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A study of high-energys43–68 MeV/nucleond one-neutron removal reactions on a range of neutron-rich
psd-shell nucleisZ=5–9, A=12–25d has been undertaken. The inclusive longitudinal and transverse momen-
tum distributions for the core fragments together with the cross sections have been measured for breakup on a
carbon target. Momentum distributions for reactions on tantalum were also measured for a subset of nuclei. An
extended version of the Glauber model incorporating second-order noneikonal corrections to the Jeukenne,
Lejeune, and Mahaux parametrization of the optical potential has been used to describe the nuclear breakup,
while the Coulomb dissociation is treated within first-order perturbation theory. The projectile structure has
been taken into account via shell-model calculations employing thepsd interaction of Warburton and Brown.
Both the longitudinal and transverse momentum distributions together with the integrated cross sections were
well reproduced by these calculations and spin-parity assignments are thus proposed for
15B,17C,19–21N,21,23O,23–25F. In addition to the large spectroscopic amplitudes for then2s1/2 intruder con-
figuration in theN=9 isotones,14B and 15C, significantn2s1/2

2 admixtures appear to occur in the ground state
of the neighboringN=10 nuclei 15B and 16C. Similarly, crossing theN=14 subshell, the occupation of the
n2s1/2 orbital is observed for23O, 24,25F. Recent claims of a modified shell structure for23O are investigated
and the original suggestion of a ground stateJp=1/2+ is confirmed. Analysis of the longitudinal and transverse
momentum distributions reveals that both carry spectroscopic information, often of a complementary nature.
The general utility of high-energy nucleon removal reactions as a spectroscopic tool is also examined.
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I. INTRODUCTION

High-energy heavy-ion projectile fragmentation has been
investigated now for some 25 years[1,2]. The initial empha-
sis centered on reactions employing stable beams at relativ-
istic energies[3,4] and the observed momentum distributions
[typically Gaussian in form with full width at half maximum
(FWHM) ,200 MeV/c] were interpreted within a statistical
description as reflecting the Fermi momentum of the re-
moved nucleons[5]. Further refinements lead to more so-
phisticated models incorporating the peripheral nature of the
reaction process[6,7]. Beyond relatively simple consider-
ations, such as the surface cluster model[7], the projectile
structure played no role in the fragment distributions.

More recently, the investigation of fragmentation reac-
tions using radioactive beams has led to the recognition of

narrow fragment momentum distributions(FWHM
,50 MeV/c) as a signature of the extended valence nucleon
density distributions in halo nuclei[8]. Originally these mo-
mentum distributions were assumed, in terms of the transpar-
ent limit of the Serber model[9], to be a direct mapping via
the Fourier transform, of the valence nucleon(s) wave func-
tion. Detailed investigation of the role played by the reaction
mechanisms, particularly in the case of the single-neutron
halo nucleus11Be [10,11], demonstrated that such an inter-
pretation was not generally applicable. The longitudinal core
fragment momentum distributions have been suggested
[12–14] to be less influenced by such effects and as such to
represent a cleaner probe. As foreseen in the original work of
Serber[9] and more explicitly in the case of heavy ions by
Hüfner and Nemes[6], the requirement of core survival
drives few nucleon removal to probe essentially only that
part of the valence nucleon(s) wave function residing outside
the core[15,16]. Consequently, in the spirit of the spectator-
core model of Hussein and McVoy[17], various Glauber-
type approaches to modeling the dissociation of energetic
beams of nuclei far from stability have been developed
[15,16,18–25]. The essential results are that the momentum
distributions, as first recognized by Bonaccorso and Brink
[26] and Sagawa and Yazaki[18], reflect the angular momen-
tum sld of the removed nucleon, while the corresponding
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cross section may provide a measure of the associated spec-
troscopic strength[27].

Recently, experimental measurements of single-nucleon
removal reactions includingg-ray detection have demon-
strated that significant population of core fragment excited
states may occur[27–34]. The inclusion of the core states
within the theoretical framework[23,35], as foreseen in the
original work of Sagawa and Yazaki[18], has led to the
proposal that such reactions(often termed “knockout”[36])
may be used as a spectroscopic tool[23,28]. To date, how-
ever, this approach has been largely confined to selected
weakly bound halo and near dripline systems[28–33,37].

The objective of the present study was to undertake a
systematic study of single-neutron removal reactions over a
range of neutron-rich nuclei. For these purposes the light
psd-shell nuclei were selected as the nuclear structure could
be reliably calculated within the shell model. The region en-
compassed a number of nuclei of current interest and the
production rates were relatively high. The use of high-energy
nucleon-removal reactions as a spectroscopic tool could thus
be verified on a number of near stable nuclei with well-
known ground-state structures. Additionally, the structural
evolution with isospin across thepsd shell, as expressed in
the core fragment observables, could be explored. As will be
demonstrated, even inclusive measurements of the core frag-
ments when executed using a broad range high acceptance
spectrograph offer a means to survey changes in structure
over a wide range of isospin in a single measurement.

Earlier measurements of halo nuclei have suggested that
the influence of nuclear and Coulomb dissociation on the
core fragment longitudinal momentum distributions is rela-
tively weak [12–14,38]. In order to explore further such ef-
fects, both carbon and tantalum targets have been used in the
present work. The results obtained for the longitudinal mo-
mentum distributions and cross sections on the carbon target
have been briefly described elsewhere[39]. Here further de-
tails of the experimental techniques are given along with a
detailed account of the theoretical models. In addition, the
results obtained for the transverse momentum distributions
using the carbon target are presented, as are the longitudinal
distributions from reactions on tantalum.

The paper is organized as follows. The experimental setup
and techniques are described in Sec. II and the experimental
results are presented in Sec. III. Sections IV–VII are devoted
to the description of eikonal based modeling of nuclear and
Coulomb dissociation. The results and comparison to calcu-
lations are discussed in Sec. VIII. A discussion, in the light
of the present results, of the utility of single-nucleon removal
as a spectroscopic tool is presented in Sec. IX. The paper
concludes(Sec. X) with a summary and perspectives. Ex-
plicit analytical formulas pertaining to the Coulomb dissocia-
tion calculations are presented in the Appendix. The results
of the shell model and cross section calculations are tabu-
lated in Table IV.

II. EXPERIMENTAL METHOD

The experiment was performed at the GANIL coupled
cyclotron facility. The secondary beams were produced

via the fragmentation of an intense
s,1 mAed 70 MeV/nucleon 40Ar17+ primary beam on a
490 mg/cm2 thick carbon target. The reaction products were
collected and analyzedsBr=2.880 Tmd using the SISSI de-
vice [40] coupled to the beam analysis spectrometer. The
resulting secondary beam was composed of
12–15B,14–18C,17–21N,19–23O, and22–25F nuclei with energies
between 43 and 68 MeV/nucleon and intensities ranging
from ,600 ppss15Cd to ,1 ppss25Fd. The energy spread in
the beam, as defined by the acceptance of the beam analysis
spectrometer, wasDE/E=1%. Secondary reaction targets of
carbon s170 mg/cm2d and tantalums190 mg/cm2d were
used.

Owing to the large energy spread in the secondary beam,
an energy-loss spectrometer was required to undertake a high
resolution measurement of the core fragment momentum dis-
tributions [8]. In the present case, the SPEG spectrometer
[41] was employed and operated at a central angle of 0° in a
dispersion matched mode for which an intrinsic resolution of
dp/p=4.5310−4 (FWHM) was achieved. The final resolu-
tion including target effects wasdp/p=3.5310−3 (FWHM).
The overall momentum acceptance of the spectrometer was
7%, which permitted the momentum distributions for the
fragments resulting nuclei from one-neutron removal on all
the nuclei of interest to be obtained in a single setting for
each target(BrSPEG=2.551 Tm for the carbon target and
BrSPEG=2.615 Tm for tantalum).

Importantly, the broad angular acceptances of the
spectrometer—4° in the horizontal(bending) and vertical
planes—provided, in the case of the carbon target, for almost
complete collection(see below) of the core fragments, obvi-
ating any ambiguities in the integrated cross sections and
longitudinal momentum distributions that may arise from
limited transverse momentum acceptances[42–44]. In the
case of the tantalum target(Sec. VII C and Ref.[45]), the
effects of multiple scattering and Coulomb deflection re-
sulted in greatly reduced effective transverse momentum ac-
ceptances that curtailed the extraction of any reliable trans-
verse momentum distributions or cross sections. An
investigation of the effects of incomplete transverse accep-
tances on the longitudinal momentum distributions is pre-
sented elsewhere[45,46].

Ion identification at the focal plane of SPEG was achieved
using the energy loss derived from a gas ionization chamber
and the time of flight between a thick plastic stopping detec-
tor and the cyclotron radio frequency. Additional information
was provided by the residual energy measurement furnished
by the plastic detector and the time of flight with respect to a
thin-foil microchannel plate detector located at the exit of the
beam analysis spectrometer. Two large area drift chambers
straddling the focal plane of SPEG were employed to deter-
mine the angles of entry of each ion and, consequently, al-
lowed the focal plane position spectra to be reconstructed.
The calibration in angle was performed using a tightly colli-
mated beam and a calibrated mask placed at the entrance to
the spectrometer. The momentum of each particle was de-
rived from the reconstructed focal plane position. Calibration
in momentum was achieved by removing the reaction target
and stepping the mixed secondary beam of known rigidity
along the focal plane. This procedure also facilitated a deter-
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mination of the efficiency across the focal plane for the col-
lection of the reaction products—the range of angles ac-
cepted by the spectrograph being restricted at the limits of
the focal plane. Where necessary, corrections were then ap-
plied to account for any reduction in efficiency.

The angles of incidence on target of the secondary beam
particles were determined using two beam tracking detectors
(each comprising four 10310 cm2 drift chambers) located in
the analysis line of the spectrometer. The calibration in inci-
dent angle was derived from the trajectories reconstructed at
the focal plane of the spectrometer for a measurement made
with the target removed and the spectrometer set to the same
rigidity as the analysis line. Consequently, the transverse mo-
mentum distributions for the core fragments could be recon-
structed on an event-by-event basis from the incident projec-
tile angle and the core fragment outgoing angle. The beam
envelope was approximately Gaussian in form and character-
ized by half angles of Du1/2=0.35° and Df1/2=0.5°
(FWHM) in the horizontal and vertical planes, respectively.
Owing to the superior resolution in the determination of the
angles in the bending(horizontal) plane of the spectrometer
[du=0.1° , df=0.4° (FWHM)], the transverse momentum
distributions presented here have been reconstructed in this
planespxd, with final resolutions including multiple scatter-
ing of some 5% being achieved.

The intensities of the various components of the second-
ary beam were derived from a measurement of the primary
beam current, which was recorded continuously during the
experiment using a noninterceptive monitor, with respect to
runs taken with the secondary reaction target removed and
the spectrometer set to the same rigidity as the beam line. A
redundant check was also provided by counting rates in two
microchannel plate detectors placed in the incident second-
ary beam: one, as noted above, at the exit of the beam analy-
sis spectrometer and another located on the upstream side of
the secondary reaction target. The final cross sections were
determined using an average of these three normalizations
and the uncertainties quoted include contributions from both
the statistical uncertainty and that arising from the determi-
nation of the secondary beam intensities(typically ,7%).

The core fragment angular distributions were inspected to
ensure that no events were lost due to the finite acceptance of
the spectrometersDV=5 msrd. For the reactions on the C
target only in the cases of the broadest distributions did the
losses exceed a few percent. The number of events not de-
tected was estimated based on extrapolations of Gaussian
adjustments to the measured angular distributions. Correc-
tions were also applied where necessary to those nuclei fall-
ing near the limits of the focal plane(see above). The final
uncertainty in the cross section includes an estimate
s,5–10%d of the uncertainties in these two corrections. As
discussed in Sec. VII C, for the reactions on the Ta target
extremely broad angular distributions were encountered,
which precluded any reliable estimates of the transverse mo-
mentum distributions and cross sections to be made.

In many instances—most notably14B,15,16C, and
17,18N—asymmetric longitudinal momentum distributions
exhibiting low momentum tails were observed(Fig. 1). The
origin of these events is discussed in Sec. VIII A. The cross
sections reported here include these events(typically ,5%).

