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Dense and hot matter within the nonlinear Walecka model
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In this work we study the effects of temperature on the equations of state obtained within a relativistic
model, with and withoutB equilibrium over a wide range of densities. We also compare the results of the
equation of state, effective mass, and strangeness fraction for the TM1, NL3, and GL sets of parameters. We
have checked that TM1 and NL3 are not appropriate for the description of neutron and protoneutron stars.
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I. INTRODUCTION consider them in chemical equilibrium in neutral matter as in

Understanding the properties of nuclear matter at bottRef- [10]. We work in the framework of the NLWM§],
normal and high densities is of crucial importance in explainvhere hadrons are coupled to scalar-isoscalarvector-
ing the appearance of protoneutron and neutron stars aftésoscalaiV#, and vector-isovectdr* meson fields. Tempera-
the supernova explosion and the formation of transiron eleture effects are taken into account by including the Thomas-
ments in nuclear reactions. Recent experiments with unstableermi distribution function in the EOS. We have studied the
nuclear beams at RIKEN and experiments with relativisticEOS up to 20 MeV based on the temperature expected in the
heavy ions taking place at RHIC are potential tools in deterinterior of protoneutron stars, which is, at most, 30 MeV
mining which are the appropriate equations of si@®S  [11]. The obtained EOS are then used in solving the Tolman-
that are able to describe hot and dense matter. Oppenheimer-Volkoff(TOV) [12] differential equations in

Moreover, the structure of compact stars is characterizedrder to calculate the compact star properties. The best
by its mass and radius, which are obtained from appropriatehoice for the parameter set is discussed.
EOS at densities of about one order of magnitude higher than
those observed in ordinary nuclei. EOS can be derived either
from relativistic or potential models. The latter ones are nor- Il. THE NLWM WITHIN THE THOMAS-FERMI
mally developed within a nonrelativistic formalisfi] and APPROXIMATION AT FINITE TEMPERATURE
some of them include also a three-body fof2e3] in order
to solve the causality problem and to improve the description The Lagrangian density used in this work reads
of the symmetry energy. We have opted to work with rela- r=r tr 1)
tivistic models and hence it is important to check the validity nucleons™ ~mesons
of these models at finite temperature and different densitiesvhere
ranging from normal nuclear saturation density up to ten
times this value. _ DR S B

In Ref. [4], the authors have investigated EOS with arbi- E”UC'E"”S_E{Y“(W 9,V 2" b > M ]lp’ @
trary fixed proton fractions at finite temperature and also
with the inclusion of equilibrium in order to provide ap- 1 1 1 1
propriate EOS for supernova explosions and neutron starsCmesons 5((9M¢t9“¢‘ mé¢?) — §K¢3— Z’\d’“‘ ZQ’“’QW
The authors have claimed that the T/ parameter set is a ' '
good choice because it reproduces the available data of
stable and unstable nuclei and, in addition, yields an equation
of state within a mean field approach which is similar to the
one obtained with the relativistic Brueckner-Hartree-Fock + }mzb v 3)
theory[5]. Note that TM1 requires a nonlinearterm in the PR
Lagrangian density. .

In this work we obtain the EOS for dense and hot mattelwIth

1 1 1
+ 5mg(VMVM)2 + Egg;‘,(vMVMV - ZBW B

with three different parameter sets of the nonlinear Walecka Q,=dV,-dV,, (4)
model (NLWM) [6,7], namely, TM1[4], NL3 [8], and GL e .
[9]. The first two have been proposed to describe nuclei B,,=d,b,~3,b,~g,b, X b,), (5)

ground-state properties, and the GL parametrization was pro-

posed to describe the equation of state of neutron stars. Wehere 7 is the isospin operatog,, g,, andgs are the cou-
have opted to use these three sets of parameters because tpéigg constants of the nucleons to the mesdis=M —ggp

are widely used in the recent literature. We first fix the protoris the effective mass of the nucleoms;, m,, andm, are the
fractions and consider only matter with protons and neutrongnasses of the mesons; ard\, and¢ are the self-interaction

in the same spirit as Ref4]. Then we include the baryonic coupling constants, provided by the sets of parameters we
octet and the lightest leptons in our Lagrangian density andse in this work. The values of the parameters and the result-
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TABLE |. Parameter sets used in this work. All masses are given in MeV.

