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The density dependencies of various effective interaction strengths in the relativistic mean field are studied
and carefully compared for nuclear matter and neutron stars. The influences of different density dependencies
are presented and discussed on mean field potentials, saturation properties for nuclear matter, equations of
state, maximum masses, and corresponding radii for neutron stars. Though the interaction strengths and the
potentials given by various interactions are quite different in nuclear matter, the differences of saturation
properties are subtle, except for NL2 and TM2, which are mainly used for light nuclei, while the properties by
various interactions for pure neutron matter are quite different. To get an equation of state for neutron matter
without any ambiguity, it is necessary to constrain the effective interactions either by microscopic many-body
calculations for the neutron matter data or the data of nuclei with extreme isospin. For neutron stars, the
interaction with large interaction strengths give strong potentials and large Oppenheimer-Volkoff(OV) mass
limits. The density-dependent interactions DD-ME1 and TW-99 favor a large neutron population due to their
weak r-meson field at high densities. The OV mass limits calculated from different equations of state are
2.02–2.81M(, and the corresponding radii are 10.78–13.27 km. After the inclusion of the hyperons, the
corresponding values become 1.52–2.06M( and 10.24–11.38 km.
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I. INTRODUCTION

A widely used and successful approach for nuclear matter
and finite nuclei is the mean field theory employing effective
interactions. The mean field theory includes nonrelativistic
mean field theory with effective nucleon-nucleon interactions
such as Skyrme or Gogny, and the relativistic mean field
(RMF) theory. In a certain sense, the RMF theory is more
fundamental as it starts from a phenomenological hadronic
field theory with strongly interacting baryons and mesons as
degrees of freedom[1]. It has been used not only for describ-
ing the properties of nuclei near the valley of stability suc-
cessfully[2], but also for predicting the properties of exotic
nuclei with large neutron or proton excess[3,4]. In the mean
field theory, the effective interactions are adjusted to various
properties of nuclear matter and finite nuclei. In recent years,
a number of effective interactions of meson-baryon cou-
plings based on the RMF theory have been developed, in-
cluding nonlinear self-couplings for thes-meson and/or
v-meson, such as NL1, NL2[5], NL3 [6], NLSH [7], TM1,
and TM2 [8]. However, these nonlinear interactions have
problems of stability at high densities, as well as the question
of their physical foundation[5]. A more natural alternative is
to introduce the density dependence in the couplings[9].
Based on the Dirac-Brueckner calculations, Typel and Wolter
proposed the density-dependent effective interaction TW-99
and expected that the model could be reasonably extrapo-

lated to extreme conditions of isospin and/or density[9].
Along this line, Nikšić et al. developed another effective
interaction DD-ME1[10]. In this paper, we will analyze the
density dependencies of various effective interactions includ-
ing both the nonlinear and density-dependent versions in the
RMF theory and investigate their influences on properties of
nuclear matter and neutron stars.

The existence of neutron stars was predicted following the
discovery of neutron. In 1934, Baade and Zwicky suggested
that neutron stars could be formed in “supernovae”[11]. The
radio pulsars discovered by Bell and Hewith in 1967[12]
were identified as rotating neutron stars by Pacini[13] and
Gold [14]. The first theoretical calculation of neutron stars
was performed by Oppenheimer and Volkoff[15], and inde-
pendently by Tolman[16]. In their calculation the neutron
stars were assumed as gravitationally bound states of neutron
Fermi gas. Recent progress on the study of neutron stars can
be found in Refs.[17,18] and references therein.

The physics of neutron stars has offered an intriguing in-
terplay between nuclear processes and astrophysical observa-
tion, and has become a hot topic in nuclear physics and as-
trophysics. The neutron stars exhibit conditions far from
those encountered on the earth. The neutron star models in-
cluding various so-called realistic equations of state have re-
sulted in the following general picture for the interior of
neutron star. The surface of neutron star is a solid crust of
thickness about 1 km, which is mainly made up of nuclei and
free electrons. Inside the crust, charge-neutral neutron star
mainly consists of neutrons together with a small concentra-
tion of protons and electrons in equal number. Proton and*Email address: mengj@pku.edu.cn
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electron densities increase with total baryon density, and the
m−, p, K mesons and other baryons(e.g., hyperons) as well
as a phase transition from baryon degrees of freedom to
quark matter will appear[18].

The equation of state(EOS) is essential to understand the
structure and properties of neutron stars. The EOS deter-
mines properties such as the mass range, the mass-radius
relationship, the crust thickness, the cooling rate, and even
the energy released in a supernova explosion. Usually, the
EOS is obtained by extrapolating the theory, which is devel-
oped mainly for normal nuclear matter, to nuclear matter
with extreme high isospin and high densities. Unfortunately,
such extrapolation is always model dependent. The RMF
theory has proved to be very successful in describing the
properties of nuclear matter and finite nuclei[1,2], rotation
nuclei [2], nuclei far from b stability [3,4], and magnetic
rotation [19], etc. Based on the RMF theory, there are also
many studies on neutron stars and strange nuclear matter
with effective interactions including nonlinear self-couplings
for scalar and vector mesons[17,20–30].

In this paper, the density dependencies of various effec-
tive interaction strengths in the RMF theory are studied and
compared for nuclear matter and neutron stars. The corre-
sponding influences of different density dependencies for ef-
fective interactions are presented and discussed on mean
field potentials, saturation properties for nuclear matter,
EOS, maximum masses, and corresponding radii for neutron
stars. In Sec. II, a brief description of the RMF theory in
nuclear matter and neutron stars is presented. The results and
discussions are given in the following section. In the last
section, we give a brief summary.

