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We apply a microcanonical statistical model to investigate hadron production inpp collisions. The param-
eters of the model are the energyE and the volumeV of the system, which we determine via fitting the average
multiplicity of charged pions, protons, and antiprotons inpp collisions at different collision energies. We then
make predictions of mean multiplicities and mean transverse momenta of all identified hadrons. Our predic-
tions on nonstrange hadrons are in good agreement with the data, the mean transverse momenta of strange
hadron as well. However, the mean multiplicities of strange hadrons are overpredicted. This agrees with
canonical and grand-canonical studies, where a strange suppression factor is needed. We also investigate the
influence of event-by-event fluctuations of theE parameter.
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I. INTRODUCTION

In pp collisions at high energies a multitude of hadrons is
produced. In contradistinction to thepp collisions at low
energies even effective theories are not able to provide the
matrix elements for these reactions and therefore a calcula-
tion of the cross section is beyond the present possibilities of
particle physics. In addition, even at moderate energies,
many different particles and resonances may be created and
therefore the number of different final states becomes huge.

In this situation, statistical approaches may be of great
help [1,2]. It was Hagedorn who noticed that the transverse
mass distributions in high energy hadron-hadron collisions
show a common slope for all observed particles[3]. This
may be interpreted as a strong hint that it is not the indi-
vidual matrix elements but phase space which governs the
reaction. Therefore Hagedorn introduced statistical methods
into the strong interaction physics in order to calculate the
momentum spectra of the produced particles and the produc-
tion of strange particles.

Later, after statistical models have been successfully ap-
plied to relativistic heavy ion collisions[4–11], Becattini and
Heinz[12] came back to the statistical description of elemen-
tary pp and p̄p reactions and used a canonical model[in
which the multiplicity of hadronsM is a function of volume
and temperatureMsV,Td] in order to figure out whether the
particle multiplicities predicted by this approach are in
agreement with the(in the meantime very detailed) experi-
mental results. For a center of mass energy of around
20 GeV they found for nonstrange particles a very good
agreement between statistical model predictions and data as-
suming that the particles are produced by a hadronic fireball
with a temperature ofT=170 MeV. The strange particles,
however, escaped from this systematics being suppressed by
factors of the order of 2–5. Becattini and Heinz coped with
this situation by introducing agS factor into the partition sum
which was adjusted to reproduce best the multiplicity of
strange particles as well.

Statistical models are classified according to the imple-
mentation of conservation laws.

(1) Microcanonical: both, material conservation laws
sQ,B,S,C, . . .d and motional conservation lawssE,pW ,JW , . . .d,
hold exactly.

(2) Canonical: material conservation laws hold exactly,
but motional conservation laws hold on average(a tempera-
ture is introduced).

(3) Grand canonical: both material conservation laws
and motional conservation laws hold on the average(tem-
perature and chemical potentials introduced).

The intensive physical quantities such as particle density
and average transverse momentum are independent of vol-
ume in the grand-canonical calculation, while they depend
on volume in both canonical and microcanonical calcula-
tions. What one naively expects is that the microcanonical
ensemble must be used for very small volumes, for interme-
diate volumes the canonical ensemble should be a good ap-
proximation, while for very large volumes the grand-
canonical ensemble can be employed. A numerical study of
volume effects in Ref.[14] tells us how big the volumes need
to be in order to make the grand-canonical ensembles appli-
cable. The comparison between the microcanonical and the
canonical treatment in Ref.[14] shows a very good agree-
ment in particle yields, when the same volume and energy
density are used, and the strangeness suppression is canceled
in the canonical calculation.

In this paper, first we ignore the fluctuations of microca-
nonical parameters and try to fix the microcanonical param-
eters, energyE and volumeV, from fitting 4p yields of pro-
tons, antiprotons, and charged pions frompp collisions. The
one-to-one relation between the collision energyÎs and a
pair of microcanonical parametersE and V makes a link
between thepp experiments and the microcanonical ap-
proaches(or more generally, the statistical ensembles). One
can easily judge if grand-canonical ensembles can describe
pp collisions at any given energy; one can also transform the
fitting results to the canonical case and find the correspond-
ing temperature and volume ofpp collisions at any energy.