Force M m m, m, Os 9, g, xIM N 3

TM1 938.0 511.198 783.0 770.0 10.0289 12.6139 9.2644 3.04 3.7098  0.0169
NL3  939.0 508.194 782501 763.0 10.217 12.868 8.948 4.377173.31 0.0
GL 938.0 511.198 783.0 770.0 8.188 9.197 9.732 4546 193.110 0.0

ing bulk properties are displayed in Tables | and Il, respec- Q=E-TS- > wN; (8)
tively. From the Euler-Lagrange formalism we obtain the n
equations of motion for the nucleons and for the meson

fields. By replacing the meson fields by their mean values: Where u; is the chemical potential of nuclean N; is the
baryon number of nucleon

i=p,n

() = () = ¢bo, NFstfPi, (9)
(V) = (V) =Vo, and S is the classical entropy of the Fermi gas, which is
given by
<bo> = <b0> = bO! d3rd3p fi+
, , S=-y 5| firl 7
the equations of motion read i=pnd  (27) 1-Tis
K 2 A 3 0s +In(1 —f;,) + (fis = f )} (10
= - — + = i+ i+ i-) |-
$o ng‘f’o 6m§¢0 mgPSa
The expression of the thermodynamical potential in the
¢ g Thomas-Fermi approximatio(TFA) (for a more detailed
Vo=— —500(Vo)* + ~5pg, calculation please refer to R€fl3]) becomes
6m; m
1
Q=fd3r(§[(V¢>)z—(VVo)Z—(Vbo)Z]-Vef>, (13)
=%
bO - 2P31 (6) i
2mj, with
1 2 2 2
where Ver=- E[mgcﬁz TR m;Ve - 2 50Vo
1( , M 3
= — dp—(fi, +f.0), dp €T
Ps Vi%nﬂsz p—(fi+ 1) - ibg} +7T2J§[In(1+e( 1)
1 +In(1 +e M, (12)
[ 2 _ H—-
Pi=2 f pedp(fi. - fio) (i=pn) @) In the static, homogeneous nuclear matter assumption we
have made, the termsand v; are given, respectively, by
andpg andp; are defined apg=py+p, andps=py=pn; vis  =\Vp*+ M2 andwio=pu;—g,Vo—9,73bo, Wherer; is the appro-

the isospin degeneracy afd is the distribution function for priate isospin projector for the baryon charge states.
particles and antiparticles, respectively, whose expression As mentioned above, temperature effects are considered
will be shown later. here by introducing the Thomas-Fermi approximation, where
In order to treat the system as a Fermi gas, one needs fmarticles and antiparticles contribute for the energy of the
work with the thermodynamic potential, which is defined assystem. For a system in equilibrium, the thermodynamical
potential is stationary.We can therefore minimize it with re-

TABLE II. Nuclear matter properties for the parameter sets usedPect to the distribution functions, leaving fixed the meson

in this work. fields:
AL =0, 1#] (13
NL3 [8] T™1 [4] GL [9] It bt fudoVobo ’
B/A 16.3 16.3 15.95 which leads to
po(fm™3) 0.148 0.145 0.145 1
K(MeV) 272 281 285 fis = T4 dlemom- (14
Ssym(MeV) 37.4 36.9 36.8
M /M 0.6 0.63 0.77 In the TFA, the energy density and the pressure are, there-

fore,
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FIG. 1. Binding energy versus relative baryonic density at dif-

ferent temperaturesY,=0.2 (solid curve$ and Y,=0.3 (dotted
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FIG. 2. Energy density curves for relative baryonic density in
the NLWM at 10 MeV, with the TM1 and NL3 parameter sets.