II. A SKETCH OF THE RMF THEORY IN NUCLEAR
MATTER AND NEUTRON STARS

The details of RMF theory can be found in a number of
reviews [1,2,17]. The RMF theory starts from an effective
Lagrangian density with baryons, mesons(s, v andr), and
photons as degrees of freedoms"=c=1d:

L = o
B

c̄BFigm]m − mB − gsBs − gvBgmvm − grBgmtB · rm

− egmAm

1 − t3B

2
GcB +

1

2
]ms]ms −

1

2
ms

2s2 − Ussd

−
1

4
vmnvmn +

1

2
mv

2vmvm + Usvd −
1

4
rmnrmn +

1

2
mr

2rmrm

−
1

4
AmnA

mn, s1d

where the Dirac spinorcB denotes the baryonB with mass
mB and isospintB. The sum onB is over protons, neutrons
and hyperonssL ,S± ,S0,J−,J0, et al.) in this paper. The
scalar sigmassd and vector omegasvd offer medium-range
attractive and short-range repulsive interactions, respectively,
and the isospin vector rhosrd provides the necessary isospin
asymmetry. Their masses are denoted byms ,mv, and mr.
The corresponding meson-baryon coupling constants are
gsB, gvB, andgrB, respectively.tB is the isospin of baryonB
andt3B is its three-component. The nonlinear self-couplings
for s andv mesons are, respectively,

Ussd =
1

3
g2s3 +

1

4
g3s4, Usvd =

1

4
c3svmvmd2, s2d

with the self-coupling constantsg2,g3, andc3. The field ten-
sorsvmn, rmn, andAmn are forv-meson,r-meson, and pho-
ton, respectively.

The parametrization of the interaction in the RMF theory
is obtained by fitting the properties of nuclear matter and
some finite nuclei. Instead of the self-coupling of the meson
fields, Typel and Wolter proposed the density dependencies
of the couplings in the RMF theory[9], i.e., the coupling
constantgssvdB of the ssvd meson is replaced by

gssvdBsrd = gssvdBsr0dfssvdsxd, s3d

where

fssvdsxd = assvd
1 + bssvdsx + dssvdd2

1 + cssvdsx + dssvdd2 s4d

is a function ofx=r /r0, with the vector densityr=Îjm jm,

jm=oB c̄BgmcB, and the saturation density of nuclear mat-
ter r0. The eight real parameters in Eq.s4d are not inde-
pendent. The five constraintsfssvds1d=1, fssvd9 s0d=0, and
fs9s1d= fv9 s1d reduce the number of independent parameters
to three. The density-dependentr-meson coupling con-
stantgrB is introduced as,

grBsrd = grBsr0dexpf− arsx − 1dg s5d

with two parametersar andgrBsr0d.
The equations of motion for baryons and mesons can be

derived from the Lagrangian density in Eq.(1). In the fol-
lowing, we present only the case for the density-dependent
couplings. The equations for nonlinear couplings can be ob-
tained easily by adding the nonlinear self-couplings of the
mesons and neglecting the density dependencies of the cou-
pling constants.

The equations of motion for baryons are

FgmSi]m − gvBvm − grBtB · rm − e
1 − t3B

2
Am − SmB

R D − mB
* GcB = 0, s6d
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where the effective massmB
* =mB+gsBs, andSmB

R is a “rear-
rangement” term due to the density dependencies of the cou-
plings:

SmB
R =

jm

r
S ] gvB

] r
c̄BgncBvn +

] grB

] r
c̄BgntBcBrn

+
] gsB

] r
c̄BcBsD . s7d

The field equations for mesons and photons are, respectively,

s]m]m + ms
2ds = − o

B

gsBc̄BcB, s8d

]mvmn + mv
2vn = o

B

gvBc̄BgncB, s9d

]mrmn + mr
2rn = o

B

grBc̄BgntBcB + grBrm 3 rmn, s10d

]mAmn = ec̄gn1 − t3B

2
c. s11d

A. Nuclear matter

For infinite nuclear matter, introducing the mean field ap-
proximation, i.e., the meson fields are replaced by their mean
values, and neglecting the coulomb field, the baryon wave
function is the eigenstate of momentumk, and the source

currentsc̄BcB and c̄BgncB in Eqs.(8)–(10) are independent
of the spatial coordinatex. Thus the equations of motion can
be simplified as

fgmskm − gvBvm − grBtB · rm − SmB
R d − mB

* gcBskd = 0,

s12d

ms
2s = − gsBrs, s13d

mv
2v0 = gvBr, s14d

mr
2r0,3= o

B

grBt3BrB. s15d

For the nonlinear self-coupling effective interactions, the
corresponding terms −U8ssd and −U8sv0d should be taken
into account in the Eqs.s13d and s14d, respectively.

The eigenvalues of the Dirac equation for baryons in Eq.
(12) are obtained as

eBskd = gvBv0 + grBt3Br0,3+ S0B
R + Îk2 + mB

*2 , s16d

whereS0B
R is the time component of the rearrangement term.

The baryon vector densityr and scalar densityrs are, respec-
tively,

r = o
B

kc̄Bg0cBl = o
B

rB = o
B

kB
3

3p2 , s17d
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B
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,

s18d

wherekB denotes the Fermi momentum of baryonB, and the
no-sea approximation has been used.

