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Neutron-rich matter at subnuclear densities may involve complex structures displaying a variety of shapes,
such as spherical, slablike, and/or rodlike shapes. These phases of thenuclear pastaare expected to exist in the
crust of neutron stars and in core-collapse supernovae. The dynamics of core-collapse supernovae is very
sensitive to the interactions between neutrinos and nucleons/nuclei. Indeed, neutrino excitation of the low-
energy modes of the pasta may allow for a significant energy transfer to the nuclear medium, thereby reviving
the stalled supernovae shock. The linear response of the nuclear pasta to neutrinos is modeled via a simple
semiclassical simulation. The transport mean free path form andt neutrinos(and antineutrinos) is expressed
in terms of the static structure factor of the pasta, which is evaluated using Metropolis Monte Carlo
simulations.
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I. INTRODUCTION

Neutron-rich matter may have a complex structure at den-
sities just below that of normal nuclei. This is because all
conventional matter isfrustrated. While nucleons are corre-
lated at short distances by attractive strong interactions, they
are anticorrelated at large distances because of the Coulomb
repulsion. Often these short and large distance scales are well
separated, so nucleons bind into nuclei that are segregated in
a crystal lattice. However, at densities of the order of 1013

−1014 g/cm3 these length scales are comparable[1]. Compe-
tition among these interactions(i.e., frustration) becomes re-
sponsible for the development of complex structures with
many possible nuclear shapes, such as spheres, cylinders, flat
plates, as well as spherical and cylindrical voids[2]. The
termpasta phaseshas been coined to describe these complex
structures[1], and many calculations of their ground-state
structure have already been reported[1–6]. While the study
of these pasta phases is interesting in its own right, it be-
comes even more so due to its relevance to the structure of
the inner crust of neutron stars and to the dynamics of core-
collapse supernovae.

Frustration, a phenomenon characterized by the existence
of a very large number of low-energy configurations,
emerges from the impossibility to simultaneously minimize
all “elementary” interactions. Should a proton in the pasta
join a nuclear cluster to benefit from the nuclear attraction or
should it remain well separated to minimize the Coulomb
repulsion? Frustration, a term that appears to have been
coined in the late seventies[7,8], is prevalent in complex
systems ranging from magnetism[9,10] to protein folding
[11]. In condensed-matter systems, frustration dates back to

the 1950 study of Ising antiferromagnets on triangular lat-
tices by Wannier[12]. Three antiferromagnetically coupled
spins fixed to the sites of an equilateral triangle cannot mini-
mize all interactions simultaneously: once two spins are an-
tialigned, the third one cannot be antiparallel to both of them.
Further, in Ref.[13] it has been shown that finding the true
ground state—among the many metastable states—of a spin
glass shares features in common withNP-completeprob-
lems, such as thetraveling salesman problemof fame in the
theory of combinatorial optimization[14]. Finally, because
of the preponderance of low-energy states, frustrated systems
display unusual low-energy dynamics.

Because of the complexity of the system, almost no work
has been done on the low-energy dynamics of the pasta or on
its response to weakly interacting probes. In this paper we
study the excitations of the pasta via a simple semiclassical
simulation similar to those used to describe heavy-ion colli-
sions. Heavy-ion collisions can produce hot, dense matter.
However, by carefully heating the system and allowing it to
expand, heavy-ion collisions can also study matter at low
densities. Multifragmentation, the breakup of a heavy ion
into several large fragments, shares many features with pasta
formation, as they are both driven by the same volume, sur-
face, and Coulomb energies. There have been several classi-
cal [15,16] and quantum-molecular-dynamics(QMD) [17]
simulations of heavy-ion collisions. These same approaches
may be applied to the nuclear pasta by employing a simula-
tion volume and periodic boundary conditions. One great
advantage of such simulations is that one can study pasta
formation in an unbiased way without having to assume par-
ticular shapes or configurations from the outset. While QMD
has been used before to study the structure of the pasta
[18–20], no calculations of its linear response to weakly in-
teracting probes(e.g., neutrinos) have been reported.

Neutrino interactions are crucial in the dynamics of core-
collapse supernovae because neutrinos carry 99% of the en-
ergy. Neutrinos are initially trapped due to the large coherent
neutrino-nucleus elastic-scattering cross section. This trap-
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ping is important for the electron-per-baryon fractionYe of
the supernova core, as it hinders any further conversion of
electrons into neutrinos. However, with increasing density
Coulomb interactions between ions lead to significant ion
screening of neutrino-nucleus elastic scattering[21]. As the
density is increased still further, the ions react to form
nuclear pasta and one needs to calculate neutrino-pasta inter-
actions.

