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We analyze thea decay between ground states alongN−Z chains in deformed heavy and superheavy nuclei,
by using the pairing approach. We show that the derivative of the preformation amplitude is practically a
constant along anya chain, while that of the outgoing wave function changes exponentially upon the Coulomb
parameter. This leads to the breakdown of the continuity equation and therefore to wrong decay widths. The
behavior cannot be explained within the standard shell model. We significantly correct this deficiency by
considering ana-cluster factor in the preformation amplitude, depending exponentially upon the Coulomb
parameter. Thus, four-body correlations, connected with the radial shape of the preformation factor, are directly
evidenced by thea-decay systematics. Moreover, this procedure, in principle, fully determines theQ value and
is an important development in thea-decay theory. It also allows us to analyze the relativea-clustering
structure of the emitter. It turns out that the isotopes close to the regionN.126 and superheavy nuclei have a
stronger clustering behavior. For superheavy region an additional dependence upon the number of interacting
a particles is necessary.

DOI: 10.1103/PhysRevC.69.044318 PACS number(s): 21.60.Gx, 23.60.1e

I. INTRODUCTION

The investigation of thea clustering is mainly connected
with the binding energy systematics alonga lines, i.e., nuclei
with the same isospin projectionN−Z [1]. The even-odd pair
staggering found along these lines can be nicely explained in
terms of a “pairing” in the isospin space between proton and
neutron pairs, considered as bosons[2]. It turns out that such
a “condensate” is more bound when the number of proton
and neutron pairs above a double magic nucleus is even, in
agreement with the experimental situation.

On the other hand thea-particle energy(Q value), com-
puted as the difference between the binding energies of ini-
tial and final systems, is directly connected with the decay
width. Therefore the decay width should bring an informa-
tion on the a-clustering. First of all we mention that the
linear dependence between the logarithm of the decay width
and the square root of theQ value was explained in the early
days of the nuclear physics by Gamow by using a simple
picture: a preformeda particle moves in some attractive po-
tential and penetrates the surrounding Coulomb barrier[3].
Several extensive calculations showed that the half-lives of
a-particle emitters are well described, by using an equivalent
local potential[4–7]. This feature is connected with the im-
portant role played by the tail of the wave function inside the
Coulomb barrier. The attractive depth and the radius of the
repulsive core determines the energy and wave function of

the decaying state, understood as a narrow resonance[8].
Due to the large repulsive barrier the WKB approximation of
the Coulomb function is a very good approximation[9].

In the last years the investigation of superheavy nuclei by
using a-decay chains became a very active field of the
nuclear physics. The synthesis of elements withZ.104 was
suggested by Flerov[10]. It was predicted by using the cold
valleys in the potential energy surface for reactions between
48Ca and different heavy targets[11,12]. The existence of
such nuclei is strongly connected with the shell closure prop-
erty of the mean field in this region[13]. Several papers were
devoted to the calculation ofa-decay half-lives in this re-
gion. They used different methods, such as the Viola and
Seaborg formula[13], the WKB method describing transi-
tions to rotational states[14], the generalized liquid drop
model [15,16], the preformed cluster decay model[17], the
empirical Brown formula[18], or the integral kernel method
[19]. All of them can be considered as phenomenological
approaches, based essentially on the Gamow phenomeno-
logical picture.

The R-matrix theory [20,21] makes a step forward and
expresses the decay width as a product between the particle
preformation probability and the penetration through the bar-
rier. The a-particle preformation probability can be esti-
mated in terms of single-particle states using the Talmi-
Moshinski technique[22–24]. Due to the antisymmetrization
effects between thea-particle and daughter wave functions
the interaction becomes nonlocal in the internal region[25].
The important role played by pairing residual correlations on
the preformation factor was evidenced in Ref.[26].

In spite of these theoretical achievements it was shown
that the usual shell-model space usingN=6–8 major shells
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underestimates the experimental decay width by several or-
ders of magnitude[27,28]. This is connected with the expo-
nential decrease of bound single particle wave functions
[29]. The inclusion of narrow single particle resonances is
not able to cure this deficiency[30–33]. Only the back-
ground components in continuum can describe the right or-
der of magnitude of experimental decay widths[34–37].

Anyway, the shell-model estimate of thea-particle prefor-
mation factor is not consistent with the decreasing behavior
of Q values along any neutron chain[38,39]. In our previous
paper [40] we analyzed this feature by treating the
a-decaying state as a resonance built in a standard way,
namely, by using the matching between logarithmic deriva-
tives of the preformation amplitude and Coulomb function.
This is equivalent to the so-called “plateau condition,” i.e.,
the independence of the decay width upon the matching ra-
dius. It turns out that this condition is not satisfied along any
neutron chain if one uses the standard shell-model estimate
for the preformation factor. This happens because the deriva-
tive of the penetration factor changes much faster upon theQ
values than the internal preformation amplitude. We cor-
rected the slope of the preformation amplitude by changing
the harmonic oscillator(ho) parameter of single particle
components in continuum. They give the most important
contribution in the preformation amplitude. These compo-
nents are connected with ana-cluster term, not predicted by
the standard shell model[41]. Recently a similar idea was
used in Ref.[42]. Here the ho parameter, associated with the
center of mass(c.m.) a-particle wave function, was used as a
variational parameter, describing excited 0+ states in12C and
16O.

The aim of this paper is to extend our analysis of the
decay widths, by connecting the heavy with superheavy re-
gions alonga-like chains. Our purpose is not only to give a
correct description of absolute decay widths. We will show
that in order to fulfil the plateau condition it is necessary to
use an additionala-cluster component, depending upon the
Q value. In this way we are able to connect the microscopic
clustering properties ofa emitters with their binding ener-
gies.

The paper is organized according to the following plan. In
Sec. II we give all necessary details concerning the penetra-
tion of the a particle through a deformed Coulomb barrier
and the microscopic calculation of the preformation factor. In
Sec. III we first analyze the influence of the relevant param-
eters upon the decay width. We investigate even-even and
favored even-odda emitters within the standard pairing ap-
proach. We then introduce a correcting factor for the
a-particle preformation amplitude, in order to achieve self-
consistency with the usedQ value. We analyze the relative
behavior of the additional factor upon the neutron number,
giving an important information on thea clustering. Finally
we predict half-lives for even-even and even-odd superheavy
emitters. In the last section we draw conclusions.

II. THEORETICAL BACKGROUND

We will investigate thea-clusterization process by ana-
lyzing the decay widths. The standard procedure to compute

the a-decay width within the deformed WKB approach and
to estimate the microscopic preformation amplitude was de-
scribed in several papers, like for instance[34–37]. In this
section we will summarize the necessary details.

A. WKB approach for the deformed Coulomb barrier

Let us consider a transition connecting two axially de-
formed nuclei

BsI i,Kid → AsI f,Kfd + asld, s2.1d

wheresI ,Kd denotes the total nuclear spin and its projection
on the intrinsic axis andl the angular momentum of the
emitteda particle.

In general the interaction between thea-particle and the
daughter nucleus is given by a nonlocal potential. Beyond
the touching radiusRc=1.2sAA

1/3+41/3d Pauli exchange ef-
fects diminish, the nuclear potential becomes very small, and
the Schrödinger equation governing the cluster motion con-
tains mainly a local component. Due to the fact that only the
tail of the preformation factor is important for the decay
process inphenomenological approachesone defines an
equivalent local potential for any distance, i.e.,

F−
"2

2m
D + Vsr dGCsr d = ECsr d, s2.2d

where r =sr , r̂d denotes the relative distance andm
=MaMA/ sMa+MAd the reduced mass of thea-daughter sys-
tem. The equivalent potential is written as follows:

Vsr d = VNsr d, r P intfRg, VCsr d, r P extfRg,

s2.3d

whereVN simulates the internal cluster preformation process,
while VC denotes the Coulomb potential. HerefRg is the
surface between internal and external regions. Thus, we sup-
pose that at a certain surface thea particle is already formed
and moves in the Coulomb field of the daughter nucleus. Of
course beyond some valueRc the final decay width should
not depend on this surface. In Fig. 3 of Ref.f33g by using a
microscopic approach we estimated such an equivalent
spherical local potential. In the internal region it has a pock-
etlike shape, but beyond the touching radiusR=Rc<9 fm it
is indeed very close to the Coulomb interaction. This fea-
ture is already a signature that the decay width will not
depend uponR beyond the touching configuration, as can
be seen in Fig. 4 of the same reference.

