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The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport
model, the ultrarelativistic quantum molecular dynamics(UrQMD), using the Green-Kubo formulas.
Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary
conditions. Starting from an initial state composed ofp ,h ,v ,r ,f with a uniform phase-space distribution, the
evolution takes place through elastic collisions, production, and annihilation. The system approaches a station-
ary state of mesons and their resonances, which is characterized by common temperature. After equilibration,
thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such
an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around
equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the
equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so
as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer
equilibration times.
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I. INTRODUCTION

High energy heavy ion reactions are studied experimen-
tally and theoretically to obtain information about the prop-
erties of nuclear matter under the extreme conditions of high
densities and/or temperatures. One of the most important as-
pects of studying nucleus-nucleus reactions at these extreme
conditions is the possibility that normal nuclear matter can
undergo a phase transition into a new state of matter, the
quark-gluon plasma[1]. In this state the degrees of freedom
are partons(quarks and gluons).

In this work we study only the thermodynamic and trans-
port properties of hadron matter. Hence the relevant degrees
of freedom are hadrons. We study the equilibration of the
system in infinite hadron matter using UrQMD[2]. We re-
strict ourselves to a system that contains only meson reso-
nance degrees of freedom. The infinite hadron matter is mod-
eled by initializing the system by light mesons only. We fix
baryon density and energy density of the system in a cubic
box and impose periodic boundary conditions. We then
propagate the system in time until we obtain equilibration.

The equation of state and transport coefficients of hot,
dense hadron gases are quite important quantities in high
energy nuclear physics. In the ultrarelativistic heavy ion ex-
periments at CERN and BNL, the final state of interactions is
dominated by hadrons and hence the observables are mainly
hadrons. Therefore knowledge of the equation of state and
transport coefficients of a hadron gas is necessary for a better
understanding of the observables. Phenomenologically both
the transport properties and the equation of state of hadron
gas are the major source of uncertainties in dissipative fluid
dynamics.

In spite of their importance, the equation of state and
transport coefficients of hot, dense hadron gases are still
poorly known because of the nonperturbative nature of the
strong interaction. Progress in the study of hadron matter
transport coefficients is very slow, and only a calculation of

transport coefficients in the variational method[3,4] and re-
laxation time approximation[5] has been done. From those
previous studies a lot has been learned about the transport
coefficients of binary mixtures such aspp system. However,
in a more realistic situation we need to describe transport
properties of a many-body system. This in turn would require
taking into account various interaction processes and in-
medium effects. Thus, we need to investigate the thermody-
namic and transport properties of a hadron gas by using a
microscopic model that includes realistic interactions among
hadrons. In this work, we adopt a relativistic microscopic
model UrQMD and perform molecular-dynamical simula-
tions for a hadron gas of mesons.

We focus on the hadronic scale temperature
s100 MeV,T,200 MeVd and zero baryon number density
which are expected to be realized in the central high energy
nuclear collisions. Thermodynamic properties and transport
coefficients of hadronic matter in this region should play
important roles in dissipative fluid dynamical models. Sets of
statistical ensembles are prepared for the system of fixed
energy density and baryon number density. Using these en-
sembles, the equation of state is investigated. The statistical
ensembles are then applied in calculating the shear viscosity
coefficient of a hadron gas of mesons.

The equation of state of a hot and dense hadron gas had
been investigated using UrQMD[2,6]. The work has pro-
vided valuable information regarding the nature of the had-
ron gas. In those simulations the temperature reaches a lim-
iting value with increasing energy density. This is because in
those simulations strings are implemented as multiparticle
exit channels to model a continuum of resonance states. This
in turn leads to the irreversibility of the equilibrated system.
And without the reversal process of multiparticle production
energy balance between the forward and backward reactions
is no longer realized and hence the saturation of the tempera-
ture occurs. Although it is interesting and important to for-
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mulate these multiparticle interaction processes exactly in
the present simulation, straightforward implementation of
them is not easy. In this work, avoiding this complicated
problem, we disabled three- or many-body interactions in
UrQMD. We have also disabled decays or interactions that
involve photons.

