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The cross section and polarization for nucleon elastic scattering from16O has a minimum at large angles and
low energies that cannot be fitted with phenomenological or microscopic local optical potentials. Inclusion of
exchange terms, e.g., knock-on and heavy-ion exchange, also failed to reproduce this minimum. However, it
has been well fitted previously with a parity dependent(local) optical potential. It is shown here that this parity
dependence simulates, at least in part, the nonlocality due to channel coupling.
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The elastic cross section for neutron or proton scattering
from the nucleus of16O exhibits a minimum near 120° at
incident energies between 10 and 60 MeV, which cannot be
fitted by a local optical model, in spite of many attempts
[1].1 Elaborate microscopic optical potentials, based on fold-
ing a nucleon-nucleonsNNd G matrix over the ground state
wave function of the nucleons in the target nucleus, that give
excellent parameter-free fits to the elastic cross sections and
polarizations for most nuclei[2–4] also fail to fit the back-
ward angular distribution for closed shell nuclei, such as16O,
40Ca, and48Ca. Explicit inclusion of the exchange or Fock
term for neutron-oxygensn-16Od scattering was also consid-
ered[5], but the effect of these nonlocal Fock terms could be
simulated[5] by a smooth angular momentum independent
local potential, and also provided no better fit to the cross
section than the optical model ones. These poor fits are illus-
trated in Fig. 1.

However, a parity dependent potential was found[6] that
produced an excellent fit to the whole angular and energy
range of the differential cross section and polarization of
proton-oxygensp-16Od scattering. This potential is of the
form

Vsrd = U1srd + s− 1dLU2srd, s1d

where L is the orbital angular momentum of the incident
nucleon relative to the center of mass of the target nucleus,
and the potentialsUj =Vj + iWj , j =1,2, arecomplex functions
of the radial distancer. These potentials were obtainedf6g
phenomenologically by an “inversion” procedure especially
developed for such fitsf7g. The existence of parity depen-
dence has been found previouslyf8,9g and has been found
necessary to fit the back-angle scattering cross sections for
a-particle neonsa-20Ned collisionsf10g, but has not before
been brought out in as clear a form as in the work of
Cooper and Mackintoshf6,9g.

Since 16O could contain substantiala-particle clustering
in its ground state, and since the nucleon–a-particle sNad
scattering cross section has a strong minimum at backward
angles, the possibility exists that the poor fit of N-16O scat-
tering theory to experiment could be due toa clustering in
16O. Thisa-clustering feature was also mentioned in a study
[11] of 96 MeV elastic neutron-nucleussnAd scattering as a
possible mechanism for explaining the discrepancy between
conventional theories and experiment of then-12C cross sec-
tion near 40°. However, for the case ofn-16O scattering at
low energies this clustering mechanism was ruled out[12] as
follows. The scattering of nucleons from a He nucleus was
analyzed with a parity dependent potential of the form of Eq.
(1), and large values for the potentialsV2

sad and W2
sad were

found [13]. It could thus be possible that theL-dependent
potentials for16O arise from a remnant of the parity depen-
dentN-a potentials, due toa-clustering in16O. TheVj

sad and
Wj

sad potentials of Ref.[13], with j =1,2, were folded over a
harmonic oscillator distribution ofa particles in the nucleus
of 16O, and the result is denoted asVj8 andWj8, j =1,2 [12].
The result shows that neitherW18srd nor W28srd has a positive

1The author is grateful to Dr. Daniel Horen for performing many
searches of optical potentials to fit thep-16O data, achieving no
reasonable results.

FIG. 1. Various unsuccessful fits to the elastic differential cross
section for 20 MeV neutrons scattering from16O. The solid line
includes heavy-ion exchange[15]; the dashed line includes
knock-on exchange[5]; the circles represent the experimental re-
sults of Petleret al. [1]; and the dotted line is a conventional optical
fit from Ref. [1].
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value at small distances, contrary to what is the case for the
parity dependentp-16O potentials of Ref.[6]. In spite of the
fact that the parity dependent potentialsV28srd andW28srd have
a large effect on the cross section, in that they shift the sec-
ond minimum to somewhat larger angles, the fit to the ex-
perimental cross section is nevertheless inadequate[12] re-
gardless of whether the strength of the imaginary central
potential W1

s16dsrd is artificially increased, or whether the
spread of thea-particle distribution is artificially reduced to
smaller distances in an attempt to shift the second cross sec-
tion minimum to the larger angles where it occurs experi-
mentally.