To compare the measured distributions with the theoreti-
cal ones, all broadening effects inherent in the measurements
should be taken into account. These effects arise from the
differential energy losses of the projectile and the fragment
in the target, energy and angular straggling in the target, and
the detector and spectrometer resolutions. In addition, for the
longitudinal momentum distributions the Lorentz transfor-
mation from the laboratory to projectile frame of reference
must be taken into account. In order to provide an estimate
of the relative importance of these effects on momentum
distributions, a Monte Carlo based simulation was devel-
oped. As an example, an evaluation of the effects for two
nuclei with distributions representative of those encountered
here is provided in Table I. The overall effect in the case of
the longitudinal distributions is some 10–13% and is domi-
nated by the Lorentz contraction. In the case of the trans-
verse momentum distributions, the broadening is relatively
weak (at most some 5%) and is dominated by the angular
resolution of the spectrometer.

The widths of the momentum distributions were derived
from Gaussian adjustments to the central region
s,FWHMd of each distribution, thus avoiding any bias in-
troduced by low momentum tails. The use of other line
shapes(such as a Lorentzian) or a simple statistical analysis
[14] produced essentially identical results. The widths, noted
FWHMcm in Table II, are quoted in the projectile frame and
have been corrected for the various broadening effects dis-
cussed above.

III. RESULTS

The core fragment longitudinal momentum distributions
measured using a carbon target are displayed in Fig. 1. In
order to facilitate their comparison, each distribution is dis-
played over the same total momentum range of 700 MeV/c.
The estimated widths, taking into account the various experi-
mental effects discussed above, are shown in Fig. 2 and are
listed in Table II sFWHMpz

cmd. The corresponding single-
neutron removal cross sections are tabulated in Table II and
the evolution along the isotopic chains is presented in Fig. 3.

The transverse momentum distributionspx from breakup
on the carbon target are presented in Fig. 4. The same total
momentum range(here 600 MeV/c) has been used to dis-
play all the results to facilitate the comparison. The widths
extracted from the measured distributions, taking into ac-
count all broadening effects(Sec. II), are listed in Table II
sFWHMpx

cmd. A comparison of the widths of the longitudinal
and transverse momentum distributions is provided in Fig. 2.
The transverse distributions are systematically somewhat
broader, a feature already observed in reactions with stable
beams[52]. More interestingly, the transverse distributions
exhibit the same trends as the longitudinal distributions, sug-
gesting that the sensitivity to the projectile structure expected
for the latter is also present to a similar degree in the trans-
verse distributions. As will be discussed further in Secs. V B
and VIII, the transverse momentum distributions present
somewhat more complex forms than the longitudinal distri-
butions. It should be stressed that the widths quoted here are
only meant to serve as a comparative guide.
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FIG. 1. Comparison of the core fragment longitudinal momentumspzd distributions obtained using a carbon target and the Glauber model
calculations(solid line).
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For a number of nuclei(14B,15–17C, and17–19N) the core
fragment longitudinal momentum distributions from reac-
tions on a Ta target were also measured(Fig. 5). The mo-
mentum widths, which are seen to be almost identical with
those obtained on the C target, are listed in Table III. As
outlined in Sec. II, the corresponding transverse momentum
distributions were observed to be much broader than the ac-
ceptances of the spectrograph(see, for example, Fig. 16). As
such no reliable cross sections could be derived.

As noted in Tables II and III, a number of the nuclei
studied in the present work have been investigated else-
where. In the cases of14B and 15,17,18C measurements made
at similar energies on a Be target by Bazinet al. [53,54]
found longitudinal momentum distributions with widths in
good agreement with those presented here. The associated
single-neutron-removal cross sections are, however, signifi-
cantly smaller than those measured in the present work. As
pointed out in our earlier paper[39] the origin of this dis-
crepancy lies in the rather limited acceptances of the A1200
fragment separator. This is clearly apparent from the trans-
verse momentum distributions presented here(Fig. 4) [45]
and is also confirmed by more recent measurements of14B
[30] and 16,17C [32] undertaken using the high acceptance
S800 spectrograph(Table II).

Very recently a measurement for16C s83 MeV/nucleond
on a C target has been reported[55]. The results, which were
obtained using a new time-of-flight technique to deduce the
core momentum distribution[56], are in very good agree-
ment with those reported here.

A measurement has also been carried out with the time-
of-flight technique, at an energy somewhat higher
s72 MeV/nucleond than that employed here, of the breakup
of 23O by carbon[56]. The resulting22O longitudinal mo-
mentum distribution is in good agreement with the present
work. Moreover, as discussed in Sec. VIII D, the correspond-
ing one-neutron removal cross sections233±37 mbd is in
good agreement with that calculated here(Tables II and V).1

At much higher energiess,900 MeV/nucleond, the
single-neutron breakup of17C by carbon has also been mea-

sured[38,57]. A width (FWHM) of 141±6 MeV/c, slightly
broader than reported here, was extracted[38] together with
a cross section of 129±22 mb[57]. Recently an experiment
using the same setup as that of Refs.[38,57] has been carried
out to explore single-neutron removal on neutron-rich iso-
topes of N, O, and F at some 900 MeV/nucleon. The pre-
liminary results for the momentum distributions—in particu-
lar for 23O (Sec. VIII D)—are in very good agreement with
those reported here[58].

In the case of reactions on the tantalum target(Table III),
there is a relative paucity of work with high-Z targets with
which comparison can be made. Indeed, of the nuclei mea-
sured here, the literature reports results for only14B and
15,17C. In the case of the former, very good agreement is
found with the measurement made employing the S800 spec-
trometer[30], while the earlier work of Bazinet al. found a
somewhat narrower core momentum distribution[54]. The
core momentum distribution measured for15C in the same
experiment[54] is in reasonable agreement with that ob-
served here. In the case of the heavier isotope17C, a prelimi-
nary study[59] reported a momentum distribution consistent
with that found in the present work. Unfortunately the more
complete study of Maddalena and Shyam[60] does not quote
any widths for the momentum distributions.

In order to examine quantitatively the relationship be-
tween the projectile structure and the measured distributions
we now turn to a detailed development of the necessary re-
action theory.

IV. EXTENDED GLAUBER MODEL FOR NUCLEAR
DISSOCIATION

The ensemble of data presented in the preceding section
constitutes a test not only for the structure models of
neutron-rich nuclei inpsdshell but also for the description of
the reaction mechanisms involved. The aim of this section is
to provide a model that, starting from realistic projectile
wave functions and taking properly into account the reaction
mechanism, can explain the momentum distributions and
cross sections. In the formal development, the principal fea-
tures of which are similar to approaches developed by Es-
bensen[16], Bertschet al. [20,61], Negoitaet al. [22], and

1As no reliable beam intensity normalization was available in the
present study for23O, no experimental cross section could be ex-
tracted.

TABLE I. Examples of the contributions of different experimental broadening effects on the widths(FWHM) of the core fragment
momentum distributions(see text).

Lorentz Target Spectrometer Broadening
AZ Intrinsic ⇒ ⇒ ⇒ Measured s%d

FWHMpz
14B 56.3 59 63 63.6 11

(C target) 19N 166 175.5 187.6 188.4 11.6

FWHMpz
14B 57 60 61.8 62.2 8.4

(Ta target) 19N 176 186 193 194 9.3

Target Tracking Spectrometer Broadening
AZ Intrinsic ⇒ ⇒ ⇒ Measured s%d

FWHMpx
14B 75 77 76.8 79 5

(C target) 19N 226 227 228 229 1.3
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TABLE II. Summary of the results obtained with the carbon target. Where available the results of other experiments are also listed.

Energy FWHMpz
lab FWHMpz

cm FWHMpx
lab FWHMpx

cm s−1n s−1n
Glauber

AZ sMeV/nucleond sMeV/cd sMeV/cd sMeV/cd sMeV/cd smbd smbd Jp

12B 64 158±3.5 142±3.5 175±3 173±3 81±5 91 1+

13B 54 150±7 135±7 178±2 176±2 59±4 62 3/2−

14B 50 63.6±0.5 56.5±0.5 79±2 75±2 153±15 185 2−

86 57±2a 48±5a

59 55±2b 176±16b

15B 43 82±2.5 73±2.5 84±9 80±9 108±13 112 3/2−c

14C 67 200±5 180±5 222±3 220±3 65±4 89 0+

15C 62 71±0.7 63.5±0.7 81±1 86±1 159±15 168 1/2+

54 137±16d

85 67±3a 33±3a,e

16C 55 121±2 108±2 143±3 140±3 65±6 75 0+

62 77±9f

83 90±9g 65−10
+15g

17C 49 125±3 111±3 169±9 166±9 84±9 105 3/2+c,a,f,h,j

84 145±5a 26±3a,e

62 115±14f

96.8 94±19k 41±4k,e

904 141±6l 129±22m

18C 43 143±5 126±5 159±16 156±16 115±18 119 0+

86.2 110±12k 35±2k,e

17N 65 158±4 141±4 217±4 214±4 55±5 67 1/2−

18N 59 188±3 168±3 219±3 216±3 109±11 91 1−

19N 53 199±3 177±3 229±5 226±5 86±9 99 1/2−c,i

20N 48 184±4 162±4 220±16 217±16 98±13 101 2−c

21N 43 173±7 149±7 140±44 151 1/2−c

19O 68 214±8 190±8 253±13 250±13 104±12 84 5/2+

1241 183±10n 56±10n

20O 62 247±5 219±5 254±7 251±7 112±11 96 0+

1152 199±10n 56±9n

21O 56 237±6 210±6 246±7 243±7 134±14 123 5/2+c,i

1073 190±10n 72±9n

22O 51 235±4 206±4 240±16 237±16 120±14 143 0+

1002 206±10n 70±9n

23O 47 135±9 114±9 162±28.5 157±28.5 o 224p 1/2+c

72 94±12q 175±14q 233±37q 185p

938 133±10n 85±15n 82p

22F 64 212±14 185±14 278±28 274±28 121±16 87 4+

23F 59 267±4 235±4 236±10 232±10 114±12 106 5/2+c,r,s
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Tostevin[23,35], we have attempted to retain the role played
by the wave function via its Wigner transform as this reveals
clearly the momentum content. The formulas obtained for
the fragment momentum distributions and cross sections ex-
plicitly display, in the spirit of the Glauber model, the dis-
torting functions arising from the reaction mechanism. The
details concerning the practical calculation of some basic

ingredients—in particular theS-matrix elements—are also
provided.

We shall assume that the ground state of the projectile
sJpd could be approximated by a superposition of configura-

tions of the form fIc
p

^ nljgJp
, where Ic

p denotes the core
states andnlj are the quantum numbers specifying the single-

TABLE II. (Continued.)

Energy FWHMpz
lab FWHMpz

cm FWHMpx
lab FWHMpx

cm s−1n s−1n
Glauber

AZ sMeV/nucleond sMeV/cd sMeV/cd sMeV/cd sMeV/cd smbd smbd Jp

24F 54 151±4 129±4 203±18 198±18 124±16 115 3+c,t

25F 50 128±8 106±8 173±45 168±45 173±46 154 5/2+c

aReference[54] (Be target).
bReference[30] (Be target).
cAssignment from present experiment.
dReference[62].
eAffected by limited transverse momentum acceptances.
fReference[32] (Be target).
gReference[55].
hReference[51].
iReference[47].
jReference[93].
kReference[53] (Be target).
lReference[38] (C target).
mReference[57] (C target).
nReference[58] (C target).
oNo beam intensity normalization available.
pSee Table V.
qReference[56] (C target).
rReference[48].
sReference[49].
tReference[50].

FIG. 2. Comparison of the widths(FWHM) of the longitudinal
(filled circles) and transverse(open circles) core fragment momen-
tum distributions for reactions on the carbon target.

FIG. 3. Experimental one-neutron removal cross sections(filled
circles) compared to the results of the Glauber calculations—open
circle, total cross section; open triangle, absorption; and open dia-
mond, diffraction(see text for details). The points are connected by
lines to guide the eye.
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FIG. 4. Comparison of the core fragment transverse momentumspxd distributions obtained using a carbon target and the Glauber model
calculations(solid line).
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particle wave function of the last neutron, taken here as
Woods-Saxon wave functions evaluated using the effective
separation energySn

ef f=Sn+Eex
c (Eex being the excitation en-

ergy of the core state). We neglect coupling of core states to

the final state and dynamical excitation of excited core states
in the reaction. In this approximation the reaction can popu-
late a given core state only to the extent that there is a non-
zero spectroscopic factorC2SsIc

p ,nljd in the projectile ground

FIG. 5. Comparison of the core fragment longitudinal momentumspzd distributions obtained using a tantalum target and the Glauber
model calculations(solid line).