In the pasta phase one can have coherent neutrino scatter-
ing from density contrasts, such asSwiss-cheese-like voids.
Critical fluctuations could significantly increase the cross
section, thereby greatly reducing the neutrino mean free
path. As the existence of many low-energy configurations is
the benchmark of frustrated systems, one expects large con-
figuration mixing among the various different pasta shapes.
This mixing often leads to interesting low-energy collective
excitations. As it will be shown later(see Fig. 2) at sub-
nuclear densities of the order of 1013 g/cm3, the pasta re-
sembles a collection of spherical neutron-rich nuclei embed-
ded in a dilute neutron gas. Neutron-rich nuclei with large
neutron skins havePygmy giant resonances, involving col-
lective oscillations of the neutron skin against the symmetric
core [22,23]. We expect that the soft neutron-rich pasta will
have many low-energy collective oscillations. This could
provide important physics that is presently missing from
core-collapse supernovae simulations. Neutrino excitation of
the low-energy pasta modes may allow for a significant en-
ergy transfer to the nuclear medium, potentially reviving the
stalled supernovae shock. To our knowledge, there have been
no calculations of these effects. Note, however, that Reddy,
Bertsch, and Prakash[24] have found that coherent neutrino
scattering from a nonuniform kaon condensed phase greatly
decreases the neutrino mean free path.

Present models of the equation of state for supernovae
simulations, such as that of Lattimer and Swesty[25], de-
scribe the system as a liquid drop for a single representative
heavy nucleus surrounded by freea particles, protons, and
neutrons. One then calculates neutrino scattering from these
constituents—by arbitrarily matching to a high-density uni-
form phase[26]. Unfortunately, this approximation is uncon-
trolled as it neglects many important interactions between
nuclei. By simulating the pasta phase directly in the nucleon
coordinates, one hopes to improve on this matching and to
understand its limitations.

There is a duality between microscopic descriptions of the
system in terms of nucleon coordinates and “macroscopic”
descriptions in terms of effective nuclear degrees of freedom.
Thus, a relevant question to pose is as follows: when does a
neutrino scatter from a nucleus and when does it scatter from
an individual nucleon? At the Jefferson Laboratory a similar
question is studied; when, i.e., at what momentum transfer,
does a photon couple to a full hadron and when to an indi-
vidual quark? Models of the quark/hadron duality have pro-
vided insight on how descriptions in terms of hadron degrees
of freedom can be equivalent to descriptions in terms of
quark coordinates[27]. Here we are interested in nucleon/
nuclear duality, that is, how can nuclear models incorporate
the main features of microscopic nucleon descriptions?

The manuscript has been organized as follows. In Sec. II
the semiclassical formalism is introduced. A very simple

(perhaps minimal) model is employed that contains the es-
sential physics of frustration. The linear response of the pasta
to neutrino scattering, in the form of a static structure factor,
is discussed in Sec. III. Results are presented in Sec. IV,
while conclusions and future directions are reserved to Sec.
V.

II. FORMALISM

In this section we introduce a classical model that while
simple, it contains the essential physics of frustration; that is,
competing interactions consisting of a short-range nuclear
attraction and a long-range Coulomb repulsion. We model a
charge-neutral system of electrons, protons, and neutrons.
The electrons are assumed to be a degenerate free Fermi gas
of density re=rp and the nucleons interact via a classical
potential. The only quantum aspects of the calculation are the
use of an effective temperature and effective interactions to
simulate effects associated with quantum zero-point motion.
Of course more elaborate models are possible and these will
be presented in future contributions. For these first simula-
tions we adopted a very simple version that displays the
essential physics of nucleons clustering into pasta in a trans-
parent form. Moreover, this simple model facilitates simula-
tions with a relatively large numbers of particles, a feature
that is essential to estimate and control finite-size effects.

The total potentialVtot energy is assumed to be a sum over
two-body interactionsVij of the following form:

Vtot = o
i, j

Vsi, jd, s1d

where the “elementary” two-body interaction is given by

Vsi, jd = ae−ri j
2/L + fb + ctzsidtzs jdge−ri j

2/2L + Vcsi, jd. s2d

Here the distance between the particles is denoted byr ij
= ur i −r ju and the isospin of thej th particle istzs jd=1 for a
proton andtzs jd=−1 for a neutron. The model parameters
a, b, c, and L will be discussed below. It suffices to say
that the above interaction includes the characteristic
intermediate-range attraction and short-range repulsion of
the nucleon-nucleonsNNd force. Further, the isospin de-
pendence of the potential ensures that while pure neutron
matter is unbound, symmetric nuclear matter is bound ap-
propriately. Finally, a screened Coulomb interaction of the
following form is included:

Vcsi, jd =
e2

r ij
e−ri j /ltpsidtps jd, s3d

wheretps jd=f1+tzs jdg /2 andl is the screening length that
results from the slight polarization of the electron gas; that is,
the relativistic Thomas-Fermi screening length is given by

l =
p

e
skF

ÎkF
2 + me

2d−1/2. s4d

Note that the electron Fermi momentum has been defined by
kF=s3p2red1/3 andme is the electron massf28,29g. Unfortu-
nately, while the screening lengthl defined above is smaller
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than the lengthL of our simulation box, it is not significantly
smaller sunless a prohibitively large number of particles is
usedd. Therefore, to control finite-size effects we were forced
to arbitrarily decrease the value ofl ssee Sec. IVd.