In a phenomenological approach the decaying state is de-
scribed as a resonance inside this potential. By expanding the
solution in spherical waves

Cmsr d = o
l

glsrd
r

Ylmsr̂d, s2.4d

one finds a resonant state with a given projectionm, by
matching the internalgl

sintdsrd and external outgoing compo-
nentsgl

sextdsrd at some radiusr =R. Thus one determines an
eigenstate with complex energy, i.e.,
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E = Es0d −
i

2
G. s2.5d

The real part of the energy is adjusted to the experimentalQ
value by using the depth of the potential as a parameter. For
all knowna decays the Coulomb barrier is very large and the
width G is by many orders of magnitude less than the real
part. Therefore it is practically impossible to find the imagi-
nary part from the matching condition. But on the other hand
the decay width can be derived from the continuity equation
as follows:

G = "no
l

limr→`uglsrdu2, s2.6d

wheren is the c.m. velocity at infinity.
The external components in a Coulomb field were derived

by Fröman within the deformed WKB approach[9]. By in-
troducing them in the above relation one obtains

G = o
l

Gl = "n
1

G0sx,kRd2o
l
Fo

l8

Dll8sRdgl8
sintdsRdG2

,

s2.7d

where G0sx ,kRd denotes the monopole irregular Coulomb
function f43g, depending upon the product between the mo-
mentumk and matching radiusR. Here x is the Coulomb
parameter, defined as twice the Somerfeld parameter

x = 2
Z1Z2e

2

"n
. s2.8d

By considering that the intrinsic spin projection is conserved
Ki =Kf the deformation matrix has the following form:

Dll8sRd = expF−
lsl + 1d

x
Î x

kR
− 1GkI iKi ; l0uI fKilKll8,

s2.9d

where by bracket we denoted the Clebsch-Gordan coeffi-
cient. It turns out that the major effect is given by the quad-
rupole deformationf35g. In this case the so-called Fröman
matrix can be written as follows:

Kll8 =E
0

p

Ql0sudeBP2scosudQl80sudsin udu. s2.10d

Here Qlmsud are the normalized azimuthal harmonics given
by the definition of spherical harmonics, i.e.,

Ylmsu,fd = Qlmsud
eimf

Î2p
, s2.11d

and

B =
2

5
xb2S2 −

kR

x
DÎ 5

4p

kR

x
S1 −

kR

x
D , s2.12d

whereb2 is the quadrupole deformation. This result is a very
good approximation with respect to the exact coupled chan-
nels solution, for quadrupole deformationsub2uø0.3 f44g.

Moreover, our previous calculationsf35g showed that 90%
of the contribution is given by the monopole component
of the internal wave functiong0

sintdsRd. Therefore the decay
width can be estimated by using the following ansatz:

G = H"nF g0
sintdsRd

G0sx,kRdG2JHo
l

Dl0
2 sRdJ ; G0sRdDsRd,

s2.13d

where the functionDsRd is given by the sum over angular
momentum l. Thus, a very good approximation for the
a-decay width from axially deformed nuclei is given by the
product between the standardspherical width, given by the
Thomas formulaG0sRd f20g, and the deformation factor
DsRd. It contains a ratio between the internal and external
solutions. The decay width does not depend upon the match-
ing radiusR within the local potential approach, because the
internal and external wave functions satisfy the same equa-
tion and therefore are proportional. This is the so-called pla-
teau condition. The approximation given by Eq.s2.13d sat-
isfy this requirement with a good accuracy.

B. Microscopic a-particle preformation amplitude

The situation becomes different when the value of the
internal wave functiong0

sintdsRd is given by an independent
microscopic approach. In this case the internal potentialVN
in Eq. (2.3) is replaced by the so-called preformation ampli-
tude. The two-body interaction is defined only in the external
region. As we already pointed out in the region beyondRc
the two-body residual interaction, generating the preforma-
tion amplitude, is so small that the equivalent local potential
practically coincides withVC. In this case the preformation
amplitude and Coulomb wave function do nota priori have
the same derivatives.

The preformation factor is defined as the amplitude to find
a-daughter configurationCaCA in initial mother wave func-
tion CB, i.e.,

g0
sintdsRd

R
; F0sRd =E djadjACa

* sjadCA
* sjAdCBsjBd,

s2.14d

where the integration is performed over internal coordinates.
As the final results below Eq.s2.23d shows it depends only
upon R. We neglected the antisymmetrization between the
cluster and daughter wave functions, because we will esti-
mate this integral for distancesR where the Pauli principle
can be neglected.

The structure of a freea particle is very simple. It con-
tains one pair of protons in a singlet state and a similar pair
of neutrons. Each particle lies in the ground state 0s of an ho
well. By recoupling the product of radial wave functions to
the relative and c.m. components one obtains
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e−bar1
2/2e−bar2

2/2e−bar3
2/2e−bar4

2/2 = e−basrp
2+rn

2+rpn
2 d/2e−4baR2/2

, Casrp,rn,rp,ndCc.m.sRd.

s2.15d

Here we introduced Moshinsky relative and c.m. coordi-
nates, respectively,

rp =
r1 − r2

Î2
, rn =

r3 − r4

Î2
, rpn =

r1 + r2 − r3 − r4

2
,

R=
r1 + r2 + r3 + r4

4
, s2.16d

where r1,r2 denote proton andr3,r4 neutron coordinates.
The size parameter of the intrinsica-particle potential, de-
termined by electron-scattering experiments, isba

<0.5 fm−2 [24]. The relative wave function used in Eq.
(2.14) contains also proton and neutron singlet spin-wave
functions, i.e.,

Casjad = Casrp,rn,rpndx0sspdx0ssnd. s2.17d

The most important ground state correlations are given by
the pairing interaction. We use the Bardeen-Cooper-
Schrieffer (BCS) approach for mother and daughter wave
functions. In order to estimate the overlap integral(2.14) we
expand the mother wave function in terms of sp states, mul-
tiplied by the daughter wave function, as follows:

CB =
1

2o
jp

Îjp +
1

2
Pjp

fc jp
^ c jp

g0o
jn

Îjn +
1

2
Pjn

fc jn

^ c jn
g0CA. s2.18d

We use the short-hand index notationjt;stel j d, where t
=p ,n denotes isospin,e sp energy,l angular momentum, and
j total spin. Otherwisejt has the usual meaning of the single
particle spin. The expansion coefficients are given in terms
of BCS occupation amplitudes as follows:

Pjt
= ujt

sAdv jt
sBd. s2.19d

This expansion contains a pair of proton and one of neu-
tron states, similar to the structure of a freea-particle(2.17).
In order to perform the integral(2.14) analytically we ex-
pand sp wave functions in the ho basis, i.e.,

c jtm
sr ,sd = o

n=0

nmax

cnjt
Rnlsb0r

2dfYlsr̂d ^ x1/2ssdg jt m, t = p,n.

s2.20d

The radial ho wave function

Rnlsb0r
2d = Nnlsb0de−b0r2/2r lLn

sl+1/2dsb0r
2d s2.21d

is defined in terms of the Laguerre polynomial. The sp pa-
rameterb0 is connected with the standard ho parameter by
using a scaling factorf0 as follows:

b0 = f0bN = f0
MNv

"
<

f0

A1/3, s2.22d

whereA is the mass number. By performing the recoupling
of proton and neutron pairs in Eq.s2.18d to relative and c.m.
coordinates the preformation amplitude becomes

F0sb0,nmax,Pmin;Rd

= e−4b0R2/2o
N

WNsb0,nmax,PmindNN0s4b0dLN
1/2s4b0R

2d.

s2.23d

We stress on the fact that the exponential term is similar to
the c.m.a-particle wave functions2.15d, but it depends upon
the single particle ho parameterb0. We will show that this
term is directly connected with the plateau condition and
gives the main clustering feature of thea-decay process. The
expansion coefficients are given in terms of recoupling
Talmi-Moshinsky brackets as follows:

WNsb0,nmax,Pmind

= 8 o
nNpNn

kn0N0;0uNp0Nn0;0lIn0
sb0,badGNp

GNn
.

s2.24d

The quantitiesIn0
sb0,bad are overlap integrals between radial ho

functions, i.e.,

In0
sb0,bad =E

0

`

Rn0sb0r
2dR00sbar2dr2dr. s2.25d

The proton coefficientsGNp are given by the following rela-
tion:

GNp
= o

l jnp

o
n1n2=0

nmax

Bpsn1l jn2l j d

3Ksll d0S1

2

1

2
D0;0uSl

1

2
D jSl

1

2
D j ;0L

3 kn0Np0;0un1l ;n2l ;0lInp0
sb0,bad. s2.26d

The first bracket denotesj j −LS recoupling coefficient, while
the second one Talmi-Moshinsky symbol.B coefficient is a
sum over all sp states with given spherical quantum num-
bers, i.e.,

Bpsn1l jn2l j d = o
Pjp

ùPmin

Îjp +
1

2
Pjp

cn1jp
cn2jp

. s2.27d

Therefore we consider in our sp basis only those states with
Pt larger than the minimal valuePmin, taken as a parameter.

One obtains a similar relation forGNv
.

III. ANALYSIS OF a-DECAY CHAINS

The natural way to analyzea decays is along the so-called
a chains, connecting nuclei with the same isospin projection
I =N−Z. A systematics ofa-decayQ values along these lines
was for the first time performed in Ref.[1]. Here it was
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evidenced a dependence uponI and I2 and also upon the
number ofa-clustersNa=sN−N0d /2 andNa

2, whereN0 is the
magic neutron number.

The superheavy nuclei are detected usinga decays along
these paths. One of our goals is to give reliable predictions
for half-lives along superheavy chains withZ.102, by con-
necting them with similar chains in heavy nuclei with
82,Z,100. At the same time we are interested in obtaining
the best possible consistency(plateau condition) between the
microscopic preformation amplitude and the penetration
through the barrier, i.e., theQ value. This will allow us to
analyze the relative clustering behavior ofa emitters.

A. The parameters of the model

In order to understand the structure of the decay width it
is necessary a careful analysis of all significant parameters.
Let us first analyze the relevant parameters for the barrier
penetration. They concern the irregular Coulomb function
G0sx ,kRd and the deformation factorDsRd in Eq. (2.13). It is
already well known that the barrier penetration is sensitive
with respect to the following two parameters:

(1) x: the Coulomb parameter defined by Eq.(2.8).
(2) b2: the quadrupole deformation in the Fröman matrix

(2.10).
The most important ingredient, governing the penetrabil-

ity of the a particle through the barrier, is the Coulomb pa-
rameterx. The irregular Coulomb functionG0sx ,kRd de-
pends exponentially on it. For all knowna decays its WKB
estimate(Gamow function)

G0sx,kRd = sctg ad1/2 exsa−sin a cos ad,

cos2a =
kR

x
=

R

R0
, R0 =

Z1Z2e
2

E
, s3.1d

gives an error less than 1% with respect to the exact func-
tion. It explains the linear dependence between the logarithm
of the decay widths andÎE.