The rest of the paper is organized as follows: In Sec. II we
study the equilibration and thermodynamics of the system. In
Sec. III we study the thermodynamic of a pure resonance
meson gas for comparison with the results from UrQMD. In
Sec. IV we calculate the shear viscosity coefficient from
stress tensor fluctuations around the equilibrium state
through UrQMD using Green-Kubo relations. Finally in Sec.
V we summarize our results.

II. EQUILIBRATION OF INFINITE MATTER IN A BOX

To investigate the equilibration of the system we per-
formed microscopic calculation using UrQMD. UrQMD is
designed to simulate ultrarelativistic heavy ion collision ex-
periments. The description of the model can be found in Ref.
[2]. In studying the equilibration of the hadron gas we would
like to maintain detailed balance in the simulations. Multi-
particle productions play an important role in the equilibra-
tion of the hadron gas. However, in UrQMD their inclusion
in the simulations breaks detailed balance due to the absence
of reverse processes. In order to avoid this problem in the
present simulations we consider only up to two-body
absorption/annihilation and decay processes. Thus the funda-
mental processes in the UrQMD version we use here are
two-body elastic and quasielastic collisions between hadrons,
and strong decays of resonances. Even though we started
with light mesons in the initial state we consider all the me-
sons and meson resonance included into the UrQMD model,
in the final state.

When studying the equilibration of hadron gas it is impor-
tant to maintain detailed balance in the microscopic model.
Though the contributions of the multiparticle productions
dominate the system at early stages of the nonequilibrated
system, the reverse process plays an important role in the
latter, equilibration stage. The absence of reverse processes
leads to one-way conversion of the energy to particles. How-
ever, the exact treatment of multiparticle absorption pro-
cesses is very difficult. In order to treat them effectively in
our case, we only consider up to two-body decays.

In this work, we focus our investigation on the thermody-
namic and transport properties of a hadronic system. For this
purpose, we consider a system in a cubic box and impose
periodic boundary conditions in configuration space. Thus if
a particle leaves the box, another one with the same momen-
tum enters from the opposite side. This calculation is similar
to the one done in Ref.[6] but with different degree of free-
dom and included processes in the system. A further similar
analysis was done in Refs.[7,8] using different cascade mod-
els with different degrees of freedom.

The energy density« and the baryon number densitynB in
the box are fixed as input parameters, and these quantities are
conserved throughout the simulation. The initial distributions
of mesons are given by uniform random distributions in

phase space. The energy is defined as«=E/V, whereE is the
energy ofN particles:

E = o
i=1

N

Îmi
2 + pi

2. s1d

The three-momentapi of the particles in the initial state are
randomly distributed in the center of mass system of the
particles:

o
i=1

N

pi = 0. s2d

The time evolution is now described by UrQMD. Though
the initial particles are onlyp ,h ,v ,r ,f, many mesons and
meson resonances are produced through interactions. We
now propagate all particles in the box using periodic bound-
ary conditions, that is, particles moving out of the box are
reinserted at the opposite side with the same momentum. The
phase-space distribution of mesons then can change due to
elastic collisions, resonance production, and their decays to
lighter mesons again. We recall that we include all the me-
sons and meson resonances in UrQMD.

To investigate the equilibration phenomena of the system
we look at the particle densities and energy distributions of
each particle. As time increases, the system tends towards an
equilibrium state. When the system is in thermal equilibrium,
the slope parameters of the energy distributions for all par-
ticles should have the same value, and that value is the in-
verse of temperature. To investigate this, we study the time
evolution of the inverse slopes of various particles.

Running UrQMD many times with the same input param-
eters and taking the stationary configuration in equilibrium,
we can obtain statistical ensembles with fixed temperature.
By using these ensembles, we can calculate thermodynamic
quantities, such as the particle density, pressure, and so on, as
functions of temperature and baryon number density. We ex-
tract the shear viscosity coefficient by finding the energy-
momentum tensor correlations and then employ the Green-
Kubo relations.

We specify the initial input parameters: the volume of the
box V, the net baryon number densitynB, and the total en-
ergy density«. We consider the input parameters which will
give the temperature range 100–200 MeV. HerenB

FIG. 1. The time evolution of particle densities for each particle
with V=1000 fm3 and«=0.3 GeV/fm3.
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=0.0 fm−3 is taken as the net baryon number density of the
system. We generated a statistical ensemble of 200 events.

