av(E)=-[S(B)-BJ-S (EDE-E), (32
where the dot denotes energy derivative. Furthermorekthe
dependence df,.(E) is neglected andl',.(E) is replaced by
the corresponding value &,. Under these assumptions one
obtains

. E+ X B~ S BV

Eres_ . (33)
1+ S (E)%e
and
R _ I'\(E) _ (34
=1+ S BV

In order to simplify (33) we may require that the chosen
boundary condition parameters satisfy the condition

B.=S,(E). (35)

If the SC(EX) terms are negligible, then the resonance energ

corresponds to thB-matrix eigenvalue

Eres= Ex (36)

and the width can be calculated with the well-known expres-

sion

Is= 2 2P (E) e (37)

Two variants of Thomas’s procedure can be found in a

later paper of Lane and Thomf42] where they give differ-

i R R
ent expressions foE,c andI' g

C. R-matrix method using oscillator expansion

PHYSICAL REVIEW C 69, 054311(2004

B2 101+1)
HO HO\ ~J
2<¢n| |%(_ﬁ+ r2 |¢n’I>CIKn’Ij
n/

—(Bf°-En)Cinj+ > AL ,DB (1K)

)\lrnrlrjr
HO \ ~J
X<¢EIO|V§\1)|¢NI’>CI’Kn’l’j’

> AU IC (KK ay)
)\I,K/n,I,j,

X (GO

+

YClrrmiryr = 0. (39)
In the following, the corresponding real eigenvalues are de-
noted asE©.

In the R-matrix theory, the coupled equation$2) are
solved with imposed boundary conditio(®2). However, as
discussed in the following, this procedure can be reversed. In
the first step, we solve the algebraic eigenvalue proli&dn
for the coefficienti:ﬂKn,j. The resulting radial functiong(r)
define theboundary condition functioat the pointr:

Be(r) =Bk (r) = r(E Ci]Kan ¢E|O(r)) > C|J|<n|j PhAr).
(40)

Having determined the boundary condition parameter at each

y, the R-matrix formalism can now be applied. In particular,

after replacingE, with EHC in expressiong33) and (34),
they can be used to compute the position and the width of a
resonance at each value rof

Ef©+ > [Bcr) = S (Ef)]nd(r)?

Erea(r) = : (41)
1+ S (EX)meln)?
and
HO
T = L(E : (42)
1+ S (Ef9)n(n)?

where ther-dependent reduced width amplitudé®t) are
given by

In this section we propose a simple method, based on the

R-matrix formalism, to estimate the parameters of a reso-
nance. The advantage of this method is that it avoids solving

2

172
m(r)=<2—m> 2, Cig 1 (1)- (43)

a large set of coupled differential equations. The method is

based on the expansion of the radial functiopg(r) in the
single-particle basigi°(r) of the spherical harmonic oscil-
lator. In this basis, the total wave functié® can be written
in the form

M J rl;llo(r)
M= > Cikntj ™

IKIj n

Dk - (39)

The coefficientsCfKn,j can be obtained from the matrix ei-
genvalue equation:

This algorithm is further referred to as tliRematrix method
based on harmonic oscillator expansio(RMHO). In
RMHO, the energy and width of the resonance explicitly
depend omr. However, for sufficiently large values of this
dependence is expected to be extremely weak. It is to be
noted that since expressiaB7) is derived under specific
assumption(35), it is not valid in the RMHO method.

The derived boundary condition parameté4§) do not
depend on the actual normalization used. However, this is ho
longer true for the reduced width amplitud@4)). In order to
apply theR-matrix method at each=r, the radial functions
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Nmax I T I T I T I T
9(1) = Gk (1) = 2 Ciien ShC(r) (44)  J™=7/2" resonance in 14!Ho at 1.19 MeV
n=0 »
. . 2:1020—
have to be renormalized to one inside the channel surfact L
according to Eq(23). —
1-100 -
IV. RESULTS -
The numerical tests have been carried out for the de-% N
formed proton emittet*!Ho, viewed as a proton-plus-core & 0
system, with the daughter nucletfSDy being the collective B
core. We employed the same successful parametrization c L
the Woods-SaxonWS) optical potential as in earlier Ref. 2.1020-
[2]. i
A. Resonance width in RMHO 1-1020—
Let us first assume that the core is axially defornfasg -
=0). In the calculations, all the states in the gground- 0 C

