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The charge symmetry breaking amplitudes for the recently observeddd→ap0 reaction are investigated.
Chiral perturbation theory is used to classify and identify the leading-order terms. Specific forms of the related
one- and two-body tree-level diagrams are derived. As a first step toward a full calculation, a few tree-level
two-body diagrams are evaluated at each considered order, using a simplified set ofd anda wave functions and
a plane-wave approximation for the initialdd state. The leading-order pion-exchange term is shown to be
suppressed in this model because of poor overlap of the initial and final states. The higher-order one-body and
short-range(heavy-meson-exchange) amplitudes provide better matching between the initial and final states
and therefore contribute significantly and coherently to the cross section. The consequences this might have for
a full calculation, with realistic wave functions and a more complete set of amplitudes, are discussed.
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I. INTRODUCTION

For most practical purposes, hadronic isospin states can
be considered as charge symmetric, i.e., invariant under a
rotation by 180° around the two-axis in isospin space.
Charge symmetry(CS) is thus a subset of the general isospin
symmetry, charge independence(CI), which requires invari-
ance underany rotation in isospin space. In quantum chro-
modynamics(QCD), CS means that the dynamics are un-
changed under the exchange of the up and down quarks[1].
In the language of hadrons, this symmetry translates into,
e.g., the invariance of the strong interaction under the ex-
change of protons and neutrons. However, since the up and
down quarks do have different massessmuÞmdd [2,3], the
QCD Lagrangian is not charge symmetric and neither is the
strong interaction of hadrons. This symmetry violation is

called charge symmetry breaking(CSB). There is also a con-
tribution to CSB because of the different electromagnetic
interactions of the up and down quarks.

Observing the effects of CSB interactions therefore pro-
vides a probe ofmu and md, which are fundamental, but
poorly known parameters of the standard model. The quan-
tity md is larger thanmu, causing a specific pattern of mass
splitting between members of an isospin multiplet[1]. In
particular, the light quark mass difference causes the neutron
to be heavier than the proton. If this were not the case, our
universe would be very different, as a consequence of the
dependence of big-bang nucleosynthesis on the relative
abundances of protons and neutrons.

Experimental evidence for CSB has been demonstrated in
r0-v mixing [4], the nucleon mass splitting, the binding-
energy difference of mirror nuclei such as3H and 3He [5],
the different scattering lengths of elasticnn and pp scatter-
ings [6], and in the minute but well-measured difference be-
tween the proton and neutron analyzing powers of elasticnp
scattering[7]. A recent theoretical analysis ofpN scattering
data found a small CSB effect[8].
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Studying thedd→ap0 reaction presents exciting new op-
portunities for developing the understanding of CSB. This
reaction obviously violates isospin conservation; but more
specifically, it violates charge symmetry since the deuterons
and thea particle are self-conjugate under the charge sym-
metry operator, with a positive eigenvalue, while the neutral
pion wave function changes sign. This reaction could not
occur if charge symmetry were conserved, and the cross sec-
tion is proportional to the square of the CSB amplitude. This
is unique because all other observations of CSB involve in-
terferences with charge symmetric amplitudes. Thus a very
clean signal for CSB is obtained through the observation of a
nonzero cross section. Furthermore this process has a close
connection with QCD because chiral symmetry plays a
dominant role in determining pion-production cross sections.

Lapidus, in 1956[9], was the first to realize that thedd
→ap0 reaction would be a useful probe of CSB. Various
experimental groups tried to observe it, but without success
[10]. After other attempts yielding only upper limits[11], a
group at the Saturne accelerator in Saclay reported a nonva-
nishing dd→ap0 cross section atTd=1.1 GeV [12]. This
finding was refuted by members of the same collaboration
who argued that the putative signal forp0 production actu-
ally was caused by thedd→agg background[13]. The im-
portance of this background was confirmed by calculations
of the double-radiative capture[14], using a model based on
a very successful treatment of thedd→app reaction at
similar energies[15]. Thus the Saclaydd→ap0 cross sec-
tion is almost certainly a misinterpretation of a heavily-cut
smoothdd→agg background[14].

There have been two exciting recent observations of CSB
in experiments involving the production of neutral pions.
Many years of effort have led to the observation of CSB in
np→dp0 at TRIUMF. After a careful treatment of systematic
errors, the CSB forward-backward asymmetry of the differ-
ential cross section was found to beAfb
=f17.2±8sstat.d±5.5ssys.dg310−4 [16]. In addition, the final
experiment at the IUCF Cooler ring has reported a very con-
vincing dd→ap0 signal near threshold(s=12.7±2.2 pb at
Td=228.5 MeV and 15.1±3.1 pb at 231.8 MeV), superim-
posed on a smoothdd→agg background[17]. This back-
ground is roughly a factor 2 larger than calculations based on
Ref. [14], but has the expected shape. The data are consistent
with the pion being produced in ans wave, as expected from
the proximity of the thresholdsTd=225.6 MeVd.

Clearly, these new high-quality CSB experiments demand
a theoretical interpretation using fundamental CSB mecha-
nisms. At momenta comparable to the pion mass,Q,mp,
QCD and its symmetries(and in particular CSB) can be de-
scribed by a hadronic effective field theory(EFT), namely,
chiral perturbation theorysxPTd [18,19]. This EFT has been
extended to pion production[20–24] where typical momenta
areQ,ÎmpM, with M the nucleon mass.(See also Ref.[25]
where pion production was studied neglecting this large mo-
mentum in power counting.) This formalism provides spe-
cific CSB effects in addition to the nucleon mass difference.
In particular, there are two pion-nucleon seagull interactions
related by chiral symmetry to the quark-mass and electro-
magnetic contributions to the nucleon mass difference
[26,27].

It was demonstrated for the CI reactionspp→pp [28],
pN→pN [18], and NN→NN [29] that the values of the
low-energy constants can be understood as the low-energy
limit of the exchange of a heavy state. This procedure is
called the resonance saturation hypothesis. Within this
scheme the other CSB interactions, also caused by the light
quark mass difference[26,30], can be viewed as the low-
momentum limit of standard meson-exchange mechanisms,
such asp-h-h8 and r-v mixings. Determining the various
interaction strengths may provide significant information
about the quark-mass difference. Since these terms contrib-
ute to CSB in the reactionsnp→dp0 and dd→ap0 with
different weights, it is important to analyze both processes
using the same framework.

Early calculations of CSB innp→dp0 [31,32] incorpo-
rated most of the relevant mechanisms, giving an
asymmetry—dominated byp-h mixing—of the order of
−2310−3 for energies near threshold[32]. The combined
pion-nucleon seagull interactions required by chiral symme-
try generate a larger contribution with the opposite sign[33],
and provide a prediction forAfbsnp→dp0d (based on a crude
estimate of the strength of the CSB rescattering contribution)
that was confirmed by the recent experimental observation.
However, the experimental value is in the lower band of the
predicted range of values ofAfb.

Our aim here is to provide the first study of CSB in the
near thresholddd→ap0 reaction using chiral EFT tech-
niques. The effect ofp-h-h8 mixing on this reaction was
studied several years ago atTd=1.95 GeV[34]. Pion produc-
tion was assumed to be dominated by the production ofh
andh8, followed byp-h or p-h8 mixing. Using phenomeno-
logical information on these parameters and on theh-h8
angle, the cross section was expressed in terms of existing
data for theh production cross sections. This method cannot
be used for energies lower than that required to produce anh
meson, and other CSB contributions cannot be evaluated this
way.

It is necessary to explicitly account for the detailed dy-
namics of the few-nucleon pion-production amplitudes.
Therefore we will discuss the CSB amplitudes in the first
few orders, defined according to a chiral counting scheme
that provides a general guide to the expected importance of
different interaction terms. Such schemes do not explicitly
account for spin-isospin factors, for the sometimes poor
overlap of wave functions, or for the spin and isospin depen-
dences of the wave functions. We shall see that selection
rules resulting from the use of specific wave functions and
the threshold kinematics have a strong impact on the relative
importance of particular diagrams.

