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In this work we study the effects of temperature on the equations of state obtained within a relativistic
model, with and withoutb equilibrium over a wide range of densities. We also compare the results of the
equation of state, effective mass, and strangeness fraction for the TM1, NL3, and GL sets of parameters. We
have checked that TM1 and NL3 are not appropriate for the description of neutron and protoneutron stars.
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I. INTRODUCTION

Understanding the properties of nuclear matter at both
normal and high densities is of crucial importance in explain-
ing the appearance of protoneutron and neutron stars after
the supernova explosion and the formation of transiron ele-
ments in nuclear reactions. Recent experiments with unstable
nuclear beams at RIKEN and experiments with relativistic
heavy ions taking place at RHIC are potential tools in deter-
mining which are the appropriate equations of state(EOS)
that are able to describe hot and dense matter.

Moreover, the structure of compact stars is characterized
by its mass and radius, which are obtained from appropriate
EOS at densities of about one order of magnitude higher than
those observed in ordinary nuclei. EOS can be derived either
from relativistic or potential models. The latter ones are nor-
mally developed within a nonrelativistic formalism[1] and
some of them include also a three-body force[2,3] in order
to solve the causality problem and to improve the description
of the symmetry energy. We have opted to work with rela-
tivistic models and hence it is important to check the validity
of these models at finite temperature and different densities,
ranging from normal nuclear saturation density up to ten
times this value.

In Ref. [4], the authors have investigated EOS with arbi-
trary fixed proton fractions at finite temperature and also
with the inclusion ofb equilibrium in order to provide ap-
propriate EOS for supernova explosions and neutron stars.
The authors have claimed that the TM1[4] parameter set is a
good choice because it reproduces the available data of
stable and unstable nuclei and, in addition, yields an equation
of state within a mean field approach which is similar to the
one obtained with the relativistic Brueckner-Hartree-Fock
theory[5]. Note that TM1 requires a nonlinearv term in the
Lagrangian density.

In this work we obtain the EOS for dense and hot matter
with three different parameter sets of the nonlinear Walecka
model (NLWM ) [6,7], namely, TM1[4], NL3 [8], and GL
[9]. The first two have been proposed to describe nuclei
ground-state properties, and the GL parametrization was pro-
posed to describe the equation of state of neutron stars. We
have opted to use these three sets of parameters because they
are widely used in the recent literature. We first fix the proton
fractions and consider only matter with protons and neutrons,
in the same spirit as Ref.[4]. Then we include the baryonic
octet and the lightest leptons in our Lagrangian density and

consider them in chemical equilibrium in neutral matter as in
Ref. [10]. We work in the framework of the NLWM[6],
where hadrons are coupled to scalar-isoscalarf, vector-

isoscalarVm, and vector-isovectorbWm meson fields. Tempera-
ture effects are taken into account by including the Thomas-
Fermi distribution function in the EOS. We have studied the
EOS up to 20 MeV based on the temperature expected in the
interior of protoneutron stars, which is, at most, 30 MeV
[11]. The obtained EOS are then used in solving the Tolman-
Oppenheimer-Volkoff(TOV) [12] differential equations in
order to calculate the compact star properties. The best
choice for the parameter set is discussed.

II. THE NLWM WITHIN THE THOMAS-FERMI
APPROXIMATION AT FINITE TEMPERATURE

The Lagrangian density used in this work reads

L = Lnucleons+ Lmesons, s1d

where

Lnucleons= c̄FgmSi]m − gvV
m −

gr

2
tW ·bmD − M*Gc, s2d

Lmesons=
1

2
s]mf]mf − ms

2f2d −
1

3!
kf3 −

1

4!
lf4 −

1

4
VmnVmn

+
1

2
mv

2sVmVmd2 +
1

4!
jgv

4sVmVmd2 −
1

4
Bmn ·Bmn

+
1

2
mr

2bm ·bm s3d

with

Vmn = ]mVn − ]nVm, s4d

Bmn = ]mbn − ]nbm − grsbm 3 bnd, s5d

wheretW is the isospin operator;gn, gr, andgs are the cou-
pling constants of the nucleons to the mesons;M* =M −gSf
is the effective mass of the nucleons;ms, mv, andmr are the
masses of the mesons; andk, l, andj are the self-interaction
coupling constants, provided by the sets of parameters we
use in this work. The values of the parameters and the result-
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ing bulk properties are displayed in Tables I and II, respec-
tively. From the Euler-Lagrange formalism we obtain the
equations of motion for the nucleons and for the meson
fields. By replacing the meson fields by their mean values:

kfl ; kfl = f0,

kV0l ; kV0l = V0,

kb0l ; kb0l = b0,

the equations of motion read

f0 = −
k

2ms
2f0

2 −
l

6ms
2f0

3 +
gs

ms
2rs,

V0 = −
j

6mv
2gv

4sV0d3 +
gv

mv
2rB,

b0 =
gr

2mr
2r3, s6d

where

rs = g o
i=p,n

1

p2 E p2dp
M*

e
sf i+ + f i−d,

ri =
1

p2 E p2dpsf i+ − f i−d si = p,nd s7d

andrB andr3 are defined asrB=rp+rn andr3=rp−rn; g is
the isospin degeneracy andf i± is the distribution function for
particles and antiparticles, respectively, whose expression
will be shown later.