statg rotational band in the daughter nucleus upltol2
were considered. In our weak-coupling calculations, the ex- r (fm)
perimental excitation energies 81Dy were used for states
with <10, and the energies of the remaining states were F|G. 1. The width of theJ™=7/2" resonance in4Ho at
obtained by the variable-moment-of-inertMI) fit to the  1.19 MeV calculated in RMHO as a function nfTop: dependence
data. That is, for the g.s. band we took the values: 0.203n the oscillator length parametbr(the number of basis states is
0.567,1.044, 1.597, 2.218, and 2.894 MeV. The deformatiom =12). Bottom: dependence dv (b=1.8 fm).
parametel, was set to the value of 0.244, which is consis-
tent with earlier investigationgl 7,23. The WS strength was Wwhich will be considered as the RMHO width in the follow-
adjusted to reproduce the experimental position of ifie ing.
=7/2 resonance at 1.19 MeV. The number of coupled chan- In order to assess the quality of the RMHO method, Fig. 2
nels in this variant is 46. This number is sufficiently small to Shows the relative errors of the real and imaginary part of the
carry out the reliable calculation of the Gamow-state energgnergy of the resonance as a function of the WS potential
eigenvalue. The resulting resonance width is 0.208depth V. The reference values were obtained by the
X 10719 MeV. We accept this number as the exact, or refer-Gamow-state coupled-channel procedure. In the considered
ence, value. region ofV,, the resonance width changes by four orders of
The harmonic oscillator basis is characterized by a single
parameter, the oscillator length The upper part of Fig. 1
shows the resonance widtd2) calculated in RMHO as a I J"=7/2" resonance in 141Ho
function of r. For each partial waveM =n,,,+1=12 har-
monic oscillator functions were used in the expangiéd)
and the value ob was varied. As expected, a clear plateau
appears at large values of The extent of the plateau de-
pends on the size df: the greater oscillator length.e., the
rms oscillator radius the greater the extent of the plateau.
The reason for the rapid decrease of the width function-
I'M9(r) at very large values af lies in the fact that the radial
channel function is approximated by a linear combination of B N emmmmmmmmmmmmmmmmm
a finite number of oscillator functions, each having the I X 700 b
Gaussian asymptotic behavior. Therefore, by increasing the
number of states in the basis, the extent of the plateau i oL 5'32 . 5'33 . 5;4 . 5'35 . 5'36
expected to increase. This is illustrated in Figldwer por- ' ' ' ’ ’
tion) which shows RMHO results obtained at a fixed value of Vo (MeV)
b=1.8 fm for several values dfl. It is seen that foM =24
(Nnmax=23) the width function becomes independentroh a
very wide interval ofr. In the interval betweem=9 and
.12 .fm th(_e RMHO width exhibits tiny Qscﬂlatlor(q;)r_acucally referencegexac) values are taken from the Gamow states calcula-
'nV'S'bI(_a In F'Q- ]) Therefore’,tq obtain a We"'defmed yalue, tion. In the considered range ¥, the resonance width changes by
we divide this interval equidistantly with a step size of tor orders of magnitude. Note that the solid curve has been mul-
0.1 fm and calculate the averad&S=(1/N,)=N,THO(r), tiplied by a factor of 100.

t

> —— real part
~ |- imaginary part

—
T
/
/
|

ive error in percen
s

relat

T
-

FIG. 2. The relative error of the reédolid line) and imaginary
(dashed lingenergy of thel”=7/2" resonance it*'Ho calculated
in RMHO (M=24) as a function of the WS potential deptly. The
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magnitude; however, the relative error of RMHO is less than TABLE I. Q decomposition of thd”=7/2" states in**Ho in
1.7%. The accuracy of RMHO for the real part of the energythe energy regiot-3 MeV,1 MeV) calculated in the nonadiabatic
is much better: the relative error is always smaller thargpproach. The axial deformatiday=0.244 a,=0) is assumed.
0.0025%. The results presented in Figs. 1 and 2 convincingly
demonstrate that the RMHO formalism can be safely used t&: (MeV) 0=1/2  Q=3/2  Q=5/2  Q=7/2
calculate isolated narrow proton resonances. The RMHO