The decay width has also an exponential dependence
upon the quadrupole deformation, given by Eqs.(2.10) and
(2.12). In order to clarify the role of the barrier deformation
we plotted in Fig. 1 the functionDsRd in Eq. (2.13) versus
the c.m. radiusR. We analyzed nuclei at the extremes of the
considered interval, namely,200Rn, (a) and 288114 (b). We
considered a typical range of quadrupole deformations for
the mother nucleus, i.e., −0.3,b2,0.3. In all casesDsRd
practically does not depend upon the radius. On the other
hand the largest correction gives a factor of 3 for heavy
nuclei and a factor of 5 in superheavy ones. From this analy-
sis it becomes clear that the small difference in deformations
for mother and daughter nuclei gives practically no correc-
tion.

Let us now analyze the important parameters for the pre-
formation factorg0

sintdsRd=RF0sRd in Eq. (2.13). The micro-
scopic structure of the preformation amplitude is given by
Eq. (2.23). It is very collective and therefore the transitions
between ground states are not sensitive to the mean-field
parameters. Thus, in our analysis we used the universal pa-
rametrization of the Woods-Saxon potential[45]. We solved
the BCS equations for the mother and daughter nuclei, but
the product af amplitudesusAdvsBd in Eq. (2.19) differ by 2%
from usBdvsBd. Thus, we considered the gap parameter esti-
mated byDt=12/ÎAB [46], whereAB is the mass number of

FIG. 1. (a) The dependence of the deformation factorDsRd de-
fined by Eq.(2.13) upon the matching radius, for different quadru-
pole deformations. The decay process is200Rn→ 196Po+a. (b) The
same as in(a) but for the decay process288114→ 284112+a.

FIG. 2. (a) The preformation amplitudeRF0sRd vs the matching
radius for the decay process200Rn→ 196Po+a. (b) The natural loga-
rithm of the modulus of the preformation amplitude(solid line), the
natural logarithm of the irregular Coulomb functionG0sx ,kRd
(dashed line), and the linear fit of the solid curve(dot-dashed line)
vs the matching radius.
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the mother nucleus, because again the preformation ampli-
tude is not sensitive upon its local fluctuation.

It turns out that the approach is very sensitive with respect
to the following three parameters, entering the preformation
amplitude.

(1) nmax: the maximal sp radial quantum number defined
by Eq. (2.20).

(2) b0: the sp ho parameter, depending uponf0 defined by
Eq. (2.22).

(3) The amount of spherical configurations taken in the
BCS calculation, given byPmin in Eq. (2.27), defined as the
minimal consideredPt (2.19).

Let us first analyze the influence of the maximal radial
quantum numbernmax, defining the radial extension of the
wave function. For bound states one hasnmaxø4. For states
in continuum it increases with the sp energye. This is a very
important parameter because the preformation factor should
be properly described at large distances, where the states in
continuum play an important role. The ideal procedure is to
discretize the positive sp spectrum and to find the wave func-
tions by a direct numerical integration. Then the expansion
coefficientscn in Eq. (2.20) can be found by a fitting proce-
dure. In this way the amount of states for each combination
l , j will be very large.

Anyway, we are interested in the effective description of
the decay width. Namely, if we are able to obtain the value of
the decay width for a given nucleus, the other transitions are
described by using the same parametrization of the sp spec-
trum. Thus, we preferred an effective description of the con-
tinuum, by using the direct diagonalization method to find
the expansion coefficientscn in the ho basis. It turns out that
beyondnmax=9 the results saturate if one considers in the
BCS basis sp states withPù Pmin=0.02. Therefore we con-
sidered in our further calculations the valuenmax=9.

We improved the description of the continuum by choos-
ing a sp scale parameterf0,1 in Eq. (2.22). This is similar
to our previous procedure of Ref.([37]), where we used two
ho parameters, one connected with the bound sp spectrum
and another one(smaller) with the continuum. A smaller ho

FIG. 3. The parameterPmin multiplied by 10(solid line) and the
slope coefficientg1 (dashed line) for g0=0 in Eq. (3.3) vs the ho
size parameterf0 defined by Eq.(2.22). The decay process is
200Rn→ 196Po+a.

FIG. 4. The slope parameter 100g1 (solid line) and the ratio
parameterg0 (dashed line) in (3.3) vs the a-particle energy for
200Rn→ 196Po+a.

FIG. 5. (a) The ratio parameterg0, defined by Eq.(3.3), vs the
neutron number forf0=0.8,Pmin=0.025 and different even-even
a-chains in Table I.(b) The slope parameterg1, defined by Eq.
(3.3), vs the neutron number and different even-evena-chains in
Table I. (c) The Coulomb parameterx, defined by Eq.(2.8), vs the
neutron number and different even-evena-chains in Table I.
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parameter corresponds to a larger density of the sp spectrum.
We simplified this approach by using only one parameter,
because practically only sp states above the Fermi level con-
tribute in the decay width. Actually we found out that the sp
states below the Fermi surface give a contribution about few
percents in the decay width. Thus, by using a smaller ho
parameter the sp wave function, and therefore the preforma-
tion amplitude, becomes flatter and it is better described at
large distances.

This parameter is not independent fromPmin. It turns out
that the common choice off0 andPmin ensures not only the
right order of magnitude for the decay width, but also the
above mentioned continuity of the derivative. As we already
pointed out in the preceding section the continuity of deriva-
tives between the internal preformation factorg0

sintdsRd
=RF0sRd and the external Coulomb functionG0sx ,Rd is not
a trivial condition. This is a necessary condition, because if
their slopes are equal the two functions are proportional and
according to Eq.(2.13) the decay width does not depend
upon R [DsRd is practically a constant]. Obviously this re-
quirement is equivalent to the standard logarithmic deriva-
tive condition in finding a resonant state.

In Fig. 2(a) we plotted the preformation amplitude
g0

sintdsRd=RF0sRd as a function of the radiusR for the decay
process

200Rn→ 196Po +a. s3.2d

It is peaked in the internal region. As it was shown in Ref.
f33g a wave function of such a shape is generated by an
equivalent pocketlike local potential in the internal region.
Its tail in the external region, beyondRc, corresponds prac-
tically to a Coulomb interaction, as in Fig. 3 of Ref.f33g.
The asymptotic behavior in this region is exponential, similar
to the Coulomb functions3.1d, and this feature can be better
analyzed in the logarithmic scale. In Fig. 2sbd by a solid line
we plotted lnuRF0sRdu and by a dashed line lnG0sx ,kRd
−10. By a dot-dashed line we also give the linear fit of the
preformation amplitude in the interval over 5 fm beyond
the touching radius. One sees that it is parallel with the
logarithm of the Coulomb function, their difference is a
constant, and indeed the plateau condition is fulfilled.
Therefore the coefficients of the linear fit

log10FGsRd
Gexp

G = g0 + g1R, s3.3d

should vanish, i.e.g0=g1=0, in order to have a proper de-
scription of the decay width. It turns out that they are very
sensitive to the size parameterf0 and Pmin. In Fig. 3 we
plotted by a solid line the value of 10Pmin versusf0, for
which we obtainedg0=0. By a dashed line it is given the
value of the slopeg1 for the same condition. One can see
that one obtainsg0=g1=0 for f0=0.8 andPmin=0.025.This
corresponds to about 50 spherical configurations in Eq.
s2.24d, and sp spectra are bound by the following limits
maxuepu<15 MeV, maxuevu<5 MeV.

In other words we can, in principle, find the Coulomb
parameterx by solving the equation

g1sxd = 0, s3.4d

for given parametersnmax,b0,Pmin and in this wayto pre-

TABLE I. Even-even (left side) and even-odd(right side) a-decay chains in the regionZ.82,
82,N,126. In the first column of each table is given the isospin projectionI =N−Z. In the next columns are
given the initial neutron and proton numbers, the number of states/chain and the reference.

I N1 Z1 No Ref. I N1 Z1 No Ref.

28 114 86 1 [7] 27 113 86 1 [7]

30 116 86 2 [7] 29 115 86 2 [7]

32 118 86 3 [7] 31 117 86 3 [7]

34 120 86 3 [7] 33 119 86 3 [7]

36 122 86 2 [7] 35 121 86 2 [7]

38 124 86 1 [7] 37 123 86 1 [7]

FIG. 6. (a) The same as in Fig. 5(a), but for different even-odd
a-chains in Table I.(b) The same as in Fig. 5(b), but for different
even-odda-chains in Table I.(c) The same as in Fig. 5(c), but for
different even-odda-chains in Table I.
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dict Q value independently, based only on the microscopic
factor. This equation involves only the theoretical estimate
of the decay width, because it is independent on the constant
Gexp. In order to analyze the sensitivity of the slope pa-
rameterg1 upon theQ value we plotted in Fig. 4 their
dependence. One can see that it is necessary to solve the
above Eq.s3.4d with an errorug1uø0.02, toachieve a pre-
cision of 500keV.