The fast incoming deuterons[p,460 MeV/c in the
center-of-momentum(c.m.) frame] need to be slowed down
to produce ana particle and ans-wave pion at threshold. The
resulting large momentum transfer can be transmitted
through the initial- and final-state interactions or wave func-
tion distortions, and through the exchange of a particle in the
pion-production subamplitude. Only the latter two possibili-
ties will be considered here. The complexities of thedd ini-
tial state interaction will be included in a future study. Thus,
we expect that a pion-production subamplitude should pref-
erentially provide for momentum sharing between the deu-
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terons, in order to avoid forcing the nucleons out into the
small, high-momentum tail of thea-particle wave function.

Spin, isospin, and symmetry requirements restrict the par-
tial waves allowed for thedd→ap0 reaction. In the spectro-
scopic notation2S+1LJl, whereS,L,J are the spin, orbital, and
total angular momenta of thedd state andl is the pion an-
gular momentum, the lowest partial waves are3P0s and
5D1p. Hence, production of ans-wave pion requires that the
initial deuterons be in a relativeP wave, with spins coupled
to a spin-1 state, coupled together to zero total angular mo-
mentum. The deuteron spins then need to be flipped, while
absorbing theP wave, to form the spin-0 state of the helium
nucleus. The invariant amplitude therefore takes the form
p ·se13e2d wherep is the deuteron relative momentum and
e1,2 are the polarization vectors of the initial deuterons. On
the other hand, ap-wave pion is produced only when the
deuterons are in a relativeD wave, with spins maximally
aligned to spin 2, requiring either a coupling withDL=DS
=2 or D states ofd or a. This invariant amplitude is of the
form p ·e1p ·se23ppd+p ·e2p ·se13ppd, where pp is the
pion momentum. Interferences betweens and p waves will
disappear for any unpolarized observable.

In addition to these momentum-sharing and overall sym-
metry considerations, the spin-isospin symmetries of the
nucleons in thedd:a system will turn out to be crucial in
determining which subamplitudes can contribute and what
possible meson exchanges can take place. This will be dis-
cussed in considerable detail below.

In this first stage we explore thedd→ap0 production
process using chiral EFT with the simplest deuteron and
a-particle wave functions, and ignoring the effects of initial-
state interactions. This will give us an initial test of the am-
plitudes and provide us with the framework necessary to es-
tablish the ingredients for a full-fledged model. We are
developing a full model, using realistic wave functions and
incorporating initial-state interactions, along withD admix-
tures, and the results will be reported in forthcoming papers.

The chiral power counting scheme is developed in Sec. II,
resulting in a list of possible CSB amplitudes. Our simplified
model is presented in Sec. III. The relative importance of the
amplitudes in this model is investigated in Sec. IV. The paper
then concludes in Sec. V with a discussion of the results,
implications for the interpretation of the IUCF experiment,
and future prospects. Some details of the calculation are in-
cluded in the Appendix.

II. CSB OPERATORS

We use the EFT power-counting scheme to classify the
CSB pion-production operators in this section. In addition,
the specific forms of the tree-level one- and two-body opera-
tors are derived. A few unknown low-energy constants
(LECs) appear in the first few orders. Since these cannot be
determined by symmetry considerations, we use phenomeno-
logical transition amplitudes to estimate their size. The ef-
fects of the derived operators are evaluated using a simplified
model in Sec. III. This allows us to check that the leading
nonvanishing operators of the chiral expansion indeed lead
to a CSB cross section of the observed order of magnitude.

A. Effective interactions

In QCD, the pseudo-Goldstone bosons of spontaneously
broken chiral symmetry, SUs2d3SUs2d→SUs2d, can be
identified with the pions. Chiral symmetry then strongly con-
strains the interactions allowed for pions with matter, and it
is possible to construct a well-defined, convergent effective
field theory for near-threshold pion reactions, namely, chiral
perturbation theory. Reviews with special emphasis on
nucleon systems are provided in, e.g., Refs.[18,19]. The
chiral expansion can be adapted to the larger momentum
scale inherent in pion production in nucleon-nucleon and
nucleus-nucleus collisions[20–24]. The necessary power se-
ries may converge(albeit slowly) for this class of reactions
[23,24]. Studies of thepp→ppp0 reaction have shown that
the resonance-saturation hypothesis does not necessarily lead
to couplings of natural size, at least for interactions that con-
tribute to the production ofs-wave pions[21]. This issue
should be further investigated.

We intend to reproduce theS-matrix elements of QCD at
momenta much smaller than the chiral symmetry breaking
scale, here identified for simplicity with the nucleon massM.
To do this, the low-energy EFT must contain all the interac-
tions among pionsp, nucleonsN, andD isobars which are
allowed by the symmetries of QCD. For the following, the
relevant CI interactions are

LCI = −
1

4fp
2 N†ft · sp 3 ṗdgN +

gA

2fp
HN†t · sW ·Ns¹W pd

−
1

2M
fiN†t · ṗsW ·¹W N + H.c.gJ

+
hA

2fp
HN†T ·SW · Ds¹W pd + H.c.

−
1

M
fiN†T · ṗSW ·¹W D + H.c.gJ . s1d

Here the first interaction is the Weinberg-Tomozawa term
whose strength is fixed by chiral symmetry in terms of the
pion decay constantfp=92.4 MeV. Theother terms repre-
sent the standard axial-vector couplings—including
recoil—of the pion to the nucleonswith gA=1.26d and to
theD isobarswith hA=2.8d. Note thatsW andt are the usual

Pauli matrices in spin and isospin spaces, andSW andT are
the standardND spin and isospin transition matrices, nor-
malized such thatSiSj

+= 1
3s2di j − i«i jkskd, and TaTb

+= 1
3s2dab

− i«abctcd.
Charge symmetry breaking can occur either via exchange

of a long-wavelength(soft) virtual photon or via short-range
interactions. The former is generated by writing all allowed
gauge-invariant interactions of the photon field. The latter
are represented by local interactions that come either from
the quark-mass differencemu−md;esmu+mdd or from the
exchange of short-wavelength(hard) photons (“indirect”
electromagnetic effects), or both. The relevant CSB interac-
tions are
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LCSB=
dM

2
N†St3 −

p3t · p

2fp
2 DN +

d̄M

2
N†St3 +

p3t · p − p2t3

2fp
2 DN −

3dM

8M2FN†St3 −
p3t · p

2fp
2 D¹2N + s¹2Nd†St3 −

p3t · p

2fp
2 DNG

−
3d̄M

8M2FN†St3 +
p3t · p − p2t3

2fp
2 D¹2N + s¹2Nd†St3 +

p3t · p − p2t3

2fp
2 DNG +

1

4M2fp
2 N†f− dM¹2sp3t · pd

+ d̄M¹2sp3t · p − p2t3dgN+
1

2M2i«i jkf− dMs]iNd†sp3t · pdsk] jN + d̄Ms]iNd†sp3t · p − p2t3dsk] jNg

−
sb1 + b̄3d

2fp
HN†sWN ·¹W p3 −

1

2M
fiN†ṗ3sW ·¹W N + H.c.gJ + ¯ , s2d

where dM =Osemp
2 /Md and d̄M =OsaM /pd are, respec-

tively, the quark-mass-difference and electromagnetic contri-
butions to the nucleon mass difference, andb1

=Osemp
2 /M2d and b̄3=Osa /pd are, respectively, the quark-

mass-difference and electromagnetic contributions to the
isospin-violating pion-nucleon coupling. This Lagrangian is

consistent with the one from Ref.f20g, with the d̄M term

added from Ref.f33g and the pion-nucleonsb1+b̄3d term
from Ref. f30g. This Lagrangian is also consistent with that
of Ref. f30g. An apparent difference of an overall minus sign
arises because Ref.f30g used different signs for the pion

field and for dM + d̄M. The CSB seagull term is consistent
with the one used in Ref.f33g. These and other CSB EFT
interactions were considered in Refs.f24,26g.

