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The relation between the superdeformed band of32S and 16O+16O molecular bands is studied by the
deformed-basis antisymmetrized molecular dynamics with the Gogny D1S force. It is found that the obtained
superdeformed band members of S have a considerable amount of the16O+16O component. Above the
superdeformed band, we have obtained two excited rotational bands which have more prominent character of
the 16O+16O molecular band. These three rotational bands are regarded as a series of16O+16O molecular
bands which were predicted by using the unique16O-16O optical potential. As the excitation energy and
principal quantum number of the relative motion increase, the16O+16O cluster structure becomes more
prominent but at the same time, the band members are fragmented into several states.
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The properties of the16O+16O molecular bands have
been studied by many authors with the microscopic cluster
models for many years[1–3]. Despite these studies, the mi-
croscopic models have not been able to give a conclusive
answer. One of the reasons is the fact that the number of the
molecular bands, the excitation energies of the band heads,
and the moments of the inertia strongly depend on the effec-
tive nuclear force. Recently, a rather conclusive answer was
given by the studies with the macroscopic model[4,5]. In
those studies, the authors used the unique optical potential
for the 16O-16O system[6] which was determined without
ambiguities from the rainbow scattering in the 1990s after
the first discovery of the nuclear rainbow in 1989[7]. These
studies gave the following answers for the lowest three rota-
tional bands whose principal quantum numbersN=2n+L of
the relative motion between clusters areN=24, 26, and 28,
respectively: The lowest Pauli-allowed rotational bandsN
=24d starts from the 0+ state located at about 9 MeV in the
excitation energy(about 8 MeV below the16O+16O thresh-
old), and the energy gap between theN=24 andN=26 bands
and that between,N=26 the andN=28 bands are both ap-
proximately 10 MeV. In Ref.[5], it was proposed that the
observed16O+16O molecular states correspond to the third
band whose principal quantum number isN=28.

Besides the cluster models, the superdeformed structure
of 32S has been studied by many authors with the mean-field
theories [8–13]. It is largely because the superdeformed
structure of32S is regarded as a key to understand the rela-
tion between the superdeformed state and the molecular
structure. Indeed, by the Hartree-Fock(HF) and Hartree-
Fock-Bogoliubov(HFB) calculations[8–13], it is shown that
the superdeformed minimum of the energy surface is well
established in each angular momentum, and at the superde-
formed local minimum, the wave function shows the two-
center-like character. It is also notable that many of the
mean-field calculations predict that the superdeformed band
starts from the 0+ located at around 10 MeV which agrees
with the bandhead energy of theN=24 band obtained from

the unique optical potential. Therefore it is conceivable
enough that the superdeformed band obtained by the mean-
field calculations and the lowest Pauli-allowed16O+16O mo-
lecular bandsN=24d are identical.

In the present study, we aim at clarifying the relation be-
tween the superdeformed state and the16O+16O molecular
structure. The objectives of this rapid communication are the
following two points. (i) To what extent are the superde-
formed state and the16O+16O molecular structure related? In
the unique optical potential analysis, the factors which distort
the 16O+16O cluster structure such as the effects of the spin-
orbit force and the formation of the deformed mean field are
not treated directly. Instead, these factors are renormalized
into the optical potential through the extrapolation to the
low-energy region. When one treats these factors directly by
the microscopic models, the pure16O+16O cluster structure
will be distorted and will have a deformed mean-field struc-
ture. In other words, the superdeformed states in the mean-
field models and the states of the lowest Pauli-allowed16O
+ 16O band of the unique optical potential will be the states
which have both characters of the deformed one-body field
structure and two cluster structure.(ii ) Do the excited states
exist in which the excitation energy is spent to excite the
relative motion between the clusters? Do they correspond to
the N=26, and 28 bands obtained from the unique optical
potential? When we believe that the superdeformed states of
32S have the considerable amount of16O+16O components,
we can expect the excitation mode in which the excitation
energy is used to excite the relative motion between the clus-
ters. These excited bands and the superdeformed band can be
regarded as a series of the16O+16O molecular band which
have the principal quantum number of the relative motion
N=24, 26 and 28, respectively.

