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Our understanding of nuclear structure is framed within
the context of a number of idealized benchmarks. These in-
clude the axial rotor[1], the harmonic vibrator[2], g-soft
deformed nuclei[3,4] and, very recently, the new critical
point symmetries[5–8] for phase transitional regions. These
models generally predict sequences of energies and either a
subset or all of theBsE2d values within the model space. For
example, for the pure rotor, the yrast energies go asIsI +1d.

No nucleus need obey these paradigms exactly and, his-
torically, their proposal has been rather quickly followed by
schemes that embody perturbations to the idealized struc-
tures they envision. Examples are the energy expansions in
powers of IsI +1d, or the Harris formula[9], the variable
moment of inertia(VMI ) [10], the Ejiri formula[11], and the
Holmberg-Lipas formula[12] for rotor-like nuclei, or the an-
harmonic vibrator(AHV ) formula which actually describes a
range of nuclei from spherical to deformed[13,14]. In the
framework of the interacting boson model, to describe the
increase of the moment of inertia at high spin states in de-
formed nuclei, a spin-dependent term 1/s1+ fL ·L d was in-
cluded in the Hamiltonian[15]. These perturbation schemes
embody expected physical effects, such as centrifugal
stretching and rotation-vibration coupling for the rotor or
phonon-phonon interactions for the vibrator.

Of course, the further a nucleus is in structure from one of
the paradigms, the larger the perturbations to the predictions
of that paradigm will have to be, and, generally, the worse or
less applicable, it will be. This is preeminently the case for
transitional nuclei between spherical and deformed limits
where neither the vibrator or rotor limits is very apt[16].

The value of any of the paradigms is that they provide an
expected pattern that, once identified in an actual nucleus,
helps establish its structure, and that deviations from them
reveal additional degrees of freedom that would be difficult
or impossible to spot without the prior existence of ideal
guidelines. Therefore, the development of optimized bench-
marks is a valuable effort.

With the high spin data often available for transitional and
well-deformed nuclei, perturbations to the rotor expansion
for yrast (or other rotational band) energies, become quite
important. Effects such as centrifugal stretching, pairing col-
lapse, and bandmixing are at work and numerous perturba-
tions to idealized models have attempted to take these into
account.

It is the purpose of this work to offer a new formula,
simple in practical usage, which works as well as or nearly as

well as existing expressions for well-deformed nuclei and
better than any in the transitional region.

The basis of this expression is utterly simple: it is the
ideal rotor expression

E =
1

JsI,Ed
IsI + 1d, s1d

but where the moment of inertia depends linearly on spinI
and excitation energyE. That is,

J = J0s1 + aI + bEd, s2d

wherea andb are parameters andJ0 sets the overall scale.
In this paper we will work almost solely with a simplifica-
tion of Eq. s2d, dropping the energy-dependent term, since
test fits show that it is very small in the transitional region of
most interest here. Henceforth, therefore, unless otherwise
specified, we use

E =
1

J0s1 + aId
IsI + 1d. s3d

For reasons that will become obvious, we call Eq.(3) the
“soft-rotor formula” (SRF). Fits to yrast data can be done
either by using the 2+ and 4+ energies to fix the parameters,
in which case Eq.(3) predicts all the higher spin levels, or by
doing a least squares fit to the entire(pre-backbending or
alignment portion of the) band or quasiband. To show the
quality of the energy expression in Eq.(3), we first follow
the latter approach. After inspecting the results, an applica-
tion of the first approach will be discussed.

To stringently test Eq.(3) for all kinds of collective nuclei
in a broad region of the nuclear chart, we carried out least
squares two-parametersJ0,ad fits of Eq. (3) to all collective
[i.e., R4/2;Es41

+d /Es21
+dù2.0] even-even nuclei withZ.52

(164 nuclei) and yrast band known at least up to 8+ [17]. The
maximum spin included in the analysis is 20+, except for 22
cases where an irregularity inE vs I plot occurs earlier(e.g.,
backbend, upbend, etc.), then the yrast sequence is included
up to that spin value. In carrying out the least squares fits
great care must be taken in assigning the uncertainties. It is
incorrect to simply take the experimental values since they
vary, in some cases, from electron volts for the 2+ level to
keV for higher spins and this would weight the 2+ and 4+

state energies by orders of magnitude. Rather, one must ask
what is the theoretical “uncertainty,” that is, the expected
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accuracy of any model. We used a constant relative uncer-
tainty of 0.5%. Typically, this is about&1 keV for the 2+

level and a few keV in the range 16+–20+.
We summarize the results in Fig. 1 in terms of the differ-

ences between the experimental and calculated energies,

dEsId
EsId

; fEsIdthsf itd − EsIdexpg/EsIdexp. s4d

Each panel is for a given spin and each point is a specific
nucleus, plotted according to itsR4/2 value so that the depen-
dence of the fit quality on structure can be seen at a glance.

Figure 2 gives the values of the fitted parametersJ0 and
a, again plotted againstR4/2. The positive values ofa reflect
the well known fact thatJ increases with spin, due to cen-
trifugal stretching, pairing, or other effects.

Our survey of nuclei includes a wide range of species. To
show how different classes of nuclei behave, Fig. 2 uses
different symbols for the main bulk of nuclei(with Z
=54–76), Pt, Hg, and the actinides. Particularly forJ0, the
behavior of these classes is interesting. The actinides have

systematically largerJ0 values, reflecting the smaller energy
spacings both for deformed and spherical nuclei. The Pt nu-
clei near the O(6) limit sR4/2,2.6d also have relatively large
J0 values. In contrast, the Hg isotopes, where coexisting sets
of levels descend into and mix with the yrast levels, show
anomalous behavior. ForR4/2.2.4, the main trajectories of
parameter values in Fig. 2 have a smooth and relatively com-
pact trend. As a guide to these trends,J0 anda are param-
etrized in terms ofR4/2 and the resulting curves, fitting the
data, are shown in Fig. 2. We caution that theJ0 and a
values given by these expressions are not meant to be used
for fits in new nuclei but just as rough guidelines that may be
of some use in nuclei off stability where only the lowest
yrast levels are known.