The energy density and pressure of nuclear matter are,
respectively,
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mr
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1
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B
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1
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2v0
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2r0,3
2 + o
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rBS0B
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1

3p2o
B
E

0

kB k4

Îk2 + mB
*2

dk. s20d

B. Neutron stars

The charge-neutral neutron stars includes not only neu-
trons and protons, but also leptonsl (mainly e− andm−) in
equal number to protons and also hyperons at high densities.
The Lagrangian density for neutron stars is similar to Eq.(1),
except an additional term for leptons:

Ll = o
l=e−,m−

c̄lsigm]m − mldcl, s21d

Introducing the mean field and no-sea approximation, the
equations of motion for baryons and mesons can be derived,
and the corresponding energy eigenvalues, baryon density,
and scalar density can be obtained for neutron stars, similar
to those for the nuclear matter. The equations of motion for
electron andm− are free Dirac equations and their densities
can be expressed in terms of their corresponding Fermi mo-
menta asrl=kl

3 / s3p2d.
The chemical potentialsmB for the baryonsB are the en-

ergy eigenvalues of the Dirac equation:mB=«Bskd. The
chemical potentialsml for the leptons are the solutions of
their equations of motion:ml=Îkl

2+ml
2. In neutron stars, the

chemical equilibrium conditions are:

mB = bBmn − qBme, mm = me, s22d

wherebB andqB denote baryon charge and electronic charge
of baryon B,mn, me, andmm are the chemical potentials for
neutron, electron, andm−, respectively. The baryon number
conservation and charge-neutral conditions are given by

r = o
B

rB = o
B

bBkB
3

3p2 , s23d

Q = o
B

QB + o
l

Ql = o
B

qBkB
3

3p2 − o
l

kl
3

3p2 = 0. s24d
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The energy density and pressure for neutron stars are,
respectively,
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III. RESULTS AND DISCUSSIONS

For nuclear matter, Eqs.(13)–(18) provide a set of
coupled transcendental relations defining the meson fields
and energy eigenvalues. The list of unknowns is

r, kB, rs, gvB, gsB, grB, s, v0, r0,3, «Bskd.

For a given baryon densityr and the asymmetry of the
nuclear mattert=srn−rpd /r, we can get the coupling con-
stantsgsB, gvB, and grB from Eqs. s3d–s5d, as well as the
neutron densityrn and proton densityrp, and of course their
corresponding Fermi momentakn andkp. Thev andr fields
can be obtained by Eqs.s14d ands15d and thes field can be
solved from Eqs.s13d and s18d by iteration.

The properties of neutron stars can be obtained by solving
the Eqs.(13)–(18) and (22)–(24) by the following proce-
dures.

(1) For a given baryon densityr, taking initial values of
the meson fieldsss ,v0,r0,3d as well as the neutron and elec-
tron chemical potentialssmn,med, the particle densities and
Fermi momenta for electronsske,red, protonsskp,rpd, and
hyperonsskh,rhd can be obtained via the eigenvalues in Eq.
(16), chemical equilibriums and charge-neutral conditions in
Eqs. (22) and (24), which in turn fix the neutron densityrn
from baryon number conservations Eq.(23).

(2) With the particle densities(rB, re, andrm) and Fermi
momenta(kB, ke, andkm), the meson fieldsss ,v0,r0,3d can
be obtained from Eqs.(13)–(15).

(3) These two steps should be repeated by iteration until
the self-consistence is achieved.

A. Effective interaction strengths in nuclear matter
and neutron stars

Using the nonlinear RMF interactions NL1, NL2[5], NL3
[6], NLSH [7], TM1, TM2 [8], and GL-97 [17] and the
density-dependent interactions TW-99[9], and DD-ME1
[10], the density dependencies of various effective interac-
tion strengths in RMF theory are studied and carefully com-
pared in nuclear matter and neutron stars.

In Fig. 1, the density dependencies of the effective inter-
action strengths fors (top), v (middle) andr (bottom) me-
sons in symmetric nuclear matter as functions of the nucleon
density are shown. The shadowed area corresponds to the
empirical value of the saturation density in nuclear matter
(Fermi momentum kF=1.35±0.05 fm−1 or density r
=0.166±0.018 fm−3). These curves are labeled from the top
to the bottom atr=0.15 fm−3 orderly from left to right. For
the nonlinear effective interaction, the “equivalent” density
dependencies of the effective interaction strengths fors, v,
and r are extracted from the meson field equations Eqs.
(13)–(15) according to

gsBsrd = gsB + U8ssd/rs = gsB + sg2s2 + g3s3d/rs, s27d

gvBsrd = gvB − U8sv0d/r = gvB − sc3v0
3d/r, s28d

grBsrd = grB. s29d

The density dependencies of the interaction strengths for
TW-99 and DD-ME1 are very similar for symmetric nuclear
matter in Fig. 1, as noted in Ref.[10]. Here the comparison
between the nonlinear and the density-dependent interaction
will be emphasized.

For the s meson, the interaction strengths given by
TW-99 and DD-ME1 are quite different from the others in
either magnitudes or slopes. In particular, strengths of TW-99
and DD-ME1 for the density interval in Fig. 1 are almost
twice as large as that of GL-97. Differences for nonlinear and
density-dependent interactions can also be seen in the region
of the empirical nuclear matter densities. For thev meson,
except TW-99, DD-ME1, TM1, and TM2, all the other
strengths are density independent. All the strengths are simi-

FIG. 1. (Color online) The effective interaction strengths fors
(top), v (middle), and r (bottom) in symmetric nuclear matter as
functions of the nucleon density. The shadowed area corresponds to
the empirical value of the saturation density in nuclear matter
(Fermi momentum kF=1.35±0.05 fm−1 or density r
=0.166±0.018 fm−3). The curves are labeled from the top to the
bottom atr=0.15 fm−3 orderly from left to right.
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lar to each other in the region of the empirical saturation
densities compared with those of thes meson, although
large differences can also be seen at low densities. For ther
meson which describes the isospin asymmetry, the strengths
for TW-99 and DD-ME1 show strong density dependencies
in contrast with the constants in the other interactions. They
cross the nonlinear interactions at a density much lower than
the empirical saturation density.