The simulations are carried out in a canonical ensemble
with a fixed number of particlesA at a temperatureT. The
volumeV at a fixed baryon densityr is simply V=A/r. To
minimize finite-size effects we use periodic boundary condi-
tions, so that the distancer ij is calculated from thex, y, and
z coordinates of theith and j th particles as follows:

r ij = Îfxi − xjg2 + fyi − yjg2 + fzi − zjg2, s5d

where the periodic distance, for a cubic box of sideL=V1/3,
is given by

flg = minsul u,L − ul ud. s6d

The potential energy defined in Eq.(1) is independent of
momentum. Therefore, the partition function for the system
factors into a product of a partition function in momentum
space—that plays no role in the computation of momentum-
independent observables—times a coordinate-space partition
function of the form

ZsA,T,Vd =E d3r1 ¯ d3rA exps− Vtot/Td. s7d

Note that the three-dimensionals3Dd integrals are performed
over the simulation volumeV.

The average energy of the systemkEl=kKl+kVtotl is made
of kinetic-sKd and potential-sVtotd energy contributions. As
the (momentum-independent) interactions have no impact on
momentum-dependent quantities, the expectation value of
the kinetic energy reduces to its classical value, that is,

kKl = 3
2AT. s8d

In turn, the expectation value of the potential energy may be
computed from the coordinate-space partition function as
follows:

kVtotl =
1

ZsA,T,Vd
E d3r1 ¯ d3rAVtot exps− Vtot/Td. s9d

In summary, a classical system has been constructed with a
total potential energy given as a sum of two-body
momentum-independent interactionsfsee Eq. s2dg. Any
momentum-independent observable of interest can be calcu-
lated from the partition functionfEq. s7dg, which we evaluate
via Metropolis Monte Carlo integrationf30g.

We now return to discuss the choice of model parameters.
The constantsa, b, c, andL in the two-body interaction Eq.
(2) were adjusted—approximately—to reproduce the follow-
ing bulk properties:(a) the saturation density and binding

energy per nucleon of symmetric nuclear matter,(b) (a rea-
sonable value for) the binding energy per nucleon of neutron
matter at saturation density, and(c) (approximate values for
the) binding energy of a few selected finite nuclei. The tem-
perature was arbitrarily fixed at 1 MeV for all the calcula-
tions. Note that the parameter set employed in these calcula-
tions (and displayed in Table I) has yet to be carefully
optimized. We reiterate that for these first set of simulations,
the interaction is sufficiently accurate to describe the essen-
tial physics of the pasta. Indeed, this is illustrated in Fig. 1
and Table II. In Fig. 1 the average potential energy versus
density at a temperature ofT=1 MeV is displayed for a
simulation of symmetric nuclear matter containingA=400
particles and, as is customary, assuming no Coulomb inter-
actions. Also shown in the figure is the potential energy for
pure neutron matter calculated withN=200 particles. In the
case of finite nuclei(also calculated atT=1 MeV) the full
Coulomb interaction is included using a screening lengthl
much larger than the resulting root-mean-square radius of the
nucleus. Simulations based on a Metropolis Monte Carlo al-
gorithm were used to compute the average potential energy,
starting with nucleons distributed uniformly in a sphere with
a radius comparable to the expected size of the nucleus; this
sphere was placed in the center of a very large box. Results
of the simulations and comparison with experimental values
have been collected in Table II. Note that the simulation
results are for the potential energy only. If the kinetic energy
per nucleons3T/2d is added to these values, the nuclei in
Table II would be slightly underbound. Furthermore, finite
nuclei are only metastable in this semiclassical approxima-
tion. Nucleons can evaporate over a very long time scale.

TABLE I. Model parameters used in the calculations.

a (MeV) b (MeV) c (MeV) L sfm2d

110 −26 24 1.25

TABLE II. Binding energy per nucleon for various closed-shell
nuclei. Note that all energies are in MeV and that the Monte Carlo
results include onlykVtotl.