In order to treat the system as a Fermi gas, one needs to
work with the thermodynamic potential, which is defined as

V = E − TS− o
i=p,n

miNi , s8d

where mi is the chemical potential of nucleoni, Ni is the
baryon number of nucleoni:

Ni =E d3rri , s9d

and S is the classical entropy of the Fermi gas, which is
given by

S= − g o
i=p,n

E d3rd3p

s2pd3 F f i+S f i+

1 − f i+
D

+ lns1 − f i+d + sf i+ ↔ f i−dG . s10d

The expression of the thermodynamical potential in the
Thomas-Fermi approximation(TFA) (for a more detailed
calculation please refer to Ref.[13]) becomes

V =E d3rS1

2
fs=fd2 − s=V0d2 − s=b0d2g − VefD , s11d

with

Vef = −
1

2
Fms

2f2 +
2

3!
kf3 +

2

4!
lf4 − mv

2V0
2 −

2

4!
jgv

4V0
4

− mr
2b0

2G + gTo
i
E d3p

2p2flns1 + e−se−nid/Td

+ lns1 + e−se−nid/Tdg. s12d

In the static, homogeneous nuclear matter assumption we
have made, the termse and ni are given, respectively, bye
=Îp2+M*2 andni0=mi −gvV0−grt3b0, wheret3 is the appro-
priate isospin projector for the baryon charge states.

As mentioned above, temperature effects are considered
here by introducing the Thomas-Fermi approximation, where
particles and antiparticles contribute for the energy of the
system. For a system in equilibrium, the thermodynamical
potential is stationary.We can therefore minimize it with re-
spect to the distribution functions, leaving fixed the meson
fields:

U ] V

] f i+
U

f i−,f j±,f0,V0,b0

= 0, i Þ j , s13d

which leads to

f i± =
1

1 + efse7ni0d/Tg . s14d

In the TFA, the energy density and the pressure are, there-
fore,

TABLE I. Parameter sets used in this work. All masses are given in MeV.

Force M ms mv mr gs gv gr k /M l j

TM1 938.0 511.198 783.0 770.0 10.0289 12.6139 9.2644 3.04 3.7098 0.0169

NL3 939.0 508.194 782.501 763.0 10.217 12.868 8.948 4.3772173.31 0.0

GL 938.0 511.198 783.0 770.0 8.188 9.197 9.732 4.546 193.110 0.0

TABLE II. Nuclear matter properties for the parameter sets used
in this work.

NL3 [8] TM1 [4] GL [9]

B/A 16.3 16.3 15.95

r0sfm−3d 0.148 0.145 0.145

KsMeVd 272 281 285

Esym.sMeVd 37.4 36.9 36.8

M* /M 0.6 0.63 0.77
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III. INCLUDING THE BARYONS OF THE OCTET

In this section we include the eight lightest baryons and
the lightest leptons in our treatment, as they are expected to
be found at large values of density and temperature. The
Lagrangian density with the baryonic octet reads

L = o
B

cBFgmSi]m − gvBVm −
grB

2
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where gnB=xvBgv, grB=xrBgr, and gsB=xsBgs are the cou-
pling constants of baryon “B” to the mesons. We use the
nucleon to meson couplings equal to 1 and the hyperon to
meson couplings equal toÎ2/3 as suggested in Refs.
f11,14g throughout this work. This choice is based on
quark counting arguments. There are other choices based

on more sophisticated featuresf11,15g, where the hyperon
coupling constants are constrained by the binding of theL
hyperon in nuclear matter, hypernuclear levels, and neu-
tron star masses and the couplings to theS and J are
assumed to be equal to those of theL hyperon. However,
we are mainly interested in verifying the effects of the
parameters which play a primary role in describing
nuclear matter. For this reason we have used just one of
the possible hyperon-meson coupling constants.

MB
* =MB−gsBf, whereMB is the mass of baryonB and

mv, mr, andms are the masses of the mesons. The equations
of motion in this case read

f0 = −
k

2ms
2f0

2 −
l

6ms
2f0

3 + o
B
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j
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B
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where

FIG. 1. Binding energy versus relative baryonic density at dif-
ferent temperatures:Yp=0.2 (solid curves) and Yp=0.3 (dotted
ones). The couple of curves reaching higher values stand for the
EOS at 20 MeV; lower ones for EOS at 10 MeV. The TM1 set has
been used here.