TABLE III. Summary of the results obtained with the tantalum target. Where available the results of other experiments are also listed.

Energy FWHMpz
lab FWHMpz

cm s−1n s−1n
Glauber

AZ sMeV/nucleond sMeV/cd sMeV/cd smbd smbd

14B 50 62±2 57±2 a 864

59 59±3b 638±45b

86 48±3c 157c,d

15C 62 69±0.5 63±0.5 a 978

85 67±1c 75c,d

16C 55 106±3 97±3 a 193
17C 49 131±7 121±7 a 280

61 350±67e

62 ,110f

17N 65 147±5 134±5 a 173
18N 59 176±5 159±5 a 238
19N 53 194±11 176±11 a 216

aNo reliable cross section could be estimated owing to very broad transverse momentum distributions(see text).
bReference[30] (Au target).
cReference[54] (Ta target).
dAffected by restricted transverse momentum acceptances.
eReference[60] (Au target).
fReference[59] (238U target).
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state. When more than one configuration contributes to a
given core state, then the total cross section for one-neutron
removal is written, following Refs.[23,35], as an incoherent
superposition of single-particle cross sections:

s−1nsIc
pd = o

nlj

C2SsIc
p,nljdsspsnlj ,Sn

ef fd. s1d

The total inclusive one-neutron-removal cross section
ss−1n

Glauberd is then the sum over the cross sections to all core
states. A similar relation holds for the momentum distri-
butions. The coordinate system used in the calculations is
sketched in Fig. 6, whereby the impact parameters for the
neutron and the core are given by

bWn = RW ' +
Ac

Ac + 1
sW, s2d

bWc = RW ' −
1

Ac + 1
sW. s3d

We shall neglect recoil effects, so thatsAc@1d

bWn = bW + sW + OS 1

Ac
D , s4d

bWc = bW + OS 1

Ac
D . s5d

Since the core states are not coupled by the interaction,
the core plays a spectator role. Thus it is sufficient to con-
sider only the neutron degrees of freedom as described by the
wave functionCJM corresponding to the coupling scheme

[flW ^
1
2
Wg jW ^ IWc]JW. We assume only one bound state in the pro-

jectile and we need to consider density matrix elements of
the form

rM8M
J srWd = kCJM8uCJMlspins, s6d

where k lspins means average over spin coordinates. A little
angular momentum algebra leads to

rM8M
J srWd = o

lm

s− dJ−2j−Ic−1/2l̂2 ĵ2Ĵ
Î4p

C000
lll CM8mM

JlJ WS jl jl ,
1

2
lD

3WsJjJj,IcldRnlj
2 srdYlmsr̂d, s7d

with the property

Tr r =
1

Ĵ2
o
M

rM8M
J dM8M = Rnlj

2 srd/4p ; ryalsrd, s8d

with Rnljsrd the radial part of the single-particle wave func-
tion. It is useful to introduce also the projected density

r̃M8M
J ssWd =E

−`

`

dzrM8M
J srWd, s9d

r̃yalssd =
1

Ĵ2
o
M

r̃MM
J ssd. s10d

If Sc andSn are theS matrices in impact parameter repre-
sentation for the core and neutron-target interactions, the ab-
sorption cross section(or stripping) is given by

sabs=
1

Ĵ2
E dbWo

k
o
M

ukfkuVabsuCJMlu2, s11d

wherefk are scattering states andVabs
2 =s1−uSnu2duScu2 is the

transition operator for neutron absorption. As the neutron is
absorbed, only the scattering states are available to the core.
In this case the closure relation is

o
k

ufklkfku = 1. s12d

Combining Eqs.s11d and s12d we obtain

sabs=
1

Ĵ2
o
M
E dbW E drW f1 − uSnsbW + sWdu2guScsbdu2rMM

J srWd,

s13d

which we rewrite in the form

sabs=E dbWdsW f1 − uSnsbW + sWdu2guScsbdu2r̃yalssd

; E dsWDabsssdr̃yalssd, s14d

where Dabs is the distortion kernelf22g. This kernel has a
very intuitive physical interpretation: it is the convolution
product of the survival probability for the core and the prob-
ability for the absorption of the neutron, as originally defined
by Hüfner and Nemesf6g. In fact the general absorption
operator can be decomposed as follows:

1 − uScu2uSnu2 = uScu2s1 − uSnu2d + uSnu2s1 − uScu2d

+ s1 − uSnu2ds1 − uScu2d, s15d

where the first term corresponds to neutron absorption, the
second to core absorption, and the double-scattering term to
the absorption of both the core and the neutron. For the last

FIG. 6. Coordinate system used in the Glauber model
calculations.
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two sinelasticd channels the total cross section is formally
identical to Eq.s14d with appropriate redefinitions of the
distorting kernels.

For diffraction a similar formula to Eq.(11) holds, except
that the transition operator is replaced in this case byVdif f
=ScSn−1. We shall again assume a structureless continuum
and treat it via sum rules. In addition it is assumed that the
projectile has only one bound state. Since the scattering
states should be orthogonal to the ground state, the closure
relation is in this case

o
M

uCJMlkCJMu + o
k

ufklkfku = 1. s16d

Clearly, the “one bound state assumption” will lead to an
overestimation of the breakup cross section, since any addi-
tional bound state will subtract cross sectionf62g. The or-
thogonality condition allows us to replace the“−1” in the
definition of the diffraction transition operator by any func-
tion which does not couple the nucleon coordinates. For the
purpose of convergence, the most convenient form for this
operator isVdif f =ScsSn−1d. With this, the total cross section
for diffraction is

sdif f =
1

Ĵ2
E dbWHo

M

kCJMuuVdif fu2uCJMl

− o
M8M

ukCJMuVdif fuCJM8lu
2J , s17d

which demonstrates that the diffraction cross section is given
by the fluctuation of the transition operator in the ground
state. In terms of the density matrixfEqs. s6d–s10dg the
nuclear diffraction cross section is

sdif f =E dbWdsW uScsbdu2u1 − SnsbW + sWdu2r̃yalssd

−
1

Ĵ2
o

M8M

E dbWUE dsWVdif fsbW,sWdr̃M8M
J ssWdU2

. s18d

The first term is similar in structure to Eq.s14d and provides
the main contribution to the diffraction cross section. The
second is a small correction arising from the orthogonality
requirement. One can further simplify this correction by ob-
serving that it arises essentially from the diagonal elements
of the density matrix. Indeed, if one considers the following
integral,

I =E dsWdzVsbW,sWdrM8M
J srWd, s19d

and expands the density in multipoles,

rM8M
J srWd = o

lm

rlmsrdPlmsudeimf, s20d

where cosu=z/ r and f=fsx,yd and assume that the de-
pendence ofV on angles ofsW is weak and may be ne-
glected, we are left with

I = o
lm
E s ds dfVsb,sdflmeimf , dm0. s21d

Therefore the main contribution to such integrals comes
from multipoles withm=0 and only the diagonal elements of
density matrix contributefM8=M, see Eq.s7dg. Our final
formula for diffraction cross section is then

sdif f =E dbWdsW uScsbdu2u1 − SnsbW + sWdu2r̃yalssd

−
1

Ĵ2
o
M
E dbW uScsbdu2UE dsW f1 − SnsbW + sWdgr̃MM

J ssdU2

.

s22d

As mentioned earlier the first term is dominant and can be
written in the form

sdif f
s1d =E dsWDdif fssdr̃yalssd, s23d

with Ddif f .Dabs.
Further simplifications arise if one observes that for spin

independent transition operators one can neglect the intrinsic
spin of the nucleon and the coupling to core spin. In this case
the total spinJ is replaced by the angular momentuml. Thus,
for example, the density matrix(7) becomes

rm8m
l srWd = Rl

2srdo
lm

l̂2

Î4pl̂
C000

lll C−m8mm
lll Ylmsr̂d, s24d

which has the same properties as in Eqs.s8d–s10d. The total
cross sections for absorption and diffraction become

sabs=E dbWdsW f1 − uSnsbW + sWdu2guScsbdu2r̃yalssd, s25d

sdif f =E dbWdsW uScsbdu2u1 − SnsbW + sWdu2r̃yalssd

−
1

l̂2
o
m
E dbW uScsbdu2UE dsWf1 − SnsbW + sWdgr̃mm

l ssdU2

.

s26d

Finally one may note that the absorption cross section is
fully equivalent with the corresponding cross section ob-
tained by Hussein and McVoy in the core spectator model
[17].

V. MOMENTUM DISTRIBUTIONS

A. Longitudinal momentum

As final state interactions are neglected the scattering
states are taken as plane waves. The basic matrix element
which gives the localization probability in momentum space
is
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dP

dkW
=

1

s2pd3Ĵ2
o

MMIms

uke−ikWrWxs1/2dms
ssdxIMI

sjduVsbW,sWd

3uCJMsrW,s,jdlu2. s27d

Integration is taken over nucleonsrW ,sd and core spinsjd
coordinates. The intrinsic momentum distributionfW0skWdg is
obtained by choosingV;1. For absorption and diffraction
one uses the appropriate operators defined in the preceding
section. After applying some angular momentum algebra,
one finds

dP

dkW
=

1

s2pd3l̂2
o
ml

UE drWeikWrWVsbW,sWdRlsrdYlml
sr̂dU2

. s28d

The longitudinal momentum distributionskzd is obtained by
integration over the unobserved componentsskx andkyd. To
obtain closed formulas it is useful to introduce the partial
Wigner transform of the wave function,

wmssW,kzd =
1

Î2pl̂2
E dz eikzzRlsrdYlmsr̂d, s29d

in terms of which the total Wigner transform is

WssW,kzd = o
m

uwmssW,kzdu2, s30d

with the properties

E dkzWssW,kzd = r̃yalssd, s31d

E dsWdkzWssW,kzd = 1, s32d

E dsWWssW,kzd = W0skzd. s33d

The longitudinal momentum distribution for absorption is
thus calculated as

S ds

dkz
D

abs
=E dbWdsW f1 − uSnsbW + sWdu2guScsbdu2WssW,kzd

; E dsWDabsssdWssW,kzd. s34d

For diffraction the situation is somewhat more complicated
and three terms must be considered,

S ds

dkz
D

dif f

s1d

=E dbWdsW uScsbdu2uSnsbW + sWd − 1u2WssW,kzd,

s35d

S ds

dkz
D

dif f

s2d

= o
mm1m2

E dbW uScsbdu2E dsWwm1
ssW,kzdwm2

* ssW,kzd

3E dsW1r̃m1mss1dfSnsbW + sW1d − 1g E dsW2r̃m2m
* ss2d

3fSn
*sbW + sW2d − 1g, s36d

S ds

dkz
D

dif f

s3d

= − 2 Reo
mm1

E dbW uScsbdu2E dsW1r̃m1m

3fSn
*sbW + sW1d − 1g E dsW2wmssW2,kzdwm1

* ssW2,kzd

3fSnsbW + sW2d − 1g. s37d

To a good approximation one can use again the fact that the
main contribution to diffraction arises from the diagonal part
of the density matrix. In this case the second and third terms
become

S ds

dkz
D

dif f

s2d

= o
m
E dbW uScsbdu2E dsWuwmssW,kzdu2

3UE dsW1fSnsbW + sW1d − 1gr̃mmss1dU2

,

S ds

dkz
D

dif f

s3d

= − 2 Reo
m
E dbW uScsbdu2

3E dsW1r̃mmss1dfSn
*sbW + sW1d − 1g

3E dsW2uwmssW2,kzdu2fSnsbW + sW2d − 1g. s38d

It can be checked that integration overkz in the range
s−` , +`d leads exactly to the integrated cross sections
derived in the preceding section. It has been shown by
Bonaccorso and Bertsch[63] that the error introduced by
these limits is less that 5% for the beam energies considered
in the present experiment.