Nucleus Monte CarlokVtotl Experiment

16O −7.56±0.01 −7.98
40Ca −8.75±0.03 −8.45
90Zr −9.13±0.03 −8.66

208Pb −8.2±0.1 −8.45

FIG. 1. Energy per particle for symmetric(dashed line) and for
pure-neutron matter(solid) vs baryon densitynb at a temperature of
T=1 MeV.
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However, this is not expected to significantly impact the
pasta phases since these already have free nucleons.

III. NEUTRINO SCATTERING

The model is used to describe neutrino scattering from
nonuniform neutron-rich matter. As neutrino interactions
play a predominant role in core-collapse supernovae, one is
interested in understanding how the neutrinos diffuse and
how do they exchange energy. In this first paper we focus on
the transport mean free path fornm and nt, which lack
charged-current interactions at low energies. Their mean free
path is dominated by neutral current neutrino-nucleon scat-
tering.

The free-space cross section for neutrino-nucleon elastic
scattering is given by

ds

dV
=

GF
2En

2

4p2 fca
2s3 − cosud + cv

2s1 + cosudg, s10d

where GF is the Fermi coupling constant,En the neutrino
energy, andu the scattering angle. Note that this equation
neglects weak magnetism and other corrections of order
En /M, with M being the nucleon massf31g.

In the absence of weak magnetism, the weak neutral cur-
rent Jm of a nucleon has axial-vectorsg5gmd and vectorgm

contributions; that is,

Jm = cag5gm + cvgm. s11d

The axial coupling constant is

ca = ±
ga

2
sga = 1.26d, s12d

with the + sign for neutrino-proton and the − sign for
neutrino-neutron scattering. The weak charge of a protoncv
is suppressed by the weak-mixingsor Weinbergd angle
sin2uW=0.231,

cv = 1
2 − 2sin2uW = 0.038< 0. s13d

In contrast, the weak charge of a neutron is both large and
insensitive to the weak-mixing angle:cv=−1/2. The trans-
port mean free pathlt is inversely proportional to the trans-
port cross sectionst and is given by the following expres-
sion:

st =E dV
ds

dV
s1 − cosud =

2GF
2En

2

3p
s5ca

2 + cv
2d. s14d

The weighting factors1−cosud included in the definition
of the transport cross section favors large-angle scattering,
as momentum is transferred more efficiently into the me-
dium. As a result, the axial-vector contributionca

2 domi-
nates the cross section. Assuming that the scattering in the
medium is the same as in free space, the transport mean-
free path becomes

lt = srpst
p + rnst

nd−1. s15d

Hererp srnd is the protonsneutrond density andst
p sst

nd is the
transport cross section for scattering from a protonsneutrond.

If nucleons cluster tightly into nuclei or into pasta, then
the scattering from different nucleons could be coherent.
This will significantly enhance the cross section as it would
be proportional to thesquareof the number of nucleons[32].
The contribution from the vector current is expected to be
coherent. Instead, the strong spin and isospin dependences of
the axial current should reduce its coherence. This is because
in nuclei—and presumably in the pasta—most nucleons pair
off into spin singlet states(note that in the nonrelativistic
limit the nucleon axial-vector current becomesg5gtz
→−stz). Therefore, in this paper we focus exclusively on
coherence effects for the vector current.

Coherence is important in x-ray scattering from crystals.
Because the x-ray wavelength is comparable to the interpar-
ticle spacing, one needs to calculate the relative phase for
scattering from different atomic planes and then sum over all
planes. Neutrino-pasta scattering involves a similar sum be-
cause the neutrino wavelength is comparable to the interpar-
ticle spacing and even to the intercluster spacing. Therefore,
one must calculate the relative phase for neutrino scattering
from different nucleons and then add their contribution co-
herently. This procedure is embodied in the static structure
factor Ssqd.

The dynamic response of the system to a probe of mo-
mentum transferq and energy transferv.0 that couples to
the weak charge densityr̂sqd is given by[28]

Ssq,vd = o
nÞ0

ukCnur̂sqduC0lu2dsv − vnd, s16d

wherevn is the energy difference between the excited state
uCnl and the ground stateuC0l. In linear-response theory,
namely, assuming that the process can be treated in lowest
ordersan excellent approximation for neutrino scatteringd the
cross section can be directly related to the dynamic response
of the system. In the case that the individual excited states
may not be resolved, then one integrates over the energy
transferv to obtain the static structure factor. Here we define
the static structure factorper neutronas follows:

Ssqd =
1

N
E

0

`

Ssq,vddv =
1

N
o
nÞ0

ukCnur̂sqduC0lu2, s17d

with the weak vector-charge density given by

rsqd = o
i=1

N

expsiq · r id, s18d

where the sum in Eq.s18d is only over neutrons.
The cross sectionper neutronfor neutrino scattering from

the whole system is now given by

1

N

ds

dV
= Ssqd

GF
2En

2

4p2

1

4
s1 + cosud. s19d

Note that the weak charge of the nucleonscv<0 for protons
and cv=−1/2 for neutronsd has been incorporated into the
above cross section, so that the normalization of the weak
vector-charge density isrsq=0d=N. Further, Eq.s19d is the
cross section per neutron obtained from Eq.s10d swith ca