B. a chains for Z.82, 82,N,126

We used the values of the parameters determined above,
nmax=9, f0=0.8 andPmin=0.025, in order to analyze othera
decays. A correct theoretical description should give small
fluctuations forg0 andg1, if the a clustering is entirely de-
scribed within this approach. Indeed, this is the case for the
regionZ.82, 82,N,126. The above analyzed decay(3.2)
belongs to this region, containing six even-evena chains,
described in the left side of the Table I. Here we give the
values of I =N−Z, the starting valuesN1 and Z1 and the
number of states/chain. In the last column we give the refer-
ence for the experimental decay widths andQ values. In all
casesI i = I f =0 in Eq. (2.9). The quadrupole deformation pa-
rameters are taken from Ref.[47].

In Figs. 5(a) and 5(b) we plotted the parametersg0,g1
depending upon the neutron number. One can see that indeed
their values are very close to zero. The decay widths are
reproduced within a factor of 2. We point out in advance that
the small decrease of parameters along considereda chains
is correlated with a similar behavior of the Coulomb param-
eterx in Fig. 5(c).

The situation is similar for the favoreda decays from
even-odd nuclei. We analyzed six even-odda chains with
I i = I f, described in right side of the Table I. In Figs. 6(a)–6(c)
we can see the same behavior as in Figs. 5(a)–5(c).

In conclusion the pairing description ofa decays in this
region seems to be successful concerning both the ratio to
the experimental width and the continuity of derivatives.
Moreover, we conclude that thea clustering is constant for
all considered emitters.

C. a chains for Z.82, N.126

The situation completely changes in the region above the
magic neutron numberN.126. We investigated 12 even-
even a-chains. They are described in the left side of the
Table II.

In Fig. 7(a) we plotted the parameterg0 versus the neu-
tron number along these chains. From this figure it is rather
difficult to follow each chain from the lowest neutron num-
berN1. Anyway our purpose is not to identify “who is who,”
but to show that the general behavior of this parameter is
very similar for any considereda chain. One can see that the
experimental decay widths are reproduced worse than in the
previous interval, namely, the quantityg0< log10sG /Gexpd has
a variation of one order of magnitude aroundg0=0. This
performance can be considered satisfactory for a microscopic
model. But at the same time the description of the slopeg1,
given in Fig. 7(b), is by far not satisfactory.

The situation is similar for favoreda decays from even-
odd nuclei. These chains are described in the right side of the
Table II for 12 even-odda-chains.

In Figs. 8(a) and 8(b) we give the values of the parameters
g0 andg1, respectively, depending upon the neutron number.
Again the ratio parameterg0 has a variation of one order of
magnitude aroundg0=0 and the variation of the slopeg1 is
very strong. As expectedg0 has a stronger variation around
the semimagic neutron numbersN=152 andN=162. We par-
tially explain large fluctuations of the ratio parameterg0 in
the superheavy region by relative large experimental errors.

The reason for the variation of the slope parameterg1 is
the relative strong dependence of the Coulomb parameterx
upon the neutron number alonga chains. In Fig. 9(a) we
give the values of this parameter for the even-even chains
and in Fig. 9(b) for even-odd chains. The variation of the
slope parameterg1 for even-even nuclei in Fig. 7(b) is in an
obvious correlation with the Coulomb parameterx in Fig.
9(a). The same happens for even-odd emitters, namely, the
slope parameter in Fig. 8(b) is similar to the Coulomb pa-
rameter in Fig. 9(b).

It is well known that the derivative of the irregular Cou-
lomb function strongly changes with respect to the parameter

TABLE II. Even-even(left side) and even-odd(right side) a-decay chains in the regionZ.82, N.126.
The quantities are the same as in Table I.

I N1 Z1 No Ref. I N1 Z1 No Ref.

38 130 92 1 [7] 39 131 92 1 [7]

40 130 90 2 [7] 41 131 90 2 [7]

42 130 88 3 [7] 43 131 88 5 [7]

44 130 86 6 [7] 45 131 86 7 [7]

46 132 86 8 [7] 47 133 86 8 [7]

48 134 86 12 [7] 49 139 90 11 [7,49]

50 136 86 9 [7] 51 143 92 8 [7]

52 142 90 7 [7] 53 147 94 10 [7,50]

54 146 92 5 [7] 55 151 96 4 [7]

56 150 94 4 [7] 57 155 98 2 [7]

58 154 94 2 [7] 59 173 114 1 [7]

60 172 112 3 [48] 61 175 114 3 [51]
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x. Therefore the derivative of the microscopic preformation
amplitude changes alonga chains much slower in compari-
son with that of the Coulomb function. Thus, the micro-
scopic description within the pairing model is not consistent
in this region. The discontinuity of the derivative has a pro-
found consequence, namely the continuity equation is not
anymore satisfied, because the probability current has a
jump.

D. Corrected preformation amplitude

In spite of the fact that this method is used for many years
the obvious inconsistency of the shell model, in particular, of
the pairinga-decay approach, was only recently stressed in
Ref. [40].

At the first sight it seems that this effect could be a con-
sequence of the fact that we considered only the Coulomb
interaction in the external region and neglected the equiva-
lent local potential produced by the microscopic preforma-
tion factor. Anyway a simple estimate, similar to that in Ref.
[33] shows that first of all this correction is very small. On
the second hand from our analysis alonga chains it turns out
that this effect is proportional to the Coulomb parameterx.
The variation due to the potential generated by the micro-
scopic part along any isotope chain is by far not able to
follow the trend given by the Coulomb parameter.

Our estimate shows that the linear correlation coefficient
betweeng1 andx is larger than 0.7. This allows us to intro-
duce a supplementary, but universal, correcting procedure for
the preformation factor. Thus, let us define a variable size
parameterf by a similar to Eq.(2.22) relation, namely,

b = fbN. s3.5d

The parameterx enters in the exponent of the Coulomb func-
tion s3.1d. This fact suggests a similar correction of the pre-
formation factor, i.e.,

F̄0sb,bm,nmax,Pmin;Rd

= e−4bR2/2o
N

WNsbm,nmax,PmindNN0s4bmdLN0
s1/2ds4bmR2d.

s3.6d

Therefore we decouple the ho parameter, entering the clus-
terlike exponential factor, from the fixed parameter sp ho
parameterbm. We suppose a linear dependence of the size
parameterf upon the Coulomb parameter

b − bm = sf − fmdbN = f1sx − xmdbN. s3.7d

The above relations3.6d can be written as follows:

F̄0sb,bm,nmax,Pmin;Rd

= e−4sb−bmdR2/2F0sbm,nmax,Pmin;Rd

=F0sb − bm,0,0;RdF0sbm,nmax,Pmin;Rd, s3.8d

i.e., the usual preformation amplitude is multiplied by a clus-
ter preformation amplitude withnmax=0. Thus, one has to
multiply the right-hand side of the expansions2.23d by
this factor.

Our calculations showed that indeed, this is the best
choice for the slope correction of the preformation ampli-
tude. If one uses a variable ho parameter for the second
factor in the above relation one always obtains a linear de-
creasing trend of the slope parameterg1 along anya chain.
This is a strong argument in favor of thea-clustering nature
of this correction.

The energy of the emitted particle can be splitted into two
components, a pure shell model plus a cluster part, i.e.,

FIG. 7. (a) The parameterg0 vs the neutron number for different
even-evena-chains in Table II. The preformation parameters are
f0=0.8, Pmin=0.025.(b) The same as in(a), but for the slope pa-
rameterg1.

FIG. 8. (a) The parameterg0 vs the neutron number for different
even-odda-chains in Table II. The preformation parameters are
f0=0.8, Pmin=0.025.(b) The same as in(a), but for the slope pa-
rameterg1.
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E = Ebm
+ Eb−bm

. s3.9d

Therefore theQ-value contains a smooth part and a fluctua-
tion, given by four-body correlations not included in the
pairing model. This representation is somehow similar to the
standard Strutinsky procedure to split the binding energy into

a smooth liquid drop term plus a shell-model fluctuation
f52g, but of course the two terms in our case have different
meanings.

First of all we tried to maintain our previous parametriza-
tion for N,126, i.e., fm=0.8, xm=0.40, by looking for the
best slopef1 in Eq. (3.7). In this way the first region would
be described with the same set of parameters, because the

FIG. 9. (a) The Coulomb parameterx vs the neutron number for
different even-evena-chains in Table II.(b) The Coulomb param-
eter x vs the neutron number for different even-odda-chains in
Table II.

FIG. 10. (a) The parameterg0 vs the neutron number for differ-
ent even-evena-chains in Table II. The preformation parameters
are fm=0.83, f1=8.0 10−4, Pmin=0.025.(b) The same as in(a), but
for the slope parameterg1.

FIG. 11. (a) The parameterg0 vs the neutron number for differ-
ent even-odda-chains in Table II. The preformation parameters are
fm=0.84, f1=8.0 10−4, Pmin=0.025.(b) The same as in(a), but for
the slope parameterg1.

FIG. 12. (a) The parameterg0 vs the neutron number for differ-
ent even-evena-chains in Table II. The preformation parameters
are fm=0.83,f1=8.0 10−4, f2=1.28 10−6, Pmin=0.025.(b) The same
as in (a), but for the slope parameterg1.
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Coulomb parameterx<0.40 for all decays, as can be seen
from Figs. 5(c) and 6(c) and we will obtain practically the
same values as in Figs. 5(a), 5(b), 6(a), and 6(b). By using
this parametrization the ratio parameter indeed improves, be-
coming closer to a vanishing value for all decays in the re-
gion N.126, but the description of the slope parameter is
still unsatisfactory.