The interaction strengths as functions of baryon density
for neutron stars matter are given in Fig. 2. As the effective
interactions NL2 and TM2 are mainly used in light nuclei,
we don’t discuss them here. At densitiesr,0.2 fm−3, Fig. 2
is similar to Fig. 1. For the scalars-meson, the interaction
strengths of TW-99, DD-ME1, TM1, and GL-97 decrease
with the baryon density in similar slopes, while those of
NL1, NL3, and NLSH decrease with baryon density for the
densitiesr,0.2 fm−3, then increase afterwards. This is due
to the positiveg3s3 in Eq. (27) for NL1, NL3, and NLSH, in
contrast with the negative ones for TM1 and GL-97. For the
vector v meson, the interaction strengths of TW-99, DD-
ME1, and TM1 decrease with the baryon density. At densi-
ties 0.2,r,0.55 fm−3, the strengths of DD-ME1, TW-99,
and TM1 are between those of NL3 and GL-97. The curve
given by TM1 crosses with the line of GL-97 at densityr
<0.57 fm−3, and then gives the weakest interaction strength.
For isospin-vectorr meson, the interaction strengths of
TW-99 and DD-ME1 decrease with baryon density and trend
to vanish at high densities, while the others are constants.

Although the aspects of the interaction strengths are quite
different from each other, as it will be shown in the following
sections, all of them give fair descriptions for the properties
of nuclear matter.

B. Potentials for nuclear matter and neutron stars

Potentials for symmetric nuclear matter, pure neutron
matter and neutron stars calculated with density-dependent

interactions TW-99 and DD-ME1 are illustrated in Figs. 3–5.
The results are shown in comparison with those obtained
with the nonlinear interactions, such as NL1, NL2, NL3,
NLSH, TM1, TM2, and GL-97.

As the contribution ofr-meson potential for symmetric
nuclear matter vanishes, we show the vector potentials
gvBv0, scalar potentialsgsBs and their sum as functions of
nucleon densityr for different effective interactions which
are marked from top to bottom at densityr=0.15 fm−3 or-
derly from left to right in Fig. 3. For the vector and scalar
potentials, GL-97 gives the weakest results due to its weak-
est interaction strength in Fig. 1. The curves associated with
the other interactions lie between those by TM2 and NL2.
Their difference increases with the density, the difference of
scalar potentials atr=0.15 fm−3 between NL2 and TM2 is
around 120 MeV, and that of vector potentials is around
130 MeV. At saturation density, the scalar and vector poten-
tials given by the density-dependent interactions TW-99 and
DD-ME1 are similar to the nonlinear interactions except for
GL-97, TM2, and NL2. For the total potentials for symmetric
nuclear mattergvBv0+gsBs, GL-97 also gives the weakest
result and the difference for different interactions is about
20–30 MeV in the range of saturated densities.

The vector potentialsgvBv0, scalar potentialsgsBs, iso-
spin potentialsgrBr0,3, and their sum as functions of the
nucleon density for different effective interactions are shown
in Fig. 4 for pure neutron matter. The variations of the vector
potentials with densityr are same as those for symmetric
nuclear matter because they are related to the whole nucleon
densityr only. The variations of the scalar potentials with
density r are slightly different from those for symmetric
nuclear matter, as the same density for symmetric nuclear
matter and pure neutron matter implicates different Fermi

FIG. 2. (Color online) Similar as Fig. 1, but for neutron stars.
The curves are labeled from the top to the bottom atr=0.9 fm−3

orderly from left to right.

FIG. 3. (Color online) Vector potentialsgvBv0 (top), scalar po-
tentialsgsBs (middle), and the sum of both(bottom) in symmetric
nuclear matter for different effective interactions(as marked in the
figure) as functions of the nucleon densityr. The shadowed area
corresponds to the empirical value of the saturation density in
nuclear matter. The curves are labeled from the top to the bottom at
r=0.15 fm−3 orderly from left to right.
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momentum,kB, as shown in Eq.(18). Ther meson provides
the necessary isospin asymmetry. In pure neutron matter, the
isospin potentialsgrBr0,3 given by nonlinear interactions in-
crease linearly with the density due to their constant interac-
tion strengths in Fig. 1. While for the same reasons, we can
easily understand the isospin potentials for the density-
dependent interactions. The compensation between the den-
sity dependencies ofgrB and the increase of the density
makes the isospin potentials increase at first and decrease
after r=0.12 fm−3. The sum of the vector potentialsgvBv0,
scalar potentialsgsBs, and isospin potentialsgrBr0,3 gives
the total potentials for baryon in pure neutron matter. The
total potentials are attractive at low densities and become
repulsive at high densities. Different from those of symmet-
ric nuclear matter, due to the contribution of the isospin po-
tentials for pure neutron matter, the difference between the
total potentials is quite large, e.g., the largest difference
40 MeV between NL2 and TW-99 occurs atr=0.15 fm−3.

For neutron stars, Fig. 5 shows the vector potentials
gvBv0, scalar potentialsgsBs, iso-vector potentialsgrBr0,3
and the sum of them for different effective interactions as
functions of the baryon densityr. For scalar and vector po-
tentials at densitiesr,0.2 fm−3, the properties are similar to
those in Figs. 3 and 4. The vector potentialsgvBv0, which
offer short-range repulsive interactions, increase with the
baryon density, while the scalar potentialsgsBs, which offer
medium-range attractive interactions, change evidently at
densities r,0.3 fm−3, and reach saturation at densityr
<0.4 fm−3. Just as for nuclear matter, GL-97 always gives
the weakest scalar and vector potentials. Due to the strong

interaction strengths of NL1, NL3, and NLSH at high densi-
ties as shown in Fig. 2, they give large scalar and vector
potentials at densitiesr.0.3 fm−3. The results calculated
with DD-ME1, TW-99, and TM1 lie in the middle. The dif-
ference in potentials between the two density-dependent ef-
fective interactions DD-ME1 and TW-99 shows up clearly
beyond the densityr=0.4 fm−3, in contrast with that for
nuclear matter.