As usual, we have used[26] naive dimensional analysis to
estimate the strengths of the terms in the Lagrangian, i.e., we
have assumed that the LECs are of natural size. In principle,
these parameters should be determined using experimental
data. We now discuss some of the information we have about
them.

The first two terms of Eq.(2) are the pion-nucleon seagull
interactions required by chiral symmetry[26,27] and can be
described as the CSB components of the pion-nucleons
term. The strengths are determined by the coefficientsdM

andd̄M, with their sum related to the nucleon mass splitting,
to this order,

dM + d̄M = DM = Mn − Mp = 1.29 MeV. s3d

The coefficients are not well-known separately. With some
assumptions about higher-energy physics, the Cottingham

sum rule can be used to gived̄M =−s0.76±0.30d MeV f35g.
It is desirable to determine these parameters without these

assumptions. ThedM,d̄M contribution to other observ-
ables generally depends on a different combination than
that in Eq. s3d. It is difficult to isolate the parameters in
pN scattering, so it was suggestedf33g that CSB in pion
production could be used instead. The forward-backward
asymmetry innp→dp0 was shown to be sensitive todM

− d̄M /2, but it also depends significantly onb1+b̄3.

The other LECs are not well-known either. The pion-

nucleon CSB parameterb1+b̄3 is constrained by the
Nijmegen phase-shift analysis of theNN scattering data[36]
to beb1+b̄3=s0±9d310−3 [30]. Below we estimate the im-
pact of this interaction following the standard practice of

neglectingb̄3 and modelingb1 by p-h mixing [30], which is
consistent with the bound fromNN scattering.

Among the “̄ ” in Eq. (2) there are several CSB short-
range pion–two-nucleon interactions that contribute in the
order we will be considering. One example is

−
sg1 + ḡ3d

2fp

N†NHN†sWN ·¹W p3 −
1

2M
fiN†ṗ3sW ·¹W N + H.c.gJ ,

s4d

where we expect that g1=Ofemp
2 / sfp

2M3dg and ḡ3

=Ofa / spfp
2Mdg, for the quark-mass-difference and electro-

magnetic contributions, respectively. We know very little
about the LECs appearing in these short-range pion–two-
nucleon interactions, and therefore will model these LECs
with various heavy-meson-exchangesHMEd mechanisms as
detailed below.

B. Power counting

It is necessary to order the various amplitudes according
to the size of their expected contributions to pion production.
There are several strong-interaction scales in the problem,
namely,(1) x=p/M ,Împ /M, the initial c.m. momentum of
the deuteron divided by the chiral symmetry breaking scale
(here identified with the nucleon massM), which we will use
as the expansion parameter;(2) mp /M ,x2, wheremp de-
notes the pion mass;(3) sMD−Md /M ,x, with MD the D
mass[51]—the order assignment given is in line with Ref.
[24]; and (4) g /M ,x2, whereg is the typical nucleon mo-
mentum inside the deuteron and thea particle(for simplicity
we will not distinguish between the two).

Moreover, the strengths of CSB effects are governed by
(1) a /p, the fine structure constant that appears with every
exchange of a virtual photon, typically with an extra factor of
p; and (2) emp

2 /M2, the factors ofmu−md that come from
explicit chiral symmetry breaking via quark-mass terms[52].
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We discuss the two types of contributions individually, to
first order, in the following sections. Second-order effects in
a ande can also be treated, but are truly small, and ignored
here.

Power counting in systems of two or more nucleons is
complicated by the fact that some diagrams contain small
energy denominators, corresponding to states that differ from
initial and/or final states only by an energyOsg2/Md. Sub-
diagrams that do not contain such enhancements are denoted
as irreducible. Conservation of energy and momentum in
pion production requires that at least one interaction takes
place among nucleons—before, during, or after the pion
emission. This interaction transfers a momentum of orderp
,ÎmpM. When such interactions happen before or after
pion emission, they are included in the(high-momentum tail
of the) initial- or final-state wave function. In this case we
can speak of a “one-body” pion-emission operator. However,
in order to compare subamplitudes of the same dimensions
and count powers ofx, we include these interactions as part
of the irreducible pion subamplitude. The full pion-
production amplitude is “reducible,” because it includes fur-
ther initial- and final-state interactions(via the deuteron and
a wave functions) that transfer momenta of orderg.

The separation of reducible and irreducible subamplitudes
is convenient because it isolates interactions involving the
scalex in the irreducible part. Power counting for the initial-
and final-state interactions corresponding to momenta of
Osgd can be done in the usual way[19]. In this first paper,
we use simple wave functionsin lieu of wave functions ob-
tained in EFT. The needed EFT wave functions may soon be
a reality, since chiral three- and four-nucleon calculations
already exist[37].

The loop integrals, propagators, and vertices bring factors
of momenta, masses, and coupling constants to any given
diagram. Dimensional analysis can be used to express any
coupling constant as appropriate powers ofM times numbers
of order 1 (for CI operators) or emp

2 /M2 or a /p (for CSB
operators). Some factors, common to all diagrams, are not
written explicitly. For example, since we study a system of
four nucleons that are bound in ana particle in the final
state, there are always three loops that are controlled byg.
Thus, all we need to keep explicitly for a 2n-nucleon opera-
tor (in addition to what can be read from the vertices and
propagators directly) is a common factorfp3/ s4pd2gsn−1d

(here we have only a three-dimensional integral because we
estimate the measure of a convolution integral with a wave
function). Therefore explicit factors ofg are not included
explicitly in the assignments of chiral order.

As stressed in Refs.[23,24], the hierarchy of diagrams is
very different fors-wave pions andp-wave pions. We here
specialize tos-wave pion production, relevant for the recent
IUCF experiment.

1. Diagrams proportional toe

At leading order(LO) there is only one contribution: pion
rescattering, where the CSB occurs through the seagull pion-
nucleon terms linked to the nucleon mass splitting—see Fig.
1, in which the leading CI interaction is represented by a dot
and CSB by a cross. The irreducible part of this diagram is

Ofemp
2 / sfp

3Mpdg. The analogous diagram was identified in
Ref. [33], using the present counting scheme, as giving the
dominant contribution to the forward-backward asymmetry
in np→dp0. We shall show that, in thedd induced CSB
reaction, selection rules tend to suppress the rescattering via
these seagull terms, if initial state interactions are ignored.

There is no next-to-leading order(NLO) contribution
(suppressed by just one power ofx). At NNLO, however,
there are several contributions, displayed in Fig. 2. The en-
circled vertices stem from subleading Lagrange densities.
For example, the subleading vertex in diagrams(a) and (b)
arises from the recoil correction of the CSBpNN vertex, the
one in diagram(c) denotes the recoil correction of the CI
pNN vertex, and that in diagram(d) represents the recoil
corrections to the CSB seagulls. Diagram(b) involves the
Weinberg-Tomozawa vertex.

Note that diagram(a) can be interpreted as the sandwich
of a one-body CSB operator between CI initial- and final-
state wave functions. It is necessary to include the effects of
CSB in the wave functions in addition to the diagrams shown
in Fig. 2. The easiest way to see this is to compare the size of
the LO CSB production operator(rescattering via the seagull
terms) times the LO CI contribution to theNN potential(e.g.,
one-pion exchange) with the LO CI production operator(res-
cattering via the Weinberg-Tomozawa term) times the LO
CSB contribution to theNN scattering—assumed to be one-
pion exchange with a CSB coupling on one vertex. This
shows that CSB in the wave functions should be significant
in a NNLO calculation. Typical diagrams are shown in
Fig. 3.