Therefore we chose a different strategy connected with
the maximal value of the ratio parameterg0. As we will show
later this choice has a physical meaning connected with the
a-clustering picture. In this way the parametrization in the
region 82,N,126 becomes different with respect to the
other one, but at the same time it is common for all
a-decaying nuclei withN.126, including the superheavy
ones. This choice is not a drawback, but it fits the spirit of
the Nilsson shell-model parametrization. We remark from
Figs. 7(a) and 9(a) that the maximal value of the ratio pa-
rameterg0 corresponds to a maximal value of the Coulomb
parameter. Let us point out that by using a constant ho pa-
rameter with the size parameterfm=0.83 for all analyzed
even-even emitters the Figs. 7(a) and 7(b) are pushed down
and one obtains for the maximal value of the ratio parameter
g0smaxd=0. At this point thea clustering is described en-
tirely by the pairing correlations. As we pointed out it

roughly corresponds to the maximal value of the Coulomb
parameter, namely,xm=55. In this way for other decays the
a clustering process increases by decreasing the Coulomb
parameter, because the ho parameterb in Eq. (3.7) is smaller
and therefore the tail of the preformation factor increases.
This is consistent with the physical meaning of the
a-clustering process, because a smaller Coulomb parameter
correspond to a larger Q-value and consequently to a larger
emission probability.

From Figs. 9(a) and 9(b) we can see that thea clustering
is enhanced in the region aboveN=126 and in superheavy
nuclei. This is agreement with several calculations pointing
out on a very strong clustering process in Po, Rn, and Ra
isotopes. Our calculations predict a similar feature for super-
heavy nuclei.

Therefore in our calculations we used the parametersfm
=0.83, xm=55. For the proportionality coefficient in Eq.
(3.7) the regression analysis gives the valuef1=8.0 10−4. In
Figs. 10(a) and 10(b) we plotted the dependence of the pa-
rametersg0,g1 upon the neutron number along the even-
evena-chains in Table II. The improvement, especially for
the slopeg1, is obvious. Now the ratio to the experimental
width is described within a factor of 3 for most of decays.

A similar improvement(except the vicinity of semimagic
neutron numbers) is shown in Figs. 11(a) and 11(b) for even-
odd favoreda chains in Table II. Here we used a larger value
fm=0.84, corresponding to the maximumg0smaxd=0, but
the same values off1,xm.

From the analysis of Figs. 10 and 11 one remarks that in
the superheavy region we still underestimated the slope pa-
rameter for both cases. The situation here can be improved
by assuming a quadratic dependence of the coefficientf1
upon the number of clustersNa=sN−N0d /2 with N0=126,
namely,

f1 → f1 + f2Na
2 . s3.10d

We remind here that a quadratic inNa dependence of theQ
value was empirically found in Ref.f1g. We stress on the fact
that this kind of dependence affects only the superheavy re-
gion, with large values ofNa. The results are given in Figs.
12sad and 12sbd for even-even chains and in Figs. 13sad and
13sbd for even-odd chains. We considered a correcting term
with f2=1.28 10−6. The improvement of the slope param-
eter in the superheavy region is obvious. The mean value
of this parameter and its standard deviation for even-even
chains isg1=−0.001±0.034, while for even-odd chains we
obtainedg1=−0.012±0.033.

The quadratic dependence in Eq.(3.10) can be also inter-
preted in terms of the total number of interacting clustering

TABLE III. Parameters of the preformation amplitude according to Eqs.(3.7) and (3.10).

Interval Nucleus fm f1 f2 xm Pmin

N,126 Even-even 0.80 8.0310−4 0 40 0.025

Even-odd 0.80 8.0310−4 0 40 0.025

N.126 Even-even 0.83 8.0310−4 1.28310−6 55 0.025

Even-odd 0.84 8.0310−4 1.28310−6 55 0.025

FIG. 13. (a) The parameterg0 vs the neutron number for differ-
ent even-odda-chains in Table II. The preformation parameters are
fm=0.84, f1=8.0 10−4, f2=1.28 10−6, Pmin=0.025.(b) The same as
in (a), but for the slope parameterg1.
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TABLE IV. Even-evena-decay chains in heavy and superheavy nuclei. The quadrupole deformationsb2 and FRLDMQ-valuesE are
taken from Ref.[47].

Z N A I b2 E sMeVd x f g1 log10T ssd log10Texp ssd Sa

92 130 222 38 0.048 9.436 36.587 0.815 0.043 −5.076 −6.000 0.0086

90 130 220 40 0.030 8.988 36.652 0.815 −0.016 −4.459 −5.013 0.0085

92 132 224 40 0.146 8.660 38.195 0.816 0.059 −3.217 −3.155 0.0073

102 142 244 40 0.224 9.606 40.325 0.817 0.078 −2.759 0.0070

104 144 248 40 0.225 10.246 39.831 0.816 0.043 −3.702 0.0074

106 146 252 40 0.236 10.406 40.304 0.816 0.102 −3.575 0.0072

108 148 256 40 0.237 10.966 40.022 0.816 0.135 −4.310 0.0075

110 150 260 40 0.228 11.846 39.238 0.814 0.119 −5.554 0.0084

112 152 264 40 0.228 12.826 38.412 0.813 0.145 −6.929 0.0101

88 130 218 42 0.020 8.581 36.655 0.815 0.018 −4.124 −4.585 0.0086

90 132 222 42 0.111 8.164 38.460 0.817 −0.003 −2.358 −2.553 0.0070

92 134 226 42 0.172 7.600 40.775 0.818 0.022 0.005 −0.301 0.0062

102 144 246 42 0.224 9.476 40.603 0.817 0.056 −2.407 0.0071

104 146 250 42 0.235 9.746 40.843 0.817 0.069 −2.521 0.0070

106 148 254 42 0.237 10.116 40.880 0.817 0.095 −2.865 0.0071

108 150 258 42 0.238 10.586 40.736 0.816 0.101 −3.446 0.0075

110 152 262 42 0.228 11.896 39.158 0.814 0.104 −5.688 0.0091

112 154 266 42 0.219 12.976 38.191 0.812 0.095 −7.196 0.0112

114 156 270 42 0.200 13.416 38.247 0.812 0.106 −7.489 0.0145

86 130 216 44 0.008 8.235 36.544 0.815 −0.035 −3.673 −4.347 0.0092

88 132 220 44 0.103 7.627 38.884 0.817 −0.018 −1.331 −1.638 0.0068

90 134 224 44 0.164 7.355 40.524 0.818 −0.026 0.229 0.114 0.0062

92 136 228 44 0.191 6.836 42.996 0.820 −0.014 2.922 2.903 0.0055

94 138 232 44 0.208 6.753 44.228 0.821 0.005 3.995 4.000 0.0052

98 142 240 44 0.215 7.758 43.070 0.819 0.007 1.539 1.806 0.0058

102 146 248 44 0.235 8.966 41.745 0.818 0.017 −1.033 0.0067

104 148 252 44 0.236 9.546 41.271 0.817 0.028 −2.020 0.0070

106 150 256 44 0.247 9.526 42.130 0.817 0.049 −1.351 0.0066

108 152 260 44 0.239 10.646 40.624 0.815 0.033 −3.579 0.0080

110 154 264 44 0.229 12.096 38.835 0.813 0.005 −6.047 0.0104

112 156 268 44 0.220 12.686 38.628 0.812 −0.001 −6.629 0.0117

114 158 272 44 0.201 12.926 38.967 0.812 0.087 −6.699 0.0149

116 160 276 44 0.192 13.286 39.126 0.811 0.121 −6.986 0.0225

86 132 218 46 0.040 7.299 38.820 0.817 0.014 −0.917 −1.456 0.0072

88 134 222 46 0.130 6.710 41.459 0.819 0.012 1.923 1.591 0.0057

90 136 226 46 0.173 6.487 43.153 0.820 −0.045 3.706 3.398 0.0053

92 138 230 46 0.199 6.029 45.787 0.822 −0.041 6.617 6.431 0.0047

94 140 234 46 0.216 6.345 45.631 0.822 −0.010 5.852 5.903 0.0047

96 142 238 46 0.215 6.670 45.480 0.822 0.000 5.155 4.954 0.0047

98 144 242 46 0.224 7.549 43.666 0.820 −0.017 2.342 2.477 0.0056

100 146 246 46 0.234 8.417 42.220 0.818 −0.016 0.070 0.079 0.0065

102 148 250 46 0.235 8.383 43.175 0.819 −0.067 0.891 0.0061

104 150 254 46 0.237 9.036 42.423 0.818 −0.037 −0.501 0.0067

106 152 258 46 0.248 9.456 42.288 0.817 −0.039 −1.049 0.0069

108 154 262 46 0.239 10.866 40.213 0.814 −0.082 −3.924 0.0089

110 156 266 46 0.220 11.786 39.344 0.813 −0.089 −5.265 0.0107
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TABLE IV. (Continued.)