As shown in Fig. 5, the contribution of ther-meson pro-
vides the necessary isospin asymmetry for neutron stars. For
densities 0.065,r,0.1 fm−3, the potentialgrBr0,3 calcu-
lated with various interactions range from 20 MeV to
30 MeV. For nonlinear interactions, the potentialsgrBr0,3 in-
crease with the baryon density and are about 100 MeV at
densityr=0.9 fm−3, which are about 10% of the vector po-
tentials gvBv0 for GL-97 and TM1, and 5% of those for
NL1, NL3, and NLSH. For density-dependent interactions,
the isospin potentials trend to vanish afterr=0.75 fm−3, due
to the density dependencies of ther-meson interaction
strengths in Fig. 2.

The total potentialsgvBv0+gsBs+grBr0,3 are attractive at
low densities. At high densities, they become repulsive and
the neutron stars are bound by the gravity. The results given
by various interactions are similar at densitiesr,0.2 fm−3

and become quite different atr.0.3 fm−3. The total poten-
tials for NL1, NL3 and NLSH are close to each other and
increase rapidly. Those for TW-99, GL-97, and TM1 are
close to each other afterr.0.16 fm−3, while that of DD-
ME1 lies in between.

FIG. 4. (Color online) Vector potentialsgvBv0, scalar potentials
gsBs, isospin vector potentialsgrBr0,3, and the sum of them in pure
neutron matter for different effective interactions as functions of the
nucleon densityr. The curves are labeled from the top to the bot-
tom atr=0.15 fm−3 orderly from left to right.

FIG. 5. (Color online) Vector potentialsgvBv0, scalar potentials
gsBs, isospin vector potentialsgrBr0,3, and the sum of them in
neutron stars with neutrons and protons only, for different effective
interactions as functions of the baryon densityr. The curves are
labeled from the top to the bottom atr=0.45 fm−3 orderly from left
to right.
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C. Properties of nuclear matter

In Fig. 6 we display the energies per nucleon,EB/A
=« /r−m, for pure neutron matter(upper panel) and symmet-
ric nuclear matter(lower panel) for density-dependent inter-
actions TW-99 and DD-ME1 as functions of nucleon density
r. For comparison, the results for various nonlinear interac-
tions are also shown. We label the curves from top to bottom
at densityr=0.20 fm−3 orderly from left to right.

In the upper panel of Fig. 6, the energies per nucleon for
all interactions are always positive and increase with the
nucleon density for pure neutron matter. The results for
density-dependent interactions DD-ME1 and TW-99 are very
similar to each other. At densitiesr,0.075 fm−3, they are
larger than the other interactions except for NL2, thereafter
they cross the curves for the other interactions and give the
smallest energy per nucleon after densitiesr.0.17 fm−3.

For symmetric nuclear matter, the curves for energies per
nucleon for various interactions display similar dependencies
on densities below the saturation density and pronounced
differences at higher densities. The saturation densities for
various interactions are similar(r=0.166±0.018 fm−1,
EB/A=−16.33±0.10 MeVd and are located in the empiri-

cal range of saturation density except those of TM2 and
NL2, which are mainly used for light nuclei.

From the upper and lower panels of Fig. 6, it can be seen
that the equations of state at low densities(below saturation
density) for pure neutron matter and symmetric nuclear mat-
ter are different. The deviations of energy per nucleonEB/A
for symmetric nuclear matter below saturation density are
negligible compared with those for pure neutron matter(the
deviation is about 15 MeV at densityr=0.15 fm−3). The dif-
ferent results for symmetric nuclear matter and pure neutron
matter mainly come from the potentials as shown in Figs. 3
and 4, especially from the isospin potentialsgrBr0,3, which
exhibits large deviation.

From Fig. 3, we have seen that the difference for the total
potentials at saturated density in symmetric nuclear matter is
about 20,30 MeV, while the energies per nucleon at satu-
ration density are close to each other in Fig. 6. To understand
these, we will discuss energy per nucleon at the saturation
density for symmetric nuclear matter in detail.

From Eq. (19) and the meson field equations Eqs.
(13)–(15), the energy density for symmetric nuclear matter
can be expressed as

« =
1

2
ms

2s2 + Ussd −
1

2
mv

2v0
2 − Usv0d − o

B

rBS0B
R

+ Fmv
2v0

2 + 4Usv0d + o
B

rBS0B
R

+
1

p2o
B
E

0

kB

k2dkÎk2 + smB + gsBsd2G
= −

1

2
gsBsrs −

1

6
g2s3 −

1

4
g3s4 −

1

2
gvBv0r

+
1

4
c3v0

4 − o
B

rBS0B
R + FgvBv0r + o

B

rBS0B
R

+
1

p2o
B
E

0

kB

k2dkÎk2 + smB + gsBsd2G
= «s + «v + «re + «N, s30d

where,

«s = −
1

2
gsBsrs −

1

6
g2s3 −

1

4
g3s4, s31d

«v = −
1

2
gvBv0r +

1

4
c3v0

4, s32d

«re = − o
B

rBS0B
R , s33d

«N
p = gvBv0r + o

B

rBS0B
R , s34d

«N
k =

1

p2o
B
E

0

kB

k2dkÎk2 + smB + gsBsd2, s35d

FIG. 6. (Color online) Energies per nucleon,EB/A=« /r−m, in
pure neutron matter(upper panel) and symmetric nuclear matter
(lower panel) for different effective interactions as functions of
nucleon densityr. The dots in the lower panel correspond to the
saturation densities in symmetric nuclear matter and the shadowed
area corresponds to the empirical value of saturation densities in
symmetric nuclear matter(density r=0.166±0.018 fm−3 and en-
ergy per particle« /r=−16.0±1.0 MeV). The curves are labeled
from the top to the bottom atr=0.2 fm−3 orderly from left to right.
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«N = «N
p + «N

k , s36d

in which, the contributions froms andv fields are, respec-
tively, «s and «v, the rearrangement term is«re, and the
contribution from nucleons is«N with its potential energy
part«N

p and kinetic energy part«N
k . For nonlinear interactions,

«re=0, while for the density-dependent interactions,g2=g3
=c3=0.