oney. The couple of curves reaching higher values stand for thdrom top to bottomY,=0.0, 0.3, and 0.5. The dotted curves have
EOS at 20 MeV; lower ones for EOS at 10 MeV. The TM1 set hasbeen obtained with NL3 and solid ones with TM1.

been used here.

mﬁ
2 2

+ fgu(vo)4+_£b2+_¢o+ ¢o 4¢é (15)

and
y p'dp m o, 4
P= 6772-2 ’p—(fw"'f )+_V +_§gu(Vo)
i=p,n
ﬂzg 2 m¢ 2 K3 N4
5 bo“?‘ﬁo_gﬁbo_ﬂ‘f’o- (16)

IIl. INCLUDING THE BARYONS OF THE OCTET

on more sophisticated featurgkl, 15, where the hyperon
coupling constants are constrained by the binding ofAhe
hyperon in nuclear matter, hypernuclear levels, and neu-
tron star masses and the couplings to theand = are
assumed to be equal to those of théhyperon. However,
we are mainly interested in verifying the effects of the
parameters which play a primary role in describing
nuclear matter. For this reason we have used just one of
the possible hyperon-meson coupling constants.
Mp=Mg-gssp, Where Mg is the mass of baryoB and
m,, m,, andm are the masses of the mesons. The equations
of motion in this case read

I SR SR N
Po= 2m§¢0 6m§¢0+§ méXsBpsBy

¢ Oy
Vo=- G—migﬂ(Vof + % %XUBPB,

In this section we include the eight lightest baryons and

the lightest leptons in our treatment, as they are expected to bo=
be found at large values of density and temperature. The 0~ 5

Lagrangian density with the baryonic octet reads
L= 2 %|: 7M<i&’u_ 9,8V* — géLB; bM) - M*B:| B
B

} 22 _i 3_1 4__ v
+ 2(&M¢ﬁ“¢ ms¢©) 3!K¢ 4!7\¢ 4Q,qu'u

+ mUV VA + —§gU(V V"“)z——B B

1 _
+§m§bﬂ-b“+l 2 _l/,l(iyﬂaﬂ—mlm, (17)
=e ,u

Where 9,8~ XvBYy» ng:Xpngv and OsB= Xsa0s are the cou-
pling constants of baryonB” to the mesons. We use the

9
> XpBT3BPB: (18
m
p
where
1400
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nucleon to meson couplings equal to 1 and the hyperon to

meson couplings equal ta2/3 as suggested in Refs.

FIG. 3. Energy density curves in the NLWM at=10 (solid

[11,14] throughout this work. This choice is based online) and T=20 MeV (dasheg with the TM1 parameter set for
quark counting arguments. There are other choices basetifferent proton fractions. From top to botto;=0.0, 0.3, and 0.5.
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FIG. 4. Energy density in the NLWM in the presence of the octet at different temperature values, with different parameter sets.

1 Mg M30= MUZ0= A = Mns
psB:?J pzdp_B(fB++fB—), ¥
€

1 My~ = Mz= = MnsMe
P = e f pPdp(fe. = fa-).
The distribution function for the baryons is
1

Ms+= Mp = Mn ™ M

for = T diearrporm® (19
. . = e 20
where eg and vg, are given, respectively, by Fu= He (20)
s The expressions for the energy density and the pressure in
eg=\p~+ Mg this model at finite temperature read
and
vgo = Mg — 9,8Vo — 9,8 73800- :i 2400 2
8o = M5~ 9,8V ~ 9,873800 £==2 | pPdpVp?+MZ (fg, + fg)
ar
As discussed above, the star is treated here in its equilibrium .
era, i.e., the system is considered to have attained a stage ’ > ggvv4
where decays are forbidden. After the deleptonization takes 2 pPdpVp? + mP(fy_+ 1) + _V +

place, the entropy is maximum and the temperature increases

again, as shown in Ref17] where mixed and quark phases ) 4

have also been considered. If only hadrons are considered, b + _4’0 d’o 2_4¢° (21)
the temperatures can be even higher. Since the system has