Z N A I b2 E sMeVd x f g1 log10T ssd log10Texp ssd Sa

112 158 270 46 0.220 12.096 39.561 0.813 −0.038 −5.476 0.0118

114 160 274 46 0.201 12.486 39.650 0.812 0.026 −5.906 0.0157

116 162 278 46 0.193 13.036 39.502 0.811 0.007 −6.521 0.0260

118 164 282 46 0.062 12.916 40.385 0.812 0.144 −5.811 0.0397

86 134 220 48 0.111 6.438 41.338 0.819 0.011 2.237 1.748 0.0060

88 136 224 48 0.164 5.823 44.509 0.821 0.035 5.824 5.519 0.0049

90 138 228 48 0.182 5.555 46.637 0.823 0.045 8.147 7.919 0.0044

92 140 232 48 0.207 5.450 48.161 0.824 0.000 9.765 9.505 0.0040

94 142 236 48 0.215 5.904 47.308 0.823 −0.022 8.131 8.114 0.0041

96 144 240 48 0.224 6.436 46.302 0.822 −0.045 6.318 6.519 0.0044

98 146 244 48 0.234 7.370 44.196 0.820 −0.021 3.078 3.204 0.0054

100 148 248 48 0.235 8.040 43.202 0.819 −0.041 1.298 1.653 0.0061

102 150 252 48 0.236 8.593 42.647 0.818 −0.048 0.197 0.602 0.0067

104 152 256 48 0.247 8.995 42.522 0.817 −0.031 −0.434 −0.444 0.0071

106 154 260 48 0.239 9.967 41.192 0.815 −0.064 −2.424 −2.060 0.0083

108 156 264 48 0.229 11.042 39.893 0.814 −0.093 −4.331 −4.000 0.0102

110 158 268 48 0.221 10.062 42.584 0.816 −0.029 −1.379 0.0081

112 160 272 48 0.221 11.606 40.389 0.813 −0.099 −4.463 0.0123

114 162 276 48 0.212 12.336 39.893 0.812 −0.103 −5.506 0.0186

116 164 280 48 0.062 12.426 40.462 0.812 −0.006 −5.259 0.0307

118 166 284 48 0.062 13.096 40.109 0.810 −0.011 −6.141 0.0585

86 136 222 50 0.137 5.623 44.236 0.821 0.071 5.913 5.519 0.0051

88 138 226 50 0.172 4.904 48.504 0.825 0.053 11.190 10.724 0.0039

90 140 230 50 0.198 4.806 50.143 0.826 0.044 12.879 12.491 0.0036

92 142 234 50 0.215 4.895 50.822 0.826 0.016 13.317 13.041 0.0034

94 144 238 50 0.215 5.631 48.445 0.824 0.001 9.598 9.591 0.0037

96 146 242 50 0.224 6.254 46.974 0.823 −0.018 7.151 7.279 0.0041

98 148 246 50 0.234 6.901 45.676 0.821 −0.018 4.947 5.204 0.0048

100 150 250 50 0.235 7.592 44.461 0.820 −0.027 2.959 3.301 0.0056

102 152 254 50 0.246 8.264 43.490 0.818 −0.027 1.317 1.857 0.0065

104 154 258 50 0.238 8.656 43.349 0.818 −0.120 0.800 0.0069

106 156 262 50 0.229 9.606 41.962 0.816 −0.060 −1.380 0.0084

108 158 266 50 0.230 9.686 42.597 0.816 −0.029 −0.972 0.0082

110 160 270 50 0.221 10.316 42.059 0.815 0.004 −1.918 0.0097

112 162 274 50 0.222 11.396 40.762 0.813 −0.083 −3.996 0.0138

114 164 278 50 0.193 12.646 39.403 0.810 −0.131 −6.117 0.0260

116 166 282 50 0.062 11.646 41.797 0.813 −0.098 −3.564 0.0357

118 168 286 50 0.080 13.046 40.188 0.810 −0.114 −6.027 0.0762

90 142 232 52 0.207 4.115 54.194 0.829 0.062 18.243 17.756 0.0029

92 144 236 52 0.215 4.608 52.385 0.828 0.064 15.295 15.000 0.0030

94 146 240 52 0.223 5.293 49.971 0.825 0.015 11.610 11.447 0.0033

96 148 244 52 0.234 5.940 48.203 0.824 0.000 8.720 8.875 0.0037

98 150 248 52 0.235 6.404 47.418 0.823 −0.007 7.226 7.544 0.0042

100 152 252 52 0.245 7.194 45.677 0.821 −0.030 4.501 5.041 0.0052

102 154 256 52 0.237 8.606 42.620 0.817 −0.021 0.176 0.613 0.0076

104 156 260 52 0.228 8.569 43.571 0.818 −0.020 0.970 0.0073

106 158 264 52 0.229 8.706 44.080 0.818 −0.015 1.187 0.0074
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TABLE IV. (Continued.)

Z N A I b2 E sMeVd x f g1 log10T ssd log10Texp ssd Sa

108 160 268 52 0.230 8.996 44.203 0.817 −0.017 0.957 0.0080

110 162 272 52 0.222 10.026 42.665 0.815 −0.024 −1.346 0.0111

112 164 276 52 0.212 11.846 39.982 0.811 −0.078 −5.016 0.0207

114 166 280 52 0.053 11.606 41.133 0.812 −0.081 −3.903 0.0284

116 168 284 52 0.071 11.606 41.871 0.812 −0.095 −3.590 0.0465

118 170 288 52 0.080 12.876 40.454 0.809 −0.137 −5.779 0.0909

92 146 238 54 0.215 4.304 54.207 0.829 0.041 17.762 17.255 0.0025

94 148 242 54 0.224 5.020 51.315 0.826 −0.003 13.430 13.176 0.0028

96 150 246 54 0.234 5.513 50.039 0.825 −0.006 11.171 11.279 0.0032

98 152 250 54 0.245 6.169 48.316 0.823 −0.022 8.381 8.690 0.0040

100 154 254 54 0.237 7.345 45.208 0.820 −0.015 3.856 4.146 0.0059

102 156 258 54 0.228 8.120 43.879 0.818 0.033 1.752 0.0073

104 158 262 54 0.229 7.916 45.336 0.819 0.005 3.141 0.0066

106 160 266 54 0.230 8.026 45.912 0.819 −0.001 3.456 0.0068

108 162 270 54 0.231 8.696 44.961 0.818 −0.024 1.842 0.0087

110 164 274 54 0.222 10.506 41.682 0.813 −0.067 −2.674 0.0165

112 166 278 54 0.164 12.296 39.246 0.809 −0.150 −5.909 0.0315

114 168 282 54 0.053 10.006 44.302 0.815 −0.100 0.003 0.0243

116 170 286 54 0.080 11.416 42.220 0.812 −0.102 −3.197 0.0539

118 172 290 54 −0.112 12.806 40.567 0.809 −0.085 −5.797 0.1056

94 150 244 56 0.224 4.703 53.020 0.828 0.049 15.598 15.505 0.0024

96 152 248 56 0.235 5.200 51.526 0.826 0.028 13.163 13.146 0.0028

98 154 252 56 0.236 6.257 47.978 0.823 0.009 7.904 8.000 0.0043

100 156 256 56 0.227 7.065 46.098 0.820 0.019 4.993 5.079 0.0058

102 158 260 56 0.228 7.412 45.930 0.820 0.034 4.303 0.0064

104 160 264 56 0.220 7.326 47.129 0.821 0.010 5.447 0.0061

106 162 268 56 0.231 7.596 47.196 0.821 0.001 5.080 0.0069

108 164 272 56 0.222 9.206 43.700 0.816 −0.034 0.183 0.0130

110 166 276 56 0.212 10.726 41.254 0.812 −0.033 −3.255 0.0238

112 168 280 56 0.080 11.126 41.260 0.811 −0.017 −3.450 0.0316

114 170 284 56 0.062 9.436 45.622 0.817 −0.056 1.588 0.0242

116 172 288 56 −0.104 11.316 42.409 0.811 −0.086 −3.084 0.0604

118 174 292 56 0.081 12.366 41.284 0.809 −0.078 −4.925 0.1056

96 154 250 58 0.225 5.208 51.490 0.826 0.045 13.105 12.477 0.0029

98 156 254 58 0.226 5.967 49.134 0.824 0.052 9.437 9.301 0.0041

100 158 258 58 0.228 6.749 47.168 0.821 0.032 6.237 0.0056

102 160 262 58 0.219 6.586 48.728 0.823 0.051 7.968 0.0052

104 162 266 58 0.230 6.736 49.152 0.823 −0.045 8.124 0.0056

106 164 270 58 0.221 8.156 45.550 0.818 0.018 2.897 0.0106

108 166 274 58 0.212 9.466 43.098 0.814 −0.015 −0.666 0.0189

110 168 278 58 0.155 10.406 41.886 0.812 −0.041 −2.505 0.0284

112 170 282 58 0.089 9.416 44.853 0.816 −0.014 0.987 0.0230

114 172 286 58 −0.096 9.386 45.746 0.816 −0.041 1.638 0.0269

116 174 290 58 0.072 11.116 42.791 0.811 −0.039 −2.672 0.0640

102 162 264 60 0.220 6.006 51.030 0.825 −0.012 10.920 0.0046

104 164 268 60 0.221 7.156 47.691 0.821 0.019 6.018 0.0083

106 166 272 60 0.201 8.386 44.923 0.817 0.001 1.991 0.0151
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pairs, namely,Na
2 <2NasNa−1d /2. Thus, our analysis based

on the logarithmic derivative continuity, shows very clearly
that the effect of thea-clusterizations becomes much stron-
ger for superheavy nuclei. Their half-lives are practically not
influenced, but their radial tails should be significantly larger
than those predicted by standard shell-model calculations.

We stress on the fact that this correction procedure has a
relative character, depending upon the valuesfm,xm. We re-
mind thatf1, f2, fm are the only free parameters of this model
and xm is dependent uponfm. They are directly connected
with the radial shape of thea-particle preformation ampli-
tude. Any other parameters are taken from independent cal-
culations. We also remind that a similar technique, i.e., the
use of a variable cluster ho parameter, was used in Ref.[42].