What physical processes give rise to theL dependence of
Eq. (1), found in Ref. [6]? It is known that this type of
dependence does occur as a result of heavy-ion(or core)
exchange in the resonating group model[14] description of
heavy-ion scattering, but its effect is large only when the
mass difference between the projectile and target nuclei is
small. This is not the case for N-16O scattering, and indeed,
explicit inclusion of heavy-ion exchange forn-16O scattering
at the low incident energies envisaged heres20–60 MeVd
did not lead to an improved fit to the experimental data[15].
It is the purpose of the present paper to show that a process
that can give rise to potentials of the form of Eq.(1) is
virtual excitation of states of the target nucleus during the
scattering process. This dynamic polarization of the target
nucleus by the incident nucleon is described by the occur-
rence of coupled channels in the Schrödinger equation. This
is the first time that a connection between channel coupling
and a potential of the type(1) could be established, since the
mechanisms normally held responsible for giving rise to
s−dL-type potentials, such as heavy-ion exchange, and possi-
bly a-particle clustering, were ruled out for thisn-16O case.

As is well known [16], optical potentials which are
equivalent to coupling to(virtual) excited states are nonlocal,
and the local equivalent potentials(LEP) which are equiva-
lent to the nonlocal ones are both angular momentum and
energy dependent. The calculation of the polarization poten-
tials [17] involves complicated projection operators, and is
difficult to carry out other than in special cases[18]. A closed
form expression for the polarization potential due to virtual
Coulomb excitation of low-lying 2+ states for scattering of
heavy ions has been given before[19], and aL dependence
of such a potential has also been found[20]. A direct calcu-
lation of the elastic scattering in the presence of channel
coupling to giant quadrupole resonances did produce signifi-
cant corrections to the scattering at large angles in nuclei
such as16O, 40Ca, and24Mg [21], as well as in208Pb [22],
that resulted in improved fits. A calculation of the polariza-
tion potential inn-16O scattering by means of dispersion re-
lations [23] also provided improved fits to the data. These
results give an indication that the source of the parity depen-
dence found in Ref.[6] might be due to channel coupling.
However, coupled channel calculations are difficult to per-
form, because there are too many excited states which par-
ticipate in the scattering that should be, but cannot be, in-
cluded. Procedures that replace the left-out channels by an
appropriate complex potential are being developed[24,25].
Particularly the work of Ref.[25] shows that channel cou-

pling has a crucial effect on elastic scattering, even though
that study is focused mainly on the low energy resonances.
The theories mentioned above will ultimately lead to reliable
inclusion of the various many-body effects on the optical
model potential. Nevertheless, a parity dependence of the
form of Eq.(1) is a simple phenomenological way to include
coupled channel effects, as will now be justified.

A “toy-model” calculation of channel coupling was per-
formed [26] several years ago for the purpose of explicitly
exhibiting the corresponding nonlocal optical potentials in
the elastic channel. It consists of between six and ten chan-
nels coupled to each other and to the elastic channel. The
diagonal potentials are of a Gaussian form, and the coupling
potentials are described as derivatives of Woods-Saxon po-
tentials restricted to the surface of the nucleus. All potentials
are real. A basis set of positive energy Sturmian functions
[27] was used to expand the wave functions in all channels,
since such a basis enables one to avoid the use of the com-
plicated projection operators and permits one to calculate the
optical potential that replaces the effect of channel coupling
[27,25]. Three-dimensional plots of the resulting nonlocal
optical potentials indeed revealed anL dependence and the
imaginary parts exhibited a positive(emissive) “collar”
around the main negative(absorptive) pieces. The latter oc-
cur in the radial region where the coupling between channels
is largest(at the nuclear surface in the toy example). The
emissive collar is due to the reinjection of flux into the elas-
tic channel(a portion of that flux had been previously di-
verted into the inelastic channels). A reduction of the absorp-
tion from the incident channel in the presence of coupling to
other channels was also observed in deuteron-nucleus elastic
scattering calculations[28], in which the coupling to and
among breakup channels was explicitly included.