Then we study the effect from the fluctuations of the mi-
crocanonical energy parameter at a collision energy of
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200 GeV, to check how reliable it is to fix microcanonical
parameters without energy fluctuations.

Finally, we would like to make a comparison between
statistical models and string models in describingpp colli-
sions. This microcanonical model and this fitting work will
provide us a bridge to compare the two classes of models and
help us to understand the reaction dynamics. In principle,
one can consider a string as an ensemble of fireballs, which
may be considered as one effective fireball, when only total
multiplicities are considered.

II. THE APPROACH

We consider the final state of a proton-proton collision as
a “cluster,” “droplet,” or “fireball” characterized by its vol-
umeV (the sum of individual proper volumes), its energyE
(the sum of all the cluster masses), and the net flavor content
Q=sNu−Nū,Nd−Nd̄,Ns−Ns̄d, decaying “statistically” accord-
ing to phase space. More precisely, the probability of a clus-
ter to hadronize into a configurationK=hh1,p1; . . . ;hn,pnj of
hadronshi with four momentapi is given by the microca-
nonical partition functionVsKd of an ideal, relativistic gas of
the n hadrons[13],

VsKd =
Vn

s2p"d3np
i=1

n

gi p
aPS

1

na!
p
i=1

n

d3pidsE − S«iddsSpW iddQ,Sqi
,

with «i =Îmi
2+pi

2 being the energy, andpW i the three-
momentum of particlei. The termdQ,Sqi

ensures flavor con-
servation;qi is the flavor vector of hadroni. The symbolS
represents the set of hadron species considered: we takeS to
contain the pseudoscalar and vector mesons
sp ,K ,h ,h8 ,r ,K* ,v ,fd and the lowest spin-1

2 and spin-32
baryonssN,L ,S ,J ,D ,S* ,J* ,Vd and the corresponding an-
tibaryons.na is the number of hadrons of speciesa, andgi is
the degeneracy of particlei. We generate randomly configu-
rationsK according to the probability distributionVsKd. For
the details see Ref.[13]. The Monte Carlo technique allows
to calculate mean values of observables as

Ā = o
K

AsKdVsKd/o
K8

VsK8d,

whereo means summation over all possible configurations
and integration over thepi variables.AsKd is some observ-
able assigned to each configuration, as for example the num-

ber MhsKd of hadrons of speciesh present inK. Since Ā

depends onE and V, we usually writeĀsE,Vd. Q is not
mentioned, since we only studypp scattering here, therefore
Q is alwayss4,2,0d.

Let us consider the hadron multiplicityM̄hsE,Vd. This
quantity is used to determine the energyEsÎsd and the vol-
umeVsÎsd which reproduces best the measured multiplicity
of some selected hadrons inpp collisions at a givenÎs. This
is achieved by minimizingx2:

x2sE,Vd =
1

a
o
j=1

a
fM̄exp,jsÎsd − M̄ jsE,Vdg2

s j
2 ,

where M̄exp,jsÎsd and s j are the experimentally measured
multiplicity and its error of the particle speciesj in pp col-
lisions at an energy ofÎs.

We start out our investigation by taking as input the most
copiously produced particless j =p, p̄,p+,p−d. The data have
been taken from Ref.[15]. Whenever the data are not avail-
able, the extrapolation of multiplicities by Antinucci[15] is
used. Figure 1 displays the results of our fit procedure in
comparison with the experimental data. We observe that
these four-particle species can be quite well described by a
common value ofEsÎsd andVsÎsd.

Figure 2 showsEsÎsd and VsÎsd, and Fig. 3 the energy
densityesÎsd=EsÎsd /VsÎsd, which we obtain as the result of
our fit. Both energy and volume increase withÎs but rather
different, as the energy density shows. We parametrize the
energy and volume dependence on the collision energyÎs in
Eq. (1):

E/GeV = − 3.8 + 3.76 lnÎs+ 6.4/Îs,

FIG. 1. (Color online) The 4p multiplicities
of p+,p+, proton, antiproton produced in app
collision as a function ofÎs. The full and dashed
lines show the result of thex2 fit. The points are
data from Ref.[15].

