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In the present paper, we discuss the differences that underlie a topic of current intensive research and debate,
e.g., the appearance of phase transitions and shape coexistence in atomic nuclei. Besides a formulation of the
basic differences, we discuss on one hand some typical examples of shape coexistence(near the Sn and Pb
closed shell regions) and, on the other hand, of phase transitions. The present discussion should allow a more
transparent way to analyze nuclear structure changes in particular mass regions.
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I. INTRODUCTION

The concept of deformed shapes and the appearance of
different shapes in a given nucleus was introduced in nuclear
physics as early as 1937 by the work of Bohr and Kalckar
[1]. In those early days, little did one expect how fruitful
these ideas would turn out to be. The discovery of the first
excited state with spin 0+ in the doubly magic nucleus16O
and its subsequent interpretation, starting from rearranging
four particles from occupied into empty orbitals above the
Fermi level, resulted in a cooperative strong binding energy
effect. A subsequent highly deformed shape, coexisting with
the spherical ground state[2], opened up a new field in
nuclear physics research, devoted to the investigation and
understanding of shape coexistence. Soon after, it was real-
ized that the atomic nucleus, on its way to fission, had to
undergo a number of shape changes in which a specific shape
could be trapped as an isomeric state in a secondary potential
minimum, called fission isomers[3]. Shape coexistence, in-
voking multiple shapes, was predicted and also observed in
many spherical nuclei near magic shells and these particular
phases could be linked to the occupation of very specific up-
and/or downsloping orbitals, coined “intruder orbitals,”
which allowed for a simple understanding of the phenom-
enon of shape coexistence[4,5]. The method put forward in
those papers could be used to predict shape coexistence, e.g.,
in the Sn nuclei, around mass numberA=116 and in the Pb
nuclei from mass numberA=196 and below. Once fast rota-
tion was employed as a new tool to study nuclear shapes
spinning up nuclei very fast, like in the case of152Dy, a
“superdeformed” shape was discovered with axis ratios for
the prolate deformed ellipsoid of 2:1, coexisting with single-
particle excitations corresponding to oblate shapes[6]. This
research field has exploded in recent years due to the highly
increased technical capabilities in detecting gamma radiation
emitted during the slowing down of the rapid rotation(Gam-
masphere, Euroball, . . .).

Shape changes also occur in another way in atomic nuclei
when one considers only the ground state and low-lying ex-

citations. There exists extensive experimental and theoretical
information about nuclei that seem to form a transition in
between a spherical phase(exhibiting anharmonic quadru-
pole vibrational energy spectra) and a more deformed collec-
tive phase that is often associated with energy spectra exhib-
iting rotational properties. Some of these clear-cut examples
are situated at the neutron numberN=90 for the rare-earth
nuclei Nd, Sm, Gd[7–12], and also in the region of Ru, Pd
even-even nuclei[13,14] in which a transition is observed
between anharmonic vibrations andg-soft vibrational motion
when progressing from lighter to neutron-rich nuclei.

These transitional regions have been quite well studied in
terms of algebraic models(notably within the framework of
the interacting boson model) [15–24], but also within the
collective model[25] leading to the idea of critical point
symmetries[26–28].

The variety of shapes occurring in atomic nuclei contin-
ues to be a topic of active and rapidly evolving research as
exemplified in the recent papers by Andreyevet al. [29] and
Warner[30]. It is the purpose of this paper to clearly outline
the differences between shape coexistence and phase transi-
tions.

II. PHASE TRANSITIONS VERSUS SHAPE COEXISTENCE

The flexibility of the interacting boson model(IBM ) al-
lows an easy parametrization for the study of phase transi-
tions on the extended Casten triangle[31,32]. The Hamil-
tonian that incorporates the two opposite forces, one driving
to spherical shapes and one driving to deformation, can be
constructed in thes,d IBM as follows:

Ĥ = aFhn̂d −
s1 − hd

N
Q̂xQ̂xG , s1d

where the quadrupole operator is given by
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Q̂ = ss†d̃ + d†sds2d + xsd†d̃ds2d. s2d

The parametera is a general energy scaling factor,N the
number ofs and d bosons, andh and x are two structural
parameters, describing the spherical-deformed transition and
the prolate-oblate transition, respectively. In order to visual-
ize this simple parametrization, the Casten triangle is used in
which one axis is formed byh and the other one byx. As a
concrete example by varyingh from one to zero a spherical-
deformed phase transition is crossed.

