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Systematic studies are carried out for Xe, Ba, Ce, and Nd isotopes within the framework of the pair-
truncated shell model where the collective nucleon pairs with angular momenta zerosSd and two sDd are
assumed to be the building blocks for even-even nuclei. An additional unpaired nucleon is added to the
even-even core for a description of odd-mass nuclei. It is found that energy spectra of the low-lying states are
nicely reproduced along with intraband and interbandE2 transitions, which simulate the typical features of the
O(6) limit of the interacting boson model.
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I. INTRODUCTION

Nuclei around mass 130 have many interesting features
such as high-spin isomers, backbending phenomena, even-
odd energy staggering of quasi-g bands caused by a soft
triaxial deformation, and features recently referred to as “chi-
ral bands.” Moreover, beta decays in this region provide us
with necessary information for predicting the abundance of
nuclei in the environment of supernova explosions. These
nuclei belong to a typical transitional region between spheri-
cal and deformed shapes. The even-even nuclei in this region
seem to be soft with regard to theg deformation with an
almost maximum effective triaxiality ofg,30° [1,2]. Since
they are neither vibrational nor rotational, it is very difficult
to treat them in terms of conventional mean field theories.

The low-lying states, showing a rich collective structure
in this region, were investigated extensively in terms of vari-
ous models, such as the interacting boson model(IBM )
[2–13], the fermion dynamical symmetry model(FDSM)
[14–16], the pair-truncated shell model(PTSM) [17–22], and
the nucleon-pair shell model[23–26]. Some phenomenologi-
cal IBM calculations as in Ref.[6] show that the excitation
spectra of the even-even nuclei in the Xe-Ba mass region can
be well approximated by the O(6) dynamical symmetry of
the IBM. However, as suggested by Ref.[13], the nuclei
around this region might have an intermediate structure be-
tween the U(5) and SU(3) limits. The present scheme pro-
vides a theoretical method to settle the differences between
these different IBM approaches, the O(6) approach and the
U(5)-SU(3) one coming from the degree ofg softness since
the microscopic approach truncated in theS and D pairs is
directly connected to the microscopic foundation of the IBM.

Odd-mass nuclei in massA,130 region often show com-
plicated level schemes, which arise from the coupling of col-
lective and single-particle degrees of freedom. One of the
approaches first used to explain the experimental properties
was the particle triaxial core model[27–29]. Its application
to the Ba isotopes indicated the importance of triaxial defor-

mation in this region. A widely used tool for describing the
odd-mass nuclei is the interacting boson-fermion model
(IBFM) [30]. The simplest version of the IBFM(IBFM-1)
was applied to negative and positive parity states of the odd-
mass Xe and Ba isotopes, and the complicated level schemes
and electromagnetic properties were well reproduced[31].
Using different sets of single-particle orbitals, similar calcu-
lations were carried out for the negative parity states of the
nuclei 123−133Ba and117−131Xe [33], and for the positive par-
ity states of the nuclei121−133Ba and121-131Xe [32], and for
both positive and negative parity states of the nuclei
121−131Ba [34]. Similarly, the IBFM-2 calculations were per-
formed for the odd-mass Xe and Cs isotopes[35,36], and Ba
and La isotopes[37]. These approaches could also qualita-
tively describe the evolution of the collective motions and
excitations of single-particle degrees of freedom in this mass
region. Recently, the systematic study in theA,130 nuclei
was performed in terms of the FDSM[16], and energy spec-
tra of positive parity states were well reproduced. In order to
investigate the validity of a microscopic derivation of the
IBM and IBFM Hamiltonian, Yoshinagaet al. calculated the
energy levels of the singly closed even-even and odd-mass
nuclei inA,130 region in terms of the shell model, the IBM
and IBFM, and the PTSM[21]. It was shown that the PTSM
and IBFM calculations quantitatively reproduce the shell
model results for the odd-mass nuclei, and the truncation
scheme for theSD pair plus one-particle space provides an
effective and minimal shell-model space.