FIG. 2. (Color online) The dependence of mi-
crocanonical parametersE (left) and volumeV
(right) on the collision energyÎs. The parametri-
zation described in Eq.(1) is plotted as dashed
lines.
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V/fm3 = − 30.0376 + 14.93 lnÎs− 0.013Îs, s1d

whereÎs is in unit GeV. BelowÎs=8 GeV the fit produces
volumes below 2 fm3 which cannot be interpreted physically.
Above Îs=8 GeV the volume increases very fast as com-
pared to the energy giving rise to a decrease in the energy
density until—aroundÎs=200 GeV—the expected satura-
tion sets in and the energy density becomes constant. In view
of the large volume observed for these large energies the
density of the different particles does not change anymore
[14] and therefore the particle ratios stay constant above this
energy.

The quality of the fit can be judged from Fig. 4 where we
have plotted thex2 values obtained for different values ofE
andV and forÎs=200 GeV. We see that the energy variation
is quite small whereas the volume varies more. Nevertheless
the energy density is rather well defined.

After having fitted theEsÎsd andVsÎsd in usingp, p̄,p+,
andp− data we can now use these fitted values to predict the
multiplicity of other hadrons. This study we start in Fig. 5,
where we present the multiplicity ofp0 and r0. For these
particles experimental data are available. We see that the
absolute value as well as the trend of the experimental data is

quite well reproduced. The result for those hadrons, for
which no or only few data are available, is displayed in Fig.
6. As one can see the overall agreement is remarkable. We
would like to mention that we have as well made ax2 fit
using as input the measured multiplicities ofp, p̄, and r0.
The results forEsÎsd andVsÎsd differ only marginally.

III. STRANGE PARTICLES

With the parametersEsÎsd andVsÎsd which we have ob-
tained from the fit of thep, p̄,p+, andp− multiplicities, we
can as well calculate the multiplicity of strange particles or
particles with hidden strangeness. The results of these fits are
presented in Fig. 7. As we can see immediately the results for
those particles are not at all in agreement with the data.L
andf multiplicities are off by a factor of 3–5 roughly, for the

L̄ the situation may be similar but the spread of the experi-
mental data does not allow for a conclusion yet. Only the
kaons come closer to the experimental values. Although at
lower energies a part of this deviation may come from the
fact that in our Monte Carlo procedure weak decays are ne-

glected and thereforeK0 andK̄0 are the particle states which
are treated, at higher energies this is not of concern anymore.
At Îs=53 GeV, we find—as in experiment—thatKL=KS and

henceK0=K̄0. Therefore, as in experiment, one finds that the

strangeness contained inL ,L̄ ,K+, andK− adds up to zero.
The absolute numbers are, however, rather different: experi-
mentally one finds 0.41K+, 0.29K−, and 0.12L [18,19],
whereas the fit yields 1.16K+, 0.66K−, and 0.58L.

One is tempted to try to fit the strange particles separately.
The result at largeÎs is that, in contradiction to experiment,

moreK0 thanK̄0 are produced. Consequently, the strangeness

in L ,L̄ ,K+, andK− does not add up to zero and the fit is far
away from the data. Thus we have to conclude that the
strange particle multiplicities cannot be described in a phase
space approach using the parameters one obtains from the fit
of nonstrange particles, and that there is no understanding
presently why the suppression factor is rather different for
the different hadrons.

As mentioned above, in the past it has been proposed to
use an additional parametergs in order to describe the

FIG. 3. (Color online) The dependence of energy density«
=E/V on the collision energyÎs. The dashed line corresponds to
constant energy density 0.342 GeV/fm3 which comes from a ca-
nonical calculation[12,14].

FIG. 4. (Color online) The value ofx2 for different values ofE
andV for a pp reaction atÎs=200 GeV.