. . . . 2.255 0.828 0.163 0.009 0.000
method is based on the one leRimatrix approximation.
Using the present form of the HO expansion it is not possible_l'066 0.163 0.694 0.135 0.003
to go beyond this approximation so we expect that in generaf9-103 0.006 0.144 0.808 0.042
the RMHO method works well only for very narrow reso- 1.190 0.000 0.001 0.045 0.954

nances.

which the rotational g.s. band of the parent nucleus is built.
The situation becomes more complex if, in addition to the
on the process of proton emission frotfiHo. All results  gayghter nucleugi.e., if one takes the nonzero triaxial cou-
presented in this section are obtained with the RMHOpjing a,). The coupling toy vibrations immediately results in
method usingM=20 oscillator functions for each partial an increase of the numbers of predicted bands. Indeed, since
wave. The oscillator length was assumed tolzel.8 fm.  ihe y band can be built upon eadk,,, =Q structure, one
Using the res_ults of the VMI fit for the g.s. band, the as-gptains twelve bands with quantum numbégs, , Kpa +2,
sumed energies of the members of theband are 0.750, and|K, -2| in the energy interval considered. Among those
0.934,1.144,1.378, 1.633, 1.907, 2.198, 2.504, 2.825, 3.15Qelve bands, only two have &=7/2" band head. One is
and 3.507 MeV fol =2,3,4, ...,12. Thehosen position of  the previously discussg®23]7/2 band while the other cor-
the % band head of they-vibrational band, 750 keV, was responds to ay phonon built upon thd541]3/2 Nilsson
taken accordlr_lg to the systematic trer_lds aronV_“- . orbital. Table Il displays the&) decomposition of the four
When one includes thK=2 v-vibrational band in addi- _ states of Table I in the presence of a smaltoupling (a,

tion to the g.s. band, the number of coupled channels inzq o5 |t js seen that the single-proton band head is clearly
creases from 46 to 13@ssuming that the maximum spin is identified

I max=212 in both bands For that reason, we decided to carry
out the RMHO calculations instead of the weak-coupling
Gamow analysis. We have checked, however, thatl fgx

B. Proton decay of'*Ho

2. Proton emission from the ground state éf'Ho

=10, where the coupled-channel calculations with khe2 Earlier investigation$2,16] have demonstrated that in the
band can be done, the RMHO results coincide with those ofveak coupling model there is a sensitivity of the resonance’s
the coupled-channel method. parameters to the number of states in the rotational bands of
the daughter nucleus taken into account. Figure 3 shows cal-
1. Structure of F=7/2" states culated energies of th&"=7/2 states in**Ho as a function

The simplest model of the g.s. decay’6Ho is based on of the coupling constard, (a;=0.244 for several values of

the adiabatic resonant Nilsson-orbit picture of Sec. Il B of'max-_ .
Ref. [2]. Here, the valence proton occupies(H=7/2" Figure 3 shovx_/s that for bound states the convergence is
Gamow state in an axially deformed mean field. Let us con@/réady very satisfactory foi,=10; however, this is not
sider this scenario first. In our WS model, there is only ond"U€ for the 7/2 band head. For instance, a;=0.1 one
Q=7/2 state in the energy regiof-3 MeV,1 MeV) and obtains for the energy of lowest bound state: —3.254, —3.264,
deformation (a,~0.244 a,=0). The calculated energy of 12'265’ _3'.26?' alnd ~3.265 l\/:cev f#gaxT:/S,lo,12,kl4a %nd
this[523]7/2 state is 0.426 MeV. There are three more nega:; .’ respectlve y- N contrast, for the 7/8.s. (marked by
tive parity Nilsson states originating from the,, proton thicker lines in Fig. 3 the analogous numbers are 1.297,
1/2 : H H
intruder shell, with energies —2.678 Me\([550]1/2), 1.171, 1.062, 1_.062, and 1.062 MeV. That is, in this case,
~2.141 MeV([541]3/2), and ~1.105 MeM[532)5/2). [fwe ~ 909 frOM Ima=10 10 lmy,=12 the energy changes by as
now apply the weak-coupling modgle., we assume that the _ _
daughter nucleus has a g.s. rotational band with the finite_ T.A'|3LE "l', Samfoag in Table | but in the presence of small
moment of inertiyy we calculate one)"=1/2" state, two triaxial coupling(a,=0.05.
3/2 states, three 5/2states, and four 7/2states in the E
considered energy region. Of those four 7 égates, only one r
can be associated with the 7/Band head from which the (wevy 0=1/2 0=3/2 0=5/2 Q=7/2 Q=1/2 Q=3/2
proton emission takes place. The remaining three are rota
tional excitations associated with thg,,=(1=1/2,3/2,and -2.616 0691 0232 0.029 0.007 0.034  0.007
5/2 bands built upon the deformed Nilsson levels mentioned1.184 0.015 0.323 0.004 0.014 0.429 0.215
above. Taple | displays lthe gtructure of tbie=7/2" state_s 0.122 0.028 0078 0529 0214 0134 0.017
calculated in the non-adiabatic approach. Thelecomposi- 1 153 0015 0003 0018 0902 0002 0060
tion of the state$2] clearly identifies the Nilsson orbit upon