A method developed by Fiedeldey and collaborators[29]
to obtain local potentials equivalent to nonlocal ones(LEP),
such that the nodes of the nonlocal and local wave functions
coincide(but not their magnitudes), was applied to the toy-
model channel-coupling case[30]. In this method the LEPs
are obtained from radial derivatives of the Wronskian of two
independent solutions(in the elastic channel) of the coupled
equations for each incident angular momentumL. Several of
the resulting LEPs[30] are reproduced here in Figs. 2 and 3.
They oscillate around an average smooth potential, and the
maxima for a particular value ofL fall on top of the minima
for the neighboringL. This shows that the radial dependence
of the LEPs is very well approximated by parity dependent
expression of the form of Eq.(1) for the low values ofL. The
description of the LEPs in terms of Eq.(1) is not perfect,
however, because the deviation of the LEPs from the average
potential is more pronounced for the high values ofL than
for the low values. In other words, the parity dependent po-
tentialsU1 and U2 should themselves beL dependent. An-
other shortcoming of the toy model is that it does not include
the coupling between exchange amplitudes that account for
the Pauli exclusion principle. These also have non-negligible
effects [21,25]. Nevertheless, the indication from the toy
model, together with the excellent fits obtained in Ref.[6], is
that the parity dependence given by Eq.(1) should be a vi-
able first approximation to coupled channel effects.

The imaginary components of the LEPs shown in the fig-
ures have positive values in certain radial regions, a feature
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that also occurs for the potentialsW1 andW2 obtained[6] for
p-16O scattering. This is a good indication that the effects of
channel coupling are present, and hence provide further sup-
port for the channel-coupling source for the nonlocality. The
LEP potentials shown in Figs. 2 and 3 are different from zero
only in the surface region, between 2 and 8 fm, because the
coupling potentials in the toy model vanish outside that re-
gion. Since there are no imaginary potentials explicitly
present in the toy model, the imaginary parts of the LEP
potentials also vanish outside of the surface region.

It could be asked how general is Eq.(1) for the various
nuclear scattering situations, and why is not a term of this
form needed for all optical potentials? A rigorous answer to
this question has as yet not been given, although a qualitative
answer is provided below. It can be argued that in the case of
nuclei away from closed shells, the excited states occur at
much lower energies above the ground state than for the
“magic” nuclei, and their energy density is generally very

high, the more so the further away from a closed shell the
nucleus resides. Hence the oscillations in the LEPs should
average themselves away more readily for these cases. Fur-
ther, since there are a larger number of excited states avail-
able to absorb flux from the incident channel, the nuclei
away from shell closures become less transparent, and the
probability of flux returning to the elastic channel should
decrease. These points deserve further study, as indicated
below.

A qualitative justification for the parity dependence in the
channel-coupling nonlocality will now be attempted. The
LEPs illustrated in Figs. 2 and 3 are based on a complicated
expression involving the derivative of the Wronskian,
WLsrd=vLduL /dr−uLdvL /dr, of two independent solutions
uLsrd andvLsrd of the coupled equations in the elastic chan-
nel for each incident angular momentumL, as given by Eq.
(6) of Ref. [30]. Of course, if there are no nonlocal potentials
the Wronskian is a constant and there is no LEP. However, in
the presence of a nonlocal potentialKsr ,r8d in the
Schrödinger equation