The effects of parity conservation suppress the influence
of CSB in a single deuteron wave function, but CSB does
occur in the interactions between the deuterons. One such
term arises from photon exchange as in Fig. 3. The dominant
CSB contribution in thea-particle wave function may be
expressible in terms of the point radius difference of the
neutron and proton,rn−rp, which can be calculated in micro-
scopic models for few-body systems. Results of these calcu-
lations will be presented in future work.

Loop diagrams appear already at NNLO. We display only
the topology of these diagrams, but it is clearly necessary to
include all other orderings. A striking feature of the present

FIG. 1. Leading-order diagram with strong CSB. The cross in-
dicates the occurrence of CSB. The dot represents a leading-order
CI vertex.
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analysis is that, at this order, no counterterms are allowed by
the symmetries. The corresponding counterterms—the CSB
four-nucleon contact interactions in Eq.(2), displayed below
in Fig. 4(b)—appear first at N4LO. Therefore, those parts of
the loops that appear at NNLO are to be finite. This situation
is in complete analogy to the CI pion production in nucleon-
nucleon collisions discussed in detail in Ref.[24].

Figure 4 displays some of the higher-order contributions.
A contribution with an intermediateD isobar, which appears
at N3LO, is shown in diagram(a). The CSB contact interac-
tions displayed in diagram(b) start to contribute at N3LO.
Their values will be estimated below using phenomenologi-
cal input.

2. Diagrams proportional toa

Electromagnetic contributions can be ordered relative to
each other in exactly the same fashion. In this case, the LO is
OfaM / s4pfp

3pdg. These diagrams contain Coulomb interac-
tions in the initial- or final state. In particular, the effects of
photon exchange between the initial deuterons, followed by
production by a strong interaction, could be very important.
An example of such a term is provided by Fig. 3.

The NLO electromagnetic diagrams—suppressed by one
power ofx—that contribute to CSB in the production opera-
tor are shown in Fig. 5. It is important to note that in thresh-
old kinematics(on the two-body level the outgoing nucleons
as well as the produced pion are at rest) the two diagrams(b)
and (c) cancel—in a realistic calculation we should expect
some of this cancellation effect to survive. The three-body
diagram(a) should therefore be the one to estimate the pho-
ton effects in the production operator at this order. In addi-

FIG. 2. NNLO diagrams with strong CSB.
Vertices with an additional circle originate from
subleading Lagrange densities. We do not display
all possible orderings.

FIG. 3. The influence of strong and electromagnetic CSB in the
initial and final states. The wiggly line represents the exchange of a
photon, while the dashed line represents a meson-exchange contri-
bution with one CSB vertex.

FIG. 4. Some typical higher-order diagrams with strong CSB. A
double line represents aD isobar. Diagram(a) appears at N3LO
whereas diagram(b) is a N4LO contribution.

A. GÅRDESTIGet al. PHYSICAL REVIEW C 69, 044606(2004)

044606-6



tion, higher-order photon couplings in the wave functions
contribute at this order.

There are various other contributions at NNLO—see Fig.
6. In what follows we will explicitly calculate the two-body
operator that involves a photon exchange stemming from
gauging the recoil correction to thepNN vertex [53], dia-
gram(a). This will give us an idea of the relative importance
of soft photons compared to the strong CSB effects.

C. Heavy-meson interactions

We assume that EFT LECs can be determined using the
exchange of massive resonances to estimate the impact of
short-range physics. Such an approach was used in CI pion
production, for example, in Refs.[20,21]. In principle the
counterterms can be determined by other data, and this
would eliminate the need for our heavy-meson model. In the
present context, we include the exchanges of the(s, v, and
r) mesons depicted in Fig. 7.

The meson-exchange diagrams can be calculated from the
following Lagrangian:

LHME = − ighc̄g5ch + gsc̄cs − gvc̄gmcvm

− grc̄t ·Fgmrm + Cr

smn

2M
]mrnGc. s5d

Here c is the Dirac four-component nucleon field andh,s,
vm,rm are the meson fields. We use the parameter values in
Table I as representative of typical one-boson exchange
sOBEd modelsf38g and the standard valueCr=6.1 for the
large ratio of tensorsmn]

m / s2Md to vectorgm coupling for
the r meson. Theh-nucleon couplinggh will be discussed
below.

The photon-nucleon coupling is described by the La-
grangian(up to dimension five)

Lg = − ec̄F1 + t3

2
gmAm + Sl0 + l1t3

2
Dsmn

2M
]mAnGc, s6d

where l0,1=lp±ln and lp=1.793 andln=−1.913 are the
proton and neutron anomalous magnetic moments.

D. Explicit form of leading tree-level operators

We now turn to the explicit form of the leading tree-level
two-body operators, in order to exploit the selection rules.
Corresponding expressions for the loops as well as the three-
body electromagnetic term mentioned above will be pre-
sented in a subsequent publication.

We start with the formally leading mechanism, Fig. 1,
together with the recoil correction at the pion-nucleon vertex,
Fig. 2(c). The pion-exchange operator coming from the
seagull terms is

Op =
1

4fp
2 fdMsti · t j + ti

3t j
3d − d̄Msti · t j − ti

3t j
3dg

3 o
iÞ j

si ·Fsk i8f ij
p − f ij

pk id −
qi

0

2M
sk i8f ij

p + f ij
pk idG , s7d

f ij
p =

gA

2fp

e−mri j

4pr ij
, s8d

wherer i j =r i −r j is the relative coordinate of nucleonsi and

j , k i =−i¹W i sk i8= i¹W id is the initial sfinald momentum of
nucleoni, qi =k i8−k i is the momentum transfer to nucleoni
shere symmetrized with the Yukawa factord, and the Yukawa
parameterm=Î3/4mp. In our numerical estimates below,

we use the value ford̄M from the Cottingham sum rule,

which translates intodM − d̄M /2=2.4 MeV f33g. In the
fixed kinematics approximation for pion production by
two nucleons, the exchange pion energyqi

0=mp /2 f39g.
It may be noted that the term from Eq.(8), proportional to

qi, actually gives rise to most of the CSBs-wave amplitude

FIG. 6. NNLO diagrams with CSB stemming from soft
photons.

FIG. 5. NLO diagrams with CSB stemming from soft
photons.

FIG. 7. Resonance saturation for(a) the CSB
pNN vertex modeled here byp-h mixing and(b)
the CSB four-nucleon operators. The ellipsis in-
dicate that additional short-range mechanisms are
to be included, as discussed in the text.
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in np→dp0 [33]. This interferes with CIp-wave production.
On the other hand, the CSBp-wave amplitude, arising
mainly from the CSB one-body operator shown in Eq.(9) or
from a CI production operator following a CSB initial-state
interaction, interferes with the CIs wave and was about as
important in Ref.[33], but would be relatively irrelevant here
in the absence of such an important interference at threshold.

The nucleon recoil term, 1
2sk i8+k id is smaller, since it is

suppressed by an additional factormp /M. However, if the
simple deuteron anda wave functions of Sec. III are used,
the spin-isospin symmetries prohibit this amplitude for
nucleons from different deuterons. Theqi term will integrate
to zero inside a single deuteron, leaving the(in-deuteron)
recoil as the only allowed contribution. Thus the symmetries
in this particular model suppress the contribution from Fig.
1, leaving only Fig. 2(c): the seagull amplitude is reduced
from LO to NNLO and there is no momentum sharing. This
suppression is expected to be less important once initial-state
interactions are included and realistic wave functions are
used.