B. Transverse momentum

Transverse momentum distributionsskx,kyd are obtained
by projecting the probability(28) onto the axis of interest.
For example, we have

dP

dkx
=

1

2pl̂2
o
m
E

−`

`

dy dzUE
−`

`

dx eikxxVsbW,sWdRlsrdYlmsr̂dU2

.

s39d

For the other transverse direction one simply exchanges the
indicesx↔y. The corresponding cross sections are given by
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S ds

dkx
D

abs
=

1

2pl̂2
o
m
E dbWnf1 − uSnsbndu2g

3E dy dzUE dx eikxxScsubWn − sW udRlsrdYlmsr̂dU2

s40d

and

S ds

dkx
D

dif f
=

1

2pl̂2
o
m
E dbW uScsbdu2E dy dz

3UE dx eikxxfSnsubW + lsWud − 1gRlsrdYlmsr̂dU2

s41d

with l=Ac/ sAc+1d as a measure of recoil effects. In the
derivation, we assume small excitation energies in a struc-
tureless continuumsplane wave approximationd and neglect
the orthogonality requirement described in the preceding sec-
tion. If l=1, integration of Eqs.s40d and s41d over kx leads
to the total cross sectionss14d and s23d, respectively. It
should be noted that the transverse momentum distributions
are symmetric aroundkx=0. There is no asymmetry in the
nuclear breakup transverse momentum distributions, princi-
pally due to the straight line approximation for the trajectory
and the inherent neglect of the conservation of the energy.
This symmetry means that only half of the distributions need
to be computed. The necessity to evaluate a five-dimensional
integral for each value ofkx, for two different transition op-
erators and for each core state, renders the calculations oner-
ous. One may reduce the complexity by assuming that the

angle dependencesbW ,sWd of the transition operators is weak
and can be replaced by an average value. For example, in the
case of diffraction one has

Snsb,sd =
1

2p
E

0

2p

dffSnsÎb2 + l2s2 + 2lbs cosfd − 1g.

s42d

The use of average transition operators allows a straightfor-

ward integration over angles ofbW and reduces the integration
domain tos0,`d for x, y, andz variables. The computational
time is thus reduced by one order of magnitude and the pre-
cision in the calculation is significantly increased. We have
checked that averaged transition operators contain almost the
same transverse momentum components as the original ones,
at least for impact parameters in the range of the strong ab-
sorption radius.

Equations(40) and (41) illustrate the essential difference
between the longitudinal and transverse momentum distribu-
tions. The former are given essentially by the Wigner trans-
form of the valence nucleon wave function weighted by dis-
tortion kernels for absorption and diffraction, while for
transverse momentum distributions additional components
appear due to nuclear interaction. The neutron-target interac-
tion influences strongly the transverse momentum distribu-

tion for diffraction and leads to a broader distribution as
compared to that arising from absorption(see Fig. 14).

VI. COULOMB DISSOCIATION

In this section we describe the Coulomb dissociation
within the framework of the eikonal approximation which is
formally equivalent to a first-order perturbation theory. We
use the long wavelength approximation for the transition op-
erator and obtain a general formula for any electric multipo-
larity sElmd. However, the calculations are done only for
dipole and quadrupole transitions, since these give rise to the
principal contributions to the cross sections.

The Coulomb excitation amplitude for a projectile in the
field of a target may be expressed in terms of the electric
multipole matrix elements characterizing the electromagnetic
decay of nuclear states. If the charge distributions of the two
nuclei do not overlap during the collision, then the relative
motion takes place along a classical Rutherford trajectory. At
very high energies, the trajectory is well approximated by a
straight line and the first-order eikonal approximation should
give reasonable results for momentum distributions and inte-
grated cross sections.

Our starting point for the Coulomb amplitudesfCd is the
result of Bertulani and Baur[64] in a first-order eikonal ap-
proximation(formally equivalent to the first-order Born ap-
proximation),

fCsQW ,qWd = i
Zta

bg
kR2o

lm

iml̂Sv

c
Dl

GElmFmsQdMsElmd,

s43d

whereMsElmd are the matrix elements for electric transition
of multipolarity slmd

MsElmd = o
j=1,2

Zj E w f
*srWdr j

lYlmsr̂ jdwisrWddrW, s44d

andwisfd are initial sfinald states of the projectile. This is the
long wavelength limit of the transition operator written in
terms of cluster coordinatesrW j s j =1,2d. The two clusters are
characterized by massessmjd, chargessZjd, and momenta

skW jd. The relative motion of the outgoing clusters is described
in terms of the relative momentum

qW = sm2kW1 − m1kW2d/sm1 + m2d,

while the momentum change in the scatteringsQW d is given by
Q=2k sin u /2, whereu and k are, respectively, the scat-
tering angle and the incident momentum in the center of
mass. The other notations in formulas43d are the target
chargeZt, the velocity of the projectile in units of the
speed of light,b, the relativistic Lorentz factorg, the
fine-structure constanta, and the interaction radiusR. In
addition
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"v = « + Eq = « +
"2q2

2m

is the excitation energy, i.e., the sum of thesabsoluted bind-
ing energy and the kinetic energy of the separated clusters.
The relativistic functions of Winther and Adlerf65g are used

in the form GElm= i l+mḠsb ,gd with the complex phase fac-
torized out, while the nondimensional functionsFmsQd, also
defined in Refs.f64,65g, contain information on reaction
mechanism whereby

FmsQd =E
1

`

JmsQRxdKmSvRx

cgb
Dx dx,

and standard notation has been employed for the Bessel
functions. The transition matrix elementss44d are calculated
using a simple shell-model wave function for the ground
state,

wisrWd = RsrdYLMsr̂d. s45d

Note the change in notation with respect to the previous
sections for the quantum numbers of the wave function:L ,M
instead ofl ,m. If final state interactions are also neglected,
the continuum may be considered to be structureless and the
final state wave function may be treated as plane waves. This
is a good approximation for small excitation energies.

Under the above approximations, the matrix element in
Eq. (44) is given by

MsElmd = fZ1b1
l − s− dlZ2b2

l g E drW e−iqWrWr lYlmsr̂dRLsrdYLMsr̂d

= Î4pZl
ef fl̂ L̂o

ln

i−ll̂−1Ylnsq̂dC000
LllCMmn

Lll

3E
0

`

r2dr rl jlsqrdRLsrd, s46d

with an obvious notation for the effective chargeZef f and
b1s2d=m2s1d / sm1+m2d. Since the spin orientations are not
specified, the differential cross section for Coulomb excita-
tion is obtained by averaging the square of the Coulomb
amplitude over the magnetic projections,

d4s = L̂−1o
M

ufCsQW ,qWdu2
dqW Q dQ

s2pd2k2 . s47d

The main contribution in Eq.s46d is given by dipolesE1d
and quadrupolesE2d transitions, therefore only terms with
l =1 or l =2 are included. The complexity of Eq.s47d arises
from the evaluation of integrals

fm1m2
sjd = 2R2j2E

0

`

Q dQ Fm1

* sQ,jdFm2
sQ,jd, s48d

where

j =
vR

gv
=

v

c

R

bg

is the adiabaticity parameter, defined in terms of the excita-
tion energy"v and the minimum impact parameterR, given
by

R= Rp + Rt +
pZpZte

2

4Elabg
,

which includes a correction due to the deviation of the tra-
jectory from a straight linef65g. The functions48d is ob-
tained in general by numerical integration except for the di-
agonal term which admits a simple analytical expression.
However, one can profitably perform first the integration
over the azimuthal anglesfd of the relative momentum,

dqW = q2dq sin u du df.

This integration automatically selects only the diagonal
terms in Eq.s48d and

fmm= K̄msjd,

with functionsK̄ given by

K̄0sjd = sK1
2 − K0

2d,

K̄1sjd =
2

j
K0K1 − sK1

2 − K0
2d,

K̄2sjd =
4

j2K1
2 + sK1

2 − K0
2d,

whereKm are modified Bessel functions of the first kind and

K̄−m=K̄. After some simple calculation we obtain the follow-
ing expression for the differential cross section:

d2s

q2dq sin u du
=

Zt
2a2

Î4p
o s− dL+ms− dsl2−l1+l1−l2d/2l̂1

2l̂2
2l̂1l̂2

3Ŝ−1Sv

c
Dl1−1Sv

c
Dl2−1

Zl1
ef fZl2

ef fḠl1mḠl2mK̄msjd

3 ILl1l1
sqdILl2l2

sqdC000
Ll1l1C000

Ll2l2C000
l1l2SCm−m0

l1l2S

3H Sl1l2
Ll2l1

JȲS0sq̂d, s49d

whereILllsqd is a shorthand notation for the radial integrals
appearing in Eq.s46d. The summation runs over all quantum
numbers exceptL. The angular dependence of the cross sec-

tion is given by functionsȲS0 which are the standard spheri-
cal harmonics defined without the phase factoreimf swheref
has already been integratedd. The energy dependence of the

reaction mechanism is governed by the functionsḠ and K̄.
However, the magnitude of the cross section for a given
multipolarity transition is mainly determined by the effective
charge. If the clusters have equal charge to mass ratio, then
the dipole transition has vanishing cross section in this ap-
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proximation. This is readily understood from classical argu-
ments since in this case the dipole field acts on the two
clusters with the same force in the same direction and does
not lead to dissociation. This is a consequence of the as-
sumption of a well-defined cluster structure for the projec-
tile. Experimentally an appreciable but not complete sup-
pression of theE1 transition occurs. The interference term
E1E2 does not contribute to the total cross section.

Various observables may be readily obtained from Eq.
(49) by appropriate integration or change of variables. The
total Coulomb dissociation cross sectionsC=sE1+sE2 can
be obtained by numerical integration of Eq.(49). In practice
we have used the closed formulas given in the Appendix. For
momentum distributions a change of variables is made such
that

dqW = dqxdqydqz = 2pq2dq sin u du = 2pqrdqrdqz.

The radial momentum distribution is obtained by integrating
over the longitudinal momenta,

ds

qrdqr
=E

−`

`

dqzo
a,S

AS
asqdȲs0Sqz

q
D

= 2 o
a,S=even

E
0

`

As
asqdȲs0Sqz

q
Ddqz,

where we have used a shorthand notation for the general
cross sections49d. In addition, q2=qr

2+qz
2, cosu=qz/q,

sin u=qr /q, and a denotes all summation indices appear-
ing in Eq. s49d, different fromS. There is noE1E2 asym-
metry in the radial momentum distribution since the inter-
ference term in Eq.s49d contains only oddS values.
Similarly, one can demonstrate that the longitudinal mo-
mentum distribution takes the form

ds

dqz
sqz . 0d = o

a,S
E

qz

`

AS
asqdȲS0Sqz

q
Dq dq

and

ds

dqz
sqz , 0d = o

a,S
E

uqzu

`

s− dS As
asqdȲS0Sqz

q
Dq dq.

This leads immediately to

dsE1,E2

dqz
sqz , 0d =

dsE1,E2

dqz
sqz . 0d,

dsE1E2

dqz
sqz , 0d = −

dsE1E2

dqz
sqz . 0d.

From the above relations it can be seen that the loss of
information—concerning, e.g., theE1E2 interference term—
inherent when an integration over all variables is performed
may be partially compensated for by measuring the longitu-
dinal momentum distribution. In an inclusive measurement,
such as that performed here, only the corelike particle mo-
mentum is measured. To compare with the data, we have to
transform the theoretical momentum distribution which is
given as a function ofrelative momentumto a function of

fragment momentum. This is done most easily in the projec-
tile rest frame, taking into account momentum conservation

qW = b1qW1 − b2qW2,

qW1 + qW2 = 0,

and

ds

dqz1
=E dqzdqz2 fsqzddsqz − b1qz1 + b2qz2ddsqz1 + qz2d

= fsqz1d,

where f is a generic notation for the theoretical momentum
distribution. A similar formula holds for the other fragment.

VII. S MATRICES AND OPTICAL MODEL
POTENTIALS

The remaining physics is to describe interaction of the
core and the removed nucleon with the target. These enter
through the associatedSmatricesSc,n expressed as a function
of impact parameter. Previously,S-matrix calculations have
been based on the optical limit of the eikonal model
[20,22,23,28]. In this approach the nucleus-nucleus phase
shifts are entirely determined by nucleon-nucleon collisions
in the density overlap volume. The energy dependence is
dictated by the total nucleon-nucleonsNNd cross sections
sNN. However, diffraction dissociation is sensitive to the re-
fractive power of the optical potential and these effects are
not very well controlled in the above approximation.