E. Systematics in the region 82,Z,118

We summarize in Table III the parameters we used to
correct the shell-model estimate of thea-preformation am-
plitude. We used these values to compute the measured half-
lives of even-even and even-odda emitters in the region
Z.82. At the same time we predicted the half-life and the
slope parameter for all possible superheavy nuclei with
Z.102. The results are given in Table IV for even-even
nuclei and Table V for even-odd nuclei. Here we give the
computed logarithm of the half-life and also its slope with
respect to the matching radiusR, according to Eq.(3.3). The
Q values were estimated using experimental binding energies
or FRLDM estimates of Ref.[47]. The quadrupole deforma-
tion parameters are taken from the same reference.

A very important accuracy test of our calculations is the
value of the slope parameterg1, which should vanish. As we
showed in the preceding section this gives the measure of
selfconsistency between the internal preformation factor and
the useda-decayQ value. One can see that for most of the
predicted values the slope parameter is rather small. In other
words we can obtainQ values in Tables IV and V within the
precision of 500 keV, i.e.,ug1uø0.02, for many of the ana-
lyzed decays by solving Eq.(3.4). For the remaining cases
our parametrization is not consistent with theQ values taken
from Ref.[47]. The conclusion is that these values should be
more carefully analyzed.

In the last column we give the spectroscopic factors de-
fined as the integral over the preformation factor squared.
The values are in agreement with those predicted in Ref.
[53], i.e.,Sa<10−2, for Zø110 and increase for heavier nu-
clei. This feature is obviously connected with their larger
radial tails.

IV. CONCLUSIONS

We analyzed in this paper thea clustering, using the de-
cay widths for deformed even-even and favored even-odd
emitters withZ.82. Thea-particle preformation amplitude
was estimated within the pairing approach. We used the uni-
versal parametrization of the mean field and the empirical
rule for the gap parameterD=12/ÎA. Due to a coherent su-
perposition of many spherical configuration the preformation
factor is not sensitive to the local fluctuation of these param-
eters.

The penetration part was computed within the deformed
WKB approach. We showed that the decay width increases
by a factor between three and five for the largest deformation
b2=0.3, depending on the mass number.

It turns out that the decay width is very sensitive to the sp
ho parameter and the number of considered spherical con-
figurations. They simultaneously determine the order of mag-
nitude and the slope of the decay width with respect to the
matching radius, giving the plateau condition. It is possible
to describe alla-decay widths within a factor of 2 forZ.82,
82,N,126, by using a constant, but smaller ho parameter
b=0.80bN andPmin=0.025. This behavior is related with the
almost constant value of the Coulomb parameter in this re-
gion.

It turns out that the slope of the decay width versus the
matching radius has a strong variation forN.126, in an
obvious correlation with the Coulomb parameter. Thus, the
relative amount of thea clustering here cannot be described
only within the pairing approach and an additional mecha-
nism is necessary. In order to restore the plateau condition
we proposed a simple procedure. We supposed a cluster fac-
tor, multiplying the preformation amplitude. It contains ex-
ponentially an ho parameter, proportional to the Coulomb
parameter. This ansatz is suggested by a similar exponential
dependence of the Coulomb function upon this parameter.
Therefore the energy of the emitted particle contains two
terms, namely, a smooth part and a cluster correction. This
procedure, applied for the interval 82,N,126, reproduces
practically the previous results.

The method improves simultaneously the ratio to the ex-
perimental width and the slope with respect to the matching
radius. The relative increase of thea clustering is related to
the decrease of the Coulomb parameter. It is stronger for two
regions, namely, aboveN=126 and in superheavy nuclei. It
has a minimum aroundN=152.

An additional dependence upon the number of interacting
a particles improves the plateau condition for superheavy
nuclei. This additional clustering, which seems to be very

TABLE IV. (Continued.)

Z N A I b2 E sMeVd x f g1 log10T ssd log10Texp ssd Sa

108 168 276 60 0.164 9.316 43.446 0.814 −0.025 −0.256 0.0230

110 170 280 60 0.108 9.046 44.927 0.816 −0.019 1.384 0.0221

112 172 284 60 0.081 9.130 45.555 0.816 −0.026 1.859 1.255 0.0236

114 174 288 60 0.053 9.800 44.774 0.814 −0.032 0.340 0.661 0.0346

116 176 292 60 −0.070 10.540 43.949 0.812 −0.017 −1.293 −1.260 0.0596
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TABLE V. Even-odda-decay chains in heavy and superheavy nuclei.

Z N A I b2 E sMeVd x f g1 log10T ssd log10Texp ssd Sa

92 131 223 39 0.110 8.977 37.513 0.826 0.022 −3.736 −4.699 0.0074

90 131 221 41 0.102 7.911 39.069 0.827 0.018 −1.300 −1.553 0.0067

92 133 225 41 0.165 8.054 39.607 0.827 −0.009 −1.163 −1.301 0.0065

94 135 229 41 0.190 7.592 41.708 0.829 −0.008 0.994 0.0059

96 137 233 41 0.207 7.439 43.057 0.830 0.045 2.177 0.0056

98 139 237 41 0.215 8.166 41.976 0.829 0.065 0.317 0.0062

100 141 241 41 0.224 8.616 41.723 0.828 0.037 −0.364 0.0063

102 143 245 41 0.224 9.446 40.666 0.827 0.059 −2.103 0.0067

104 145 249 41 0.225 10.126 40.068 0.826 −0.011 −3.148 0.0071

106 147 253 41 0.236 10.156 40.798 0.827 0.089 −2.743 0.0068

108 149 257 41 0.238 10.856 40.225 0.826 0.081 −3.823 0.0073

110 151 261 41 0.228 11.746 39.406 0.824 0.085 −5.101 0.0083

112 153 265 41 0.219 12.956 38.220 0.823 0.085 −6.844 0.0103

114 155 269 41 0.210 13.596 37.992 0.822 0.114 −7.537 0.0138

88 131 219 43 0.077 7.857 38.309 0.827 −0.023 −1.707 −1.824 0.0070

90 133 223 43 0.138 7.455 40.249 0.828 −0.034 0.194 0.041 0.0061

92 135 227 43 0.182 7.029 42.400 0.830 −0.021 2.389 1.820 0.0055

98 141 239 43 0.215 7.799 42.955 0.829 0.000 1.654 1.623 0.0058

100 143 243 43 0.224 8.730 41.452 0.828 −0.004 −0.719 −0.347 0.0066

102 145 247 43 0.224 9.356 40.864 0.827 0.011 −1.820 0.0068

104 147 251 43 0.236 9.526 41.313 0.827 0.005 −1.537 0.0067

106 149 255 43 0.247 9.886 41.354 0.827 0.040 −2.001 0.0068

108 151 259 43 0.238 10.506 40.892 0.826 0.013 −2.938 0.0073

110 153 263 43 0.228 12.096 38.834 0.823 0.006 −5.712 0.0095

112 155 267 43 0.219 12.766 38.505 0.822 −0.026 −6.414 0.0109

114 157 271 43 0.200 13.196 38.566 0.822 0.065 −6.803 0.0141

116 159 275 43 0.192 13.446 38.892 0.822 0.105 −6.925 0.0208

86 131 217 45 0.039 7.920 37.266 0.826 −0.036 −2.513 −3.268 0.0080

88 133 221 45 0.111 6.764 41.292 0.829 −0.011 2.087 1.903 0.0057

90 135 225 45 0.165 6.631 42.680 0.830 −0.016 3.282 3.000 0.0053

92 137 229 45 0.191 6.509 44.065 0.831 −0.056 4.539 4.431 0.0051

94 139 233 45 0.207 6.447 45.267 0.832 −0.042 5.609 6.000 0.0048

98 143 241 45 0.224 7.498 43.812 0.830 −0.027 2.813 3.301 0.0054

100 145 245 45 0.234 8.326 42.449 0.829 −0.043 0.675 0.623 0.0062

102 147 249 45 0.235 9.016 41.630 0.827 −0.028 −0.742 0.0067

104 149 253 45 0.236 9.326 41.756 0.827 −0.035 −0.978 0.0066

106 151 257 45 0.247 9.406 42.399 0.827 −0.019 −0.618 0.0064

108 153 261 45 0.239 10.836 40.267 0.825 −0.102 −3.535 0.0083

110 155 265 45 0.229 11.886 39.177 0.823 −0.106 −5.199 0.0100

112 157 269 45 0.220 12.426 39.031 0.822 −0.023 −5.866 0.0113

114 159 273 45 0.201 12.696 39.320 0.822 0.000 −5.969 0.0146

116 161 277 45 0.192 13.166 39.305 0.821 0.040 −6.459 0.0230

118 163 281 45 0.184 13.796 39.075 0.820 0.120 −7.125 0.0383

86 133 219 47 0.103 6.577 40.897 0.828 0.022 1.910 1.724 0.0060

90 137 227 47 0.173 5.895 45.270 0.832 −0.042 6.751 6.903 0.0047

94 141 235 47 0.215 5.989 46.969 0.833 −0.057 7.894 7.748 0.0042

98 145 243 47 0.234 7.218 44.657 0.831 −0.019 3.863 3.806 0.0051
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TABLE V. (Continued.)