At NNLO there are various other contributions. The one-
body operator, Fig. 2(a), is

O1 =
b1

2fp
o

i

si ·Sqi −
v

2M
sk i8 + k idD → L1

1

2o
i

si · sk i8 + k id,

s9d

L1 = −
b1

2fp

v

M
. s10d

The p wave, qi =−pp, term is suppressed in the threshold
regime considered. In addition, it is not allowed in our plane-
wave approximation, since it lacks the tensor coupling re-
quired for the 5D1p transition. Thes-wave recoil term is
allowed, albeit suppressed by a factorv /M, hence the pa-
rameterL1. This s-wave term is NNLO.

The isospin violatingb1 is here modeled[30] by p-h
mixing [see Fig. 7(a)],

b1 = ḡhkp0uHuhl/mh
2 , s11d

whereḡh=ghfp /M =0.25 is thehNN coupling constant and
kp0uHuhl=−4200 MeV2 the p-h–mixing matrix element
f40g. The value ofḡh corresponds togh

2 /4p=0.51, similar
to the small values found from photoproduction experi-
mentsf41g. However, other values, based on hadronic ex-
periments, are as high asgh

2 /4p=3.68 f42g or 2–7 for the
OBE parametrizations of the Bonn potentialsf43g. The
charge-dependent Bonn OBE potential assumes a vanish-
ing value forgh, since in the full Bonn model no explicit

h contribution was required by the NN dataf44g. Further-
more, the value of thep-h–mixing matrix element is un-
certain. With our particular choice we getb1=−3.5
310−3 f30g. Using gh

2 /4p=3.68 and kp0uHuhl=
−5900 MeV2, as done in Ref.f33g, givesb1=−1.2310−2.

One important issue is the relative sign of this contribu-
tion, which is apparently not determined experimentally. The
sign given above is consistent with SUs3d3SUs3d chiral
perturbation theory, which can be formulated in terms of a
pseudoscalar octetpa and a baryon octet. The sign of the
p3-p8 mixing is, in leading order, fixed bymu−md. The in-
teractions ofp3 andp8 with the nucleon are determined by
the standard weak couplingsD and F, which are fixed in
weak decays. With our definitions ofgA, ḡh, and b1 given
above and the values ofD andF given, e.g., in Ref.[45], we
find gA.0 if we definep3=p0, gh.0, andkp0uHuhl,0, so
thatb1,0. This conclusion holds, as it should, regardless of
the sign definition ofh, that is, whether one takesh asp8 or
−p8.

Figure 2(b) represents the process where a CSB one-body
operator produces a charged pion which then changes into a
neutral pion as it rescatters on another nucleon via the CI
Weinberg-Tomozawa term. This contribution is small indd
→ap0, since the isospin couplings force the pion exchange
to occur inside one of the deuterons. This is a situation very
similar to the seagull CSB terms, which was discussed
above, but with a smaller coefficient. Note that a similar
diagram where the exchanged pion is neutral is also small,
since the on-shellp0N→p0N amplitude receives contribu-
tions only at one order higher than that from the Weinberg-
Tomozawa term. Since the operator in Fig. 2(d) is a relativ-
istic correction to the leading-order pion rescattering, it has
exactly the same spin-isospin structure(except its last term)
as can be seen in Eq.(2). Thus its first few terms are also
confined to in-deuteron exchanges and since they are already
suppressed by two ordersski /Md2,mp /M, these terms are

negligible. The lastdM / d̄M term has an extra Pauli spin
matrix and can possibly be important since this may allow
for momentum sharing. However, this term always includes
the momentum of a final nucleon, which is very small near
the pion threshold and this NNLO amplitude is likely to be
suppressed as well. We will not consider these operators any
further.

The pion loops in Figs. 2(e)–2(k) represent long-range,
nonanalytic contributions as well as short-range, analytic ef-
fects. The latter cannot be separated from the short-range
contributions of Fig. 4(b), originating from a four-nucleon–
pion CSB contact interaction. In this first study, we limit
ourselves to an estimate of these effects via resonance satu-
ration from various heavy-meson exchange currents
(HMECs)— see Fig. 7(b). In the case of thepp→ppp0 re-
action, heavy-meson exchanges involving the creation of a
nucleon-antinucleon pair(z graphs) were shown to be impor-
tant for the total(CI) cross section near threshold[21,46,47].
These exchanges correspond to contact interactions in the
EFT [20,21]. Here, we include the analogous CSB interac-
tions where CSB occurs in the pion emission or in the meson
exchange.

The HME two-body operators are derived directly from a
low-energy reduction of the Feynman rules for the HME

TABLE I. Table of meson masses and coupling constants.

m sMeV/c2d gxNN
2 /4p

s 550 7.1

v 783 10.6

r 770 0.43
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Lagrangian, Eq.(5). This gives thes-meson–exchange two-
body operator

Os = L1
1

2o
iÞ j

si · sk i8f ij
s + f ij

sk id, s12d

f ij
s =

gs
2

4pM

e−msri j

r i j
, s13d

where only the symmetrized recoil term has been used. Note
that the sum is overi Þ j rather thani , j .

The v-exchange two-body operator is

Ov = − L1
1

2o
iÞ j

fs j · sk i8f ij
v + f ij

vk id

+ issi 3 s jd · sk j8f ij
v − f ij

vk jdg, s14d

f ij
v =

gv
2

4pM

e−mvri j

r i j
. s15d

Note this has an overall minus sign ands j instead ofsi
compared toOs. Finally there is a new term involving the
momentum transferred to nucleonj .

The r-exchange two-body operator is

Or = − L1
1

2o
iÞ j

ti · t jfs j · sk i8f ij
r + f ij

r k id

+ is1 + Crdssi 3 s jd · sk j8f ij
r − f ij

r k jdg, s16d

f ij
r =

gr
2

4pM

e−mrri j

r i j
. s17d

The r HMEC is of order of the small vector times the large
tensor coupling constant and has no contributions of order of
the tensor coupling squared.

The r-v–mixing two-body operator is

Or−v = − Lr−v

1

2o
iÞ j

hs1 + ti
3t j

3ds j · sk i8f ij
rv + f ij

rvk id s18d

h+ if1 + ti
3t j

3s1 + Crdgssi 3 s jd · sk j8f ij
rv − f ij

rvk jdj,

s19d

Lr−v = −
gA

2fp

v

M
S kruHuvl

mv
2 D , s20d

f ij
rv =

grgv

4pMrij

mv
2

mv
2 − mr

2se−mrri j − e−mvri jd, s21d

where ther-v mixing is given by kruHuvl=−4300 MeV2

f40g. A somewhat smaller number skruHuvl=
−3500±300 MeV2d was obtained in a more recent analysis
f48g. The isospin-independent part of thisr-v operator is
only of the order of the smallr vector coupling. Note,
however, that there is ati

3t j
3 term that involves the larger

tensor coupling.

At momenta much smaller than the heavy-meson masses
these HMECs are equivalent to short-range pion–two-
nucleon contact interactions, with specific values for the
LECs. For example, thes mechanism[Eq. (13)] goes into
the interaction shown in Eq.(4) with g1 given by
b1gs

2 / s4pms
2Md, which is consistent with the naive dimen-

sional estimates.
In addition, we need to consider contributions from soft

photons. There is a Coulomb interaction and a magnetic in-
teraction(Fig. 3), and a three-body term[Fig. 5(a)]. As a first
estimate, we shall compute the lowest-order two-body dia-
gram with a photon. This appears at NNLO and is shown in
Fig. 6(a).

The soft photon exchange gives a structure very similar to
that of r0-v mixing:

Og = − Lg

1

2o
iÞ j

hs1 + ti
3t j

3ds j · sk i8f ij
g + f ij

gk id

+ if1 + l0 + s1 + l1dti
3t j

3gssi 3 s jd · sk j8f ij
g − f ij

gk jdj,

s22d

Lg =
1

4

gA

2fp

v

M
, s23d

f ij
g =

a

Mrij
. s24d

Note that the structure of this term is a consequence of gauge
invariance, and this is why no new unknown parameters are
introduced.