In this paper we first construct many-body states for even-
even nuclei within the framework of theSD version of the
PTSM and carry out an extensive study to search for the best
effective interactions around massA=130. The PTSM is a
model beyond mean field theories and has the feature that the
model conserves particle numbers and angular momenta of
the states. In order to find a best set of interactions within the
PTSM, thex2 fitting is carried out for the low-lying states of
even-even Xe, Ba, and Ce nuclei to determine the strengths
of the pairing plus quadrupole type interactions. The
strengths of the interactions are assumed to be smooth func-
tions of the proton numberZ and the neutron numberN. The
obtained interactions are applied to both Nd isotopes and to
odd-mass nuclei without any further change.
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The paper is organized as follows. In Sec. II, the frame-
work of the PTSM and its effective interaction in the model
space are presented. In Sec. III A the PTSM calculations are
carried out for Xe, Ba, Ce, and Nd isotopes with massA
,130, where the effective interactions are smoothly changed
as functions of valence particles. In Sec. III B we extend the
PTSM for an application to odd-mass nuclei, and carry out
calculations for Xe, Ba, and Ce isotopes. Principal results are
summarized in Sec. IV.

II. FRAMEWORK OF THE PTSM AND ITS SD-PAIR
TRUNCATION

In the shell model calculation, the number of configura-
tions increases exponentially with the number of particles,
and the treatment becomes soon infeasible for the present
computers. Therefore, if the number of valence nucleons is
large, a treatment by the full-fledged shell model has to be
abandoned, and a truncation of the space or some sort of
approximation is required.

In the first stage of the PTSM, we truncate the collective
subspace to the space which is constructed only in terms of
collectiveS and D pairs. These pairs, as building blocks of
the model, are defined in terms of pair-creation operators as

S† = o
j

a jA0
†s0ds j j d, s1d

DM
† = o

j1j2

b j1j2
AM

†s2ds j1j2d, s2d

where the structure coefficientsa and b are determined by
variation in the present approach for each nucleus. Here the
creation operator of a pair of nucleons with total spinJ and
projectionM is defined as follows:

AM
†sJds j1j2d = fcj1

† cj2
† gM

sJd, s3d

wherecj
† represents a single-particle creation operator in or-

bital j for protons and a single-hole creation operator for
neutrons. In this atomic mass region we treat neutrons as
holes and protons as particles so thatN=82 andZ=50 be-
come the nearest closed shells. These pairs are constructed
in each neutron or proton space separately.

The structure coefficientsa andb are determined so as to
maximize the collectivity of theS andD pairs. More explic-
itly, the structure of the collectiveS pair is determined by
variation for ann-pair stateuSnl=sS†dnu−l,

dkSnuHuSnl = 0, s4d

which is considered as a number conserved BCS equation in
each neutron or proton space. Here,H is an interaction
among like nucleons. In the second step, with use of the
S-pair obtained above, the structure of the collectiveD pair
is determined by

dkSn−1DuHuSn−1Dl = 0. s5d

Using the collectiveS and D pairs thus obtained, a many-
body state is constructed as

uSnsDndJhl = sS†dnssD†dndu− l, s6d

whereJ indicates the total spin of the many-body state,h is
a quantum number which is necessary to uniquely specify
the state, andns+nd represents the number of valence pairs
for a specific nucleus. Here angular momentum coupling is
carried out exactly, but for simplicity it is not denoted ex-
plicitly.

In order to describe open-shell nuclei, we use the above
states in both neutron and proton spaces to couple them to
the state with total angular momentumJ. The total state is
expressed as follows:

uFsJhdl = fuSn
n̄sDn

n̄dJnhnl ^ uSp
nsDp

ndJphplgsJd, s7d

where N̄n=2sn̄s+ n̄dd and Np=2sns+ndd are numbers of va-
lence neutron-holes and valence proton-particles, respec-
tively.