Z N A I b2 E sMeVd x f g1 log10T ssd log10Texp ssd Sa

100 147 247 47 0.234 8.040 43.200 0.829 −0.030 1.602 2.000 0.0059

102 149 251 47 0.236 8.781 42.186 0.828 −0.079 −0.073 0.0067

104 151 255 47 0.246 8.897 42.754 0.828 −0.028 0.196 0.653 0.0063

106 153 259 47 0.248 9.126 43.047 0.828 −0.023 0.215 0.699 0.0064

108 155 263 47 0.239 10.706 40.513 0.825 −0.131 −3.224 0.0087

110 157 267 47 0.220 11.600 39.662 0.823 −0.078 −4.784 −5.523 0.0104

112 159 271 47 0.221 11.836 39.994 0.823 −0.080 −4.630 0.0115

114 161 275 47 0.212 12.456 39.699 0.822 −0.065 −5.476 0.0162

116 163 279 47 0.193 12.996 39.564 0.821 0.000 −6.133 0.0280

118 165 283 47 0.062 12.706 40.719 0.822 −0.013 −5.110 0.0433

90 139 229 49 0.190 4.966 49.327 0.835 0.003 12.020 11.613 0.0038

92 141 233 49 0.207 4.945 50.563 0.836 0.007 13.157 12.778 0.0035

94 143 237 49 0.215 5.281 50.022 0.836 −0.009 11.894 12.000 0.0034

96 145 241 49 0.223 6.078 47.648 0.833 −0.015 8.328 8.613 0.0038

98 147 245 49 0.234 7.295 44.424 0.830 −0.020 3.589 3.954 0.0052

100 149 249 49 0.235 7.694 44.164 0.829 −0.009 2.827 3.000 0.0055

102 151 253 49 0.236 8.022 44.143 0.829 −0.031 2.389 1.630 0.0057

104 153 257 49 0.238 8.794 43.006 0.828 −0.028 0.431 1.623 0.0067

106 155 261 49 0.238 9.753 41.643 0.826 −0.029 −1.654 −0.398 0.0079

108 157 265 49 0.230 10.564 40.787 0.824 −0.076 −2.935 −2.699 0.0092

110 159 269 49 0.221 11.110 40.530 0.823 −0.064 −3.624 −3.770 0.0103

112 161 273 49 0.221 11.506 40.566 0.823 −0.077 −3.998 0.0125

114 163 277 49 0.202 12.326 39.910 0.821 −0.119 −5.185 0.0202

116 165 281 49 0.062 12.166 40.893 0.822 −0.065 −4.268 0.0330

118 167 285 49 0.071 13.066 40.156 0.820 −0.030 −5.823 0.0647

92 143 235 51 0.215 4.325 54.070 0.839 0.016 17.833 17.591 0.0028

94 145 239 51 0.223 5.281 50.026 0.835 0.003 11.943 12.000 0.0033

96 147 243 51 0.234 5.921 48.279 0.834 0.008 8.981 9.079 0.0036

98 149 247 51 0.234 6.444 47.269 0.833 0.008 7.156 7.505 0.0041

100 151 251 51 0.245 6.984 46.357 0.831 0.010 5.474 6.079 0.0047

102 153 255 51 0.237 7.937 44.378 0.829 −0.009 2.681 3.531 0.0060

104 155 259 51 0.239 8.951 42.630 0.827 −0.006 0.101 0.778 0.0075

106 157 263 51 0.229 9.244 42.777 0.826 0.009 −0.121 0.477 0.0079

108 159 267 51 0.230 9.346 43.366 0.827 −0.013 0.220 0.0077

110 161 271 51 0.221 10.710 41.282 0.824 −0.029 −2.731 0.0111

112 163 275 51 0.222 11.496 40.585 0.822 −0.056 −3.979 0.0154

114 165 279 51 −0.052 12.036 40.390 0.821 −0.060 −4.496 0.0261

116 167 283 51 0.062 11.806 41.514 0.822 −0.027 −3.621 0.0412

118 169 287 51 −0.104 12.876 40.453 0.820 −0.200 −5.356 0.0785

94 147 241 53 0.224 5.017 51.329 0.837 0.027 13.592 13.362 0.0029

96 149 245 53 0.234 5.489 50.146 0.835 0.018 11.429 11.462 0.0031

98 151 249 53 0.235 5.946 49.212 0.834 0.022 9.709 10.114 0.0035

100 153 253 53 0.236 6.824 46.901 0.832 −0.016 6.369 6.968 0.0047

102 155 257 53 0.238 8.392 43.161 0.827 −0.003 0.924 1.699 0.0073

104 157 261 53 0.228 8.452 43.873 0.828 0.036 1.504 1.903 0.0072

106 159 265 53 0.229 8.770 43.923 0.827 0.024 1.263 1.382 0.0078

108 161 269 53 0.231 9.170 43.785 0.827 0.025 0.681 0.851 0.0088
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TABLE V. (Continued.)

Z N A I b2 E sMeVd x f g1 log10T ssd log10Texp ssd Sa

110 163 273 53 0.222 9.730 43.313 0.826 −0.043 −0.276 −0.921 0.0113

112 165 277 53 0.202 11.650 40.321 0.821 −0.073 −4.454 −3.319 0.0222

114 167 281 53 0.053 10.936 42.375 0.823 −0.045 −2.114 0.0270

116 169 285 53 0.071 11.456 42.146 0.822 −0.120 −2.923 0.0480

118 171 289 53 0.080 12.756 40.645 0.819 −0.053 −5.249 0.0911

96 151 247 55 0.235 4.988 52.608 0.838 −0.004 14.744 14.839 0.0025

98 153 251 55 0.236 5.809 49.793 0.835 −0.009 10.628 10.908 0.0035

100 155 255 55 0.237 7.175 45.742 0.830 0.020 4.633 4.886 0.0056

102 157 259 55 0.228 7.659 45.182 0.829 0.049 3.503 4.079 0.0064

104 159 263 55 0.229 7.596 46.282 0.830 0.056 4.609 0.0062

106 161 267 55 0.230 7.856 46.407 0.830 0.037 4.351 0.0067

108 163 271 55 0.222 8.826 44.630 0.827 0.001 1.706 0.0098

110 165 275 55 0.221 10.736 41.234 0.822 −0.009 −3.015 0.0196

112 167 279 55 0.164 11.816 40.036 0.820 −0.030 −4.820 0.0316

114 169 283 55 0.053 9.576 45.286 0.826 −0.030 1.502 0.0227

116 171 287 55 0.080 11.296 42.445 0.822 −0.087 −2.642 0.0538

118 173 291 55 0.081 12.556 40.969 0.819 −0.020 −5.021 0.1014

98 155 253 57 0.226 6.115 48.534 0.833 0.034 8.768 8.716 0.0042

100 157 257 57 0.227 6.663 47.470 0.832 0.043 6.871 6.968 0.0051

102 159 261 57 0.219 7.159 46.736 0.831 0.049 5.526 0.0060

104 161 265 57 0.220 6.996 48.229 0.832 0.044 7.110 0.0056

106 163 269 57 0.222 8.740 44.000 0.826 0.035 1.248 0.0110

108 165 273 57 0.221 9.780 42.400 0.824 −0.005 −1.284 0.0173

110 167 277 57 0.173 10.180 42.347 0.823 −0.017 −1.731 0.0226

112 169 281 57 0.089 10.670 42.136 0.822 −0.016 −2.297 0.0298

114 171 285 57 −0.096 11.310 41.675 0.821 −0.034 −3.323 0.0441

116 173 289 57 0.080 11.630 41.835 0.820 −0.007 −3.615 0.0670

118 175 293 57 0.080 12.370 41.280 0.818 0.014 −4.731 0.1067

102 161 263 59 0.220 6.336 49.682 0.834 0.041 9.359 0.0049

104 163 267 59 0.221 6.836 48.793 0.832 0.017 7.755 0.0064

106 165 271 59 0.212 8.406 44.869 0.827 0.028 2.178 0.0129

108 167 275 59 0.183 9.396 43.260 0.824 0.004 −0.242 0.0203

110 169 279 59 0.127 9.676 43.438 0.824 0.008 −0.308 0.0242

112 171 283 59 0.089 9.016 45.838 0.827 −0.003 2.446 0.0207

114 173 287 59 −0.078 10.290 43.694 0.823 −0.007 −0.756 0.740 0.0372

116 175 291 59 0.072 11.116 42.792 0.821 0.020 −2.429 0.0648

118 177 295 59 −0.087 12.186 41.591 0.818 0.023 −4.409 0.1163

102 163 265 61 0.221 6.046 50.862 0.835 −0.044 10.919 0.0051

104 165 269 61 0.212 7.376 46.975 0.830 0.038 5.262 0.0101

106 167 273 61 0.183 8.266 45.249 0.827 0.022 2.636 0.0159

108 169 277 61 0.145 8.746 44.841 0.826 0.003 1.788 0.0201

110 171 281 61 0.108 8.830 45.476 0.826 −0.001 2.331 1.982 0.0211

112 173 285 61 0.089 8.670 46.749 0.828 −0.083 3.720 2.966 0.0202

114 175 289 61 −0.052 9.710 44.982 0.824 0.021 0.851 1.483 0.0346

116 177 293 61 −0.070 10.936 43.144 0.821 0.033 −2.062 0.0698

118 179 297 61 −0.035 12.646 40.829 0.816 0.030 −5.413 0.1565
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strong, may affect the stability of nuclei in this region.
Based on this parametrization we gave predictions for

half-lives, concerning even-even and even-odd superheavya
emitters with Z.102. The predicted values for the slope
parameter are in general small for many nuclei. They show
the consistency between the correcteda-particle microscopic
preformation factor and theQ value.

Our future task is to perform a complete microscopic
analysis of the cluster component in terms of two-proton and
two-neutron collective states, including magic nuclei, in

analogy with the approach of Ref.[33]. Thus, the analysis of
decay processes alonga chains seems to be a nontrivial tool
to investigate the amount of clustering in heavy and super-
heavy nuclei.
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