already been deleptonized, the neutrino chemical potentials

are zero. Hence, we hayeue,z,uvﬂ,:o and and

1
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FIG. 5. Effective mass curves for nucleons in the model with different proton fractigr0.0 andY,=0.5, with parametrizations NL3
(@), and TM1(b), at T=0 MeV (highen andT=20 MeV (lower values.
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FIG. 6. Effective mass curves for nucleons in the model with the octet baryons, with parametrizatio(tsoNtB), TM1, and GL(top),
at (a) T=0 MeV and(b) T=20 MeV.

p*dp that temperature increase acts on star matter so as to make
*2(f5+ +fg-) impossible bound states faf,=0.2 at 10 MeV, whereas it is
unbound at 20 MeV. This behavior has already been found
p’dp 2 & m2 in Ref. [16]. Although in different scales one can also com-
+ —2 f —(ﬁ_ +f,) + VS+ Z2U\8+ —2h2  pare these curves with the ones shown in Réffand verify
vp 2 24 2 that their trend is the same.
me p N In Fig. 2 we plot the energy density curves for TM1 and
- 25—~y - — o, (22)  NL3, with different proton fractions at finite temperature. We
can see that NL3 makes the EOS considerably harder than
TM1, as the baryonic density increases, a confirmation of
what was stated in Ref4]. In Fig. 3 we have used TM1 to

P= 3772 f\p

where the distribution function for the leptons and antilep-

tons are obtain the energy densities at 10 and 20 MeV. From Figs. 2
1 and 3 we conclude that the EOS vary more with the param-
fle= 1 +dE@rmim’ (23) etrization than with temperature, within the temperature

range we have studied.
with g=1p?+m?, x is the chemical potential of lepton Now with the inclusion of the octeftherefore withg
“1,” and my its mass(m,=0.551 MeV for theelectron and equilibrium), the energy density curves for the three param-

m,=106.55 MeV for the muon eter sets are shown in Fig. 4. The values are quite similar for

the parameter sets, with slight hardening effects on the EOS

IV. A COMPARATIVE STUDY OF THE TM1, GL, AND NL3 due to temperature. Note that the NL3 and GL curves are
SETS OF PARAMETERS coincident up to 3.b/py. One can also see that NL3 stops

converging before TM1 which also stops converging. The
In Fig. 1 we show the binding energies for two values ofreason for this fact is explained as follows. The effective
proton fraction(Y,=0.2 andY,=0.3), at temperatures 10 and mass curves for the nucleons at different proton fract{oos
20 MeV. As expected, higher values of proton fractionsg equilibrium imposey at different temperature values, are
bring the binding energy down to lower values. We see herghown in Fig. 5. These figures are to be compared with the
ones displayed in Fig. 6, where the octet has been consid-
1 n - - - ered. From the values of effective masgesth the octet
baryons,B equilibrium) given in Fig. 6 we can see that they
are dependent on the temperature, but strongly dependent on
the parameters used. We also conclude that GL provides a
satisfactory description of the nuclear matter for a wide
range of densities; TM1 fails to describe the effective mass if
hyperons are included, as the baryonic density comes to
~6.5 times the nuclear saturation density; and NL3 also fails
~3.5 times the saturation density. The curves for higher
temperatures are very similar 30, so we do not show
them here. Note that TM1 and NL3 only fail because bary-
ons other than protons and neutrons were included, as they
o/o do not present zero effective masses in Fig. 5. In Figs. 7 and
8 we plot the particle population of all baryons and leptons
FIG. 7. Particle populatioY;=p;/pg, i= baryons and leptons at for T=0, 10, and 20 MeV, respectively. We can easily see
zero temperature. that electrical neutrality is conserved: positively charged par-
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FIG. 8. The same as in Fig. 7 foa) T=10 MeV, (b) T=20 MeV.