S−
d2

dr2 +
LsL + 1d

r2 Vsrd − k0
2DuLsrd = −E

0

`

Ksr,r8duLsr8ddr8

s2d

one finds

dWLsrd
dr

=E
0

`

Ksr,r8dfvLsrduLsr8d − uLsrdvLsr8dgdr8. s3d

If one now assumes that the kernelK is peaked near the
surface of the interaction, so that for low values ofL the
functions u and v can be roughly approximated by their
asymptotic expressions

uLsrd , sinsk0r + fLd, vLsrd , cossk0r + fLd, s4d

wherefL=−sp /2dL+dL, then the square bracket in Eq.s3d
becomes of theL-independent form,sinhk0sr8−rdj. In the
above,dL is the elastic scattering phase shift for partial
waveL. In this case theL dependence ofdWLsrd /dr hinges
on the L dependence of the nonlocal kernelK. For ex-
ample, the Hartree-Fock expression for the exchange non-
locality Ksr ,r8d~Fasrdvsr ,r8dFasr8d is independent of the
value ofL of the incident particle, and indeed, a search for
an L dependence in the equivalent LEP forn-16O scatter-
ing proved fruitlessf31g. In the above,Fasrd is the wave
function of a target particle in bound statea, andvsr ,r8d is
the interaction potential between the two indistinguishable
particles within the target.

We now show that the nonlocal potentialK has a parity
dependent component if it represents the effect of channel
coupling. In this case the optical potential for the elastic
channel(call it No. 1) is given by[27]

K1sr,r8d ~ o
i,i8Þ1

V1isrdGi,i8sr,r8dVi81sr8d, s5d

where i and i8 denote virtually excited inelastic states and
Gi,i8sr ,r8d is the matrix channel Green’s functionf25,27g. If

FIG. 2. Angular momentum dependent local equivalent poten-
tials derived in Ref.[30] from a “toy” coupled channels calculation
for L=0 and 1. The maxima for theL=0 case occur near the
minima of the L=1 case, showing that these LEPs can be well
represented by the parity dependent Eq.(1).

FIG. 3. LEPs similar to those in Fig. 1 forL=7 and 8.
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one particular inelastic excitationi =n is dominant then the
sum in Eq.s5d reduces to one term only, andGn,n can be
approximated by the conventional single-channel Green’s
function ~s1/kndFL8sknr,dGL8sknr.d. HereF and G are the
regular and irregular solutions of the uncoupled equations in
the inelastic channeln with wave numberk8 and angular
momentumL8. The latter tracks withL, differing from it by
the angular momentum of the excited state. For the present
qualitative discussion we will setL8=L. Further, assuming
low values of L, so that in the surface region where the
coupling potentialV1n is large,F andG can be approximated
by their asymptotic expressionsFLsrd,sinsk8r +fL8d, GLsrd
,cossk8r +fL8d one can show

dWLsrd
dr

~ V1nsrdH−E
0

r

Vn1sr8dsinfknsr − r8dg

3sinfk0sr − r8dgdr8+
1

2
E

0

`

Vn1sr8dsinfknsr − r8dg

3sinfk0sr − r8dgdr8+ s− dL1

2
E

0

`

Vn1sr8d

3sinfknsr + r8d + 2dngsinfk0sr − r8dgdr8J . s6d

The parity dependence in the last term of Eq.s6d arises from
the occurrence of 2fn=−spdL+2dn in the argument of the
first sin function in that term. Thus, the parity dependence of
dWLsrd /dr is due to theL dependence of the Green’s func-
tion in Eq. s5d, and hence the corresponding LEP will also
acquire a parity dependence.

An interesting question is whether an inelastic or transfer
cross section, calculated by means of the distorted wave
Born approximation(DWBA), is strongly affected by the
type of optical model potential used to describe the elastic
channel: a) a conventional local potential that fits only the
forward part of the elastic cross section, or b) a parity depen-
dent potential of the form of Eq.(1), that fits the whole
angular distribution, or c) a formalism based on coupled
channel calculations? The answer cannot be given without
actually comparing the results of two such DWBA calcula-
tions, which is beyond the aim of the present investigation.
However, a rough indication of what might be the difference
between two DWBA calculations, one based on a local opti-
cal model and the other on as−dL optical model, can be
obtained by comparing the behavior withL of the respective
elastic scatteringS-matrix elements, since the latter give an
indication of the behavior of the corresponding radial wave
functions. This comparison is illustrated in Figs. 4 and 5 for
the case ofn-16O scattering at 20 MeV. The corresponding
elastic cross sections are compared with the data in Fig. 6.
TheL-dependent potential gives the back-angle cross section
minimum at the right place, while the optical model result
misses this angle completely. TheL-dependent potential was
obtained as follows. The potentialsU1 andU2 were read off
from Fig. 4 of Ref.[6] for the 27.3 MeV curves. These val-
ues were then fitted by means of combinations of Gaussian
and Woods-Saxon potentials as described in the Appendix. In