III. SIMPLIFIED MODEL

The interferences and relative importance of the CSB am-
plitudes of the preceding section can be estimated in a sim-
plified model, using a plane-wave approximation and the
simplest possibled anda bound-state wave functions, those
of a Gaussian form. A Feynman diagram for this model can
be drawn as in Fig. 8. Assuming spatially symmetric bound-
state wave functions, the invariant amplitude is given by

M =E d3rd3r1d
3r2kAuOuDDl, s25d

FIG. 8. Feynman diagram for pion production in thedd→ap0

reaction, indicating the labeling of nucleons and defining basic ki-
nematic variables.
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uAl = Î2EaCasr,r1,r2dual, s26d

uDDl = ÎsFdsr1dFdsr2duddl, s27d

whereCa andFd are the spatial parts of thea-particle and
deuteron bound-state wave functions, ands=4Ed

2 is the total
c.m. energy squared. The ket vectorsual anduddl contain the
fully antisymmetrized spin and isospin wave functions. Be-
cause of the symmetry requirements, the plane-wavedd scat-
tering wave function is included inuddl as given by Eqs.s34d
ands35d below. The invariant amplitude can then be written
as

M = Î2EasE d3rd3r1d
3r2Ca

†sr,r1,r2d

3kauOuddlFdsr1dFdsr2d, s28d

wherekauOuddl contains all the spin-isospin couplings of the
nucleons and the pion-production operatorO.

The wave functions are expressed in terms of the(212)
Jacobian coordinates

R = 1
4sr 1 + r 2 + r 3 + r 4d s;0 in c.m.d,

r = 1
2sr 1 + r 2 − r 3 − r 4d,

r1 = r 1 − r 2,

r2 = r 3 − r 4, s29d

with the corresponding momenta

K = k1 + k2 + k3 + k4 s;0 in c.m.d,

k = 1
2sk1 + k2 − k3 − k4d = 1

2sp1 − p2d s;p in c.m.d,

k1 = 1
2sk1 − k2d,

k2 = 1
2sk3 − k4d, s30d

defined so thatoik i ·r i =K ·R+k ·r +k1·r1+k2·r2. The Jaco-
bians are equal to unity in both representations.

The Gaussian functions that represent the ground state
wave functions are explicitly expressed in these coordinates
usingoi, jsr i −r jd2=4r 2+2r1

2+2r2
2:

Casr,r1,r2d =
8

p9/4a9/2expF−
1

a2s2r2 + r1
2 + r2

2dG , s31d

Fdsrd =
1

p3/4b3/2expS−
1

2b2r2D , s32d

where the parameter valuesa=2.77 fm andb=3.189 fm are
derived from measureda and d rms point radii; kra

2l1/2

=1.47 fm andkrd
2l1/2=1.953 fmf49g.

Since we have assumed that the orbital parts of the wave
functions are symmetric under the exchange of any pair of
nucleons, we may define the initial- and final-state spin-
isospin wave functions as

ual =
1
Î2

h„s1,2d1,s3,4d1…0†f1,2g0,f3,4g0‡0

− „s1,2d0,s3,4d0…0†f1,2g1,f3,4g1‡0j, s33d

uddl =
1
Î3

s1 − P23 − P24dud12d34l, s34d

ud12d34l = „s1,2d1,s3,4d1…S†f1,2g0,f3,4g0‡0
1
Î2

3feip·r + s− dLe−ip·rg, s35d

where si , jds sfi , jgTd are the spinsisospind Clebsch-Gordan
couplings, with magnetic quantum numbers suppressed, for
nucleons, or nucleon pairs,i and j coupling to spins sisospin
Td. Here, Pij is the permutation operator of the indicated
nucleons. The symmetry requirements for the exchange of
the deuterons are represented by thesorbital-angular-
momentum dependentd combination of plane waves in Eq.
s35d, with p as the deuteron relative momentum. Even
though the expression for thea state seems to single out a
s12d+s34d configuration, it is indeed fully antisymmetric
in all indices. This particular form is used because it
closely matches the form of the initial-state wave func-
tions, simplifying the evaluation of the spin-isospin sum-
mations in the matrix element. Thedd wave function can
in practice be simplified to

uddl = Î6„s1,2d1,s3,4d1…S†f1,2g0,f3,4g0‡0

3s2L + 1diLjLsprdPLsp̂ · r̂ d, s36d

since each of the three terms in Eq.s34d gives identical con-
tributions to the matrix element, andeip·r +s−dLe−ip·r reduces
to 2s2L+1diLjLsprdPLsp̂ ·r̂ d for any particular partial wave.

We may obtain selection rules for the CSB amplitudes
that can contribute by comparing this expression for the deu-
terons with thea-particle wave function. It is clear that
matching the first term ofual involves no nucleon spin or
isospin flips, but to match the second term, the spin and
isospin of two nucleons(one from each deuteron) need to be
flipped simultaneously. Of course, the overall spin has to
change in both cases.
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In an explicit and straightforward representation, the
above spin-isospin wave functions can be written as

ual =
1

2Î6
HF↑ ↑ ↓ ↓ + ↓ ↓ ↑ ↑ −

1

2
s↑ ↓ ↑ ↓ + ↓ ↑ ↓ ↑

+ ↑ ↓ ↓ ↑ + ↓ ↑ ↑ ↓dGspnpn+ npnp− pnnp− nppnd

− s↑ ↓ ↑ ↓ + ↓ ↑ ↓ ↑ − ↑ ↓ ↓ ↑ − ↓ ↑ ↑ ↓dFppnn

+ nnpp−
1

2
spnpn+ npnp+ pnnp+ nppndGJ , s37d

ud12d3410l =
Î6

2Î2
s↑ ↑ ↓ ↓ − ↓ ↓ ↑ ↑dspnpn+ npnp− pnnp

− nppnd3i j 1sprdP1sp̂ · r̂ d, s38d

where the arrows indicate spin projections andp/n proton
and neutron isospin states. Note that for thedd state, only the
spin-1,mS=0 state is given. These expressions can then be
used together with the Pauli matrices of the pion production
amplitudes to find the formulas for the matrix elements.

In the normalization used here, the spin-averaged cross
section(for s-wave pions) is given by

s =
1

16ps

pp

p

1

9o
pol

uMu2, s39d

where the summation is over the deuteron polarizations.
The CSB operators can now be evaluated in this model

and studied in more detail. We will start with the simplest
operator(i.e., the one-body term) and use its matrix element
as a reference point for the values of the other amplitudes.

A. One-body operator

The one-body amplitude is strongly favored by the sym-
metries of initial and final states because all of the nucleons
contribute coherently to the cross section. However, it does
not provide momentum sharing between the deuterons and is
hence dependent on the shape of the high-momentum tail of
the a-particle wave function. The matrix element for this
operator is

M1 = − i
L1

2
p · se1 3 e2d4W1, s40d

W1 = Î2EasE d3rd3r1d
3r2Ca

* j0sprdF1F2, s41d

where e1 and e2 are the polarization vectors of the initial
deuterons and the factor of 4 arises from the sum over all
nucleons. Thus the spin-momentum structure of the3P0s par-
tial wave has been separated from the dimensionless form
factorW1. For Gaussian wave functions this matrix element
and the corresponding cross section can be calculated ana-
lytically. They are

M1 = − i
L1

2
4p · se1 3 e2d

32p3/4ÎEasa9/2b3

sa2 + 2b2d3 expS−
a2p2

8
D ,

s42d

s1 =
512Îp

9
L1

2ppp
Eaa9b6

sa2 + 2b2d6expS−
a2p2

4
D , s43d

where the exponential stems from the Fourier transform of
the a-particle wave function and reflects the dependence on
its high-momentum tail. We will use this one-body estimate
as the benchmark for the calculations of more complicated
amplitudes, and also for the full calculation using realistic
wave functions.