FIG. 2. Energy density curves for relative baryonic density in
the NLWM at 10 MeV, with the TM1 and NL3 parameter sets.
From top to bottom:Yp=0.0, 0.3, and 0.5. The dotted curves have
been obtained with NL3 and solid ones with TM1.

FIG. 3. Energy density curves in the NLWM atT=10 (solid
line) and T=20 MeV (dashed), with the TM1 parameter set for
different proton fractions. From top to bottom:Yp=0.0, 0.3, and 0.5.
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rsB=
1

p2 E p2dp
MB

*

eB
sfB+ + fB−d,

rB =
1

p2 E p2dpsfB+ − fB−d.

The distribution function for the baryons is

fB± =
1

1 + efseB7nB0d/Tg , s19d

whereeB andnB0 are given, respectively, by

eB = Îp2 + MB
*2

and

nB0 = mB − gnBV0 − grBt3Bb0.

As discussed above, the star is treated here in its equilibrium
era, i.e., the system is considered to have attained a stage
where decays are forbidden. After the deleptonization takes
place, the entropy is maximum and the temperature increases
again, as shown in Ref.f17g where mixed and quark phases
have also been considered. If only hadrons are considered,
the temperatures can be even higher. Since the system has
already been deleptonized, the neutrino chemical potentials
are zero. Hence, we havemne−=mnm−=0 and

mS0 = mJ0 = mL = mn,

mS− = mJ− = mn+me−,

mS+ = mp = mn − me−,

mm = me. s20d

The expressions for the energy density and the pressure in
this model at finite temperature read
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and

FIG. 4. Energy density in the NLWM in the presence of the octet at different temperature values, with different parameter sets.

FIG. 5. Effective mass curves for nucleons in the model with different proton fractions:Yp=0.0 andYp=0.5, with parametrizations NL3
(a), and TM1(b), at T=0 MeV (higher) andT=20 MeV (lower values).
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where the distribution function for the leptons and antilep-
tons are

f l± =
1

1 + efsel7mld/Tg , s23d

with el =Îpl
2+ml

2, ml is the chemical potential of lepton
“ l,” and ml its masssme=0.551 MeV for theelectron and
mm=106.55 MeV for the muond.

IV. A COMPARATIVE STUDY OF THE TM1, GL, AND NL3
SETS OF PARAMETERS

In Fig. 1 we show the binding energies for two values of
proton fraction(Yp=0.2 andYp=0.3), at temperatures 10 and
20 MeV. As expected, higher values of proton fractions
bring the binding energy down to lower values. We see here

that temperature increase acts on star matter so as to make
impossible bound states forYp=0.2 at 10 MeV, whereas it is
unbound at 20 MeV. This behavior has already been found
in Ref. [16]. Although in different scales one can also com-
pare these curves with the ones shown in Ref.[4] and verify
that their trend is the same.

In Fig. 2 we plot the energy density curves for TM1 and
NL3, with different proton fractions at finite temperature. We
can see that NL3 makes the EOS considerably harder than
TM1, as the baryonic density increases, a confirmation of
what was stated in Ref.[4]. In Fig. 3 we have used TM1 to
obtain the energy densities at 10 and 20 MeV. From Figs. 2
and 3 we conclude that the EOS vary more with the param-
etrization than with temperature, within the temperature
range we have studied.

Now with the inclusion of the octet(therefore withb
equilibrium), the energy density curves for the three param-
eter sets are shown in Fig. 4. The values are quite similar for
the parameter sets, with slight hardening effects on the EOS
due to temperature. Note that the NL3 and GL curves are
coincident up to 3.5r /r0. One can also see that NL3 stops
converging before TM1 which also stops converging. The
reason for this fact is explained as follows. The effective
mass curves for the nucleons at different proton fractions(no
b equilibrium imposed), at different temperature values, are
shown in Fig. 5. These figures are to be compared with the
ones displayed in Fig. 6, where the octet has been consid-
ered. From the values of effective masses(with the octet
baryons,b equilibrium) given in Fig. 6 we can see that they
are dependent on the temperature, but strongly dependent on
the parameters used. We also conclude that GL provides a
satisfactory description of the nuclear matter for a wide
range of densities; TM1 fails to describe the effective mass if
hyperons are included, as the baryonic density comes to
,6.5 times the nuclear saturation density; and NL3 also fails
at ,3.5 times the saturation density. The curves for higher
temperatures are very similar asT=0, so we do not show
them here. Note that TM1 and NL3 only fail because bary-
ons other than protons and neutrons were included, as they
do not present zero effective masses in Fig. 5. In Figs. 7 and
8 we plot the particle population of all baryons and leptons
for T=0, 10, and 20 MeV, respectively. We can easily see
that electrical neutrality is conserved: positively charged par-

FIG. 6. Effective mass curves for nucleons in the model with the octet baryons, with parametrizations NL3(bottom), TM1, and GL(top),
at (a) T=0 MeV and(b) T=20 MeV.