Recently, a more fundamental approach has been intro-
duced by Bonaccorso and Carstoiu[66] and Tostevin[35],
whereby theG-matrix interaction of Jeukenne, Lejeune, and
Mahaux (JLM) [67], which is obtained in a Brueckner-
Hartree-Fock approximation from the Reid soft core
nucleon-nucleon potential, has been employed. This interac-
tion is complex, density and energy dependent and, there-
fore, provides simultaneously both the real and imaginary
parts of the optical potential. The optical potential calcula-
tion with this interaction is described in detail in Refs.
[66,68]. The single-particle densities for the core and target
were generated in a spherical Hartree-Fock+BCS calculation
using the density functional of Beiner and Lombard[69].
The strength of the surface term in the functional was
slightly adjusted in order to reproduce the experimental bind-
ing energy for each nucleus. The matter radii resulting from
these calculations are in good agreement with the existing
experimental values of Liatardet al. [70] and with results of
relativistic mean field calculations by Renet al. [71–73], as
shown in Fig. 7. In Fig. 7, other experimental radii values
derived from reaction cross sections at higher energy are also
presented[74,75]. Except for the case of oxygen isotopes,
these values are systematically slightly smaller than those
obtained by Liatardet al.

The resulting optical potentials were renormalized in or-
der to reproduce the total cross section for neutron-target
interactions in an eikonal calculation including noneikonal
corrections up to second order. For the core-target potentials
the renormalization constants have been taken from Ref.
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[68]. These constants describe well the interaction ofp-shell
nuclei at 10 MeV/nucleon. At higher energies, such as those
employed here, they still provide for a good description of
the forward angle elastic scattering cross section—the region
of most importance for breakup. It should also be noted that
the potentials are strong and the eikonal expansion(as de-
fined by Wallace[76]) does not converge at low energies.

The resultingS-matrix elements and transmission coeffi-
cients are displayed in Fig. 8 forn+ 12C and 14C+12C at
energies of 30 MeV and 30 MeV/nucleon, respectively. One
sees clearly substantial changes in the shape and magnitude
of all matrix elements for the neutron if higher order non-
eikonal corrections are taken into account. These effects are
most pronounced at low impact parameters where neutron
absorption profile shows an important contribution from tra-
jectories reflected inside the barrier superimposed on a char-
acteristic strong absorption at the nuclear surface. The eiko-
nal approximation in lowest order underestimates the
interaction range and the absorption in the nuclear interior.
Given the surface dominance of the breakup reactions, this
approximation will lead to an underestimation of the strip-
ping and dissociation cross sections. The distortion kernels
obtained from theseS-matrix elements are displayed in Fig.
9. It is clear that diffraction dissociation is most sensitive to
the noneikonal corrections. The asymptotic behavior of the
distorting kernels is most affected and this has important
consequences for the calculation of the momentum distribu-
tions, since large impact parameters probe the low momen-
tum content of the projectile wave function.

Finally, the neutronS-matrix has been checked against
known experimental total cross sections for four targets[77].
The results are displayed in Fig. 10. The comparison is rea-
sonably good for all targets except tantalum where the ab-
sorptive potential is too strong to be treated in the eikonal
approximation. Nevertheless, we have been able to find nor-
malization constants which reproduce at least qualitatively
the experimental cross sections. The second-order eikonal
calculation forn+ 12C match reasonably well recently evalu-
ated data for elastic and reaction cross sections in the range
20–100 MeV[78] [Fig. 10(b)].

VIII. DISCUSSION

A number of features are apparent from the systematics of
the core fragment momentum distributions and associated
single-neutron removal cross sections for reactions on carbon
(Figs. 1–3). First, the crossings of theN=8 shell andN=14
subshell closures are associated with a significant reduction
in the widths of both the longitudinal and transverse momen-
tum distributions for14,15B,15C,23O, and24,25F compared to
the neighboring less exotic nuclei. Such behavior is a clear
indication of the role played by the structure of the projectile
owing to the large valencen2s1/2 admixtures expected in the
ground-state wave functions(as discussed in detail below).
Second, as a result of this and the weak binding of the va-

FIG. 7. rms matter radii extracted from Hartree-Fock+BCS cal-
culations of single-particle densities(black line), compared with
experimental values from Liatardet al. [70] (filled circles), Ozawa
et al. [74] (open circles), and Tanihataet al. [75] (open diamonds).
The relativistic mean field calculations of Renet al. [71–73] are
indicated by the dashed lines.

FIG. 8. S matrix, absorption profiles, and transmission coeffi-
cients forn-12C (left panels) and 14C−12C (right panels) interac-
tions at 30 MeV/nucleon obtained from the JLM folding model
calculations. Results using the lowest order of the eikonal approxi-
mation are shown as a dotted line, those using the first-order cor-
rections by the dot-dashed line, and those using second-order cor-
rections by the solid line. For14C+12C the calculations converge
with the use of first-order corrections.
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lence neutron14B sSn=0.97 MeVd and 15C sSn=1.22 MeVd
exhibit enhanced cross sections in comparison to the neigh-
boring isotopes, suggesting a spatial delocalization of the
valence-neutron orbital[39].

In order to analyze quantitatively the measurements pre-
sented here, we now proceed to make a comparison with the
results of calculations using the extended Glauber model de-
scribed above coupled with the results of shell-model calcu-
lations.

A. Cross sections and longitudinal momentum distributions:
Carbon target

The spectroscopic factorsC2SsIc
p ,nljd employed here

were calculated with the shell-model codeOXBASH [79] us-
ing the WBP [80] interaction within the 1p-2s1d model
space. In order to avoid energy-shift effects[81] only pure 0,
1, or 2"v excitations were considered. The older Millener-
Kurath [82] interaction(PSDMK) was also investigated and
the results were found, for the nuclei examined here, to be
comparable to those obtained using the WBP interaction.
Where known, the experimentally established spin-parity
sJpd assignments and core excitation energies[83–86] have
been used for calculation of cross sections and momentum
distributions. In all other cases, the shell-model predictions
were employed. It was found that the cross sections were
relatively insensitive to the excitation energies of the core
states. A detailed listing of the spectroscopic factors and cal-

culated cross sections are given in Table IV.2

Aside from the spectroscopic factors the principal param-
eters entering into the calculations were theS matrices and
the geometry of the Woods-Saxon potential used to define
the single-particle wave function. As described in Sec. VII,
the JLM calculations of theS matrices were verified through
comparison with measured total, elastic, and reaction cross
section data. The strength parameter of the single-particle
potential was fixed by fitting the known experimental one-
neutron separation energy. The radius and diffusivity of the
Woods-Saxon potential were fixed atrws=1.15 fm andaws
=0.5 fm for the isotopes of B and C, andrws=1.2 fm, and
aws=0.6 fm for N, O, and F. These values were chosen to
provide a good global agreement with the measured cross

2Since our original publication[39,45] the 22,24F and23O calcula-
tions have been revised.

FIG. 9. The effect of noneikonal corrections on the distortion
kernels(see the text for definitions) as a function of impact param-
eters, for neutron absorption and diffraction, cores14Cd absorption
and for absorption of both the core and neutron by12C at
30 MeV/nucleon. Dotted lines: lowest order eikonal approxima-
tion. Dashed-dotted lines: first-order noneikonal corrections in-
cluded. Solid line: second-order corrections included.

FIG. 10. Elastic(dotted), reaction(dash-dotted), and total(solid
line) cross sections for reactions of neutrons on Be, C, Si, and Ta
targets as a function of incident energy. The calculations were per-
formed using JLM microscopic potentials in the eikonal approxima-
tion. Noneikonal corrections up to second order were included and
the effects on the total cross section are shown for Be, C, and Si
targets by the solid lines(the calculations employing the second-
order corrections provide the best agreement with the data). For the
Ta target, the eikonal series does not converge in the range of en-
ergies shown. The experimental data for the total, elastic, and reac-
tion cross sections(open and closed circles and open squares) were
taken from Refs.[77,78].
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TABLE IV. Calculated spectroscopic factorssC2Sd and cross sectionsfssIc
pdg to the core excited statessEex

c ,Ic
pd populated in single-

neutron removal from the projectile nucleussAZ,Jpd by the carbon target. The contributions arising from absorptionssabsd and diffractive
dissociationssdif fd are detailed(the latter includes the very small contributions arising from Coulomb breakup) and the total inclusive cross
sectionss−1n

Glauberd to all core states is given. ProjectileJg.s.
p and core excited state energies taken from the shell-model predictions are marked

in parentheses. Only the results for the preferred ground structure are given here—the listings for otherJp may be found in Ref.[45].

Eex
c sabs sdif f ssIc

pd
AZ Jp (MeV) Ic

p nlj C2S (mb) (mb) (mb)

12B 1+ g.s. 3/2− 1p1/2 0.71 19.9 14.7 34.6

2.124 1/2− 1p3/2 0.27 6.6 4.4 11.0

4.444 5/2− 1p3/2 0.2 4.14 2.66 6.8

5.02 3/2− 1p3/2 0.36 7.2 4.5 11.7

8.92 5/2− 1p3/2 1.02 17.2 10.0 27.2

s−1n
Glauber=91 mb

13B 3/2− g.s. 1+ 1p3/2 0.61 13.0 9.9 22.9

0.953 2+ 1p1/2 1.17 22.6 16.7 39.3

s−1n
Glauber=62 mb

14B 2− g.s. 3/2− 1d5/2 0.31 9.6 8.7 18.3

2s1/2 0.64 57.0 64.7 121.7

3.483 3/2+ 1p1/2 0.41 8.5 7.1 15.6

3.68 5/2+ 1p1/2 0.8 16.2 13.3 29.5

s−1n
Glauber=185 mb

15B s3/2−d g.s. 2− 1d5/2 0.28 5.8 5.3 11.1

2s1/2 0.48 20.3 22.3 42.6

(0.89) 1− 2s1/2 0.27 9.4 9.9 19.3

(0.73) 1+ 1p1/2 0.58 11.7 11.3 23

(0.96) 3− 1d5/2 0.47 8.7 7.6 16.3

s−1n
Glauber=112 mb

14C 0+ g.s. 1/2− 1p1/2 1.67 26.4 15.9 42.3

3.089 1/2+

3.684 3/2− 1p3/2 2.05 29.7 16.9 46.6

s−1n
Glauber=89 mb

15C 1/2+ g.s. 0+ 2s1/2 0.83 62.1 62.1 124.2

6.094 1− 1p3/2 0.16 2.8 1.9 4.7

1p1/2 1.03 16.3 10.9 27.2

6.903 0− 1p1/2 0.46 6.9 4.6 11.5

s−1n
Glauber=168 mb

16C 0+ g.s. 1/2+ 2s1/2 0.6 19.3 17.5 36.8

0.740 5/2+ 1d5/2 1.23 21.9 16.2 38.1

s−1n
Glauber=75 mb

17C s3/2+d g.s. 0+ 1d3/2 0.035 0.9 0.8 1.7

1.762 2+ 1d5/2 1.41 29.3 25.5 54.8

2s1/2 0.16 6.9 7.2 14.1

4.1 2,3,4+ 1d5/2 0.76 12.5 10.0 22.5

2s1/2 0.22 6.1 5.7 11.8

s−1n
Glauber=105 mb

18C 0+ g.s. 3/2+ 1d3/2 0.1 1.4 1.2 2.6

(0.04) 5/2+ 1d5/2 2.8 43.3 38.0 81.3

(0.3) 1/2+ 2s1/2 0.65 17.2 17.7 34.9

s−1n
Glauber=119 mb
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TABLE IV. (Continued.)