B. Meson-exchange operators

Although the seagull amplitude is leading order inxPT, it
is suppressed in our plane wave treatment of thedd→ap0

reaction because of the combination of twot matrices and
one s matrix, which gives a poor match of the initial and
final states in our simplified model. Thus, the pion exchange
is allowed only between nucleons from the same deuteron,
forbidding an advantageous momentum sharing between the
deuterons. In addition, theqi term vanishes, leaving the re-
coil term sv /Mdk i as the only contribution. This term is
NNLO. The pion-exchange matrix element is

Mp = − i
L1

2
p · se1 3 e2d4Wp, s44d

Wp = W1
Lp

L1
kf12

p l, s45d

Lp =
sdM − 1

2d̄Md
fp
2

v

M
, s46d

kf12
p l =

1

W1

Î2EasE d3rd3r1d
3r2Ca

* f12
p j0sprdF1F2.

s47d

The matrix element fors-meson exchange is

Ms = − i
L1

2
p · se1 3 e2d4Ws, s48d

Ws =
Î2Eas

p

1

4
E d3rd3r1d

3r2Ca
*

3
1

2o
iÞ j

s− ¹Q i f i j
s + f ij

s¹W id3j1sprdp̂ · r̂F1F2 s49d

=W1skf12
s l + kf13

s l + kf13
s8ld, s50d

where f ij j0sprd has been replaced bys1/2pds−¹Q i f i j

+ f ij¹W id j1sprd because of the symmetrization in Eq.s12d. The
kf ij

x l are defined as the averages
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kf12
x l =

1

W1

Î2EasE d3rd3r1d
3r2Ca

* f12
x j0sprdF1F2,

kf13
x l =

1

W1

Î2Eas

p
p̂ ·E d3rd3r1d

3r2Ca
* f13

x s¹W r + ¹W r1 − ¹W r2d

33j1sprdp̂ · r̂F1F2,

kf13
x8l =

1

W1

Î2Eas

p
p̂ ·E d3rd3r1d

3r2Ca
* s− ¹Q r − ¹Q r1 + ¹Q r2d

3f13
x 3j1sprdp̂ · r̂F1F2, s51d

wherex could be any of the heavy mesons. This separates
the in-deuteron exchangesf12 from exchanges between
nucleons from different deuterons(f13 and f138 ). Exchanges
between other pairs of nucleons can be reduced to these two
because of the symmetries of thedd anda wave functions.
Some of the necessary integrals are presented in the Appen-
dix.

The v-exchange form factor is given by

Wv = W1s− kf12
v l + 2kf13

v ld, s52d

with the same external spin factors as in Eq.s48d and with
averages defined as in Eq.s51d. Due to cancellations, the
kf13

v8l term cannot contribute.
Ther-exchange amplitude has an isospin factorti ·t j that

makes it possible to match the initial-state deuterons with the
second term of thea-particle wave function[Eq. (33)], giv-
ing sizable exchanges between the deuterons. The large ratio
of the r tensor to vector couplings enhances this amplitude
despite the small value of ther coupling constant. Ther
form factor is

Wr = W13fkf12
r l + s1 + Crdskf13

r l − kf13
r8ldg. s53d

Similarly, the r-v–mixing amplitude has ati
3t j

3 term that
involves the larger tensor coupling, which gives a large
contribution to CSB fordd→ap0 and possibly also fornp
→dp0. The form factor fordd→ap0 is

Wr−v = W1
Lr−v

L1
fs3 + Crdkf13

rvl − s1 + Crdkf13
rv8lg, s54d

which follows immediately from the expressions for ther
and v exchanges. Thef12 term vanishes since the 1+t1

3t2
3

term of Eq.s21d gives zero when acting on a deuteron and

TABLE III. Matrix elements and cross sections evaluated fordd→ap0 at the two IUCF energies. The
matrix elements are given relative to the one-body matrix element, with the relevant CSB mechanism
indicated. The experimental cross sections are also given.

Operator(CSB mech.) Ms228.5d Ms231.8d ss228.5d ss231.8d
sM1d sM1d (pb) (pb)

psdM , d̄Md 0.128 0.128 0.011 0.014

1sp-hd 1 1 0.688 0.869

ssp-hd 0.522 0.543 0.187 0.256

vsp-hd 0.766 0.801 0.404 0.557

rsp-hd 0.344 0.359 0.082 0.112

r-vsr-vd 1.546 1.612 1.645 2.256

g (el.-mag.) 1.469 1.517 1.486 1.999

total 5.78 5.96 23.0 30.8

Expt. [17] 12.7±2.2 15.1±3.1

TABLE II. The Yukawa averages(see text for definitions) evaluated fordd→ap0 at the two IUCF
energies, using Gaussian wave functions.

Operator Td=228.5 MeV Td=231.8 MeV

kf12l kf13l kf138 l kf12l kf13l kf138 l

p 0.0172 0 0 0.0172 0 0

s 0.0292 0.470 0.0220 0.0292 0.490 0.0229

v 0.0228 0.395 0.0106 0.0228 0.412 0.0111

r 0.000 95 0.0165 0.000 46 0.000 95 0.0172 0.000 48

r-v 0.004 45 0.0704 0.003 77 0.004 45 0.0734 0.003 93

g 0.000 73 0.0032 0.001 09 0.000 73 0.0033 0.001 11
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the s13s2 term vanishes due to the spin couplings in the
wave functions.

The photon-exchange contribution is

Wg = W1
Lg

L1
fs3 + 2lpdkf13

g l − s1 + 2lpdkf13
g8lg, s55d

where again thef12 term vanishes. In the simplified model
the photon exchange only occurs between pairs of protons,
thus not benefiting from the coherence the other ampli-
tudes experience. However, the relatively large coupling
makes this amplitude important.

Thus all HMECs have contributions todd→ap0. While
there are some cancellations of the in-deuteronsf12d and the
derivativesf138 d exchange terms between the different heavy
mesons, all thef13 contributions are of the same sign. Since
in all caseskf13l is much larger thankf12l andkf138 l (see Table
II ), they dominate the matrix element and the cross section,
adding coherently with each other and also with the one-
body and pion-exchange terms. Also the photon graph is of
the same sign. Thus the internal spin-isospin symmetries of
the dd:a system used here strongly favor the one-body and
meson-exchange amplitudes if the plane-wave approxima-
tion is used. This will be demonstrated quantitatively in Sec.
IV.

IV. RESULTS

The matrix elements of the preceding section are evalu-
ated numerically using the simplified(Gaussian) wave func-
tions. At most a double integration with a separate single
integral was needed, which was carried out using standard
Gauss-Legendre techniques. Explicit formulas for the inte-
grals are presented in the Appendix.

The Yukawa averages are tabulated in Table II for each
operator and both energies relevant to the IUCF experiment.
The kf12l contributions are the same at both energies since
the in-deuteron exchange is independent of the energy in our
plane-wave model. For completeness thekf12l values forr
-v and photon exchanges are given, even though these, as
discussed above, do not contribute to the matrix element in
our simplified model. Note that even though ther-exchange,
r-v–mixing, and photon integrals are much smaller than
those for the other meson exchanges, they will be multiplied
by large constant factors in the definitions of the matrix ele-
ments, Eqs.(53)–(55). This drastically increases their rela-
tive importance.