The deformed-basis antisymmetrized molecular dynamics
(deformed-basis AMD) [14] combined with the generator co-
ordinate method(GCM [15]) has been used with the Gogny
D1S force[16]. For the sake of the completeness, we briefly
explain this framework. For more details, the reader is di-
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rected to Refs.[14,17]. The intrinsic basis wave function of
the systemFint is expressed by a Slater determinant of
single-particle wave packetswi. Each single-particle wave
packet is composed of spatial partfi, spin partxi, and iso-
spin partti. The spatial part has the form of the deformed
Gaussian centered atZ i,

Fint =
1

ÎA!
dethwisr jdj, s1d

wisr jd = fisr jdxiti , s2d

fisr d = exph− nxsx − Zixd2 − nysy − Ziyd2 − nzsz− Zizd2j,

s3d

xi = aix↑ + bix↓, ti = proton or neutron. s4d

Here, the centroids of the GaussianZ i and the spin direction
ai andbi are complex parameters and are dependent on each
particle. The width parametersnx, ny, andnz are common to
all particles. These variational parameters[Z i, ai, bi and(nx,
ny, nz)] are determined by the variational calculation. The
variational calculation is made after the parity projection by
using parity-projected wave functionFp=fs1±Pxd /2gFint as
the variational wave function. In this study, the variational
calculation is made under the constraint of the nuclear defor-
mation parameterb. The advantage of the deformed Gauss-
ian basis as the single-particle wave packet is that it is pos-
sible to describe both the deformed one-body-field structure
and the cluster structure as well as their mixed structure
within the same framework. We can confirm this feature
when we consider the two limits of the nuclear structure
described by this wave function, the deformed-harmonic-
oscillator limit and the cluster limit. The deformed-
harmonic-oscillator limit is reached when the centroids of all
single-particle wave packets(Re Z i) are at the center of the
nucleus and the single-particle wave packets are deformed.
On the contrary, the cluster limit is obtained when the cen-
troids of the single-particle wave packets are separated into
the centers of the constituent clusters and the single-particle
wave packets are spherical. However, the usage of the de-
formed Gaussian makes it impossible to separate the wave
function of the center-of-mass motion from the internal one.
In this study, we approximate its effect to the energy by
subtracting the center-of-mass kinetic energy from the total
energy.

After the constrained variational calculation forFp, we
superimposed the optimized wave functions employing the
nuclear deformation parameterb as the generator coordinate
(GCM calculation):

FJp
= cPMK

J Fpsb0d + c8PMK8
J

Fpsb08d + ¯ , s5d

whereFpsb0d is the optimized wave function under the con-
straint of the nuclear deformation parameterb=b0 andPMK

J

is the angular momentum projector. The coefficientsc,c8 , ...
are determined by the diagonalization of the Hamiltonian.
The generator coordinatesb0, b08 , . . . aretaken fromb0=0 to
b0,1.05. This upper limit ofb corresponds to the Coulomb

barrier and it slightly depends on the angular momentum.
The convergence of the GCM solution is confirmed by
changing the number of the basis wave functions. For ex-
ample, in the case of the 0+ state, 28 basis wave functions are
employed.

To investigate the16O+16O character of the obtained
wave functionFJp, we evaluated the amount of the16O
+ 16O component in each state. We decomposeFJp into the
16O+16O componentF16O+16O and the residual partFr

Jp
,

FJp = aF16O+16O + Î1 − a2Fr,kF16O+16O
Jp

uFr
Jp

l = 0, s6d

and the amount of the16O+16O component is given aswJ

;uau2. The 16O+16O component is formally represented by
the resonating group method(RGM) wave function,

F16O+16O
Jp

= AhxJsrdYJ0sr̂dfs16Odfs16Odj, s7d

whereA is the antisymmetrizer,r is the relative coordinate
between two16O clusters andfs16Od is the internal wave
function of the16O cluster.xJsrd which is the radial wave
function of the relative motion between clusters is so normal-
ized that AhxJsrdYJ0sr̂dfs16Odfs16Odj is normalized to
unity. By using the projection method which is introduced in
Refs.[14,18], we project outF16O+16O from FJp

and evaluate
wJ and xJsrd. From xJsrd, we also calculate the principal
quantum numberN=2n+L of each state, wheren denotes
the number of nodes ofxJsrd andL=J.

First, we discuss the result of the calculation in which we
assume the pure16O+16O structure of32S to compare it with
that obtained by deformed-basis AMD+GCM. The Brink
[19] wave function is used as the16O+16O wave function.
Therefore this result is equivalent to the microscopic cluster
model calculation of16O+16O RGM and16O+16O GCM. In
Fig. 1, the energy surface for theJ=0 state as a function of