The Hamiltonian(1) is of the type that in a general way,
can be parametrized by means of a Hamiltonian

H = aH1 + s1 − adH2, s3d

in which the separate HamiltoniansH1 andH2 describe two
different types of motion that are basically incompatible with
one anotherse.g., the example of vibrational excitations on
one side and the states of an axially symmetric rotor on the
other sided. This means that the Hamiltonians do not com-
mute. Otherwise the states of both Hamiltonians would not
interact with each other, e.g.,H1 made out ofs,d boson
operators andH2 out of f ,p boson operators. Explicitly one
needs nevertheless that both Hamiltonians work in the same
Hilbert spaceH. This means they are acting on states which
can be expanded in the same set of basis states. Generally
speaking one could state that we deal with a system with
H=H1=H2. The parametera then allows for a smooth tran-
sition between the two limiting cases in order to describe the
transition. Studying the ground-state properties along the
transition sbinding energy and other observablesd one can
even get interesting information on the order of the transition
between the two phases. Much attention has been given to
this issue recently, in particular using the IBM and its under-
lying symmetriessf15–24gd.

The point we like to stress here is that in such a study, the
number of basis states is preserved through the transition and
progressing from one limiting case into the other(see Fig. 1,
left-hand part). One notices that the eigenstates of one limit
will be spread out and finally end up as the eigenstates of the
other limit. The way in which this happens depends on the

structure of the Hamiltonians and can be measured using the
concept of Shannon information or wave function entropy
(see, e.g., Ref.[33]).

On the other hand, phase coexistence can appear when a
number of basis states, appearing at very high excitation en-
ergy (outside of the model space that is regularly considered
as the space of low-lying configurations) under normal cir-
cumstances(such as particle-hole excitations across closed
shells), can profit from residual proton-neutron interactions.
This can be the case in nuclei withasnd (almost) closed shell
of protons(or neutrons), on one hand, and a large number of
valence neutrons(or protons), on the other hand. In such a
situation, the proton-neutron correlation energy in thep-h
excited high-lying configurations can become competitive
with the energy needed to create this family of extra states
and so see the energy drops towards the low-energy regime
[4,5]. Such classes of states are also quite often called “in-
truder” excitations(see Fig. 1, right-hand part). In this situ-
ation, one essentially makes use of a single HamiltonianH
but extends the model space by including(various) a differ-
ent phase and its associated basis states. Therefore one has a
coupling of two different Hilbert spaces andH=H1 ^ H2.
Mostly, this concerns, in practical applications, anN s,d bo-
son space coupled to anN+2 s,d boson space. They are used
to describe shape coexistence between normal(valence) ex-
citations and intruder excitations that include 2p-2h excita-
tions. It should be mentioned that both sets of states can
interact and mix with each other via a mixing Hamiltonian
that does not conserve the boson number.

To distinguish between phase transition and phase coex-
istence, the essential feature is that in the case of phase tran-
sitions the two different types of motion can only develop
subsets of states resembling the motion generated byH1 and
H2. On the other hand of phase coexistence,completestruc-
tures can be generated in each space(compare, e.g., the
phase transition in the even-even Sm nuclei in which all the
states in the vibrational region smoothly go over into states
in the deformed region, contrasting with the situation like in
the even-even Cd nuclei near mass numberA<112 and in
the neutron-deficient Pb nuclei, in which different classes of
states do appear in each given nucleus). Therefore, the use of
spectroscopic methods providing a complete data set is of the
utmost importance. Here, light-ion induced reactions and

FIG. 1. Schematic illustration
for a possible shape transition
(left-hand side) and for the situa-
tion where next to a family of
regular states, another class of
states can result as an example of
shape coexistence (right-hand
side).
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thermal neutron capture provide essential tools[34].
Finally, it should be mentioned that a complete different

approach can be used. This approach concerns the use of
crancking in the IBM [20,35] and is a semiclassical ap-
proach. Here, phase transitions are obtained as a function of
angular frequencyv, and the changes which occur when the
mp-mh states become yrast states, like in the Cd and Pd
isotopes[36], can be described as a phase transition[37]
between a spherical(vibrational, mainly) and a deformed
phase.