As an effective interaction, we employ the monopole and
quadrupole pairing plus quadrupole-quadrupole interaction
sP+QQd. The shell model Hamiltonian is written as

H = Hn + Hp + Hnp, s8d

whereHn, Hp, andHnp represent the neutron interaction, the
proton interaction, and the neutron-proton interaction, re-
spectively. The interaction among like nucleonsHt st=n or
pd consists of spherical single-particle energies, monopole-
pairing sMPd interaction, quadrupole-pairingsQPd interac-
tion, and quadrupole-quadrupolesQQd interaction, i.e.,

Ht = o
jm

« jtcjmt
† cjmt − G0tPt

†s0dPt
s0d− G2tPt

†s2d · P̃t
s2d

− kt:Qt ·Qt:, s9d

where :: denotes normal ordering. Here the monopole-
pairing operatorPt

†s0d, the quadrupole-pairing operatorsPMt
†s2d,

P̃Mt
s2d and the quadrupole operatorQMt are defined as

Pt
†s0d = o

j

Î2j + 1

2
A0t

†s0ds j j d, s10d

PMt
†s2d = o

j1j2

Qj1j2
AMt

†s2ds j1j2d, s11d

P̃Mt
s2d = s− dMP−Mt

s2d , s12d

QMt = o
j1j2

Qj1j2
fcj1t

† c̃j2tgM
s2d, sc̃jmt = s− 1d j−mcj−mtd,

s13d

Qj1j2
= −

k j1ir2Ys2di j2l
Î5

, s14d

whereAMt
†sJds j1j2d stands for the creation operator of a pair of

nucleons given by Eq.s3d. We assume that the interaction
between neutrons and protonsHnp is just given by theQQ
interaction,
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Hnp = − knpQn ·Qp. s15d

The harmonic oscillator basis states with the oscillator pa-
rameterb=Î" /Mv are employed for the single-particle ba-
sis states.

III. NUMERICAL INVESTIGATION

A. Even-even nuclei

In our scheme Xe, Ba, Ce, and Nd isotopes are treated as
systems of several valence proton particles and neutron holes
coupled to the doubly closed132Sn core. Since the valence
neutron holes(proton particles) occupy the 0g7/2, 1d5/2,
1d3/2, 0h11/2, and 2s1/2 orbitals, we take into account the 50
øNsZdø82 configuration space for neutrons(protons),
where valence neutrons(protons) are treated as holes(par-
ticles). The adopted single-particle energies, listed in Table I,
are extracted from experimental excitation energies in Refs.
[38–40].

To determine the strengths of the interactions we follow
the following steps. First, several sets of candidates for ef-
fective interactions are searched to get smaller values of the
following x2 values:

x2 = o WsJi
pdfEexpt.sJi

pd − Eth.sJi
pdg2, s16d

whereWsJi
pd is a weight function for theith state with spin

J and parityp, and Eexpt.sJi
pd, experimental energies and

Eth.sJi
pd, theoretically predicted energies by the PTSM. As

for the fitting energy levels, we take low-lying states of
the even-even nuclei,128−132Xe, 130−134Ba, and 132−136Ce.
Here we exclude Nd isotopes since it is quite time con-
suming to calculate them. We takeWsJi

pd=0 for those lev-
els which are not experimentally confirmed. The assumed
values of weight functions are listed in Table II. Next, we
apply each set of interactions to the nuclei126Xe, 128Ba,
130Ce, and 132−138Nd, and take the best set of effective
interactions to describe these nuclei.

The strengths of the effective interactions are assumed to
be smoothly changed as functions of the numbers of valence

particles. The determined functional dependences are as fol-
lows (G0 of MP interaction in unit of MeV, andG2 of QP
interaction and k of QQ interaction, both in unit of
MeV/b4):

G0n = 0.160 − 0.010N̄n,

G2n = 0.017 + 0.0005Np,

kn = 0.075 − 0.0015Np,

G0p = 0.200 − 0.010N̄n − 0.005Np,

G2p = 0.010 + 0.001Np,

kp = 0.014 + 0.006Np,

knp = − 0.044 − 0.002N̄n, s17d

whereN̄n indicates the number of valence neutron holes and
Np, the number of valence proton particles. This choice of
the strengths of interactions givesx2 value =0.442 for 104
levels of even-even nuclei,126–132Xe, 128−134Ba, 130−136Ce,
and 132−138Nd.