K=0 K=2

054311-7
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—_
T

0.04 0.08 0.12

a,

FIG. 3. The position of the bound and resonadte7/2 states
in ¥*Ho calculated in the weak coupling model as a function of the
triaxial coupling constand, for | ,4,=10 and 1214 iS the maxi-
mum value of angular momentum considered in the g.s. band and in
the gamma band of the daughter nucléd®y). The results for
Imax=12 are fully converged, i.e., a further increase of the number

T, /2(calc) /T, /Z(exp)

PHYSICAL REVIEW C69, 054311(2004)

exp

branching ratio in percent

0

0.04

0.08

a,

of states does not change results in the scale of this figure. The axial FIG. 4. Half-life (top) and branching ratio for the decay to the

results without coupling the band(cf. Table ) are marked by the
dots. The 7/2 ground state of*Ho is marked by thick lines.

2; state in'*®y (bottom) for the 7/2 g.s. of1*™Ho as a function of
the triaxial couplinga,. Experimental dat&T,,,=4 ms and branch-

ing ratio 0.7% are taken from Refs[11,44. The spectroscopic

much as 109 keV. This variation is significant since the
width of the resonance is extremely sensitive to its energy. In
our previous papefl6], we made the pilot studies of the
coupling to they band on proton emission it*Ho. Unfor-
tunately, in this early analysis based on the coupled-chann
method, we tooK,,,=10; hence the conclusions of this pa-
per have to be revise@ee below.

factor(BCS occupation coefficientvas assumed to h&=0.84[2].

by triaxial field), most of this strength is pushed up to higher-

@{ing states.
Figure 6 displays partial widths,. (17) corresponding to

various channels of decay to thg and Z states in'“®Dy.

The width of the 7/2 band head was computed using the 1 "€ gradual decrease of t@, f7,) partial width(hence the

RMHO method assuming,.,=12. At each value o, we

increase of the half-life of**Ho) with a, can be explained in

have adjusted the potential depth so as to get the position §¢rms of the(0;, f7/,) amplitude in Fig. 5. The 2branching
the resonance at 1.19 MeV. The calculated half-life of thefatio is aimost completely determined by &, f7,) partial
resonance and the branching ratio for the decay to the 2width; the second-order contribution from tig,, wave is
state in'4Dy are displayed in Fig. 4. It is seen that when much smaller(cf. inset in Fig. 5.

increasing the coupling to the band, both the lifetime and
the 2 branching ratio increase, and the agreement with ex-
periment gets worse.

In order to understand the behavior shown in Fig. 4, we

analyzed the components of the wave function. Figure 5
shows the weights of various partial wauéislj) in the 7/2 g
g.s. of *Ho, =
B
|CIKIj|2:f U (Ndr, (45) E
0 g
g

as functions of,. According to our calculations, the ampli-
tudes associated with the coupling to tHegds. and 2 state

in 14Dy are fairly small; most of the strength lies in higher-
lying states including the channels that are energetically
closed for proton emission. Th@;,f;;,) amplitude, solely
determining the 7/2— 0] decay, gradually decreases with
a,. Interestingly, while theotal f;,, strengthincreaseswith

0.04

e
3

=4
8

0.01

141Ho
m=7/2

~.