The matrix elements and cross sections calculated from
these averages are given in Table III, individually for each
amplitude and as a grand total. For comparison purposes, the
experimental cross sections are included and the matrix ele-
ments are given relative to the one-body matrix element. All
the heavy-meson exchanges are of the same order as the
one-body term, with ther-v mixing being the largest. Add-
ing all amplitudes gives a total matrix element that is almost
six times that of the one-body, increasing the cross section
from a meager 0.69 pb atTd=228.5 MeV (0.87 pb at
231.8 MeV) to 23 pb s31 pbd. This is of the same order as
the IUCF datas=12.7±2.2 pb and 15.1±3.1 pb. Note that

the cross section is not strictly linear in the pion
momentum—the momentum transfer in the wave functions
introduces a dependence on the deuteron momentum, which
modifies the linearity, at least in this simplified model. For
example, Eq.(43) for the one-body term contains the square
of the deuteron momentum in an exponential.

The relative proportions of the pion-exchangesdM

− 1
2d̄Md, photon-exchange,r-v–mixing, and p-h–mixing

(sum of one-body and HMEC) contributions to the matrix
element are roughlyp :g :r-v:p-h=1:11:12:21. Thus the for-
mally leading seagull terms make up only about 2% of the
total matrix element. The total cross section can be expressed
in terms of the relative contributions of the different CSB
mechanisms such that the dependences on the corresponding
parameters are made explicit:

ss228.5 MeVd = s23.0 pbdS0.254 + 0.0188
dM

2.03 MeV

+ 0.0034
d̄M

− 0.74 MeV

+ 0.456
ghNN

Î4p · 0.51

khuHup0l
s− 4200 MeV2d

+ 0.268
grgv

4pÎ0.43 · 10.6

kvuHur0l
s− 4300 MeV2d

D2

.

s56d

Here the numerical coefficients are the fractions of the ma-
trix element belonging to each of the considered mecha-
nisms, assuming our choice of parameter values. The various
terms are normalized, as indicated, to these values. The
photon-exchange diagram is represented by just a number,
since its parameters are well known. Note that the second
and third terms are constrained by the neutron-proton mass
differencefEq. s3dg. The h-p0–mixing term can be further
separated to show the relative contribution of the various
HMEs. Thus,

Îsph = s2.18ÎpbdS0.380 + 0.198
gs

2

4ps7.1d
+ 0.291

gv
2

4ps10.6d

+ 0.131
gr

2

4ps0.43d
D , s57d

wheresph is the cross section fromp-h contributions alone
and the first number in the second parenthesis is the one-
body contribution. At the higher IUCF energy the relative
weights of the different contributions in Eqs.s56d and s57d
remain more or less the same, with only minor changes. The
sensitivity of the cross section calculation to a different
choice of couplings can easily be found from these two for-
mulas. For example, using instead the largegh

2 /4p=3.68 and
khuHup0l=−5900 MeV2 as in Ref.f33g, the cross section
increases from 23 to 118 pbs31 to 158 pb at 231.8 MeVd.
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V. DISCUSSION

Our simplified model keeps a complete treatment of the
dominant pieces of the spin-isospin couplings in the bound-
state wave functions, even though it ignores some dynamics
of the dd→ap0 reaction and the distortion of the initial
state. As a result, the symmetries of the bound-state wave
functions allow us to determine the CSB amplitudes that are
guaranteed to be important for a full calculation.

This treatment shows that the LOp-rescattering term
(from the the seagull interactions) is suppressed because of a
poor overlap with the initial- and final-state wave functions.
Photon loops, at NLO, vanish due to symmetries and cancel-
lations, while a three-body contribution might survive, but
has not yet been calculated. On the other hand, the NNLO
one-body amplitude and N4LO heavy-meson exchanges are
strongly favored, adding coherently with each other. Their
dominance would be even more spectacular if a larger value
for the hNN coupling were used. Also ther-v–mixing and
photon-exchange terms are important and enter at the same
level as the one-body and HMEC terms.

We note that our analysis assumes that pions are produced
in s waves, as one would expect for a near-threshold reac-
tion. This is supported by the IUCF experiment, where the
energy dependence is consistent withs-wave production
[17].

If our simple wave functions and the plane-wave approxi-
mation are used, then, within the resonance saturation pic-
ture, the dominant CSB mechanisms for thedd→ap0 reac-
tion are identified withp-h mixing (one-body enhanced by
HMECs), followed byr-v mixing and photon exchange, and
finally a small contribution from pion rescattering(related to
the neutron-proton mass difference).

The coherent sum of these contributions leads to a cross
section of the same order of magnitude as the observed one
[17], but more needs to be done before making a detailed
assessment of the quality of the agreement between theory
and experiment.

It is likely that the relative importance of these amplitudes
will be shifted once realistic wave functions are used. Pre-
liminary calculations suggest that the one-body term can in
fact be enhanced by as much as a factor of 3 or 4 with a
realistica-particle wave function. This is expected, since this
amplitude is sensitive to the high-momentum tail of the wave
function, which is very small for a Gaussian. Preliminary
estimates also show that spin-dependent initial-state interac-
tions enhance the pion rescattering contribution. We stress
that the HMECs are less sensitive to thea-particle wave
function and should remain crucial for the interpretation of
CSB in thedd→ap0 reaction.

A full model calculation, using realistic bound-state and
dd-scattering wave functions is needed in order to have a
clear understanding of the CSB mechanisms behind thedd
→ap0 reaction. Furthermore, the effects of CSB in the wave

functions and some diagrams ignored here, such as the long-
range part of the various NNLO pion loops and the N3LO
recoil part of theD-excitation term, should be included. In
particular, it is necessary to include the non-z-graph part of
photon exchange, e.g., the Coulomb interaction in the initial
and final states(Fig. 3). Such an investigation is currently in
progress and will be reported later. The general conclusions
and insights from the present paper provide important guide-
lines for that work.

We note a very interesting parallel between thedd
→ap0 process considered here, and the reactionpp
→ppp0. In both cases, a formally leading diagram is sup-
pressed and the subleading diagrams are crucial to explain
the cross section. Despite several serious efforts that have
yielded substantial insights into the variousNN→NNp sys-
tems, thepp→ppp0 reaction is still not completely under-
stood, especially regarding spin observables[50].

Higher-order interactions—such as the heavy-meson-
exchange terms, which could increase the role ofp-h
mixing—might help improve the agreement between the
TRIUMF result for Afbsnp→dp0d [16] and theoretical esti-

mates based on reasonable values fordM and d̄M [33]. It is
thus necessary that a future calculation ofAfbsnp→dp0d in-
cludes these higher-order terms. The three reactionspp
→ppp0, np→dp0, anddd→ap0 provide important testing
grounds for any pion-production model that intends to in-
clude effects beyond leading order.
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APPENDIX: EXPLICIT EXPRESSIONS FOR YUKAWA AVERAGES

The averages of the different Yukawa factors of Eq.(51) can be reduced to at most two-dimensional integrals, using the
Gaussian wave functions of Sec. III. The angular and one of the radial integrals can be carried out analytically, resulting in the
explicit formulas
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kf12
x l =

1

F1
E dr1r1

2f12
x e−r1

2/g2E dr2r2
2e−r2

2/g2
pE drr2j0sprde−2r2/a2

,

kf13
x l =

1

F1
E drr2e−2r2/g2Hpg2E drrj 0sprde−2r2/a2E dr13r13f13

x se−2sr13 − rd2/g2
− e−2sr13 + rd2/g2d −

2g2

b2 E drj1sprde−2r2/a2
dr13r13f13

x

3 FSrr 13 −
g2

4
− r2De−2sr13 − rd2/g2

+ Srr 13 +
g2

4
+ r2De−2sr13 + rd2/g2GJ ,

kF138
xl =

1

F1

4g2

a2 E drr2e−2r2/g2E drj1sprde−2r2/a2
dr13r13f13

x 3FSrr 13 −
g2

4
De−2sr13 − rd2/g2

+ Srr 13 +
g2

4
De−2sr13 + rd2/g2G ,

F1 = FE drr2e−r2/g2G2

pE drr2j0sprde−2r2/a2
, sA1d

wherer13= ur 1−r 3u and 1/g2=1/a2+1/s2b2d.
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