Figure 1 shows the structures ofSn and Sp pairs for Ba
isotopes. As seen from the figure the main component of the
Sp pair lies in 0g7/2 orbital while components are spread out
mainly in 1d3/2, 2s1/2, and 0h11/2 for the Sn pair. This can be
easily inferred from the adopted single particle energies in
Table I. Figure 2 shows the structures ofDn and Dp pairs,
respectively, for Ba isotopes. As seen from the figure the

TABLE I. Adopted single-particle energies for neutron holes
and proton particles, which are extracted from experiment[38–40]
(in MeV).

j 2s1/2 0h11/2 1d3/2 1d5/2 0g7/2

«n 0.332 0.242 0.000 1.655 2.434

«p 2.990 2.793 2.708 0.962 0.000

TABLE II. Adopted weight functionsWsJi
pd for x2 fitting (in

MeV−2).

N̄n+Np 21
+ 41

+ 61
+ 22

+ 31
+ 42

+ 51
+

8 1.00 1.00 0.16 1.00 0.64 0.25 0.09

10 1.00 1.00 0.64 1.00 0.64 0.25 0.09

12–20 1.00 1.00 1.00 1.00 0.64 0.25 0.09

FIG. 1. Structures ofSn and Sp pairs in terms of valence five
orbitals. The sum of all thea’s are normalized to 1, i.e.,o ja j

2=1.
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main component of theDp pair is in the 0g7/2 orbital while
components are spread out in 1d3/2, 2s1/2, and 0h11/2 for the
Dn pair.

Figure 3 shows energy spectra of yrast and quasi-g bands
for Xe isotopes. Experimental data are taken from Ref.[41].
We obtain a good agreement with experiment up to spin 6.
Energy spectra for Ba isotopes are shown in Fig. 4. We see a
better agreement with experiment, compared to Xe isotopes,
because quadrupole collectivity becomes more dominant.
The experimental energy staggering for the even-spin and
odd-spin members of the quasi-g band, indicatingg instabil-
ity, is well reproduced except theN=72 nucleus,128Ba. For
the N=80 nucleus,136Ba, a higher spin pair plays an impor-
tant role because the quadrupole collectivity is not so domi-
nant near the closed shell.

The spectra for Ce isotopes are shown in Fig. 5, and those
for Nd isotopes, in Fig. 6. All four Figs. 3–6 show that the-

oretical ground- and quasi-g-band energies smoothly de-
crease as a function of the number of neutron holes, which
well reproduces the experimental behavior except for theN
=72 isotones. Also the energy-staggering of quasi-g bands is
well reproduced except for theN=72 isotones.

The E2 transition operator is defined as

TsE2;md = enQnm + epQpm, s18d

whereet st=n or pd represents the effective charge of the
nucleon, and the operatorQt is taken as the quadrupole op-
erator with the oscillator parameterb=1.005A1/6 fm . The
effective charges are assumed to follow the conventional
relationen=−de andep=s1+dde f43g, and the adopted val-

ues ared=0.60+0.05sN̄n+Npd.

FIG. 2. Structures ofDn andDp pairs for Ba isotopes in terms of valence five orbitals. The sum of all theb’s are normalized to 1, i.e.,
o j1ù j2

b j1j2
2 =1.

FIG. 3. Energy spectra of the yrast and quasi-g bands for Xe
isotopes as a function of neutron numberN.

FIG. 4. Energy spectra of the yrast and quasi-g bands for Ba
isotopes.
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In Fig. 7 the calculatedBsE2d values from the ground
state to the first 2+ state for Xe, Ba, Ce, and Nd isotopes are
compared with experiment. Experimental data are taken
from Ref. [42]. The overall trend is well reproduced, but we
have no good agreement with experiment for60

132Nd72. We
infer that the calculated deformation is still small compared
to the experimental one. AfterN=74 the nuclei rapidly de-
velop deformation, and we may need higher spin pairs such
asG pairs to get larger deformation.