order to produce the cross section fit shown in Fig. 6 the
range ofV1 had to be decreased slightly, as is described in
the Appendix. It could have been of interest to seek further
changes in the potentials, so as to improve the fit to the
minimum at 120° as well. However, in view of the excellent
fits obtained in Ref.[6] to p-16O scattering, such a search
appears to be superfluous, and would detract from the main
point of the present study, namely, the realization that under
certain circumstances channel coupling can be simulated by
potentials of thes−dL type.

The large differences of theS-matrix elements of the two
potentials, Figs. 4 and 5, imply that the radial wave functions
should also be quite different. Hence, thes−dL dependent
polarization potentials of Ref.[6] might serve as a first ap-
proximation to include the effect of channel coupling in the
optical potential. However, in view of the substantial effect
that channel coupling has on the elastic cross sections(par-
ticularly of “magic nuclei”) and hence on the optical model
potentials, it is likely that inelastic or rearrangement reac-
tions might also involve virtual excitation processes. Hence,
instead of usingL-dependent optical potentials in DWBA
calculations for the inelastic or rearrangement processes for a
nucleus such as16O, a better approximation would be to

FIG. 4. TheS-matrix elements forn-16O scattering at 20 MeV,
calculated with a parity dependent optical potential of the form of
Eq. (1), based on an approximation to the potentials shown in Fig.
4 of Ref. [6], as is described in the Appendix. The latter fit elastic
p-16O scattering at 22.7 MeV, and include aL-independent spin
orbit potential.

FIG. 5. Same as Fig. 4 calculated with a conventional local
optical potential taken from Ref.[32].
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carry out coupled channel calculations explicitly for such
processes. This observation should also be relevant for de-
scribing the emission of nucleons by impact of high energy
electrons on target nuclei[33].

In conclusion, it was shown that channel coupling(or
virtual nuclear polarization during the scattering process)
cannot be ruled out as a contributor to the form of Eq.(1) for
the representation of the nonlocal optical potential of16O.
Conversely, when the need for an optical potential of the
form of Eq. (1) is established for a particular case, then the
use of the distorted wave Born approximation to calculate
inelastic or rearrangement scattering is suspect for this case.
Although the arguments were confined to the scattering of
nucleons on16O, they may also have implications for the
optical potential describing atomic collisions. It would be
interesting if the considerations presented here would also
have implications for the representation of two- and three-
body potentials between nucleons, used in the calculation of

three-body systems, such as nucleon-deuteron scattering
where discrepancies betweenab initio theory and experiment
still exist [34].

APPENDIX: PARAMETRIZATION OF THE PARITY
DEPENDENT POTENTIALS OF COOPER

The potentials defined in Eq.(1) are approximated by the
sum of two analytic functionsG andF, asVsrd=G+F. These
functions are defined as

Gsr ;A,xC,wd = A expfsr − xcd2/2w2g sA1d

and

Fsr ;B,x0,ad =
B

1 + expfsr − x0d/ag
. sA2d

Table I lists the values of the parameters for Eqs.sA1d and
sA2d, obtained by fitting the 22.7 MeVp-16O potential
curves shown in Fig. 4 of Ref.f6g.

The parameters used for the calculation of the 20 MeV
n-16O scattering cross sections shown in Fig. 6, and for the
S-matrix elements shown in Figs. 4 and 5, use the parameters
listed in Table I, with only one modification: the value ofw
for V1 was changed from 2.078 fm to 1.90 fm. The spin orbit
potentials used in the solution of the Schrödinger equation
are given bys1/kddVso/dr.
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