C. J. HOROWITZ, M. A. PÉREZ-GARCÍA, AND J. PIEKAREWICZ PHYSICAL REVIEW C69, 045804(2004)

045804-4



=0d multiplied by Ssqd. This indicates thatSsqd embodies
the effects from coherence. Finally, note that the momentum
transfer is related to the scattering angle through the follow-
ing equation:

q2 = 2En
2s1 − cosud. s20d

Two assumptions have been made in the derivation of Eq.
s19d. First, no contribution from the axial current to the cross
section has been included, because nucleons pair into spin-
zero states. Second, the excitation energy transferred to the
nucleons is small and we have summed over all possible
excitation energies.

The static structure factor has important limits. A particu-
larly useful form in which to discuss them invokes complete-
ness on Eq.(17), that is,

Ssqd =
1

N
skC0ur̂†sqdr̂sqduC0l − ukC0ur̂sqduC0lu2d. s21d

The last term in the above expression represents the elastic
form factor of the system, which only contributes atq=0. In
the limit of q→0, the weak charge densityfEq. s18dg be-

comes the number operator for neutronsr̂sq=0d=N̂, so that
the static structure factor reduces to

Ssq = 0d =
1

N
skN̂2l − kN̂l2d. s22d

Thus, theq→0 limit of the static structure factor is related to
the fluctuations in the number of particles, or equivalently, to
the density fluctuations. These fluctuations are, themselves,
related to the compressibility and diverge at the critical point
f33g. To discuss the largeq limit, Eq. s18d is substituted into
Eq. s21d to yield

Ssqd =
1

N
So

i,j

N

kC0uexpsiq · r i jduC0l − ukC0ur̂sqduC0lu2D ,

s23d

In theq→` limit, all the terms in the sum withi Þ j , as well
as the second term in the above expression, oscillate to zero.
This only leaves thei = j terms, which there areN of them so
that

Ssq → `d = 1. s24d

This result indicates that if the neutrino wavelength is much
shorter than the interparticle separation, the neutrino only
resolves one nucleon at a time. This corresponds to quasi-
elastic scattering where the cross section per nucleon in the
medium is the same as in free space.

One can calculate the static structure factor from the
neutron-neutron correlation function which is defined as fol-
lows:

gsr d =
1

Nrn
o
iÞ j

N

kC0udsr − r i jduC0l. s25d

The two-neutron correlation function “asks”sand “answers”d
the following question: if one “sits” on a neutron, what is the

probability of finding another one a distanceur u away. The
correlation function is normalized to 1 at large distances,
gsr →`d=1; this corresponds to the average density of the
medium. The static structure factor is obtained from the Fou-
rier transform of the two-neutron correlation function. Com-
paring with Eq.s23d this yields

Ssqd = 1 +rnE d3rfgsr d − 1gexpsiq · r d. s26d

The i = j terms in Eq.s23d gives the leading 1 in the above
expression, while the elastic form factorukC0ur̂sqduC0lu2

yields the −1 in the integrand of Eq.s26d.
To obtain the transport cross section we proceed, as in Eq.

(10), to integrate the angular-weighted cross section
ds /dVs1−cosud over all angles, that is,

st =
1

N
E dV

ds

dV
s1 − cosud = kSsEndlst

0. s27d

Note that the free neutron crossst
0 follows directly from Eq.

s14d in the limit of ca;0,

st
0 =

GF
2En

2

6p
. s28d

Further, the angle averaged static structure factor has been
defined as follows:

kSsEndl ;
3

4
E

−1

1

dxs1 − x2dS„qsx,End…, s29d

where the static structure factorSsqd depends on neutrino
energy and angle through Eq.s20d, that is, q2=2En

2s1−xd
with x=cosu. Using Eq.s26d and switching the orders of
integration, this can be written as

kSsEndl = 1 +
4prn

En
2 E

0

`

dr fs2Enrdfgsrd − 1g. s30d

Note that the following function has been introduced

fstd = 72scos t + t sin t − 1d/t4 − 6s5 cost + t sin t + 1d/t2.

s31d

Finally, the transport mean free pathslt=1/strnd is given by

lt
−1 = st

0rnkSsEndl. s32d

In this way kSsEndl describes how coherence modifies the
mean free path. In the next section, simulation results for the
two-neutron correlation function, the static structure factor,
and the angle averaged static structure factor will be pre-
sented.