Table III shows relativeBsE2d values between low-lying
states for134Ba,132Ba, and130Ba. It is seen that the theoreti-
cal results reproduce very well the experimental data, which
simulate the O(6) limit prediction of the IBM. In Ref.[13],
some BsE2d values were calculated for130Ba. There they
claimed that theBsE2;02

+→21
+d is equal toBsE2;02

+→22
+d.

In our calculation we observe thatBsE2;02
+→22

+d is much
smaller thanBsE2;02

+→21
+d. This does not mean to deny the

statement by Ref.[13] because we observe that these ratios
depend largely on the strength of theQP interactions. For
instance, in134Ba, this ratio is almost equal to 1 and there is
a large discrepancy between theory and experiment.

B. Odd-mass nuclei

For a description of odd-mass nuclei, we add an unpaired
particle to theSD pair core and consider anSD pair plus
one-particle state. The state is now written as

u jSnsDndJhl = fcj
†uSnsDndJ8hlgsJd, s19d

whereJ is the total spin, andh an additional quantum num-
ber. The number 2ns+2nd+1 represents the total number of
valence particles. We use Eq.s17d for the strengths of the
interactions.

Figure 8 shows energy levels of odd-mass Xe isotopes.
The experimental data are taken from Ref.[41]. Our calcu-
lation successfully reproduces the mild change of the order-
ing of 3/21

+ and 1/21
+ states between the three Xe nuclei. The

ordering of 11/21
− and 9/21

− is reversely predicted for129Xe,
but fairly well reproduced for131Xe and133Xe. Experimen-
tally in 133Xe, 11/21

− is higher than the ground state 3/21
+,

while our model predicts 11/21
− to be the ground state. For

the ordering and position of these negative-parity states we
may need an octupole interaction, which is missing in the
present calculation. Figure 9 shows energy levels of odd-
mass Ba isotopes. Like Xe isotopes, the smooth change of
ordering is seen for the 3/21

+ and 1/21
+ states. The ordering of

3/22
+ and 5/21

+ is reversely predicted for133Ba and135Ba, but
their absolute positions are well reproduced.

Some calculations were also done for Ba and Xe isotopes
by the FDSM [16]. In these calculations, energies of
positive-parity states were well reproduced, but no energy
levels of negative-parity states were given. Figure 10 shows
energy levels of odd-mass Ce isotopes. Concerning the first
5/2+ state of137Ce, our calculation seems to fail in reproduc-
ing the experimental energy, but theoretically we predict an-
other 5/2+ state at around the corresponding energy, and the
experimental observation might correspond to this theoreti-
cally predicted level. Although reproducing energy levels of
odd-mass nuclei is much more difficult compared to even-
even nuclei, the agreement is rather well, considering the fact
that the effective interactions are solely determined for even-

FIG. 6. Energy spectra of the yrast and quasi-g bands for Nd
isotopes.

FIG. 7. BsE2d values from the ground state to the first 2+ state
for Xe, Ba, Ce, and Nd isotopes.

FIG. 5. Energy spectra of the yrast and quasi-g bands for Ce
isotopes.
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even nuclei and no further adjustment is made for odd-mass
nuclei.

A lot of information about odd-mass nuclear states is ob-
tained through magnetic moments for which the operator is
defined as

m = mN o
t=n,p

fg,t jt + sgst − g,tdstg, s20d

wheremNs=e" /2mcd is the nuclear magneton, andg,tsgstd is
the gyromagnetic ratio for orbital angular momentumsspind.
The operatorsjt andst stand for the angular momentum and
spin operators, respectively. The adopted gyromagnetic ra-
tios for orbital angular momentum areg,n=0.05,g,p=1.05,
and those for spin aregsn=−2.68 andgsp=3.91, which are

free nucleong factors attenuated by a factor of 0.7. These
ratios are the same as those in Ref.f22g and the values are
fixed through all nuclei concerned in this paper.

The experimentally known magnetic moments are com-
pared to the calculated values in Table IV. For positive parity
states, the magnetic moments are well reproduced except for
the 1/21

+ states of129Xe and131Ba, which are seven-neutron-
hole systems. This might be due to the fact that single-
particle levels with positive parity are easily admixed by
quadrupole deformation which is expected to be large in
seven-neutron-hole systems. The magnetic moments of nega-
tive parity states are in excellent agreement with experiment.
This clearly shows that negative parity states of even-odd
nuclei consist mainly of neutron 0h11/2 orbital and the neu-
tron spin part largely contributes to the magnetic moments.