The results in Fig. 1 are interesting and clearly confirm
that Eq.(3) provides an useful expression for yrast energies
in all structural regions. The deviations from experiment are
small throughout the range of nuclei,R4/2 values, and spins
(and especially fromR4/2,2.8–3.2, see below). Several nu-
clei are almost perfectly reproduced: more or less random
examples spanning a range ofR4/2 values are244PusR4/2

=3.32d, 172WsR4/2=3.06d, 152SmsR4/2=3.01d, and
158YbsR4/2=2.33d.

Any good quality method of correlating large amounts of
data can often also serve to highlight cases where relatively
large deviations occur. In the present case, these appear in
two forms—either as nuclei with relatively poor fits or nuclei
whose fit parameters stray from the smooth trends. Examples
of the former in Fig. 1 are182OssR4/2=3.15d and several Hg
isotopess2.4,R4/2,2.9d at I =6+. These exceptions are not
unexpected since they are probably related to the presence of
deformed intruder states in the low lying spectrum. In Fig. 2,
the a values for the same Hg isotopes again stand out above

FIG. 1. Relative differences between experimental and calcu-
lated yrast energies[Eq. (4)] as a function ofR4/2 for different spin
values. Calculated energies were found through a least squares fit of
Eq. (3) to the yrast bands of collective nuclei withZ=54–102(see
text).

FIG. 2. Values of the fitted parametersJ0 anda as a function of
R4/2 from the least squares fit shown in Fig. 1. The continuous
curves are fits to the data withJ0=260e−x/0.35 and a
=x/ s530–150xd, wherex;R4/2.
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the general trend. In the plot of theJ0 values the Pt isotopes
stand out atR4/2,2.5, and the entire region of transitional
actinide nuclei s2.3&R4/2&3.2d follow a trajectory well
above the main trend.

The results for the highest spinss18+,20+d in Fig. 1 point
to an interesting aspect of the energy expression. Note the
trend in the deviations for these spins. There is a slight slope
from negative values nearR4/2=2.7 to positive for rotor nu-
clei. The origin of this should be pursued. We only note here
that, if thebE term is kept in Eq.(2), this trend flattens out.
We stress that with either formula forJ, the deviations
nearly vanish nearR4/2,3.0, which is a value typical of soft
or transitional nuclei and of phase transitional structures such
as Xs5d [6]. This suggests that Eq.(3) is particularly suited
for such nuclei, which tend to be less well adapted to other
energy expressions whose starting point is the pure rotor or
vibrator.

To illustrate the quality of the fits for soft rotors, we show
in Fig. 3 the data and fits for two such nuclei, namely152Sm,
which has been of much interest lately as a critical point
nucleus[8], and 224Th, with R4/2=3.1. The fits are, indeed,
almost perfect. Other energy formulas, such as the VMI[10],
also produce good fits, but we feel Eq.(3) is simpler and
more intuitive.

This suggests a specific use of Eq.(3), applicable espe-
cially in exotic nuclei. In such nuclei, data will be sparse
and, especially after first experiments on new nuclei, only a
couple of levels(e.g., 21

+, 41
+) may be known. In such cases,

if R4/2 is in the range,2.8 to ,3.2, one can use Eq.(3) in
“predictive” mode by fitting the 2+ and 4+ states exactly and
predicting the higher spin levels.

This approach can provide useful guides in designing fur-
ther experiments to identify higher levels by theirg-ray de-
cays. Such predictions, if they turn out to be incorrect, can be
of use in identifying nuclei with exotic structures. Given that

one expects unfamiliar behavior to be a more common fea-
ture of nuclei far off stability, Eq.(3) could provide a very
useful guide.

To illustrate the predictive power of Eq.(3) for soft nu-
clei, we show the predictions forI =6+–20+, for R4/2 values
above 2.6 in Fig. 4. Naturally, the deviations are larger than
with the least squares fit to all the energies. They grow with
spin, and they show the same systematic trend as seen in Fig.
1 of underpredicting the energies nearR4/2,2.7 and over-
predicting them forR4/2,3.2. As before, the results are ex-
cellent nearR4/2,3.0.

To summarize, we have proposed a new two-parameter
energy formula, which is applicable for all collective even-
even nuclei, regardless of structure, and which gives excel-
lent fits to the data up to the highest yrast spins known(or up
to a backbend/upbend if such effects exist). The formula is
particularly successful in soft rotors with 2.8&R4/2&3.2
which, historically, have been the most difficult to treat.

By providing a tight correlation with the data, the expres-
sion provides a means of identifying anomalous nuclei. The
energy expression may be particularly useful in exotic nuclei
far from stability where it can be used in conjunction with
initial data on the lowest yrast energies to provide predic-
tions for higher spin levels, thereby both guiding further ex-
periments and helping to spot the anomalies that are widely
expected in exotic nuclei, especially in regions of weak bind-
ing.

Work supported by U.S. DOE Grant No. DE-FG02-91ER-
40609.

FIG. 3. Comparison of experimental level energies with fits of
Eq. (3) for 152Sm and224Th. Fits with the VMI[10] are comparable
but Eq.(3) is simpler, more intuitive, and works well over a broader
range ofR4/2 values.

FIG. 4. Similar to Fig. 1, but the theoretical values were ob-
tained by fixing the parameters using the 2+ and 4+ energies.
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