A. Chemical equilibration

Figure 1 shows the time evolution of the various particle
densitiessp ,h ,r ,Kd at zero net baryon number density and
energy density«=0.3 GeV/fm3. After several fm/c the num-
ber of pions decreases first due to inelastic collisions and
annihilation that produces other meson resonances. The pion
density then increases due to decay of heavier meson reso-
nances to an equilibration. The number of kaons(in general
strange mesons) increases to equilibration value in much
longer times than other particles. In Fig. 2 we show the same
situation but with different initial energy density of the box,
«=0.9 GeV/fm3. For large initial energy densities the equili-
bration times are much larger.

Figures 1 and 2 display the time evolution of particle
densities. These figures show that the system approaches a
stationary state with time. The saturation of particle densities

indicates the realization of chemical equilibrium. We con-
clude that chemical equilibrium in our system is realized.

B. Thermal equilibration and temperature

In this section we investigate the approach to thermal
equilibrium. This is driven by the momentum equilibration
of the system; that is, when the momentum anisotropy of the
system has dropped to a limiting value such that the system
can be described by simple global thermodynamic variables
like temperature. The thermal equilibration times have to be
contrasted to those for chemical equilibrium.

Figures 3(a)–3(d) display energy distributions ofp ,h ,r,
and K at time t=100,200,300, and 400 fm/c, respectively.
For equilibrated system the energy distributions approach the
Boltzmann distribution,

dNi

d3p
=

dN

4pEpdE
= C exps− bEid, s3d

as time increases, whereb is the slope parameter of the
distribution. HereEi =spi

2+mi
2d1/2 is the energy of particlei.

Moreover, the slopes of the energy distributions converge to
a common value. These results indicate realization of ther-
mal equilibrium.

Figures 4(a)–4(c) display the time evolution of the inverse
slopes of different particle species that were calculated by
fitting the energy distributions to a Boltzmann distribution.
The solid curves correspond to the time evolution of the
inverse slope of pions. From these figures, it is seen that the
difference between the pion inverse slope and other particles’
inverse slopes become zero for times of order 100 fm/c for
strange particles and even shorter for nonstrange particles.
Therefore, we conclude that thermal equilibrium is estab-
lished at aboutt=100 fm/c; the values of the inverse slope

FIG. 2. The time evolution of particle densities for each particle
with V=1000 fm3 and«=0.9 GeV/fm3.

FIG. 3. Energy distributions ofp, h, r, andK
at four different values of time,(a) t=100 fm/c,
(b) t=200 fm/c, (c) t=300 fm/c, and (d) t
=400 fm/c. The lines are the fitted results
that are given by Boltzmann distributions,
C exps−bEd. The calculation was done withV
=1000 fm3, nB=0.0 fm−3, and«=0.9 GeV/fm3.
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parameters of the energy distribution for all particles become
equal for latter times. Thus we can regard this value as the
temperature of the system. The equilibration time is large. If
we allow for multiparticle production and absorption, the
equilibration time would be shortened significantly.

III. HADRONIC GAS MODEL

In this section we compare the UrQMD box calculations
with a simple statistical model for an ideal hadron gas where
the system is described by a grand canonical ensemble of
noninteracting bosons in equilibrium at temperatureT. All
meson species considered in UrQMD are also been used in
the statistical model. In hadron gas model we use as input the
same energy density and net baryon density to obtain the
temperature of the system.

In hadron gas we find that the temperature increases con-
tinuously with energy density. Figures 5 and 6 show the re-
lations between the temperature and thermodynamic quanti-
ties such as energy density

« =
1

V
o
i=1

all particles

Ei , s4d

particle density, and pressure,

P =
1

3V
o
i=1

all particles
pi

2

Ei
. s5d

In these figures, all curves correspond to the relativistic
Bose-Einstein gas,

«sT,md = o
k

gkE d3p

s2pd3

Ek

esEk−md/T − 1
, s6d

nsT,md = o
k

gkE d3p

s2pd3

1

esEk−md/T − 1
, s7d

FIG. 4. The time evolution of the inverse
slopesb−1 for (a–c) p, (a) h, (b) r, and (c) K
with V=1000 fm3, nB=0.0 fm−3, and «
=0.9 GeV/fm3. The value ofb−1 was calculated
from the fitting of energy distributions. Here the
solid curves represent the time evolution ofb−1

for p.