IV. SUMMARY AND CONCLUSIONS

Up to now many theoretical investigations have been car-
ried out on even-even nuclei with mass around 130, which
exhibit many interesting features coming from the soft tri-
axial deformation. However, there is a limited number of

TABLE III. Comparison of relativeBsE2d values between low-
lying states for134Ba,132Ba, and130Ba. Experimental data are taken
from Refs.[44–46].

134Ba 132Ba 130Ba O(6)

Ji
p→Jf

p PTSM Expt. PTSM Expt. PTSM Expt.

22
+→21

+ 100 100 100 100 100 100 100

→01
+ 3.3 0.9(2) ,0.01 2.7(4) 0.014 6.2(7) 0

31
+→22

+ 100 100 100 100 100 100 100

→41
+ 16 ù2.6 23 38(6) 31 22(3) 40

→21
+ 5.1 1.1 1.0 2.6(4) 0.64 4.5(6) 0

42
+→22

+ 100 100 100 100 100 100 100

→31
+ 7.9 4.2 ø50s11d 0.36 0

→41
+ 22 73 37 73(10) 66 54(10) 91

→21
+ 8.4 2.4 4.8 1.8(3) 2.2 2.3(4) 0

51
+→31

+ 100 100 100 100 100 100 100

→42
+ 60 55 ø45s7d 48 46

→61
+ 10 13 24 45

→41
+ 0.053 ,0.01 ø2.2s3d ,0.01 0

02
+→22

+ 100 100 100 100 100 100 100

→21
+ 107 3.5 9.1 ø0.7s1d 0.028 3.3(2) 0

FIG. 8. Comparison of energy spectra of odd-mass Xe isotopes
between theory and experiment. Left hand and right hand show
experiment(expt.) and theory(PTSM), respectively.

FIG. 9. Comparison of energy spectra of odd-mass Ba isotopes
between theory and experiment.

FIG. 10. Comparison of energy spectra of odd-mass Ce isotopes
between theory and experiment.
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microscopic researches on odd-mass nuclei due to the diffi-
culty of a theoretical treatment. Here we have proposed the
PTSM which can systematically treat even-even and odd-
mass nuclei on the equal footing. The PTSM has the feature
that the model conserves particle numbers and angular mo-
menta of the states and it is best applied to transitional nu-
clei. As another aspect, the model has the feature that it dras-
tically and efficiently truncates the gigantic shell model
space. For example, the shell model dimension of the 2+

states in132Ba amounts to 697 252 966. On the other hand,
the number of the corresponding PTSM states reaches only
59.

For even-even nuclei, the subspace of the shell model
space is built by theS and D pairs. For a description of
odd-mass nuclei, an unpaired neutron is added to the even-
even core. As realistic applications of the PTSM to Xe, Ba,
Ce, and Nd isotopes, we have used an effective interaction
which varies smoothly as a function of neutron and proton
numbers. Spectra of both yrast and quasi-g bands are repro-
duced very well, along with intraband and interbandBsE2d
values. We have also applied the same interaction to odd-
mass nuclei, and good agreements are obtained for both en-
ergy spectra and magnetic moments.

In the present approach we have concentrated on the low-
lying states of Xe, Ba, Ce, and Nd isotopes. In order to treat
high-spin states including backbending phenomena, we need
to extend our model to include high spin pairs coming from
0h11/2 orbital. For the nucleus132Ba, such a calculation was
already carried out and backbending phenomenon was suc-
cessfully reproduced[22]. The systematics using high-spin
pairs within the framework of the PTSM is now in progress.
Another interesting aspect around this region is the contro-
versial argument about the settlement of differences between
different IBM approaches, O(6) approach and U(5)-SU(3)
one, mentioned in the introduction. Our scheme can provide
a microscopic method to answer this question by carrying
out a fermion-boson mapping. This will be one of our next
important projects.
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