FIG. 5. (Color online) Prediction of thep0 andr0 multiplicity in
pp collisions as a function ofÎs. The result of the calculation is
compared to the data[16].
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strangeness suppression. This parameter has been interpreted
as a hint that the volume in which strangeness neutrality has
to be guaranteed is small as compared to the volume of the
system. However, a detailed comparison of the multiplicity
of all strange particles with the data shows[12] that one
additional parameter alone is not sufficient to describe the
measured multiplicities of the different strange particles in a
phase space approach topp collisions.

IV. TRANSVERSE MOMENTA

Phase space calculations predict not only particle multi-
plicities but also the momenta of the produced particles. The
average transverse momenta of the produced particle give a
good check whether the energy density obtained in the fit can
really be interpreted as the energy density of a hadron gas.
Figure 8 shows the average transverse momenta in compari-

FIG. 6. (Color online) Predictions of the mul-
tiplicities of nonstrange hadrons inpp collisions
as a function ofÎs. We have plotted, if available,
also the data points forÎs=27.5 GeV[17].

FIG. 7. (Color online) Predic-
tion of the multiplicity of strange
hadrons inpp collisions as a func-
tion of Îs. The result of the calcu-
lation is compared to the data
[16].
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son with the experimental data[18]. We see that over the
whole range of beam energies the average transverse mo-
menta are in good agreement with the data. This confirms
that the partition of the available energy into energy for par-
ticle production and kinetic energy is correctly reproduced in
the phase space calculation. It is remarkable that the average
transverse momenta of strange particles is correctly pre-
dicted.

V. ENERGY FLUCTUATIONS

Up to now we have assumed that for a given center of
mass energy, the energy of the dropletE has a unique value,

given in Fig. 2. This is of course not a realistic assumption.
Most probably the energy varies from event to event but little
is known about the form of this fluctuation. The only quan-
tity for which data are available is the multiplicity distribu-
tion of charged particles, which has been the subject of an
extensive discussion in the 1970s due to the finding of a
scaling law, called Koba-Nielson-Olesen scaling. Of course,
one can try now to find an energy distribution which yields
the experimental charge particle distribution but this relation

FIG. 9. (Color online) The Gaussian, Poissonian, and the NB
energy fluctuations.

FIG. 10. (Color online) Distribution of the multiplicity of
charged hadrons. We display the results from a fixed energy of
16.15 GeV, the energy with a distribution of the above-mentioned
Poissonian, Gaussian, and the 2-NB type. Also displayed are the
UA5 data for nonsingle diffractive events[20].

FIG. 8. (Color online) Average
transverse momenta as predicted
in the phase space calculation as a
function ofÎs in comparison with
the experimental values[18] for
different particle species.
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is not unique and therefore little may be learnt.
It has also been suggested to replace the microcanonical

ensemble calculation, presented here, in favor of a canonical
ensemble or an ensemble where the pressure is the control
parameter, however it is difficult to find a convincing argu-
ment. It is the dynamics of the reaction which determines
which fraction of the energy goes into collective motion, and
which fraction into particle production. This has nothing to
do with a heat bath nor with constant pressure on the droplet.
Consequently, the relation between the energy fluctuation,
seen in a system with a fixed temperature, and the true en-
ergy fluctuation is all but evident.

Therefore, we use another approach to study the influence
of energy fluctuations on the observables. We assume that the

volume of the system remains unchanged in order not to
have too many variables and that the energy fluctuates. For
technical reasons, we use discrete distributions, usingEi

= iDE, with DE=1 GeV. For Îs=200 GeV, we havekEl
=16.15 GeV from the above fitting work, and correspond-
ingly we takekil=16.15. We study three cases.

(a) The energy distribution is Poissonian,

Probsid =
kiliexps− kild

i!
.

(b) The energy distribution is Gaussian,

Probsid = 5 1

0.63

1
Î2ps

expS−
Ei − m

s
D2

when Ei P f2.5 GeV,̀ d

0 otherwise,

where an energy threshold of 2.5 GeV istaken for the
proton-proton system.m=s=14.01 GeV to obtain kil
=16.15 and thefactor 0.63 is used to normalize the energy
distribution.

