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We study the muonic nuclear-polarization corrections, which provide level shifts due to the two-photon
exchange process between a bound muon and a nucleus. We choose16O as a nucleus for the demonstration of
the amount and the property of the nuclear polarization in the muonic atoms. The nuclear states of16O are
constructed in the random-phase approximation including the negative-energy states based on the relativistic
mean field model. The spatial components of the transition current have large couplings between positive- and
negative-energy states. As a result, the contribution from the negative-energy states of nucleus to the nuclear-
polarization correction is found to be significant and also essential to achieve gauge invariance. The nuclear-
polarization effect in muonic16O is also calculated using the collective model. We find that the nonrelativistic
nuclear model with the effective mass provides similar results as the relativistic one.
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I. INTRODUCTION

High-precision measurements of the energy levels in
muonic atoms and highly charged ions recently available in
the relativistic heavy ion collisions have provided a sensitive
test of quantum electrodynamics(QED) in strong external
electromagnetic fields.(See Refs. [1,2] and references
therein.) In the evaluation of the energy levels of muonic or
heavy hydrogenlike atoms precisely, it is also required to
take into account the effects that electromagnetic fields of the
muon or the electron polarize the nucleus. The level shift due
to these effects is traditionally called “nuclear polarization”
(NP), and the study of the NP contribution to the energy shift
of atomic levels is important as a background effect against
the QED corrections in ordinary atoms, while it is one of the
main corrections in muonic atoms.

The calculations of the NP correction, which take into
account the retarded transverse part as well as the longitudi-
nal part of photon propagator, were recently presented in
electronic and muonic208Pb with the nonrelativistic random-
phase approximation(RPA) [3,4]. The NP corrections in
208Pb and238U were also calculated with the nuclear collec-
tive model[5]. In these studies, the ladder, cross, and seagull
diagrams in the two-photon exchange process were consid-
ered as the lowest-order NP correction. The common features
of the results of these analyses show that, without the inclu-
sion of the seagull diagrams, there exists a large violation of
the gauge invariance in the NP results.

The seagull diagram comes from the minimal prescription
of the electromagnetic coupling for the nonrelativistic
Hamiltonian of nucleon[6,7], in which the antinucleon de-

gree of freedom is eliminated. The NP calculation in the
relativistic field theoretical nuclear model, therefore, is inter-
esting in the viewpoint that the negative-energy states of
nucleus contribute instead of the seagull diagram. The fact
that the seagull diagram has a significant role to obtain the
gauge-invariant NP correction suggests that the effect of the
negative-energy states plays an important role in the NP cal-
culation in a relativistic model of nuclei.

Phenomenological relativistic field theories based on had-
rons, referred to as quantum hadrodynamics(QHD) [8], have
been successful in describing the bulk and single-particle
properties of nuclei in the mean field approximation. When
the energy functional of the mean field theory(MFT) is fitted
to nuclear saturation, they automatically produce an appro-
priate order of the spin-orbit splitting of nuclei, the spin ob-
servables of the proton-nucleus scattering, and energy depen-
dence of the proton-nucleus optical potential. Nuclear
excitations also have been investigated by QHD using the
relativistic random-phase approximation(RRPA) with the
MFT basis [9–12]. In the previous calculations in Refs.
[9,13,14], where the spectral method is used to solve the
RRPA equation, the configuration space is restricted to ordi-
nary particle-hole pairs. This seems a reasonable approxima-
tion at first sight, since the excitation of the negative-energy
states in the Dirac sea to the positive-energy states has an
unperturbed energy more than 1.2 GeV. Due to the huge
binding of the negative-energy states in the QHD model,
however, it was found that the negative-energy states are
needed in RRPA to preserve current conservation for the
transition currents, to decouple the spurious translational
states, and to reproduce the excitation energies and transition
form factors obtained by the nonspectral RRPA in which the
negative-energy contribution is included automatically
[15–18].

In the present paper, we take the RRPA + MFT method of
QHD to generate the nuclear intermediate states for the NP
calculation. The essential features of the phenomenological
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QHD model are that nucleon scalar and vector self-energies
are very large, and cancel each other to provide the usual
binding energy in the nucleon sector. This means that there is
a very strong attractive self-energy in the antinucleon sector
leading to large binding of antinucleon. Since the negative-
energy contribution is expected to play essential role in the
NP calculation, the NP calculation with QHD may confirm or
rule out this very large binding through its sensitivity to the
contribution from the negative-energy states.

For this purpose, the NP calculation for heavy muonic
atoms and heavy hydrogenlike ions is certainly more suitable
because the antinucleon effects are expected to be large[3,4].
Unfortunately, the necessity of negative-energy states in the
relativistic calculation means that the RRPA equation must
be solved under the huge configuration space for heavy nu-
clei. Therefore, for the purpose of demonstrating the anti-
nucleon effect to the NP correction, we calculate the NP
correction for 1s1/2 state in muonic16O for which the con-
figuration space is not so large, while enough number of
negative-energy states are obtained. A large overlap of the
muon wave function with the nucleus enables us to perform
precise numerical calculations in comparison with the elec-
tronic NP calculations.