FIG. 1. The energy surface as a function of the nuclear defor-
mation b. The dashed line is for theJ=0 state obtained by the
16O+16O Brink wave function. Solid lines are forJ=0, 2, 4, 6, and
8 states obtained by the deformed-basis AMD. The matter density
distribution of the deformed-basis AMD wave function at the su-
perdeformed minimumsJ=0d is also shown. Small black circles in
the density distribution represent the centroids of the single-particle
wave packets ReZ i.
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the nuclear deformation is shown(dashed line). We note that
the 16O+16O configuration describes more than 4"v excited
states relative to the ground state of32S, and therefore the
ground state and the normal deformed states are not included
in this energy surface. It has a energy minimum atb=0.73
(intercluster distance is 5.0 fm) which corresponds to two
touching16O. The minimum energy is about 8 MeV higher
than the16O+16O threshold energy. After the GCM calcula-
tion along this energy surface, we have obtained three rota-
tional bands which have the principal quantum numbers of
the relative motionN=24, 26, and 28, respectively(dashed
lines in Fig. 2). However, their energies are too high to co-
incide with the rotational bands obtained from the unique
optical potential and also with the superdeformed band ob-
tained from the HF and HFB calculations. The energy gaps
between these bands(4 MeV betweenN=24 andN=26, and
6 MeV betweenN=26 andN=28 in the case of 0+ states) are
much smaller than the results of the unique optical potential.
We think that these deviations come from the fact that the
effects which distort the cluster structure are neglected in this
result. We will see below that in fact the effects of the dis-
tortion are fairly large.

Next, we present the results of the deformed-basis AMD
+GCM calculation. In Fig. 1, the energy surfaces obtained
by the deformed-basis AMD are also shown up to 8+ state
(solid lines). Because the deformed-basis AMD wave func-
tion does not assume any cluster configuration, the normal
deformed states also appear in these energy surfaces. Since
we constrain the quadrupole deformation parameterb but
not g in the variational calculation, the values ofg are opti-
mized in each value ofb. Around the normal deformed re-
gion sb,0.3d, we obtained two optimum values ofg. The
prolate onesg=0d mainly contributes to the ground band
after the GCM calculation, while the triaxial one(g
=6° –30°, the optimum value ofg depends on the angular
momentum) contributes to the first excited band. Their exci-
tation energies and the intrabandE2 transition probabilities

(Table I) show reasonable agreement with experiments and
are consistent with the results of the HFB+GCM calculation
with the Gogny D1S force[10], though the total binding
energy of the ground state underestimates the experimental
data by about 2.0 MeV.

Then we discuss the superdeformed states. In each angu-
lar momentum state, the superdeformed minimum is well
developed and the excitation energy relative to the normal
deformed state is around 10 MeV. The energy difference be-
tween the deformed-basis AMD and the16O+16O Brink
wave function at the superdeformed minimum is about
10 MeV, which indicates a fairly large effect of the distor-
tion on the excitation energy. Indeed, the deformed-basis
AMD wave function deviates from the pure16O+16O struc-
ture. At the superdeformed minimum, the single-particle
wave packets are prolate deformed(nx=vy=0.160 fm−2 and
nz=0.115 fm−2), and the distance between the centroids of
the single-particle wave packets are rather smalls3.1 fmd,
though they are still separated into two parts exhibiting a
two-center nature. The energy gain due to the distortion of
the 16O+16O structure mainly comes from the two-body
spin-orbit force and the density dependent force. In the case
of the deformed-basis AMD, the expectation value of the
two-body spin-orbit force is about −4.5 MeV which must be
zero in the16O+16O wave function. The expectation value of
the repulsive density dependent force is about 6 MeV
smaller in the deformed-basis AMD and it also indicates the
nonsmall deviation from the16O+16O structure. Though the
kinetic energy does not much contribute to lower the energy,
its nature is also different. At the superdeformed minimum,
the single-particle wave packets are prolately deformed and
since the kinetic energy almost linearly depends on the width
parametern, the kinetic energy in thez direction is eased.
However, we found that the deformed-basis AMD wave
function at the superdeformed minimum still has a consider-
able amount of the16O+16O component(wJ=0=0.57 for the
case of the 0+ state).

By superposing the deformed-basis AMD wave functions
along the energy surface(deformed-basis AMD+GCM), we
have obtained three rotational bands above the ground and
the first excited bands. The lowest band(superdeformed
band), the second lowest band and the third band have large
16O+16O components which have the principal quantum
numberN=24, 26, and 28, respectively. Therefore we con-
sider that these three bands correspond to theN=24, 26, and
28 bands of the unique optical potential. We refer to these

FIG. 2. (Color online) The excitation energies of theN=24, 26,
and 28 band members obtained by the16O+16O Brink wave func-
tion (dashed lines) and the deformed-basis AMD+GCM(solid
lines). The N=26 andN=28 band members are fragmented into
several states in the deformed-basis AMD+GCM calculation and
the averaged energiesEAV are shown for these bands.