FIG. 7. Particle populationYi =ri /rB, i= baryons and leptons at
zero temperature.
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ticles have their population increased as negative hyperons
appear. Heaviest hyperons come about at higher densities, as
expected—inner regions of neutron stars are presumably
populated by heavier baryons. Hyperons turn up at lower
densities as temperature increases and more hyperons show
up. The heaviest baryon of the octetJ0 appears already at
T=10 MeV. All plots of particle population that we show
here have been obtained with the TM1 set. For densities
higher than 6.5r /r0, only the GL parametrization can be
used.

Concerning the strangeness fraction shown in Fig. 9, dif-
ferent parameter sets provide different results for its values.
The strangeness fraction, defined in Ref.[17] among other
papers, reaches almost 1/3 for the GL parametrization at
10r /r0 (density of the interior of a protoneutron star). TM1
and NL3 provide remarkably higher values of strangeness
fraction for lower densities. For all three sets the values have
a slight increase with temperature. We conclude that strange-
ness fractions are more sensitive to the parametrization than
to temperature.

We finally discuss how different parametrizations can be
used when studying warm stellar objects. The importance of
such analysis lies chiefly on finding out maximum masses(or
radius) of compact stars, which decides whether it remains as

a star or collapses to a black hole. Spherically symmetric and
static star assumptions can be made on Einstein’s general
relativity equations, leading to the Tolman-Oppenheimer-
Volkoff equations[12], which are

dP

dr
= −

G

r

fE + PgfM + 4pr3Pg
sr − 2GMd

, s24d

dM

dr
= 4pr2E, s25d

with G as the gravitational constant andMsrd as the enclosed
gravitational mass. We have usedc=1. For a certain EOS at
a certain temperature, the TOV equations are integrated from
the origin for a set of arbitrary choices of central density, so
that they define a one-parameter family of stars. The maxi-
mum mass of a neutron star, along with the energy density
value in its core, as a function of central density, at different
temperature values and with different parametrizations is
shown in Table III. We see that the maximum mass either
increases or attains a steady value with the temperature val-
ues used. It is also worth checking that our values of limiting
mass are within the observed values, which lie between
1.4M( and 1.8M(. At this point it is important to empha-
size that the NL3 values were included just for the sake of
comparison since the central energy of the stars are be-
lieved to be much higher than the value its EOS can pro-
vide. Moreover, the radius of the maximum mass star is
sensitive to the low density EOS. For accurate results, the
numbers at very low densities had to be improved. For

FIG. 8. The same as in Fig. 7 for(a) T=10 MeV, (b) T=20 MeV.

FIG. 9. Strangeness fractions at 10 and 20 MeV for the three
sets of parameters. Left curves are for NL3, center ones for TM1,
and right ones for GL. The lower values for each parametrization
stand for the EOS in the NLWM at 10 MeV; higher values for
20 MeV.

TABLE III. Maximum masses, radius, and energy density in a
neutron star sequence. Each energy density value shown above cor-
responds to its relevant limiting mass case.

Star profile Mmax/M( Esfm−4d

Temperature(MeV) 0 10 20 0 10 20

TM1 1.37 1.40 1.40 4.99 4.29 4.47

NL3 1.31 1.32 1.39 2.42 2.48 2.48

GL 1.73 1.75 1.75 5.99 5.87 6.18
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this reason we do not display the values we have obtained
for the maximum radii.

V. CONCLUSION

In this work we have studied the EOS for three different
parametrizations of the NLWM under two different assump-
tions. First of all, just protons and neutrons were considered
and the proton fraction was fixed. The results were compared
for different temperatures. We have checked that within the
range of temperatures studied, the results vary more with
different choices of the parameter than with temperature. We
have then included the baryonic octet and considered a sys-

tem inb equilibrium. In this case the resulting EOS could be
tested by solving the TOV equations and comparing the star
properties with the expected one; due to the limitations on
the convergence of NL3 and TM1 parameter sets the star
central energy came up lower than with the GL force. The
conclusion of the present work which refers to the GL pa-
rameter set as the only choice for EOS existing at densities
larger than 6.5r /r0 has already been used in Ref.[17], where
mixed phases in the interior of hybrid stars were built.
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