This paper is organized as follows. In Sec. II A, we first
give general formulas needed for the evaluation of the NP
correction and then explain the present RRPA calculation in
Sec. II B. In Sec. II C, the effective single-particle operator
used in the calculation of the transition form factors is ex-
plained with respect to the charge conservation and gauge
invariance. The details of the present spectral RRPA + MFT
calculation is explained and numerical accuracy of the NP
results is discussed in Sec. II D. In Sec. III, we present the
result of the NP correction in muonic16O and discuss the
role of gauge invariance, the reason of large contribution
from the antinucleon states, and the difference from nonrel-
ativistic calculation. In Sec. IV, we give summary of the
present analysis.

II. RELATIVISTIC NUCLEAR-POLARIZATION
CORRECTION

A. Formalism for nuclear-polarization correction

The interaction between the muon and the nucleus is de-
scribed by the interaction-Hamiltonian density

ĤI = eĵM
m Âm + eĵN

mÂm, s1d

where ĵM
m s ĵN

md is the muonicsnucleard current operator and

Âm is the electromagnetic field operator. Following the
S-matrix theoryf19,20g, the lowest-order NP correction for
the interaction-Hamiltonian density of Eq.s1d in the natural
unit with "=c=1 ande2=4pa is given byf21g

DENP = is4pad2E d4x1 ¯ d4x4c̄Msx1dgmSF
Msx1,x2dgncMsx2d

3 Dmjsx1,x3dPN
jzsx3,x4dDznsx4,x2d. s2d

HerecM is the muon wave function,SF
M is the external-field

muon propagator,Dmj is the photon propagator, andPN
jz is

the nuclear-polarization tensor which contains all informa-
tion of nuclear dynamics. Using the spectral representation
of the Feynman propagator, the muonic parts of Eq.s2d is
written as

c̄Msx1dgmSF
Msx1,x2dgncMsx2d

=E dE

2p
e−iEst1−t2do

i8

jM
m sx1dii8 jM

n sx2di8i

E − vM + iEi8e
, s3d

wherevM =Ei8−Ei is the excitation energy of the muon, and

jM
m sxdii8 = c̄Mi

sxdgmcMi8
sxd s4d

is the transition current density of the muon. The suffixesi
and i8 stand for the initial and intermediate states of the
muon, respectively.

The nuclear-polarization partPN
jzsx3,x4d in RRPA is writ-

ten as

PN
jzsx3,x4d =E dv

2p
e−ivst3−t4do

I8
SJN

j sx3dII8JN
z sx4dI8I

v − vN + iEI8e

−
JN

z sx4dII8JN
j sx3dI8I

v + vN − iEI8e
D , s5d

where JN
j sxdII8 is the transition current density calculated

with the RRPA andvN=EI8−EI is excitation energy of the
nucleus. The suffixesI and I8 stand for the initial and inter-
mediate states of the nucleus, respectively. It should be noted
that, in Eq.s5d, the positions of poles depend on the sign of
the excitation energy since the excited statesI8 include the
negative-energy eigenstates which correspond to Pauli
blocking of the vacuum polarization.

After substituting Eqs.(3) and (5) into Eq. (2), and per-
forming the integral over all time variables, we transfer the
expressions for the nuclear-polarization energies to the mo-
mentum space. For the NP energy shifts due to the ladder
and cross diagrams depicted in Fig. 1, we obtain

FIG. 1. Diagrams contributing to the nuclear polarization in the
lowest order:(a) ladder and(b) cross diagrams. The wavy line
denotes photon, while the double straight lines denote the muon and
the nucleus.
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DENP
L = − is4pad2E dv

2p
E dq

s2pd3E dq8

s2pd3Dmjsv,qdDznsv,q8d

3o
i8

je
ms− qdii8 je

nsq8di8i

v + ve − iEi8e
o
I8

JN
j sqdII8JN

z s− q8dI8I

v − vN + iEI8e
s6d

and

DENP
X = is4pad2E dv

2p
E dq

s2pd3E dq8

s2pd3Dmjsv,qdDznsv,q8d

3 o
i8

je
ms− qdii8 je

nsq8di8i

v + ve − iEi8e
o
I8

JN
z s− q8dII8JN

j sqdI8I

v + vN − iEI8e
, s7d

respectively. The total NP correction is given by the sum
DENP

L +DENP
X .

We evaluate the NP correction both in the Feynman and
Coulomb gauges for the photon propagator. In Eqs.(6) and

(7), v integrations can be carried out analytically for photon
propagators in both gauges, taking the singularities of Eqs.
(3) and (5) into account properly in the contour integration.
After the integration overv, the formulas for the Feynman
and Coulomb gauges can be obtained as explained in Ref.
[3]. Then, angular integral overq andq8 in Eqs.(6) and (7)
can be carried out after multipole expansion of the muonic
and nuclear form factors. Hence, onlyq andq8 remain to be
integrated numerically. The nuclear-polarization correction is
thus given by the sum of these double integrals over the
nuclear and muon intermediate states.