FIG. 5. The energy density of mesons as function of the tem-
perature. The curve corresponds to the free gas model represented
by Eq. (7).

FIG. 6. The pressure of pions is plotted as function of the tem-
perature. The curve corresponds to the free gas model represented
by Eq. (8).
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psT,md = o
k

gkE d3p

s2pd3

p2

3Ek

1

esEk−md/T − 1
, s8d

where gk is a degeneracy factor. In these calculations the
meson chemical potentialm is fixed to zero.

Figure 5 shows the energy density versus temperature for
mesons. In this figure, the difference between UrQMD re-
sults and those for the calculation of the free gas model is
negligible. Figure 6 shows the pressure versus temperature
for mesons. There is deviation of UrQMD results from the
free gas model results especially at high temperatures. The
influence of interactions is clear aboveT,mp. Enhancement
of heavy meson resonances grows as the temperature in-
creases.

In a previous study[6] the limiting value of temperature
with increasing energy appeared. As already mentioned this
is because of the implementation of strings in those simula-
tions. In this calculation where we do not include strings in
our simulations this limiting temperature does not appear.

However, in this simulation the lack of multiparticle pro-
duction leads to long equilibration times. Inclusion of multi-
particle interactions would shorten the equilibration time
considerably, especially the chemical equilibration time.

IV. SHEAR VISCOSITY COEFFICIENT

Transport coefficients such as viscosities, diffusivities,
and conductivities characterize the dynamics of fluctuations
of dissipative fluxes in a medium. Transport coefficients can
be measured, as in the case of condensed matter applications.
However, in principle they should be calculable theoretically
from first principles.

In a weakly coupled theory transport coefficients can be
computed in a perturbative expansion, employing either ki-

netic theory or field theory using Kubo formulas[9–15]. The
resulting Kubo relations[16] express transport coefficients in
terms of the zero-frequency slope of spectral densities of
current-current, or stress tensor–stress tensor correlation
functions.

Monte Carlo simulations for transport coefficients is a
powerful tool when studying transport coefficients using
Green-Kubo relations. For calculation of transport coeffi-
cients of shear viscosity, thermal conductivity, thermal diffu-
sion, and mutual diffusion for a binary mixture of hard
spheres, see Ref.[17], and for the calculation of diffusion
coefficient of a hadron gas see Ref.[8].

Knowledge of various transport coefficients is important
in dissipative fluid dynamical models[18]. In this paper we
consider the evaluation of shear viscosity coefficient of a
hadron gas of mesons and their resonances.

In trying to stay close to the extended irreversible thermo-
dynamic processes we will, however, use the Kubo formulas
in fluctuation theory to extract transport coefficients. In the
longitudinal boost-invariant flow the important coefficient is
the shear viscosity. In dissipative fluids the expression for the
entropy 4-current is governed by transport coefficients and
relaxation coefficients. These coefficients determine the
strength of the fluctuations of dissipative fluxes about the
equilibrium state. The generalized entropy plays an impor-
tant role in the description of the fluctuations of conserved
quantities and of the dissipative fluxes.

Now we calculate the coefficient of shear viscosity. First,
the fluctuation-dissipation theorem tells us that shear viscos-
ity h is given by the stress tensor correlations[16]

h =
V

T
E

0

`

kpi jstdpi jst + t8dldt8, s9d

wherepi j ;Tij −di jP denotes the traceless part of the stress
tensor andP; 1/3Ti

i the slocald pressure. The angular

FIG. 7. Stress-tensor correlation of the me-
sons as a function of time for different energies
(a) «=0.2 GeV/fm3, (b) «=0.4 GeV/fm3, (c) «
=0.6 GeV/fm3, and (d) «=0.8 GeV/fm3. The
curves are the exponential fits to extract relax-
ation times.
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brackets stand for equilibrium average, i.e., average over the
number of ensemble states and average over the number of
particles. The energy-momentum tensor and pressure are cal-
culated from