IV. RESULTS

In this section we present our simulation results. As an
example of a typical low-density condition we consider a
subnuclear density ofr=0.01 fm−3 (about 1/16 of normal
nuclear density), a temperatureT=1 MeV, and an electron
fraction of Ye=0.2. Proto-neutron stars have electron frac-
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tions that start out near 1/2 and drop with time, soYe=0.2
represents a typical neutron-rich condition. Monte Carlo
simulations for a total ofA=4000 particlessN=3200,Z
=800d have been performed. Because of the many competing
minima, a significantly larger system would take an unrea-
sonably long time to thermalize on a modest work station
(see details below).

The simulation volume for the above conditions consists
of a cube of lengthL=73.7 fm. While this value is larger
than the electron screening lengthl=26.6 fm[see Eq.(4)], it
is not sufficiently larger. Indeed, to minimize finite-size ef-
fects in a simulation with periodic boundary conditions one
would like expf−L / s2ldg!1. Clearly, this condition is not
adequately satisfied. Therefore, in an effort to minimize the
contamination from finite-size effects, we reduce the electron
screening length—arbitrarily—to the following value:

l ; 10 fm. s33d

This value forl is adopted hereafter for all of our simula-
tions ssee also Ref.f18gd. This smaller screening length de-
creases slightly the Coulomb interaction at large distances,
which could promote the growth of slightly larger clusters.
However, we do not expect this decrease inl to qualitatively
change our results. We note thatl is still larger than the
typical size of a heavy nucleus.

By far, the most time consuming part of the simulation is
producing suitable initial conditions. The simulations are
started with theA=4000 nucleons randomly distributed
throughout the simulation volume. Next, we perform a total
of about 325 000 Metropolis sweeps starting at the higher
temperature ofT=2 MeV and reducing the temperature until
eventually reaching the target temperature ofT=1 MeV, in a
“poor’s-man” attempt at simulated annealing. Note that a
Metropolis sweep consists of a single trial move for each of
the A=4000 particles in this system. We call this procedure
cooking the pasta.

Results in this section are based on a statistical average of
the final 50 000 sweeps. This yields a potential energy of
−5.385±0.003 MeV/nucleon. A sample configuration of the
4000 particles is shown in Fig. 2. The protons are strongly
correlated into clusters(“nuclei”) as are a large number of
neutrons. In addition, there is a low-density neutron gas be-
tween the clusters. At this density it may be reasonable to
think of the system as a high-density liquid of “conven-
tional” nuclei immersed in a dilute neutron gas. A great vir-
tue of the simulation is that one does not have to arbitrarily
decide which nucleons cluster in nuclei and which ones re-
main in the gas. These “decisions” are being answered dy-
namically. Further, one can calculate modifications to nuclear
properties due to the interactions. In a future work we plan to
compare our simulation results to some conventional nuclear
models.

Protons moving between clusters face a Coulomb barrier.
This may inhibit the thermalization process and with it the
formation of larger clusters. This could increase our results
for Ssqd. To test the thermalization of the pasta, our Metropo-
lis Monte Carlo configuration was evolved further via mo-
lecular dynamics for a total time of 46 500 fm/c. The

molecular-dynamics calculations will be described in future
work. This led to an increase in the peak ofSsqd by only
about 10%. Although these molecular dynamics results did
not reveal a large secular change in the system with time, we
caution that our cooking procedure may not have converged
to the true thermal-equilibrium state. The static structure fac-
tor Ssqd may still change with additional Metropolis Monte
Carlo or molecular-dynamics evolution.

The neutron-neutron correlation functiongsrd is displayed
in Fig. 3. The two-neutron correlation function is calculated
by histograming the relative distances between neutrons. The
correlation function is very small at short distances because
of the hard core in ourNN interaction. At intermediate dis-
tancesgsrd shows a large broad peak betweenr =2 fm and
r .10 fm. This corresponds to the other neutrons bound into
a cluster. Superimposed on this broad peak one observes
three(or four) sharper peaks corresponding to nearest, next-
to-nearest, and next-to-next-to-nearest neighbors. These
structures describe two-neutron correlations within the same
cluster. At larger distances, between 10 and 20 fm, the cor-
relation function shows a modest dip below 1, suggesting

FIG. 2. (Color online) Monte Carlo snapshot of a configuration
of N=3200 neutrons(light gray circles) and Z=800 protons(dark
red circles) at a baryon density ofr=0.01 fm−3, a temperature of
T=1 MeV, and an electron fraction ofYe=0.2. 3D imaging cour-
tesy of the FSU Visualization Laboratory.

FIG. 3. Neutron-neutron correlation function at a temperature of
T=1 MeV, an electron fraction ofYe=0.2, and a baryon density of
r=0.01 fm−3. These results show large finite-size effects beyondr
=L /2=36.9 fm.