Eex
c sabs sdif f ssIc

pd
AZ Jp (MeV) Ic

p nlj C2S (mb) (mb) (mb)

17N 1/2− g.s. 2− 1d5/2 0.59 11.1 7.6 18.7

0.120 0− 2s1/2 0.12 3.4 2.7 6.1

0.298 3− 1d5/2 0.784 14.5 9.8 24.3

0.397 1− 1d5/2 0.36 9.9 7.8 17.7

s−1n
Glauber=67 mb

18N 1− g.s. 1/2−

1.374 3/2− 1d5/2 0.65 13.4 10.1 23.5

2s1/2 0.195 6.7 5.9 12.6

1.850 1/2+

1.907 5/2− 1d5/2 0.89 15.4 11.4 26.8

3.129 7/2− 1d5/2 0.42 7.6 5.4 13

3.2 3/2− 2s1/2 0.15 4.1 3.4 7.5

1d3/2 0.29 4.6 3.2 7.8

s−1n
Glauber=91 mb

19N s1/2−d g.s. 1− 1d3/2 0.02 0.3 0.24 0.54

2s1/2 0.005 0.14 0.16 0.3

0.115 s2−d 1d5/2 1.26 21.6 16.9 38.5

0.747 s3−d 1d5/2 1.71 24.9 18.7 43.6

(0.936) s1−d 2s1/2 0.35 8.6 7.7 16.3

s−1n
Glauber=99 mb

20N s2−d g.s. 1/2− 1d5/2 0.36 8.5 7.9 16.4

(1.68) 3/2− 1d5/2 0.66 12.4 10.7 23.1

(2.17) 5/2− 1d5/2 0.38 6.8 5.8 12.6

(3.9) 7/2− 1d5/2 1.73 26.8 21.6 48.4

s−1n
Glauber=101 mb

21N s1/2−d g.s. 2− 1d5/2 1.744 28.3 25.1 53.4

(0.6) 3− 1d5/2 2.61 40.1 35.1 75.2

(0.74) 1− 2s1/2 0.45 11.1 11.1 22.2

s−1n
Glauber=151 mb

19O 5/2+ g.s. 0+ 1d5/2 0.685 14.1 9.8 23.9

1.982 2+ 1d5/2 0.48 8.4 5.6 14.0

1d3/2 0.019 0.3 0.2 0.5

2s1/2 0.009 0.25 0.2 0.45

3.555 4+ 1d5/2 1.24 19.7 12.6 32.3

3.92 2+ 1d5/2 0.22 3.4 2.2 5.6

2s1/2 0.06 1.34 0.96 2.3

5.25 2+ 1d3/2 0.023 0.3 0.18 0.48

1d5/2 0.016 0.2 0.18 0.38

5.38 3+ 2s1/2 0.11 2.2 1.5 3.7

s−1n
Glauber=84 mb

20O 0+ g.s. 5/2+ 1d5/2 3.43 51.3 34.5 85.8

0.096 3/2+ 1d3/2 0.05 0.66 0.44 1.1

1.471 1/2+ 2s1/2 0.28 5.3 4.0 9.3

s−1n
Glauber=96 mb
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TABLE IV. (Continued.)

Eex
c sabs sdif f ssIc

pd
AZ Jp (MeV) Ic

p nlj C2S (mb) (mb) (mb)

21O s5/2+d g.s. 0+ 1d5/2 0.345 6.7 5.4 12.1

1.67 2+ 1d5/2 1.3 21.8 16.4 38.2

2s1/2 0.004 0.1 0.1 0.2

3.57 4+ 1d5/2 2.59 38.0 27.3 65.3

4.072 2+ 1d5/2 0.09 1.3 0.9 2.2

2s1/2 0.05 1.0 0.9 1.9

4.456 0+

4.85 4+

5.23 2+ 1d5/2 0.12 1.6 1.1 2.7

s−1n
Glauber=123 mb

22O 0+ g.s. 5/2+ 1d5/2 5.22 74.9 56.9 131.8

1.33 1/2+ 2s1/2 0.23 4.3 3.7 8.0

2.20 3/2+ 1d3/2 0.03 0.33 0.27 0.6

3.08 5/2+ 1d5/2 0.14 1.7 1.2 2.9

s−1n
Glauber=143 mb

23O s1/2+d g.s. 0+ 2s1/2 0.8 31.7 33.8 65.5

3.38 2+ 1d3/2 0.053 0.7 0.5 1.2

1d5/2 2.1 30.5 24.5 55.0

(4.62) 0+ 2s1/2 0.11 2.2 1.9 4.1

(4.83) 3+ 1d5/2 3.08 40.5 31.7 72.2

(6.5) 2+ 1d5/2 0.24 2.9 2.1 5.0

(6.64) 0− 1p1/2 0.36 3.4 2.6 6.0

(6.9) 1− 1p1/2 0.94 8.6 6.5 15.1

s−1n
Glauber=224 mb

22F 4+ g.s. 5/2+ 1d5/2 0.56 9.1 6.4 15.5

0.2799 1/2+

1.73 3/2+ 1d5/2 0.24 3.6 2.4 6.0

(1.9) 9/2+ 1d5/2 0.96 13.6 9.1 22.7

(3.56) 3/2+ 1d5/2 0.09 1.19 0.81 2.0

(3.64) 7/2+ 1d5/2 0.087 1.15 0.75 1.9

2s1/2 0.015 0.3 0.2 0.5

(3.7) 9/2+ 1d5/2 0.58 7.4 4.8 12.2

(4.02) 1/2+

(4.45) 7/2+ 1d5/2 0.03 0.4 0.2 0.6

2s1/2 0.02 0.3 0.2 0.5

(4.84) 11/2+ 1d5/2 0.54 6.5 4.1 10.6

1d3/2 0.04 0.4 0.3 0.7

(4.91) 13/2+ 1d5/2 0.52 6.3 3.9 10.2

(5.31) 7/2+ 1d5/2 0.07 0.8 0.5 1.3

2s1/2 0.03 0.5 0.3 0.8

(5.5) 7/2+ 1d5/2 0.012 0.2 0.1 0.3

(6.95) 13/2+ 1d5/2 0.075 0.8 0.5 1.3

s−1n
Glauber=87 mb
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sections. Better agreement is obtained if, for example, radius
and diffusivity parameters are tuned locally. The sensitivity
to the choice of these parameters may be illustrated by the
example of16C breakup at 50 MeV/nucleon, for which a
change in geometry torws=1.20 fm andaws=0.65 fm leads

to an increase of about 27% in the total one-neutron-removal
cross section. As might be expected the shape and width of
the momentum distributions were found to be rather insensi-
tive to the radius and diffusivity since these parameters
mainly affect the single-particle asymptotic normalization

TABLE IV. (Continued.)

Eex
c sabs sdif f ssIc

pd
AZ Jp (MeV) Ic

p nlj C2S (mb) (mb) (mb)

23F s5/2+d g.s. 4+ 1d5/2 1.2 15.9 11.1 27.0

(0.2) 3+ 1d5/2 0.76 10.0 6.8 16.8

2s1/2 0.06 1.1 0.9 2.0

(0.7) 2+ 1d5/2 0.64 8.1 5.6 13.7

2s1/2 0.03 0.63 0.49 1.12

1.41 5+ 1d5/2 1.4 17.0 11.4 28.4

(1.6) 1+ 1d5/2 0.06 0.7 0.5 1.2

(1.65) 3+ 2s1/2 0.07 1.2 0.8 2.0

(1.67) 2+ 1d5/2 0.31 3.7 2.5 6.2

(2.3) 1+ 1d5/2 0.27 3.1 2.1 5.2

(3.5) 5+ 1d5/2 0.11 1.2 0.8 2.0

s−1n
Glauber=106 mb

24F s3+d g.s. 5/2+ 1d5/2 0.09 1.6 1.3 2.9

2s1/2 0.74 22.3 21.1 43.4

(1.8) 1/2+ 1d5/2 0.073 1.1 0.8 1.9

(2.9) 7/2+ 1d5/2 0.44 6.0 4.4 10.4

(3.2) 5/2+ 1d5/2 0.37 4.9 3.6 8.5

(3.7) 9/2+ 1d5/2 0.96 12.3 9.0 21.3

(4.2) 7/2+ 1d5/2 0.38 4.7 3.4 8.1

(4.4) 3/2+ 1d5/2 0.2 2.5 1.7 4.2

(4.61) 5/2+ 1d5/2 0.09 1.1 0.8 1.9

2s1/2 0.04 0.7 0.5 1.2

(4.65) 9/2+ 1d5/2 0.2 2.4 1.7 4.1

(4.78) 5/2+ 2s1/2 0.052 0.9 0.7 1.6

(5.6) 5/2+ 1d5/2 0.12 1.4 0.9 2.3

(6.77) 3/2+ 1d5/2 0.16 1.7 1.2 2.9

s−1n
Glauber=115 mb

25F s5/2+d g.s. 3+ 2s1/2 0.82 21.6 21.0 42.6

1d5/2 0.08 1.3 1.0 2.3

(0.1) 2+ 2s1/2 0.64 16.6 16.0 32.6

(0.8) 1+ 1d3/2 0.06 0.7 0.6 1.3

(2.2) 4+ 1d5/2 1.0 13 10.0 23

(2.5) 3+ 1d5/2 0.7 8.4 6.3 14.7

(2.8) 1+ 1d5/2 0.18 2.1 1.6 3.7

(2.9) 1+ 1d5/2 0.1 1.2 0.9 2.1

(3.5) 5+ 1d5/2 1.6 18.3 13.5 31.8

s−1n
Glauber=154 mb
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coefficient of the wave function. It should also be noted that
in the present calculations the ground and excited states of
the core were assumed to have the same density distribu-
tions. As such the same Woods-Saxon geometry was em-
ployed for all core states of each projectile.

In order to facilitate the comparison of the calculated and
measured momentum distributions, the former were filtered
through a Monte Carlo simulation(Sec. II) to take into ac-
count the experimental broadening effects. As may be seen in
Figs. 1 and 3, the measured distributions and cross sections
for all the nuclei included in the present study, including
those nuclei with well established structure, are well repro-
duced with the exception of22F, where the cross section is
somewhat underestimated.

It is, however, apparent that for a number of nuclei the
calculated momentum distributions are slightly broader than
the experimental ones,3 in particular the low and high mo-
mentum wings are somewhat more pronounced. This effect
appears to arise from the specific shapes of the distorting
functions[Dssd, Sec. V] at low impact parameters, as shown
in Fig. 9. The use of distortion kernels calculated with less
realistic black diskS-matrix elements leads to a strong sup-
pression of the high momentum components in the wave
function, and momentum distributions consequently become
much narrower.

To illustrate the contributions from the different mecha-
nisms leading to the removal of the neutron, the various
contributions—absorption, diffraction, and Coulomb
dissociation—to the breakup of14B,15C,17C, and 21O are
displayed in Fig. 11. The Coulomb dissociation cross section
is typically less than 1 mb in all but the most favorable
cases—14B and 15C—for which the Coulomb induced
breakup was estimated to amount to some 7 mb. As expected
[17], absorption and diffraction result in distributions with
very similar line shapes. The diffraction cross section is,
however, smaller than that for absorption for well bound
states, while the two are essentially identical for weakly
bound states(Fig. 3). This evolution with binding is also
illustrated in Fig. 12 for single-neutron removal at
50 MeV/nucleon from anA=17 system comprising a core
and a single-valence neutron. In the case where the neutron
occupies ans-wave configuration(left panel) the absorption
and diffraction cross sections are almost equal independent
of the binding energy. If the beam energy is increased, ab-
sorption becomes the dominant process, while at lower ener-
gies diffraction is favored. For ad-wave valence neutron the
cross section is dominated for all energies by absorption and
the contribution from diffraction decreases asSn increases.

The effects of applying the noneikonal corrections de-
scribed in Sec. VII are also displayed in Fig. 12. These cor-
rections lead to an increase in the total(absorption and dif-
fraction) cross section: for example, for a valence-neutron
binding energy of 1 MeV, an increase of some 12% occurs.
As expected[87] the effect is even more pronounced at
lower energies(e.g., some 19% at 30 MeV/nucleon).

Following Brown et al. [88] we introduce a quenching
factor Rs=s−1n/s−1n

Glauber in analogy with thez factor of Pan-

dharipandeet al. [89]. Individual values are plotted in Fig.
13 as a function of projectile mass number. Averaging over
the 22 one-neutron-removal reactions for which cross sec-
tions were measured here, one obtainsRs=0.98±0.16. Note
that our database includes both looselysSn<1 MeVd and
well bound nucleisSn<2–8 MeVd. For the loosely bound

3The asymmetric nature of some of the distributions is discussed
in the following section.

FIG. 11. Selected examples(see text) of the core fragment lon-
gitudinal momentum distributions obtained using the carbon target
showing the contributions from the different reaction mechanisms.
The calculated distributions(thick solid lines) include the absorp-
tion (thin solid lines), diffraction (dashed), and Coulomb(dash-
dotted) components.