..... - 1=241=5j=1172

1=0; 1=3 j=7/2
1=2, 1=5 j=9/2

=2, 1=1j=3/2

0

a, as expectedthe h,4,, andf, shells are strongly coupled as a function of,.
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FIG. 5. Weights(45) of the (1=2;,1=5,j=11/2), (0,,3,7/2,
(21,5,9/2, and(2,,1,3/2 partial waves of the 7/2g.s. of *Ho
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E 10'2‘% --------------- APPENDIX: TRIAXIAL COULOMB POTENTIAL
= £ [— }=<2>:=?Jj=;g ..... _ E The Coulomb interaction between the proton and the
....... 211 o g 3 -
1026 |- 121=3 - daughter nuclei is
E |- o137 ./ |141Ho|?
[ |- I=21=5j=972 i o
E |- =21=5)e1p =712 | % p(r ')
— . T e = J (A1)
0 0.04 0.08 0.12 0.16 Ir-

a

where the charge density reads
FIG. 6. Partial widthd, (17) corresponding to various;Gand
2] decay channels as functions af Po

P = exdlr - RO)Tal

(A2)

V. CONCLUSIONS
and the nuclear surfad®((}) is given by Eq(2). To the first

This work contains the first application of the triaxial . .
prder ina, the Coulomb potential is

nonadiabatic weak coupling approach to the description o
proton-emitting nuclei. The resulting coupled-channel equa- U @

tions take into account the coupling to tKe=2 band repre- Velr) =Ve (r)|az=0+ aVe'(r). (A3)
senting collectivey vibrations.

The inclusion of they band into the weak-coupling for- The first term \/(1) is the Coulomb potential due to an axial
malism increases the number of the coupled channel equaymmetric charge density. It is given by a S|mple expression
tions significantly. This makes it very difficult to solve accu- derived in, e.g., Ref[46]. The second terr‘ri\/C , is of the
rately the multitude of coupled differential equations with form
Gamow boundary condition. In order to overcome this diffi-
culty, we developed a new formalism, dubbed RMHO, which 2 ap(r’) 1
incorporates the variational oscillator expansion method into V( (r)= f
the R-matrix theory. Within RMHO, it is possible to signifi-
cantly increase the number of states in the daughter nucle
to guarantee the convergence of the solution.

As an example, the RMHOﬁ;ollr_'mallsm has been applied to
the g.s. proton emission fro 0, in which there have 2\
been some experimental hin@s.g., large signature splitting V(C)(r) = RopoClag,ay)
in 'tSet'g.s.l rto'iatiqnailh band hgr ‘presence of IE\?‘V;)]'/ing RA(Q)[Yo Q) + Yy AQ )]
v-vibrational states in the neighboring even-even n
triaxiality. Our calculations show that while the couplingyo v Ra(Q )+ 1% = 2R(Q)r cos§
vibrations can in general influence decay characteristics (A5)
(half-life, branching ratios in the case of*Ho the resulting
trend is opposite to what has been observed experimentallwhere
From this point of view, our results support conclusions
drawn in the recent worl2?2] based on the adiabatic particle- cosé=cosh cosh' +sinfsin b cos(¢p— ') (A6)
rotor approach. An important piece of physics which is still
missing in our nonadiabatic formalism is the inclusion of andR,({}')=R(}’ )|a _o- This can be reduced to
quasiparticle pairing. We are currently working on incorpo-

d " A4
day |r- ' (A4)

lt§alculating the derivative of the charge density and taking
the limit of the sharp charge distributida— 0), one obtains

rating the Hartree-Fock-Bogoliubov couplinf#5] into our 15 (L
model. V2(r) = RypoClag,ap) an f dtRA(t)(1 -9
-1
XJ Wd¢’ 2cog¢ (A7)
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V() = 15 ' 2
&'(1) = RopoClagap) || g~ c05(29) dtRA(t)(1 - 1)
™ -1

3b2 L{(4a - b?)K (k) - 4a(a+ b)E(k)},

(A8)

where

and

PHYSICAL REVIEW C69, 054311(2004)

a=RA(t) +r?— 2R,(t)r cosf cos ¥, (A9)
b=2R,(t)r sin §sin ¢, (A10)
2b
=/ —. All
24D (A11)

In Eq. (A8), K(x) andE(x) are the complete elliptic integral
of the first and second kind, respectively.
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