III. EXAMPLES OF PHASE TRANSITIONS
AND SHAPE COEXISTENCE

Excellent examples of complete structures representing
shape coexistence have been observed in the last decade in
the Cd isotopes. These isotopes form an excellent test of
shape coexistence as here the intruder states have their low-
est excitation energy(at midshell) exactly at the line of sta-
bility. This allows the unique possibility to study the six
stable even-even Cd isotopes in an as complete way as pos-
sible. Studies like those of the structure of112Cd [38–40]
revealed that these isotopes have complete three-phonon
spherical structures together with complete more deformed
O(6)-like intruder excitations, leading to very specific inter-
actions between both[41].

As these collective, intruder configurations most probably
involve proton 2p-4h excitations across theZ=50 shell clo-
sure, it might be speculated that their behavior would be very
similar to the properties of the ground-state bands in the
adjacent Ru and Ba nuclei, with the constraint of considering
the same number of neutrons. Suchmp-nh excitations can
now be handled within the algebraic framework of the IBM
[15,42]. In this approach, explored in detail in a series of
papers[43–46], both particle and hole shell-model configu-
rations are approximately handled as interacting particle and
holelike s and d bosons. A particular symmetry that allows
the transformation of particle into hole bosons(or the other
way around), and is formally like the isospin transformation
that allows protons to be transformed into neutrons(or the
other way around), here calledI-spin or intruder spin, was
suggested[47]. Its presence results inI-spin multiplets(for-
mally analogous to isospin multiplets in light nuclei) and
some interesting realizations of this symmetry were dis-
cussed in, e.g., the Sn region[40,48]. This symmetry then
implies strong similarities for both excitation energies(see
Fig. 2) as well as forBsE2d transition probabilities to hold
between the 2p-4h intruder bands in the Cd nuclei and the 6h
and 6p ground-state bands in the Ru and Ba nuclei, respec-
tively. This would hold for an unbroken I-spin multiplet
structure. A very recent analysis[49] in the Ru, Ba, and Cd
nuclei has given extra information to strengthen this idea
throughBsE2d values(see Table I). Experiments are planned
to study the very neutron-rich124,126,128Cd isotopes in order
to explore the behavior of the family of intruder states[50].

Another more dramatic but less detailed(in terms of spec-
troscopic information on energy spectra, transition probabili-
ties, . . .) example of shape coexistence shows up in the data
for the Pb region when removing neutrons from the closed

shell atN=126. These data point towards the appearance of
specific particle-holesp-hd excitations across the closed shell
at Z=82. It is precisely the energy gap at theZ=82, N
=126 closed shell of only approximately 3.5 MeV, combined
with a very large open neutron shell(filling the 82–126 or-
bitals) that enables the proton-neutron quadrupole-
quadrupole force to lower the excitation energy of 2p-2h,
4p-4h, . . . configurations as much as to approach the ground
state(for the Pb and Hg nuclei) and even cross it(for the Pt
and possibly the Po nuclei, too) [4,5]. Because of the in-
creased quadrupole collectivity associated with thesep-h ex-
citations, collective bands are observed on top of the low-
lying 0+ intruder excitations and so indicates the presence of
shape coexistence(see Fig. 3 for the most recent systemat-
ics). A discussion, usingI-spin symmetry arguments, has
been used also[45,46,51], and a very detailed study, using
configuration mixing within the interacting boson model, has
been carried out by Fossionet al. [52].

Calculations, making use of a deformed mean-field ap-
proach that study the possible equilibrium states[53–56]
have indicated the possibilities of producing rather close-

FIG. 2. (Color online) Systematics of the lowest family of in-
truder states in114Cd and in118Te compared with the regular con-
figurations in 110Ru and in 122Ba. The energies of theI-spin 3/2
multiplet are normalized in energy. A smooth transition from and
Os6d into a SUs3d structure is indicated with these two limits drawn
at the extreme left and right of the figure.

TABLE I. Comparison of theBsE2;21
+→01

+d values in the even-
even Ru and Ba nuclei with the correspondingBsE2;23

+→0I
+d in-

truderE2 transition in the Cd nuclei with the same neutron number
[49].