FIG. 12. Calculated absorption(solid lines) and diffraction
(dashed lines) cross sections vs binding energy fors- and d-wave
states of anA=17 system at 50 MeV/nucleon on a carbon target
using the JLM interaction and various orders of eikonal theory.
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systems(14B and 15C) Rs=0.8±0.1 in agreement with the
values deduced by Brownet al. [88] and Enderset al. [37]
for 8B and 9C.

B. Transverse momentum distributions: Carbon target

The transverse momentum distributionsspxd were calcu-
lated as described in Secs. V and VI. In order to make a
comparison with the experimentally measured distributions,
the calculated distributions were filtered through a simulation
which took into account the various broadening effects—
straggling, the resolution of the tracking detectors and the
spectrometer(Sec. II and Table I)—together with the finite
angular acceptances of the spectrograph. The most signifi-
cant effect was that arising from the acceptances, whereby
the high momentum wings of the distributions were reduced
in intensity.4 Good agreement, as may be seen in Fig. 4, was
found between the measured and calculated distributions.

As mentioned in Sec. V B, the transverse momenta are
strongly influenced by the interaction with the target and the
distributions arising from absorption and diffraction exhibit
different line shapes. This effect is explored in Fig. 14, where
the longitudinal and transverse distributions have been cal-
culated for s-, p-, and d-wave single-particle states with
binding energies of 1 MeV in anA=14 system. In the case of
the longitudinal momenta both thes- and(to a lesser extent)
p-wave states result in relatively narrow distributions, while
the d-wave state may be identified with a broad distribution
exhibiting two symmetric peaks.

In the case of the transverse momenta, the contribution
arising from diffraction is systematically much broader than
that from absorption and as such dominates the high momen-

tum components of the total distribution. In addition, only
the s-wave configuration gives rise to a relatively narrow
distribution. Thep- and d-wave states are relatively broad
with the former presenting a flat topped distribution with a
small central dip. These features combined with the intrinsic
structure of the projectile result in transverse distributions
significantly different in form from the longitudinal distribu-
tions. In particular, the presence in a mixed configuration of
a non-negligibles-wave component will manifest itself in the
transverse momentum distribution as a narrow feature super-
imposed on a much broader component. This is particularly
well illustrated by the results for23O and 24,25F (Fig. 4).
Thus, while the line shapes of the transverse momentum dis-
tributions may be more complex, they remain sensitive to the
nature of the projectile ground state and may furnish spec-
troscopic information in a complementary manner.

As noted in the preceding section a number of the longi-
tudinal momentum distributions exhibit low momentum tails
(Fig. 1). Such asymmetric distributions may arise from dis-
sipative core-target collisions, such as observed in stable
beam fragmentation[1,2,90] or, more likely in the case of
weakly bound systems as a result of diffractive/elastic
breakup[62]. Experimentally a correlation exists between
the longitudinal and transverse momenta for events in the
low momentum tail, as displayed in Fig. 15. Here the data
for 15C, where the yield is dominated by breakup to the14C
ground state, was analyzed so as to minimize any momentum
shifts arising from core excited states. When events situated

4As the emittance of the beam was relatively large(Sec. II), the
angular acceptances of the spectrometer do not introduce a sharp
cutoff in the transverse momentum distributions.

FIG. 13. Ratio of experimental to theoretical cross sectionssRsd
as a function of projectile mass number for the data obtained with
the carbon target. The dotted line indicates the mean value and the
shaded band the 1s variance.

FIG. 14. Test case calculations of the longitudinalskzd and trans-
verseskxd core fragment momentum distributions for one-neutron
removal by a carbon target at 50 MeV/nucleon assuming ans-, p-,
or d-wave state in anA=14 system withSn=1 MeV. The total
(solid line), absorption(dashed), diffraction (dash-dotted), and Cou-
lomb (dotted) components are indicated.
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in the tail are selected the corresponding transverse momen-
tum distribution is broad. In contrast, for events withpz
greater than the mean momentum5 the transverse momentum
distribution is much narrower, with a width identical to that
of the total distribution(Fig. 4). The low momentum events
constituting the tail thus, on average, exhibit a much larger
scattering angle. This result is consistent with the observa-
tion by Tostevinet al. [62] of asymmetric longitudinal mo-
mentum distributions at scattering angles away from 0° in
the breakup of15C. Furthermore, the average momenta of the
distributions were observed to be down shifted with increas-
ing scattering angle. Such energy nonconservation effects
cannot be described within the framework of the eikonal ap-
proximation employed here. As described in Ref.[62], fully
dynamical coupled discretized continuum channel calcula-
tions are capable of reproducing these effects, suggesting
that the origin is diffractive/elastic breakup. A model inde-
pendent confirmation could be furnished by fully exclusive
measurements in which the beam velocity neutrons from
breakup(a signature of diffractive dissociation) are measured
in coincidence with the core fragments and deexcitationg
rays.

C. Longitudinal and transverse momentum distributions:
Ta target

As noted earlier, the longitudinal momentum distributions
were measured for the breakup of14B, 15–17C, and17–19N on
Ta (Fig. 5), and distributions almost identical in width and
form to those obtained for reactions on C were observed.
Owing to the Coulomb deflection of the projectile and core
fragment in the field of the target nucleus very broad trans-

verse momentum distributions were encountered experimen-
tally. As an example the distribution obtained for15C is dis-
played in Fig. 16. It is clearly evident that the acceptances
spx. ±200 MeV/cd of the spectrograph were too limited to
allow either transverse momentum distribution or the single-
neutron removal cross section to be determined.

An estimate of the effects of Coulomb orbital deflection
on the dissociation of15C is shown in Fig. 16. For simplicity
the transverse distribution has been calculated assuming pure
Coulomb breakup(which is expected to dominate for the
breakup of15C) and considering only the dominants-wave
component in the ground-state wave function. The solid line
in Fig. 16 corresponds to the assumption that the core frag-
ment is deflected, following dissociation, along a classical
Rutherford trajectory. In this case the angle of deflection de-
pends only on the impact parameterb. The final transverse
distribution was simulated assuming a distribution of impact
parameters given by the calculations described in Sec. VI for
b.bmin=Rcore+Rtarget joined smoothly with a diffuse shape
for b,bmin mocked up by a Woods-Saxon form factor. The
calculation in Fig. 16 shows that the broadening effect in the
transverse momentum distribution is largely explained by
core deflection in the target Coulomb field and suggests the
breakdown of the straight line trajectory assumption at inter-
mediate energies for heavy targets.

We can now turn to the longitudinal core fragment mo-
mentum distributions on Ta target. Calculations including
nuclear and Coulomb components compare well with the
data as displayed in Fig. 5. As for the results obtained with
the carbon target the theoretical predictions have been fil-
tered through a Monte Carlo simulation(Sec. II) to take ac-
count the experimental effects. Details of the calculation are
shown in Fig. 17 for15,17C. In the case of15C, with a ground

5We note that such events should reflect most directly the intrinsic
momentum of the removed neutron.

FIG. 15. Correlations between the longitudinal and transverse
14C core fragment momenta for one-neutron removal from15C by
the carbon target.

FIG. 16. Core fragment transverse momentum distributions for
one-neutron removal from15C by the tantalum target(filled circles).
Dashed line: calculated transverse momentum distribution for Cou-
lomb induced breakup. Solid line: same calculation after convolu-
tion with the orbital deflection in the Coulomb field of the target
(see text for details).
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state dominated by ans-wave valence neutron and lowSn,
the nuclear and Coulomb distributions are almost identical,
an example of the “numerical coincidence” pointed out by
Hansen[15]. In the case of17C, which is dominated by a
d-wave valence neutron the Coulomb and nuclear distribu-
tions are not identical. The Coulomb interaction samples
large impact parameters and selects small momentum com-
ponents and the corresponding momentum distribution is
narrow. For the cases detailed here, the laboratory grazing
angle is about 1.4°, while the measured angular range is±2°.

Clearly a nuclear component must be present in these data
and the calculations presented in Fig. 17 suggest that the
absolute nuclear and Coulomb contributions predicted by the
Glauber model coupled to first-order perturbation theory for
Coulomb dissociation seem to be realistic.

D. Momentum distributions as a spectroscopic tool

On the basis of the preceding comparisons, the reaction
mechanism on the carbon target appears to be understood
and, except for the low momentum tails, well described by a
Glauber-type approach within the eikonal approximation.
When the nuclear structure is well known, as is the case for
the nuclei closest to stability, the data are well reproduced by
the model. In this section the manner by which the spin-
parity assignments given in our earlier paper[39] to nuclei
with poorly established ground-state structure will be out-
lined. This will also be instructive in illustrating the sensitiv-
ity of the inclusive core fragment momentum distributions to
the structure of the projectile.

A comparison of the measured core fragment longitudinal
momentum distributions from reactions on the carbon target
and those calculated for the possible ground-state spin pari-
ties is provided in Fig. 18. Here both the calculated and
experimental distributions are displayed on an absolute scale
fmb/sMeV/cdg without any normalization, except for23O
where no cross section could be extracted experimentally

FIG. 17. Examples of the core fragment longitudinal momentum
distributions for reactions on the Ta target. The filled circles repre-
sent the data. To aid in the comparison the calculated distributions
for the total(solid lines), nuclear(dotted), and Coulomb dissocia-
tion (dashed line) are normalized to the data.

FIG. 18. Comparison of the
measured core fragment longitudi-
nal momentum distributions(from
reactions on the carbon target)
with those predicted for different
projectile ground-state spin-parity
assignments. The favored assign-
ments are displayed as solid lines
(see text).
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(Sec. III). In this case the calculated momentum distributions
have been normalized so as to best reproduce the experimen-
tal distribution. In most of the cases the choice between the
variousJg.s.

p is clear and the favored spin-parity assignments,
represented by the solid lines in Fig. 18, are listed in
Table II.6 Interestingly, in all the cases presented here, the
favored spin-parity assignments correspond to those sug-
gested by the shell-model calculations.

In two cases(17C and23O) the spin-parity assignments are
not directly evident from inspection of Fig. 18. As it has been
the object of recent attention owing to claims of a modifica-
tion in the shell structure[56], we will first turn our attention
to 23O. The form of the single-neutron removal longitudinal
momentum distribution obtained here is well reproduced by
both Jg.s.

p =1/2+ and 5/2+ assignments(similar results hold
for the transverse momentum distribution). The former, how-
ever, leads to a predicted cross section of some 224 mb
(Table IV, Table V),7 a factor of around 4 higher than for
Jg.s.

p =5/2+. Based on the systematics of the cross sections
obtained here for the oxygen isotopes(Fig. 3), a 1/2+ assign-
ment was favored[39]. This conclusion is, contrary to the
arguments made recently[91] by the authors of Ref.[56],
confirmed by their measured cross section for single-neutron
removal—233±37 mb as compared to a value of 185 mb
which we predict(Table V) using the ground-state structure
given in Table IV, at their beam energy of 72 MeV/nucleon
(a very similar result was also found by Brownet al. [92]).
Further support for this ground-state structure for23O may
be found in the results for single-neutron removal at very
high energys938 MeV/nucleond obtained using the FRS
[58]. Not only can we reproduce well the measured longitu-

dinal momentum distribution assuming a 1/2+ ground state,
but a cross section of 82 mb is predicted(Table V) as com-
pared to the experimental value of 85±15 mb.

In the case of17C the three possible ground-state spin-
parity assignments are shown in Fig. 18. It is clear that the
1/2+ assignment grossly overestimates the cross section. The
3/2+ and 5/2+ assignments reproduce the data quite well,
with the former providing a marginally better description of
the central part of the distribution. As noted in Table IV, a
Jg.s.

p =3/2+ results in a large yield to the16C 21
+ state in

single-neutron removal from17C. The observation by Mad-
dalena
et al. [32] and Datta Pramaniket al. [93] of the correspond-
ing 1.76 MeV g ray transition thus confirms directly the
3/2+ assignment.

Interestingly, the transverse momentum distribution mea-
sured here for17C also supports this assignment. This may be
seen in Fig. 19 where the predictions(obtained with the same
spectroscopic factors as above and without adjusting the pa-
rameters of the reaction calculation) for the three possible
spin-parity assignments are compared to the measured distri-
bution. This illustrates, as noted earlier, that the transverse
momentum distributions can carry spectroscopic information
complementary to that provided by the longitudinal mo-
menta.