ticles have their population increased as negative hyperorestar or collapses to a black hole. Spherically symmetric and
appear. Heaviest hyperons come about at higher densities, sigtic star assumptions can be made on Einstein’s general
expected—inner regions of neutron stars are presumablelativity equations, leading to the Tolman-Oppenheimer-
populated by heavier baryons. Hyperons turn up at lowekolkoff equations[12], which are
densities as temperature increases and more hyperons show

up. The heaviest baryon of the octgf appears already at dpP G[E+P][M + 47r3P]

T=10 MeV. All plots of particle population that we show -y r-26M) (24)
here have been obtained with the TM1 set. For densities
higher than 6.p/p,, only the GL parametrization can be
used. dMm
Concerning the strangeness fraction shown in Fig. 9, dif- ar = 4mr2g, (25)

ferent parameter sets provide different results for its values.
The strangeness fraction, defined in Rdf7] among other . o
papers, reaches almost 1/3 for the GL parametrization Ayith _G as the gravitational constant ahr) as the_enclosed
10p/ p, (density of the interior of a protoneutron staFM1 gravnaponal mass. We have used1. For a certain EOS at
and NL3 provide remarkably higher values of strangenes& C€rtain temperature, the TOV equations are integrated from
fraction for lower densities. For all three sets the values hav&€ 0rigin for a set of arbitrary choices of central density, so
a slight increase with temperature. We conclude that strangdat they define a one-parameter family of stars. The maxi-
ness fractions are more sensitive to the parametrization thdRU™M Mass of a neutron star, along with the energy density
to temperature. value in its core, as a function of central density, at different
We finally discuss how different parametrizations can b€mperature values and with different parametrizations is
used when studying warm stellar objects. The importance gfoWn in Table lll. We see that the maximum mass either
such analysis lies chiefly on finding out maximum magees NCreases or attains a steady value with the temperature val-

radiug of compact stars, which decides whether it remains a&/€S Used. Itis also worth checking that our values of limiting
mass are within the observed values, which lie between

0.3 . . . : 1.AMg and 1.8. At this point it is important to empha-

size that the NL3 values were included just for the sake of
025 ¢ comparison since the central energy of the stars are be-
s | lieved to be much higher than the value its EOS can pro-
) vide. Moreover, the radius of the maximum mass star is
o 015 | sensitive to the low density EOS. For accurate results, the
numbers at very low densities had to be improved. For
01 f
TABLE Ill. Maximum masses, radius, and energy density in a
0.05 1 neutron star sequence. Each energy density value shown above cor-
0 responds to its relevant limiting mass case.
0
p/po Star profile Mmaxd Mo E(fm™)
FIG. 9. Strangeness fractions at 10 and 20 MeV for the thred €mperaturéMeV) 0 10 20 0 10 20
sets of parameters. Left curves are for NL3, center ones for TM1JTM1 137 140 140 499 429 447
and right ones for GL. The lower values for each parametrizatiorNL3 131 132 139 242 248 248
stand for the EOS in the NLWM at 10 MeV; higher values for g 173 1.75 175 599 587 6.18
20 MeV.
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this reason we do not display the values we have obtainettm in 8 equilibrium. In this case the resulting EOS could be
for the maximum radii. tested by solving the TOV equations and comparing the star
properties with the expected one; due to the limitations on
the convergence of NL3 and TM1 parameter sets the star

V. CONCLUSION central energy came up lower than with the GL force. The

In this work we have studied the EOS for three differentcOnclusion of the present work which refers to the GL pa-
parametrizations of the NLWM under two different assump_rameter set as the only choice for EOS gmstmg at densities
tions. First of all, just protons and neutrons were considereJ)""rger than 6'5/.’)0 ha; alrgady been ysed in REK7], where
and the proton fraction was fixed. The results were compareﬂq')“ad phases in the interior of hybrid stars were built.
for different temperatures. We have checked that within the
range of temperatures studied, the results vary more with
different choices of the parameter than with temperature. We This work was partially supported by CNRBrazil) and
have then included the baryonic octet and considered a sySAPES(Brazil) (A.M.S.).
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