Neutron
number

Cd intruder
BsE2;23

+→0A
+ d

Ru
BsE2;21

+→01
+d

Ba
BsE2;21

+→01
+d

62 23−18
+27

64 56±17 58±5

66 61±8 70±5 154±14

68 86−30
+24 74±7 116±6

70 98±16
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lying oblate and prolate minima in the total energy surface
for the Pb nuclei while approaching the neutron midshell
region atN=104, next to the spherical ground-state configu-
ration. In the Hg nuclei with a ground state corresponding to
a slightly deformed oblate configuration, a second prolate
configuration is predicted, mimimizing its energy near mid-
shell sN=104d, whereas for the Pt nuclei, a crossing of both
minima is implied and the prolate deformed minimum be-
comes the lowest configuration at midshell. For the Po nu-
clei, the situation looks somewhat more complicated[51]
with an oblate minimum, approaching the spherical ground-
state configuration nearN=110, and a prolate minimum, be-
coming dominant in the ground state for even lower neutron
numbers. Very recently, detailed studies using configuration
mixing starting from Hartree-Fock-Bogoliubov(HFB) [57]
and HF+BCS[58–60] calculations have come to the same
conclusion for the presence of shape coexistence in the very
neutron-deficient Pb nuclei, albeit starting from a micro-
scopic mean-field approach.

The characterization of phase transitions in transitional
regions has been amply discussed using algebraic methods
(more in particular using the IBM) [15–24]. In those studies,
arguments for possible phase transitions have been pre-
sented. Illustrations are ample and concentrate on the Sm, Gd
region when passing theN=90 neutron number[7–12] and
the Hf-Hg region with possible prolate-oblate phase transi-
tions [21]. Irrespective of the precise type of transition oc-
curring, the Hamiltionian as depicted in Eq.(1) allows a
good overall description of those transitions. One should,
however, be careful in making a conclusion as to what pre-
cisely is happening: even though theN=90 region seems
very indicative of a phase transition, recent experiments in
154Gd have shown evidence for a low-energy coexisting band
[61]. Interesting other regions to study are the Sr,Zr nuclei in
passing theN=56 subshell closure. There are strong indica-
tions that here, too, a spherical to deformed phase transition
is happening, much like in theN=90 rare-earth mass region.
More detailed calculations of this mass region will be carried
out.

Using algebraic methods, very interesting calculations
have been carried out studying different types of phase tran-
sitions[62,63]. Here, the transition between a superconduct-
ing phase, described by the Hamiltonian

H2 = − GS+S−, s4d

with

S+ = o
j ,m.0

s− 1d j+maj ,m
† aj ,−m

† , s5d

S− = o
j ,m.0

s− 1d j+maj ,−maj ,m, s6d

and a rotational phase described by the Hamiltonian

H1 = − xQ ·Q, s7d

with Q the SUs3d quadrupole tensor operator has been ex-
plored. In this particular case, analytical solutions exist in the
two limits but no simple analytical solution exists in the
intermediate situation. In this situation, eigenstates from one
limit are spread out thinly over the eigenstates of the other
limit and a sharp phase transition in many-fermion systems
results and no clear case of phase coexistence shows up.

IV. CONCLUSION

In the study of extended regions in the nuclear mass for a
given isotope(or isotone), ample evidence has resulted for
either smooth transitions from one phase into another one
(with the number of levels being the same on both sides of
the transition) like, e.g., in the Sm, Gd nucleior for situa-
tions in which a particular class of excitations are dropping
quickly in energy thereby bringing a new phase of nuclear
structure and resulting in shape coexistence with the regular
low-lying states(see, e.g., the region near closed shells at
Z=50 andZ=82 while approaching the midshell neutron re-
gions atN=66 andN=104, respectively).

In the present paper we have discussed the salient features
that allow to discriminate between a region in which phase
transitions appear and a region that exhibits shape coexisting
phenomena. In Sec. II, we have discussed a simple Hamil-
tonian that allows us to describe phase transitions within the
IBM irrespective of the mass region one is concentrating on
[see the Hamiltonian of Eq.(1)] and in which the two differ-
ent limiting cases on separate sides of the transition form
incomplete sets of states. On the other hand, when shape
coexistence appears, complete sets of states can be gener-
ated. In the latter case, the nuclear structure is determined by
the direct product of the Hilbert spaces describing the vari-
ous phases likeH1 ^ H2 ^ H3. . .. In Sec. III we have de-
scribed some very recent and at the same time typical ex-
amples of both shape coexistence and phase transitions in
order to elucidate differences between the two forms of

FIG. 3. Systematics of the lowest 0+ states in the even-even Pb
nuclei. The first excited 2+ state is also given for reference. The
band members of the yrast structure are given in the mass region
182øAø190. The references are denoted in the introductory part
of the present article.
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shape changes that might occur when changing through a
series of isotopes or isotones compared to having different
shapes in a given nucleus.
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