TABLE I. Observed[denoted bysEd] and calculated[denoted
by sTd] values of the excitation energiesEx [MeV] and the intra-
bandBsE2;J→J−2d fe2 fmg4 of the ground band and the first ex-
cited band.

GroundsTd GroundsEd Band I sTd Band I sEd
J Ex BsE2d Ex BsE2d Ex BsE2d Ex BsE2d

0 3.9 3.778

2 2.3 66 2.23 60±6 4.8 31 4.282

4 5.75 109 4.459 72±12 10.1 88 6.852 35.4−8.4
+18.6

6 10.2 130 8.346 .22.2 12.9 98 9.783
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bands simply asN=24, 26, and 28 bands. The band members
of theN=26 and 28 bands are fragmented into several states.
Namely, there are several states which have the16O+16O
component of the same principal quantum numberN. How-
ever, for a while, we only discuss the averaged energies of
these fragmented states to investigate the gross feature of the
band structure and the fragmentation is discussed later. The
averaged energy is calculated by multiplyingwi

J of the ith
fragmented states as the weight;EAV

J =oi wi
JEi

J/oi wi
J. When

we compare the result of the deformed-basis AMD+GCM
(solid lines in Fig. 2) and that of the16O+16O GCM calcu-
lation (dashed lines in Fig. 2), N=24 band members obtained
by the deformed-basis AMD+GCM are more deeply bound
by about 10 MeV and their excitation energies are consistent
with those obtained by the HF and HFB calculations and by
the unique optical potential. The amount of the16O+16O
component of these band member states are around 50%
which indicate the considerable distortion of the16O+16O
nature of this band. Therefore, we can conclude that the su-
perdeformed band and the lowest16O+16O molecular band
sN=24d are identical bands which have a mixed structure of
the deformed mean-field and the16O+16O structure. The
characteristics ofN=26 andN=28 bands are different from
that of theN=24 band. The excitation energies of these two
bands obtained by the deformed-basis AMD+GCM are not
so different from those obtained by the16O+16O GCM as the
case of theN=24 band. These small differences mean the
enhancement of the16O+16O molecular structure in theN
=26 and N=28 bands. Indeed, the sum of thewJ of the
fragmented states of these bands is much larger than that of
theN=24 band member states; they amount to 0.71 and 0.73
in the case of 0+ states of theN=26 and 28 bands, respec-
tively.

Next, we try to improve our wave function to describe the
enhancement of the16O+16O structure in the excited bands.
Since the variational calculation optimizes mainly the lowest
N=24 band member states in which the16O+16O molecular
structure is distorted, basis states of the deformed-base
AMD+GCM calculation can be inappropriate to describe the
N=26 andN=28 bands in which the16O+16O molecular
structure is drastically enhanced. Therefore we have included
the 16O+16O Brink wave functions in the basis states of the
GCM calculation in addition to the deformed-basis AMD
wave functions obtained from the variational calculation.
The obtained results of the enlarged GCM calculation
[deformed-basis+s16O+16Od+GCM] are presented in Fig. 3.
It is reasonable that the excitation energies of theN=24 band
member states do not change, since in this band the molecu-
lar structure is distorted and the inclusion of the pure16O
+ 16O configuration is less important. On the contrary, in the
N=26 and 28 bands the excitation energies are lowered by
about a few MeV and the amount of the16O+16O component
has increased drastically. The sums of the fragmentedwJ for
the N=26 and 28 bands are 0.90 and 0.98, respectively.

Finally, we discuss the fragmentation of theN=26 and 28
band members. As an example, the energies and the amounts
of the 16O+16O component for 0+ fragments are listed in
Table II. The 0+ states of theN=26 and 28 bands are frag-
mented into three states. In the present calculation, the num-
ber of the fragments does not strongly depend on the angular

momentum and the principal quantum numberN. At most,
the 10+ state ofN=28 band is fragmented into four states,
while 11 fragments are observed. The fragmentations in our
calculation are mainly caused by the coupling with the states
with medium deformation which appear as a small peak be-
tween normal deformed states and the superdeformed states
and also by the coupling with the16O+16O* states which are
included in the very deformedsb.0.9d wave functions
where 16O* stands for distorted16O* cluster. Our model
space is not large enough to be compared with the observed
fragmentation. However, the fact that the fragmentation is
obtained by the usage of the deformed-Gaussian basis is in-
teresting. Details of these couplings are important to com-
pare the present results and the experiments and will be in-
vestigated in our further study.