In the light of the results described here, the evolution of
the core fragment momentum distributions withTz may be
understood, in particular through the competing contribu-
tions of the valence neutronn2s1/2 andn1d5/2 admixtures. In
summary, following the crossing ofN=8, the ground states
of theN=9—14B, 15C— andN=10 isotones—15B, 16C—are
significantly influenced by the intrudern2s1/2 andn2s1/2

2 con-
figurations, respectively. As the neutron number increases so
too does the contribution fromn1d5/2 configurations. This
reaches a maximum atN=14 and then, as expected from the
naive shell model, then2s1/2 orbital is occupied forN=15
and 16. Similar conclusions may also be drawn from the
interaction cross section measurements of Ozawaet al.,
which exhibit enhancements for23O and24,25F [74,94].

6Owing to an error in the compilation of Ref.[45], the likely
spin-parity assignments for24F were given as 1+,3+ rather than
2+,3+ in our original paper[39].

7The calculated cross section listed in Table I of our original paper
[39] omitted the yield to the 3+ state predicted at around 4.8 MeV in
22O (Table V).

TABLE V. Predicted cross sections for one-neutron removal from23O sJg.s.
p =1/2+d by a carbon target at

47 (present experiment), 72 [56] and 938[58] MeV/nucleon. The core excited states and spectroscopic
factors are those listed in Table IV.

Elab sMeV/nucleond
Ex

c sMeVd Ic
p 47 72 900

g.s. 0+ 65.5 53.0 27.2

3.38 2+ 1.2 0.99 0.4

55 45.4 19.3

4.62 0+ 4.1 3.33 1.6

4.83 3+ 72.2 59.8 24.6

6.5 2+ 5.0 4.2 1.7

6.64 0− 6.0 4.9 1.9

6.9 1− 15.1 13.2 5.2

s−1n
Glauber 224 185 82

s−1n
exp 233±37[56] 85±15 [58]
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IX. CONCLUSIONS

An investigation of high-energy one-neutron removal re-
actions on 23 neutron-richpsd-shell nuclei has been pre-
sented. By studying isotopic chains extending from strongly
bound near stable systems to weakly bound near dripline
nuclei, the evolution of structure with isospin as expressed
by the core fragment observables(longitudinal and trans-
verse momentum distributions and inclusive cross sections)
has been explored. Experimentally, the measurements were
carried out using a broad range high resolution, high accep-
tance spectrometer which permitted the data to be collected
at a single magnetic field setting. Data were recorded using
both carbon and tantalum targets in order to explore nuclear
and Coulomb induced breakup. In the case of the carbon
target data, the large angular acceptances of the spectrometer
were sufficient to encompass the full range of transverse mo-
menta, thus permitting unambiguous measurements of the
longitudinal and transverse momentum distributions and as-
sociated cross sections to be made. Owing to the large Cou-
lomb deflection present in the reactions on the tantalum tar-
get, the effective transverse momentum acceptances were
very limited. As such only the longitudinal momentum dis-
tributions could be deduced.

From the theoretical standpoint, an extended version of
the Glauber model which incorporates effectiveNN interac-
tions and second-order noneikonal corrections to the JLM
parametrization of the optical potential has been developed.
The treatment of Coulomb dissociation using first-order per-
turbation theory has also been described. Particular emphasis
has been devoted to retain the role played by the valence-
neutron wave function via its Wigner transform in mapping
the intrinsic momentum components onto the measured dis-

tributions. Despite a number of simplifying assumptions the
model predictions agree very well with the experimental
data, in particular those obtained for nuclei near stability
with relatively well-known structure.

In the case of nuclear induced breakup the model suggests
that for the longitudinal momentum distribution the reaction
mechanism factorizes in a manner such that only the low or
surface momentum components in the wave function are se-
lected. As a consequence only the asymptotic part of the
wave function is probed. In the transverse momentum distri-
butions this factorization does not occur and additional mo-
menta arising from interactions with the target come into
play. The principal drawback of the present approach, which
is inherent to all Glauber-type models, is the neglect of en-
ergy and momentum conservation in describing diffractive/
elastic breakup. The predicted momentum distributions are
thus always symmetric and the low momentum tails ob-
served here for some of the weakly bound nuclei cannot be
reproduced. As noted in Sec. VIII B, the description of such
asymmetries requires the implementation of fully dynamical
calculations(see, for example, Ref.[62]).

Shell-model spectroscopic factors calculated using the
Warburton-Brown effective interaction formed the structural
input for the calculations. The resulting momentum distribu-
tions and cross sections were found to be in very good agree-
ment (except for the cross section for22F which was under-
predicted by some 30%) with the measurements. This
agreement, especially for those nuclei with well established
structure, suggests that the longitudinal momentum distribu-
tions and associated inclusive cross sections constitute a
spectroscopic tool and ground-state spin-parity assignments
were proposed for15B, 17C, 19–21N, 21,23O, 23–25F. In addition
to the dominance of then2s1/2 intruder configuration in the
N=9 isotones,14B and 15C, significant n2s1/2

2 admixtures
were found to occur in the ground states of the neighboring
N=10 nuclei15B and 16C. Similarly, following the crossing
the N=14 subshell, the occupation of then2s1/2 orbital is
clearly observed for23O, 24,25F.

The calculations of the transverse momentum distribu-
tions were also seen to agree well with the measurements.
Thus, while being systematically somewhat broader than the
longitudinal distribution the transverse distribution also car-
ries structural information. Interestingly, due to the interplay
of the projectile structure and reaction mechanism the trans-
verse momenta were seen to often carry information in a
complementary manner. In particular, the competition be-
tweens- andd-wave valence-neutron configurations can ex-
hibit itself directly in the transverse momentum distribution.
Such complementary information may be of utility when
conducting experiments with weak beams.

Ultimately, the experimental determination of the core ex-
cited states populated in the reaction is required if detailed,
unambiguous spectroscopic information is to be deduced. As
seen elsewhere[28–34] this may be obtained for bound core
states using large scale NaI or Germanium-detector arrays.
As the neutron dripline is approached and the core itself
becomes weakly bound, coincident neutron detection will
also become necessary to identify the core states.

Finally, in terms of perspectives, we conclude with some
more general observations concerning the use of high-energy

FIG. 19. Comparison of the measured16C core fragment trans-
verse momentum distribution for reactions of17C on the carbon
target with the distributions calculated for the three possible
ground-state spin-parity assignments.
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single-nucleon-removal reactions as a probe of structure. As
noted above, the reaction probes only the surface content of
the projectile wave function. As such comparatively simple
wave functions have been employed to describe the valence
nucleon. These wave functions, weighted by spectroscopic
factors derived from large scale shell-model calculations are,
as described here, coupled to relatively sophisticated reaction
model calculations. As is evident from the present work and
has already been pointed out by others[27,36], remarkably
good agreement has been achieved to date in describing the
measurements.

A few caveats should, however, be added. First, given the
uncertainties inherent in the calculations, such as those de-
scribed in Sec. VIII A, uncertainties of order ±10% should
be ascribed to the predicted cross sections.8 Coupled with the
experimental uncertainties—typically of a similar order—it
would appear that deficiencies in our modeling of,10–20%
in cross section could easily be overlooked. High precision
data obtained employing beams with very well established
structure would, therefore, provide a means to help validate
the accuracy to which the present approaches can be em-
ployed. A recent reanalysis of very high-energy inclusive
measurements of single-nucleon removal from beams of12C
and 16O [88] is an encouraging step in this direction and
dedicated experiments employing coincidentg-ray detection
are to be expected.

Second, modeling employing “realistic” wave functions
should be explored. In the case of single-nucleon transfer
reactions it has long been known that despite their surface
nature, the extraction of absolute spectroscopic factors can
depend strongly on the description of the valence nucleon
wave function[95]. In this context, it is instructive to recall
a recent reanalysis ofsd, 3Hed measurements by Kramers
et al. [96]. In this study it was demonstrated that while only
the tail of the bound-state wave function is sampled, it is
very sensitive to the exact shape of the potential, thus intro-
ducing a significant model dependence in the calculated
cross sections. In terms of weakly bound nuclei, the need to
employ realistic wave functions was also found in the analy-
sis of the p(11Be,10Bes2+d)d reaction [97]. Similar effects
must almost certainly be addressed in the analysis of high-
energy, single-nucleon removal, and the levels to which they
occur may provide a limit to the relatively simple analyses
employed to date.
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APPENDIX
In this appendix explicit analytical expressions for the

Coulomb dissociation cross section, Eq.(49), are given for
s-, p-, andd-wave functions forE1, E2 transitions andE1E2
interference. The shorthand notationsFXx are defined below.
Pl denote Legendre polynomials where the argument cosu

has been omitted. The functionsK̄m are defined in Sec. VI.
We have the following relations:

F1E1 = K̄0sjd + K̄1sjdg2, sA1d

F2E1 = − 2K̄0sjd + K̄1sjdg2, sA2d

F1E2 = 3K̄0sjd + K̄2sjd + K̄1sjdg2s2 − b2d2, sA3d

F2E2 = 3K̄0sjd − K̄2sjd + 1
2K̄1sjdg2s2 − b2d2, sA4d

F3E2 = 9K̄0sjd + 1
2K̄2sjd − 2K̄1sjdg2s2 − b2d2, sA5d

F1E1E2 = 2K̄0sjd + K̄1sjdg2s2 − b2d, sA6d

F2E1E2 = 3K̄0sjd − K̄1sjdg2s2 − b2d. sA7d

L=0:

d2sE1

q2dq sin u du
=

4

3

Zt
2sZ1

ef fd2a2

g2b2 I011
2 s+ F1E1 − P2F2E1d,

sA8d

d2sE2

q2dq sin u du
=

1

105

Zt
2sZ2

ef fd2a2

g2b4 sv/cd2I022
2

3 s+ 7F1E2 + 10P2F2E2 + 6P4F3E2d,

sA9d

d2sE1E2

q2dq sin u du
=

4

5

Z1
ef fZ2

ef fZt
2a2

g2b3 sv/cdI011I022

3 s+ P1F1E1E2 + P3F2E1E2d. sA10d

L=1:

d2sE1

q2dq sin u du
=

4

3

Zt
2sZ1

ef fd2a2

g2b2 f+ F1E1sI110
2 + 2I112

2 d

+ P2F2E1s2I110I112− I112
2 dg sA11d

8As noted in Sec. VIII A, the widths of the momentum distribu-
tions are far less sensitive.
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d2sE2

q2dq sin u du
=

1

525

Zt
2sZ2

ef fd2a2

g2b4 sv/cd2f+ 7F1E2s2I121
2

+ 3I123d2 + 2P2F2E2s7I121
2 + 12I123

2

− 6I121I123d + 6P4F3E2sI123
2 − 4I121I123dg,

sA12d

d2sE1E2

q2dq sin u du
=

4

75

Z1
ef fZ2

ef fZt
2a2

g2b3 sv/cdf+ P1F1E1E2s5I110I121

− 7I112I121+ 9I112I123d + P3F2E1E2

3s− 5I110I123− 6I112I121+ 4I112I123dg.

sA13d

L=2:

d2sE1

q2dq sin u du
=

4

75

sZ1
ef fd2Zt

2a2

g2b2 f+ 5F1E1s2I211
2 + 3I213

2 d

+ 2P2F2E1s− 1
2I211

2 + 9I211I213− 6I213
2 dg ,

sA14d

d2sE2

q2dq sin u du
=

1

25725

sZ2
ef fd2Zt

2a2

g2b4 sv/cd2f+ 49F1E2s18I224
2

+ 7I220
2 + 10I222

2 d + 10P2F2E2s− 15I222
2

+ 90I224
2 − 98I220I222− 72I222I224d

+ 6P4F3E2s20I222
2 + 27I224

2 + 98I220I224

− 100I222I224dg, sA15d

d2sE1E2

q2dq sin u du
=

4

175

Z1
ef fZ2

ef fZt
2a2

g2b3 sv/cd

3f+ P1F1E1E2s7I211I222+ 18I213I224

− 3I213I222− 7I211I220d

+ P3F2E1E2s− 12I211I224− 8I213I222

+ 2I211I222+ 7I213I220+ 6I213I224dg.

sA16d
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