In Table I, the Fermi momentakFsr0=kF
3 /3p2d, vector

densitiesr0, scalar densitiesrs, scalar potentialsgsBs, vector
potentialsgvBv0, the various contributions«s, «v, «re, «N

p,
«N

k , and«N, the system energy densities«, nucleon massm
and energies per nucleonEB/A=« /r−m at saturation density
for different interactions are shown. The saturation densities
given by various interactions are similarsr0<0.150 fm−3d,
except for TM2sr0=0.132 fm−3d. From Eqs.(30)–(36), we
know that if the scalar densitiesrs and vector densitiesr0 (or
Fermi momentakF) at saturation densities are similar, larger
scalar potentials(negative) will give larger «s (positive) and
smaller«N

k (positive), and larger vector potentials will give
larger «v (negative) and «N

p (positive). Taking into account
the contribution of the rearrangement term«re, the energies
per nucleonEB/A=« /r−m for various interactions become
closer to each other. For example, for TW-99 and GL-97,
which give the largest and smallest potentials, respectively,
the difference of gsBs,−210.5 MeV leads to D«s

=1604 MeV fm−3 and D«N
k =−30.80 MeV fm−3, and the

difference of gvBv,194.1 MeV leads to D«v
=−14.77 MeV fm−3 and D«N

p =29.70 MeV fm−3. Taking
into account the contribution of the rearrangement term
D«re=−0.16 MeV fm−3, the difference between the total
energy densities isD«=0.01 MeV fm−3, i.e., the difference
between their energy per nucleonDEB/A=Ds« /r0−md

=0.07 MeV, which is small compared with EB/A
<16 MeV.

The saturation properties of symmetric nuclear matter for
different interactions including the Fermi momentakF, satu-
ration densitiesr0, energies per nucleonEB/A, effective
massesm* and m* /m, incompressibilityK and symmetric
energy coefficientsasym are shown in Table II. We can see
that the results given by the density-dependent interactions
DD-ME1 and TW-99 are similar to those of the nonlinear
interactions except for TM2, NL2, and GL-97. The saturation
density for TM2 is lower and the energy per nucleon for NL2
is larger than the corresponding empirical values, which can
also be seen in Fig. 6. Due to the weakest scalar potentials
shown in the middle panel of Fig. 3, GL-97 gives the largest
effective mass m* /m=0.78 and incompressibility K
=240 MeV, which are justified from the empirical nuclear
saturation properties[17].

Although properties below the saturation densities for
symmetric nuclear matter are quite similar, the EOS at low
densities given by various interactions for pure neutron mat-
ter is quite different. This is due to the effective interactions
used so far are obtained by fitting the properties of doubly
magic nuclei, which have an isospin close to that of the
symmetric nuclear matter. To get an EOS for neutron matter
without any ambiguity, it is necessary to constrain the effec-
tive interactions either by microscopic many-body calcula-
tions for the neutron matter data[18] or the data of nuclei
with extreme isospin.

D. Properties of neutron stars

The energies per baryon for neutron stars as functions of
baryon density for different interactions are given in Fig. 7.
At low densities, Fig. 7 is very similar to the top panel of

TABLE I. The Fermi momentakF sr0=kF
3 /3p2d, vector densitiesr0, scalar densitiesrs, scalar potentialsgsBs, vector potentialsgvBv0,

the energy densities«s, «v, «re, «N
p, «N

k , and«N, the total energy densities«, nucleon massesm and energies per nucleonEB/A=« /r−m for
different interactions in symmetric nuclear matter at saturation density(the units are in MeV fm−3 except otherwise stating)

TW-99 DD-ME1 GL-97 NL1 NL2 NL3 NLSH TM1 TM2

kFsfm−1d 1.313 1.310 1.313 1.310 1.292 1.300 1.293 1.291 1.251

r0sfm−3d 0.153 0.152 0.153 0.152 0.146 0.148 0.146 0.145 0.132

rssfm−3d 0.143 0.143 0.148 0.142 0.139 0.140 0.138 0.138 0.125

gsBssMeVd −417.9 −396.2 −206.4 −400.7 −309.7 −380.3 −378.24 −342.94 −402.06

−1
2gsBsrs 29.871 28.279 15.274 28.450 21.524 26.621 26.099 23.663 25.129

«s 29.871 28.279 13.830 28.187 20.538 26.088 25.544 22.387 24.027

gvBv0sMeVd 338.7 316.7 145.57 325.4 242.9 308.0 306.6 274.5 331.8

−1
2gvBv0r0 −25.910 −24.069 −11.140 −24.689 −17.688 −22.832 −22.378 −19.901 −21.897

«s −25.910 −24.069 −11.140 −24.689 −17.688 −22.832 −22.378 −19.408 −21.221

«re −0.161 −0.364 0 0 0 0 0 0 0

«N
p 51.981 48.502 22.281 49.378 35.375 45.664 44.757 39.856 43.893

«N
k 85.401 87.912 116.199 87.207 96.244 87.643 86.786 91.016 75.261

«N 137.382 136.414 138.470 136.585 131.619 133.307 131.543 130.872 119.155

« 141.182 140.260 141.169 140.083 134.470 136.563 134.708 133.649 120.678

msMeVd 939 939 939 938 938 939 939 938 938

EB/AsMeVd −16.25 −16.23 −16.32 −16.42 −17.02 −16.25 −16.35 −16.265 −16.16
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Fig. 6 as the neutron stars matter is almost pure neutron
matter at low densities. The energies per baryon for the non-
linear interactions NL1, NL3, and NLSH increase quickly
with the density compared with those of TW-99 and GL-97,
while the results for DD-ME1 and TM1 lie in-between.
These results are in consistent with the total potentials for
neutron stars in Fig. 5. At densityr,0.3 fm−3, the potentials
for TW-99 and DD-ME1 are the lowest, while that of DD-
ME1 crosses GL-97 and TM1 atr,0.4 fm−3 in Fig. 5. The
EB/A for TW-99 is the smallest.