To summarize, we have shown that the superdeformed
band obtained from the HF and HFB calculations and the
Pauli-allowed lowestN=24 band of the16O+16O molecular
bands are essentially identical. In this band,16O+16O mo-
lecular structure is distorted by the formation of the de-
formed mean-field and the spin-orbit force. This distortion is
not small and lowers the excitation energy significantly, but
these band members still have the considerable component

FIG. 3. (Color online) The excitation energies of theN=24, 26,
and 28 band members obtained by the deformed-basis AMD
+GCM (solid lines) and the deformed-basis AMD+s16O+16Od
+GCM (dotted lines). The N=26 andN=28 band members are
fragmented into several states in both calculations and the averaged
energiesEAV are shown for these bands. The deformed-basis
AMD+GCM results in this figure are the same as those of Fig. 2.

TABLE II. The excitation energiesEx and the amountwJ of the
16O+16O components of the fragmented 0+ states of theN=26 and
28 bands.

N=26 N=28

Ex wJ Ex wJ

Fragment I 23.8 0.54 31.2 0.32

Fragment II 24.0 0.13 34.0 0.45

Fragment III 25.3 0.23 38.7 0.20

EAV andowJ 24.2 0.90 33.7 0.98
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of the 16O+16O molecular structure. We have obtained two
excited bands which are generated by the excitation of the
relative motion between two O clusters contained in the
16O+16O component of the superdeformed band. In the ex-
citedN=26 and 28 bands, the distortion is less important and
the band members have the prominent molecular structure.
The members of these bands are fragmented into several
states.

The authors would like to thank Dr. Y. Kanada-En’yo
for useful discussions. Most of the computational cal-
culations were carried out by SX-5 at Research Center
for Nuclear Physics, Osaka University(RCNP). This work
was partially performed in the Research Project for Study
of Unstable Nuclei from Nuclear Cluster Aspects sponsored
by the Institute of Physical and Chemical Research
(RIKEN).

[1] H. Friedrich, Nucl. Phys.A224, 537 (1974).
[2] D. Baye et al., Nucl. Phys. A258, 157 (1976); A276, 354

(1977).
[3] T. Ando, A. Tohsaki, and K. Ikeda, Prog. Theor. Phys.61, 101

(1979); 64, 1608(1980).
[4] Y. Kondō, B. A. Robson, and R. Smith, inProceedings of the

Fifth International Conference on Cluster Aspects in Nuclear
and Subnuclear Systems, Kyoto, Japan, edited by K. Ikedaet
al. (Physical Society of Japan, Kyoto, 1988), p. 597; Phys.
Lett. B 227, 310 (1989).

[5] S. Ohkubo and K. Yamashita, Phys. Rev. C66, 021301(R)
(2002).

[6] M. P. Nicoli et al., Phys. Rev. C60, 064608(1999); W. von
Oertzen, H. G. Bohlen, and D. T. Khoa, Nucl. Phys.A722,
702 (2003).

[7] E. Stiliariset al., Phys. Lett. B223, 291 (1989).
[8] M. Yamagami and K. Matsuyanagi, Nucl. Phys.A672, 123

(2000).
[9] H. Molique, J. Dobaczewski, and J. Dudek, Phys. Rev. C61,

044304(2000).
[10] R. R. Rodríguez-Guzmán, J. L. Egido, and L. M. Robledo,

Phys. Rev. C62, 054308(2000).
[11] T. Tanaka, R. G. Nazmitdinov, and K. Iwasaka, Phys. Rev. C

63, 034309(2001).
[12] T. Inakuraet al., Nucl. Phys.A710, 261 (2003).
[13] M. Bender, H. Flocard, and P.-H. Heenen, Phys. Rev. C68,

044321(2003).
[14] M. Kimura, Phys. Rev. C69, 052404(2004).
[15] J. A. Wheeler and J. J. Griffin, Phys. Rev.108, 311 (1957).
[16] J. Dechargé and D. Gogny, Phys. Rev. C21, 1568(1980).
[17] Y. Kanada-En’yo and H. Horiuchi, Phys. Rev. C52, 647

(1995).
[18] Y. Kanada-En’yo and H. Horiuchi, Phys. Rev. C68, 014319

(2003).
[19] D. M. Brink, in Many-Body Description of Nuclear Structure

and Reactions, Proceedings of the International School of
Physics Enrico Fermi, Course 36, edited by Claude Bloch
(Academic, New York, 1966).

16O+16O MOLECULAR NATURE OF THE… PHYSICAL REVIEW C 69, 051304(R) (2004)

RAPID COMMUNICATIONS

051304-5