(c) The energy distribution is a negative binomial
(NB) distribution,

PNBsi ;n,kd =
ksk + 1d ¯ sk + i − 1d

i!

nikk

sn + kdn+k .

The negative binomial distribution is well normalized, and
kil=n. So we taken=16.15. Theparameterk=3 is chosen

to get the best fit to multiplicity distribution data from
UA5.

All the three types of energy fluctuations are displayed in
Fig. 9.

In Fig. 10, we display the influence of these fluctuations
on the charged hadron multiplicity distributions. We compare
the results from a fixed energy of 16.15 GeV, the energy
with a fluctuation of the above-mentioned Poissonian,
Gaussian, and the NB type. We see that already for a fixed
energy the fluctuation of the charged particle multiplicity is
considerable. Different energy fluctuations give different

FIG. 11. (Color online) Multiplicity distribu-
tion of charged pions and kaons from a fixed en-
ergy of 16.15 GeV, the energy with a distribution
of the above-mentioned Poissonian, Gaussian,
and the NB. The number refers to the mean
multiplicity.
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multiplicity distributions. The NB energy fluctuation repro-
duces the UA5 data for nonsingle diffractive events in
antiproton-proton collisions atÎs=200 GeV.

How does the multiplicity of identified hadrons fluctuate
if the droplet energy fluctuates? This is studied in Fig. 11,
where we display the multiplicity distribution of the most
copiously produced particles for fixed energyE
=16.15 GeV and for a Poissonian, Gaussian, and NB energy
distribution. We see here as well that already for a fixed
droplet energy the multiplicity fluctuations are important.
Though different energy fluctuations cause different multi-
plicity distribution, the energy fluctuation gives very little
effect in the average multiplicities. So our approach, fixing
microcanonical parameters by fitting the averager multiplic-
ity data, is quite reliable.

There is also a correlation between the pion and the kaon
multiplicity in a given event, shown in Table I. The event
averagedK /p ratio is considerably different from the ratio of
the average kaon and the pion multiplicity. The energy fluc-
tuations change more the event averagedK /p ratio than the
ratio of the average kaon and the pion multiplicity.

VI. CONCLUSION

We have presented a microcanonical phase space calcula-
tion to obtain particle multiplicities and average transverse

momenta of particles produced inpp collisions as a function
of Îs. Using the multiplicities ofp, p̄,p+,p−, we fit the two
parameters of the phase space approach, the volume and the
energy.

Using these two parameters, we calculate the multiplici-
ties of all the other hadrons as well as their average trans-
verse momenta. The calculated multiplicities agree quite well
with experiment as far as nonstrange hadrons are concerned.

For the yields of strange hadrons(as well as those with
hidden strangeness), the prediction is off by large factors. In
canonical and grand-canonical approaches, strangeness sup-
pression factors have been used to solve this problem.

The energy obtained by this fit is much smaller than the
energy available in the center of mass system of thepp re-
action, because part of the energy goes into collective motion
in beam direction. Nevertheless, the average transverse mo-
menta of the produced particles(not only nonstrange but also
strange) from this fitting agree quite well with experiment.

We learn that the volume of thepp collision system in-
creases with the collision energy. However, it saturates at
very high energy(with Antinnuci’s parametrization as input).
The maximum value does not exceed 100 fm3. Together with
the results from Ref.[14], we conclude that the grand-
canonical treatment cannot describe particle production inpp
collisions even at high energy.

We study the effects from energy fluctuations and find
that it is quite reliable to fix the microcanonical parameters
without considering energy fluctuations.
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TABLE I. Different K to p ratios wherek¯l means event
averaging.

kK+l/ kp+l kK−l/ kp−l kK+/p+l kK−/p−l

Fixed E 0.214 0.163 0.253 0.197

PoissonianE dis. 0.213 0.163 0.251 0.194

GaussianE dis. 0.208 0.162 0.241 0.179

NB E dis. 0.208 0.163 0.241 0.180
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