The evolutions of particle densities with the baryon den-
sity in neutron stars are given in Fig. 8, and the correspond-
ing figures in logarithm scale for low densities
s0.05,r fm3,0.2d are given in the subfigures, where the
solutions are fromr=0.065 fm−3 to 0.9 fm−3, i.e., 0.425
ørB/r0ø5.88 with r0=0.153 fm−3.

At low densities, the charge-neutral neutron star matter is
mainly composed of neutrons. As the density increases, high-
momentum neutrons willb decay into protons and electrons
sn↔p+e−+ n̄ed until the equilibrium at which the chemical
potentials satisfymp=mn−me. As the neutron density in-
creases, so do the proton and electron densities. Whenme
attains the value of the muon mass,m− will appear. The

equilibrium with respect to the reactione−↔m−+ n̄m+ne im-
plies thatme=mm. Them− thresholds are different for differ-
ent effective interactions. All them− thresholds are in the
range ofr=0.11±0.01 fm−3 with the minimum and maxi-
mum thresholds given by NL1 and GL-97, respectively.

From Fig. 8, it can also be seen that the density-dependent
effective interactions TW-99 and DD-ME1 give the largest
neutron densities, and accordingly the smallest proton densi-
ties due to the baryon number conservation. This is because
the strengthsgrB for the density-dependent effective interac-
tion become weaker with the baryon density, as shown in
Fig. 2. Because of the charge-neutral condition, the densities
of electron andm− for different effective interactions have
the same tendencies as the proton densities.

As hyperons would appear at roughly twice saturation
density, it is necessary to study neutron star with hyperons.

TABLE II. Nuclear matter saturation properties for different effective interactions, including the Fermi momentakF, saturation densities
r0, energies per nucleonEB/A, effective masses m* and m* /m, incompressibilityK, and symmetric energy coefficientsasym.

kFsfm−1d r0sfm−3d EB/AsMeVd m*sMeVd m* /m KsMeVd asymsMeVd

DD-ME1 1.310 0.152 −16.23 542.7899 0.578 244.50 33.06

TW-99 1.313 0.153 −16.25 521.0724 0.555 240.00 32.77

NL1 1.310 0.152 −16.42 537.2949 0.573 211.15 43.47

NL2 1.292 0.146 −17.02 628.3138 0.670 399.17 45.12

NL3 1.300 0.148 −16.25 558.6835 0.595 271.73 37.42

NLSH 1.293 0.146 −16.35 560.7559 0.598 355.34 36.12

TM1 1.291 0.145 −16.265 595.0626 0.634 281.17 36.89

TM2 1.251 0.132 −16.16 535.9376 0.571 343.83 35.98

GL-97 1.313 0.153 −16.32 732.6145 0.780 240.00 32.5

FIG. 7. (Color online) Similar as Fig. 5, but for neutron stars.

FIG. 8. (Color online) Particle densities(from top to bottom are,
respectively, n, p,e− andm−) in neutron stars for different effective
interactions as a function of the baryon densityr. The correspond-
ing inserts are the same figures in a logarithmic scale at low density
s0.05,r fm3,0.2d. The curves are labeled from the top to the
bottom atr=0.45 fm−3 orderly from left to right.

DENSITY DEPENDENCIES OF INTERACTION… PHYSICAL REVIEW C 69, 045805(2004)

045805-9



The details for the inclusion of hyperons in neutron star in
relativistic mean field theory are given in Refs.[17,31]. One
can introduce the ratios of the meson- hyperons coupling
strengths coupling constants to those of nucleons as

xsh =
gsh

gsN
, xvh =

gvh

gvN
, xrh =

grh

grN
, s37d

where,gsh, gvh, andgrh have the same density dependencies
as gsN,gvN, and grN respectively, and the ratiosxsh=xvh
=xrh=Î2/3 are chosen according to Ref.f32g.

The equation of state(EOS) is very important to under-
stand the structure of neutron star. The stiffer the EOS, the
larger the mass that can be sustained against collapse. There
are two constraints for the realistic EOS. One is a stiff limit
by the causal constraint]p/]«ø1, which results in the limit
mass of just over 3M(. The other corresponds to the soft
limit, which corresponds to the free Fermi gas with neutrons,
protons and leptons in equilibrium and the limit mass is
about 0.7M( [17]. Here the EOS calculated by different ef-
fective interactions are given in Fig. 9. The solid lines rep-
resent these with neutrons and protons only, and the dashed
lines represent their corresponding ones with hyperons in-
cluded, respectively. As can be understood from the poten-
tials in Fig. 5, the nonlinear interactions NL1, NL3, and
NLSH give stiffer EOS than the other interactions, GL-97
and TM1 give softer EOS, and density-dependent interac-
tions TW-99 and DD-ME1 lie in between. Furthermore, the
inclusion of hyperons softens the corresponding EOS consid-
erably, as shown by the corresponding dashed lines in Fig. 9.
The softest EOS is given by TM1. After the inclusion of
hyperons, the corresponding solutions for the nonlinear in-
teractions, NL1, NL3, and NLSH, exist only below density,
r=0.42,0.51, and 0.58 fm−3, respectively. Beyond the corre-
sponding density, the scalar potentialgsBs will increase and
make the effective massesm* =m+gsBs negative. Therefore

in the following, we do not discuss the properties of neutron
stars with hyperons for NL1, NL3, and NLSH.