C. J. HOROWITZ, M. A. PÉREZ-GARCÍA, AND J. PIEKAREWICZ PHYSICAL REVIEW C69, 045804(2004)

045804-6



that the attractiveNN interaction has shifted some neutrons
from larger to smaller distances in order to form the clusters.
Alternatively, Coulomb repulsion makes it less likely to find
two clusters separated by these radii. Finally, there is an
abrupt drop ingsrd at a distance corresponding to half the
value of the simulation lengthsr =L /2=36.9 fmd caused by
finite-size effects. We note that under our assumptions of
periodic boundary conditions,gsrd is identically zero for
r .Î3L /2.

Increasing the density can change the nature of the pasta.
Figure 4, shows a sample configuration of 4000 particles at a
density of 0.025 fm−3. Note that although the density has
increased, both the temperature and the electron fraction
have remained fixed atT=1 MeV andYe=0.2, respectively.
At a density ofr=0.025 fm−3 (about 1/6 of normal nuclear-
matter saturation density) the spherical clusters of Fig. 2 start
to coalesce intocylindrical-like structures. The system ap-
pears to be segregated into high-density regions of cylindri-
cal nuclei immersed in a dilute neutron gas. As we continue
to perform additional simulations, high-quality renderings of
nucleon configurations for a variety of densities, tempera-
tures, and electron fractions will be developed.

To compute the static structure factorSsqd, one numeri-
cally transforms the two-neutron correlation function, as in-
dicated in Eq.(26). However, because of finite-size effects
we truncate the integral atr =L /2 and assumegsrd;1 for
r .L /2. This procedure yields the results displayed in Fig. 5.
There is a modest peak inSsq=0d due to density fluctuations.
Of course, the number of neutrons in our simulation remains
fixed, yet fluctuations can take neutrons across ther =L /2
cutoff and these fluctuations will contribute to the value of
Ssqd at q=0.

The error bars in Fig. 5 are statistical only, based on the
last 50 000 sweeps. We caution that there may be finite-size
effects at small momentum transfers. The box size for our
simulation atr=0.01 fm−3 is L=73.7 fm. This corresponds
to a minimum momentum transfer of

qmin <
2p

L
= 0.085 fm−1. s34d

Momentum transfers smaller thanqmin correspond to wave-
lengths larger than the simulation volume, so our results

for q&2qmin may be sensitive to finite-size effects. In-
deed, forq&2qmin the static structure factor was observed
to change significantly from one Metropolis run to the
next. To indicate the sensitivity of our results to finite-size
effects, Fig. 5 displays the static structure factor in theq
ø2qmin region with dotted error bars. Note that the point
q=qmin has been signaled out in Fig. 5 to indicate that it is
more stable from one Metropolis run to the next, because
the weak vector-charge densityfEq. s18dg evaluated atq
=qminq̂ is invariant under a translation of the system by a
distanceL along q̂.

The static structure factor displays a large peak atq
<0.3 fm−1, corresponding to coherent scattering from many
neutrons bound into a single cluster. At smaller momentum
transfers,q<0.2 fm−1, Ssqd decreases because of ion screen-
ing. Here the neutrino wavelength is so long that it probes
multiple clusters. These other clusters screen the weak
charge and reduce the response. At momentum transfers
larger thanq<0.3 fm−1, the static structure factor decreases
with increasingq. This is the effect of the cluster form factor.
As the momentum transfer increases the neutrino can no
longer scatter coherently from all the neutrons in a cluster
because of the cluster’s extended size. Thus, the observed
peak inSsqd develops as a trade-off between ion screening,
which favors largeq, and the cluster form factor, which fa-
vors smallq.

In summary, one can divide the response of the pasta into
the following regions. At low-momentum transferssq
&0.2 fm−1d the response is dominated by ion screening and
density fluctuations. For momentum transfers in the region
q=0.2–0.4 fm−1 one observes coherent scattering from the
pasta. At the larger momenta ofq=0.4–1 fm−1, the falling
response reflects the pasta form factor. Finally, the large mo-
mentum transfer region aboveq=1 fm−1 corresponds to
quasielastic scattering from nearly free neutrons, asSsq
→`d=1 [see Eq.(24)].

The angle averaged structure factorkSsEndl [defined in
Eq. (29)] is shown in Fig. 6. Note that the integral in Eq.(30)
was also truncated atr =L /2 because of finite-size effects.

FIG. 4. (Color online) Monte Carlo snapshot of a configuration
of N=3200 neutrons(light gray circles) and Z=800 protons(dark
red circles) at a baryon density ofr=0.025 fm−3, a temperature of
T=1 MeV, and an electron fraction ofYe=0.2. 3D imaging cour-
tesy of the FSU Visualization Laboratory.