Tij =E d3p
pipj

p0 fsx,pd =
1

V

1

Nevents
o
n=1

Nevents

o
k=1

Nparticlespk
i pk

j

pk
0 ,

s10d

Pi =
1

V

1

Nevents
o
n=1

Nevents

o
k=1

Nparticlespk
i pk

i

pk
0 , s11d

with the momentapk
i ,pk

j and the energiespk
0 of particle k

provided by the transport model. The correlation functions
are damped exponentially with timessee Fig. 7d:

kpi jstdpi jst + t8dl ~ expS−
t8

tp
D . s12d

The solid lines in Fig. 7 are the fits to the correlations and
the inverse slope corresponds to the relaxation time. The
shear viscosity coefficient can be rewritten in the simple
form

h =
V

T
kpi jstdpi jstdltp, s13d

wheretp is the relaxation time of the shear flux. In this work
we used a box of volumeV=1000 fm3. The results are in-
sensitive to the box length greater than 6 fm.

To this end, we have to remark that the transport coeffi-
cients represent the fluctuations of the dissipative fluxes
around an equilibrium state. In terms of fluctuations the
Green-Kubo relation(at zero frequency) for shear viscosity
can be written as

h =
V

T
E

0

`

kdpi js0ddpi jstdldt si Þ jd. s14d

In the above equation the fluctuations of shear flux are ex-
ponentially damped. They are obtained found from the sec-
ond differential of the generalized entropy expressionf18g,

kdpi js0ddpklstdl = hTstpVd−1ni jkl exps− t/tpd, s15d

with ni jkl =fdikd jl +dild jk−s2/3ddi jdklg. In the limit of vanish-
ing relaxation times, we recover the formulas of Landau and
Lifshitz, since in this limitt−1 expst /td→2dstd with dstd the
Dirac d function. Equations15d relates the dissipative co-
efficient h to the fluctuations of the fluxes with respect to
equilibrium. We see that fluctuations determine the dissi-
pative coefficients. Conversely, transport coefficients de-
termine the strength of the fluctuations.

If the evolution of the fluctuations on the fluxes is de-
scribed by the Maxwell-Cattaneo(see Ref.[18]) relation
equations then after integration the above expression for the
shear viscosity coefficient reduces to

h =
tpV

T
kdpi js0ddpi js0dl. s16d

In what follows, we will use the existing microscopic model,
namely UrQMD, to extract the shear viscosity coefficient.

We start by showing the correlations of the stress tensor in
Figs. 7(a)–7(d) as function of energy density. From these
correlations we will extract the relaxation times as a function
of temperature(obtained from equation of state).

Figure 8 shows the shear viscosity coefficient results from
UrQMD using Kubo relations and from variational approach
[3]. In both cases the coefficient grows with temperature.
The UrQMD predicts faster increase of the coefficient with
temperature than what variational approach predicts. This
might be due to the many meson resonances included in
UrQMD while in the variational method we only have pions.
Also the cross section parametrizations are different in the
two approaches.

Figure 9 shows the relaxation time for shear flux in the
meson gas calculated from UrQMD by fitting the shear stress
correlations and in the pion gas only calculated from varia-
tional method as done in Ref.[3]. In both the UrQMD simu-
lation and variational method the shear relaxation time de-
creases with temperature. The results obtained from UrQMD
are about a factor of 1.6 less than variational method results.
The reasons are similar to the ones given above for the shear
viscosity coefficient.

FIG. 8. Shear viscosity of meson gas from UrQMD simulations
(data points) and of pion gas only from variational method(curve)
as a function of temperature.

FIG. 9. The relaxation time for the shear flux of meson gas from
UrQMD (data points) and of pion gas only(curve) using shear
viscosity coefficient from variational approach as a function of
temperature.
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V. CONCLUSIONS AND OUTLOOK

The transport coefficients for a hadron gas can be ob-
tained easily from microscopic transport models such as
UrQMD. The study of fluctuations of dissipative fluxes
around equilibrium yields Green-Kubo relations which are
more easily applied. The use of fluctuations through Kubo
relations has the advantage of finding not only the transport
coefficients but also the corresponding relaxation times. In
addition, it is also possible to obtain the relaxation coeffi-
cients such asb2 used in Ref.[18].

Since the shear viscosity coefficient for QCD has been
calculated by many authors using either kinetic theory or
perturbative expansion, it will be interesting to calculate the
shear viscosity coefficient for quark gluon plasma using mi-
croscopic models in the form of parton cascade models such
as VNI/BMS [19]. This is currently under investigation[20].
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