For a static global star, the Oppenheimer-Volkoff-Tolman
(OVT) equation is[15,16]:

dp

dr
= −

fpsrd + «srdgfMsrd + 4pr3psrdg
rfr − 2Msrdg

, s38d

Msrd = 4pE
0

r

«srdr2dr. s39d

The pointR, at which the pressure vanishes,psRd=0, defines
the radius of the star andMsRd is the gravitational mass. For
a given EOS, the OVT equation has a unique solution which
depends on a single parameter characterizing the conditions
of matter at the center. This can be chosen as the baryon
density or energy density. In Fig. 10, the masses versus the
central densitiessleft paneld and radiisright paneld of neutron
stars for different interactions are shown. The solid lines rep-
resent these with neutrons and protons only, and the dashed
lines represent the corresponding ones with hyperons in-
cluded. There is critical maximum value for the masses of
neutron star, known as the OV mass limit. Beyond this mass
the star is unstable to gravitational collapse.

The OV mass limits, corresponding radii, central densi-
ties, energy densities, and pressures for different effective
interactions are presented in Table III. The second rows for
DD-ME1, TW-99, GL-97, and TM1 represent the quantities
with hyperons. Without hyperons, the OV mass limits calcu-
lated from different EOS ares2.02–2.81dM(, and the corre-
sponding radii are 10.24–13.27 km. The OV mass limits and
corresponding radii for DD-ME1 and TW-99 are, respec-
tively, 2.475M( ,11.903 km and 2.195M( ,11.209 km and
they give softer EOS and smaller OV mass limits than those
of the effective interactions NL1s2.809M( ,13.137 kmd,
NL3 s2.778M( ,13.081 kmd, and NLSH (2.803M( ,
13.270 kmd. The results for TM1 are similar to TW-99,

FIG. 9. (Color online) EOS of neutron stars for different effec-
tive interactions(as marked in figure). The solid lines represent
these with neutrons and protons only, and the dashed lines represent
the corresponding ones with hyperons included, respectively.

FIG. 10. (Color online) The masses versus the central densities
(left panel) and radii (right panel) in neutron stars for different
effective interactions(as marked in figure). The solid lines represent
these with neutrons and protons only, and the dashed lines represent
the corresponding ones with hyperons included.
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while GL-97 gives the smallest OV mass limits2.018M(d
and radiuss10.779 kmd.

Due to the softer EOS for neutron star with hyperons,
small OV mass limits have been obtained. The OV mass
limits calculated with hyperons for DD-ME1, TW-99 GL-97
and TM1 ares1.52–2.06dM(, and the corresponding radii
are 10.24–11.38 km. With hyperons included, the OV mass
limits and corresponding radii for DD-ME1 and TW-99 are,
respectively, 2.061M( ,11.375 km and 1.868M( ,10.853 km.
The results for TM1 are similar to TW-99, and give radius
s11.366 kmd and the smallest OV mass limits1.517M(d.

IV. SUMMARY

We have studied and carefully compared the density de-
pendencies of various effective interaction strengths in sym-
metric nuclear matter, pure neutron matter, and neutron stars.
The corresponding influences on potentials and properties of
symmetric nuclear matter, pure neutron matter, and neutron
stars are presented and discussed. As the interactions NL2
and TM2 are aimed for light nuclei, we don’t present their
results for neutron star. The properties calculated by the in-
teractions NL1, NL3, and NLSH are close to each other. The
same conclusion can be seen for the density-dependent inter-
actions TW-99 and DD-ME1.

For thes meson, all the interaction strengths are density
dependent. While for thev meson, TW-99, DD-ME1, and
TM1 are density dependent. For ther meson, the interaction
strengths for TW-99 and DD-ME1 decrease very fast with
density while the others are constant. Even though the inter-
action strengths and the potentials from various interactions
are different, the differences of saturation properties for vari-

ous effective interactions in symmetric nuclear matter are
subtle except for NL2 and TM2.

Unlike those for symmetric nuclear matter, the properties
for pure neutron matter by various interactions are quite dif-
ferent. As the effective interactions used so far are obtained
by fitting the properties of doubly magic nuclei, it may be
successful for nuclear matter with an isospin close to that of
the symmetric nuclear matter. To get an EOS for neutron
matter without any ambiguity, it is necessary to constrain the
effective interactions either by microscopic many-body cal-
culations for the neutron matter data or the data of nuclei
with extreme isospin.

For neutron star matter, the density-dependent interactions
DD-ME1 and TW-99 favor large neutron populations due to
their weakr-meson field at high densities. The OV mass
limits calculated from different EOS are 2.02–2.81M(, and
the corresponding radii are 10.78–13.27 km. The stronger
interaction gives a stiffer EOS and a larger mass limit.
TW-99 and DD-ME1 give softer EOS and smaller OV mass
limits than those of the effective interactions NL1, NL3, and
NLSH. The results of TM1 are similar to TW-99. After the
inclusion of hyperons, the corresponding values become
1.52–2.06M( and 10.24–11.38 km.
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TABLE III. The central densities, energy densities, and pressures, OV mass limits and corresponding radii
for neutron stars for different effective interactions. For interactions DD-ME1, TW-99, TM1, and GL-97, the
same quantities for neutron stars with hypersons are given in the following lines, respectively.

Central density
sfm−3d

Central energy density
s31015 g/cm3d

Central pressure
s31035 dyne/cm2d

OV mass limit
s3M(d Radius(km)

DD-ME1 0.815 1.852 7.886 2.475 11.903

0.980 2.097 5.780 2.061 11.375

TW-99 0.970 2.126 7.902 2.195 11.209

1.176 2.422 6.318 1.868 10.853

TM1 0.852 1.881 5.293 2.180 12.054

1.016 2.083 3.071 1.517 11.366

GL-97 1.045 2.347 7.905 2.018 10.779

1.299 2.792 6.188 1.610 10.242

NL1 0.658 1.529 7.140 2.809 13.137

NL3 0.667 1.544 7.055 2.778 13.081

NLSH 0.649 1.497 6.682 2.803 13.270
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