FIG. 5. Static structure factorSsqd vs momentum transferq at a
temperature ofT=1 MeV, an electron fraction ofYe=0.2, and a
baryon density ofr=0.01 fm−3. The error bars are statistical only.
Finite-size effects may be important at smallq as indicated by the
dotted error bars.
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The averaged structure factor shows a broad peak for neu-
trino energies near 40 MeV. Indeed, the transport cross sec-
tion is significantly enhanced by coherence effects for neu-
trino energies from about 20 to 80 MeV. The impact of this
coherence on the neutrino mean free path[Eq. (32)] is dis-
played in Fig. 7. Also shown in the figure is the mean free
path obtained by ignoring coherence effects by setting
kSsEndl=1 in Eq. (32). Coherence significantly reduces the
mean free path for neutrino energies in the rangeEn

=15–120 MeV. Again, finite-size effects may be important
for low neutrino energies.

V. CONCLUSIONS

Neutron-rich matter is expected to have a complex struc-
ture at subnuclear densities. Complex pasta phases may re-
sult from frustration through the competition between an at-
tractive nuclear interaction and the Coulomb repulsion.
Neutrino interactions with the pasta may be important for

properties of core-collapse supernovae, such as its electron
fraction.

In this work we have employed a semiclassical model to
simulate the dynamics of the pasta phase of neutron-rich
matter. Although our model is very simple, it nonetheless
retains the crucial physics of frustration. Using a Metropolis
Monte Carlo algorithm, the partition function was computed
for a system of 4000 nucleons at a given temperature and
density. We find that almost all protons and most of the neu-
trons cluster into nuclei that are surrounded by a dilute neu-
tron gas.

Observables computed in our simulations included the
neutron-neutron correlation function. This calculation was
implemented by constructing a histogram of all relative neu-
tron distances. The two-neutron correlation functiongsrd
gives the probability of finding a neutron at a distancer away
from a reference neutron. A large peak ingsrd at intermediate
distancessr =2–10 fmd is found. This reflects the presence
of the other neutrons in the cluster.

The static structure factorSsqd, a fundamental observable
obtained from the Fourier transform of the two-neutron cor-
relation function, describes the degree of coherence for
neutrino-nucleon elastic scattering. For small momentum
transfers,Ssqd describes density fluctuations and ion screen-
ing. In this region the neutrino wavelength is longer than the
average intercluster separation, thereby allowing other clus-
ters to screen the weak charge of a given cluster. At momen-
tum transfers of<q=0.2–0.4 fm−1, the static structure factor
develops a large peak, associated to the coherent scattering
from all the neutrons in the cluster. This coherence is respon-
sible for a significant reduction in the neutrino mean free
path. To our knowledge, these represent the first consistent
calculation of the neutrino mean free path in nonuniform
neutron-rich matter.

However, much remains to be done. First, one needs to
focus on the thermalization of our simulations. It is difficult
to ensure that the system has reached thermal equilibrium
because the Coulomb barrier hinders the motion of indi-
vidual protons. Second, one must further investigate the im-
pact of finite-size effects and the simple treatment of long-
range Coulomb interactions on our simulations. This may
require simulations with larger numbers of particles, as it is
difficult to fit a long-wavelength neutrino into the present
simulation volume. Third, while we have focused here on the
vector part of the weak-neutral-current response, because it
can be greatly enhanced by coherence, one should extend the
study to the axial-vector(or spin) response, as it dominates
the scattering when it is coming from uncorrelated nucleons.
Further, one should also calculate charged-current interac-
tions in nonuniform matter. Finally, in the present contribu-
tion no effort was made to optimize theNN interaction.
While it may be advantageous to do so, anyaccurately cali-
brated interaction must retain the essential features of frus-
tration. Moreover, more sophisticated interactions that in-
clude momentum and/or density dependence will
significantly increase the computational demands. At present,
we are checking our results against more sophisticated simu-
lations using molecular dynamics, studying finite-size effects
in larger simulations, exploring the temperature and density

FIG. 6. Angle averaged static structure factorkSsEndl versus
neutrino energyEn at a temperature ofT=1 MeV, an electron frac-
tion of Ye=0.2, and a baryon density ofr=0.01 fm−3. The error
bars are statistical only, see text.

FIG. 7. Transport mean free pathlt for nm or nt vs neutrino
energyEn at a baryon density ofr=0.01 fm−3, a temperature ofT
=1 MeV, and an electron fraction ofYe=0.2. The solid line and
error bars include full coherence effects while the dashed line is
obtained by usingkSsEdl=1 in Eq. (32). Error bars are statistical
only. Finite-size effects may be important for lowEn as indicated by
the dotted error bars.
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dependence of our results, and calculating the dynamical re-
sponse. These results will be presented in a future contribu-
tion [34].
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