B. Relativistic random-phase approximation

In QHD, the nucleus is described as a system of Dirac
nucleons which interact in a relativistic covariant manner
through the exchange of virtual mesons and photons[8]. We
employ the following Lagrangian density in the present
calculation:

LN = c̄Nsigm]m − mNdcN +
1

2
s]ms]ms − ms

2s2d −
1

3
g2s3 −

1

4
g3s4 −

1

4
s]mvn − ]nvmd2 +

1

2
mv

2vmvm

−
1

4
s]m%n − ]n%md2 +

1

2
m%

2%m ·%m −
1

4
s]mAn − ]nAmd2 − gsc̄NscN − gvc̄NgmvmcN

−
1

2
g%c̄Ngm%m · tcN − ec̄NgmAmQcN +

ekN

4mN
c̄Nsmns]mAn − ]nAmdcN. s8d

This Lagrangian density is based on the nonlinears-v model
with % meson and the photon fieldA added. While% meson
is required to describe the isospinT=1 states, there is no
contribution from% meson in the MFT calculation of16O. In
Eq. s8d, Q=s1+t3d /2 projects proton andkp=1.7928 and
kn=−1.9131. Assuming that the nuclear ground state is
spherically symmetric, the MFT basis is constructed from
eigenfunctions of the following Dirac equation:

fg0s«a − gvv0 − 1
2g%t3%0

3 − QA0d

+ ig · = − smN + gssdgcNa = 0, s9d

in which there are solutions for the negative energies in
Dirac sea as well as the ordinary positive energies. The con-
tinuum states are discretized by “putting the system in a box”
and thus we express the MFT Green function in terms of the
basiscNa via a spectral expansion.

The RRPA polarization insertion is represented by polar-
ization insertion constructed from the MFT Green function
and two-body interaction between the nucleons. Following

the RRPA prescription for discrete states described in Ref.
[15], RRPA matrix equation is given as

o
lm

S Aab:lm Bab:lm

− Bab:lm − Aab:lm
DSXlm

sNd

Ylm
sNd D = vNSXab

sNd

Yab
sNd D , s10d

where,

Aab:lm = fdbmdalvab + Vab:lmsvNdg, s11d

Bab:lm = Vab:mlsvNd. s12d

The indicesa andl label the particle space, while the indi-
cesb andm label the hole space. Here, the hole labelsb and
m are restricted to positive-energy occupied levels. On the
other hand, the particle labelsa and l indicate entire MFT
spectrum, including the negative-energy levels which take
care of the Pauli blocking of the response of vacuum. The
forward and backward amplitudes of particle-hole pairs are
denoted byX andY, respectively. In the RRPA kernel,vab is
the difference between«a and«b which are the eigenvalues
of the Dirac equations9d, and
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Vab:lmsvNd =E drdr8fc̄Nasrdc̄Nmsr8dVsr − r8dcNbsrdcNlsr8dg, s13d

where

Vsr − r8d = −
gs

2

4p
Dssr − r8;vNd +

gv
2

4p
Dmn

v sr − r8;vNdsgmdsgnd

+
g%

2

4p
Dmn

% sr − r8;vNdsgmtd · sgntd +
e2

4p
Dmn

A sr − r8;vNdsgmQdsgnQd s14d

is used as a two-body interaction. Here,Ds, Dmn
v , Dmn

% , and
Dmn

A denotes, v, % mesons, and photon propagators, respec-
tively. The propagator ofs meson is modified from Yukawa
form due to the nonlinear term. In this calculation, we em-
ploy the uncharged%-meson interaction in order to describe
the isospinT=1 states. For simplicity, residual mesons, i.e.,
pion, charged% meson, and so on, are not considered.

In these equations,vN is the energy difference between
the RRPA excited state and the ground state. The dependence
of vN may be usually ignored in the calculation for the low-
lying states with the excitation energy much smaller than the
meson masses[16]. The RRPA negative-energy states that
we take into account, however, involve the states generated
from the Dirac sea, hence the excitation energies are larger
than the meson masses. Therefore, it may not be justified to
set vN=0 neglecting the retardation. However, if we retain
the retardation in the RRPA interaction in Eqs.(11) and(12),
the proof of the current conservation and the gauge invari-
ance no longer hold because the nuclear intermediate states
do not have a completeness relation any longer[3]. Then, the
NP corrections calculated by RRPAdo not satisfygauge in-
variance. In the present calculation, we regard the effect of
the retardation as a higher-order correction studied in a fu-
ture work and ignore it. The parameter sets we have chosen
in the present calculation are given in Table I. The linear
version of the relativistic mean field Lagrangian called HS
[22] is used while the nonlinear version called NL-SH[23] is
used out of various nonlinear versions as NL3[24] and TM1
[25].

C. Transition current densities

To calculate the transition current densities of the nucleus,
the following electromagnetic current operators are usually
used with the relativistic Hartree wave functions:

ĵN
m = c̄

ˆ
NgmQĉN +

kN

2mN
]nsc̄ˆ NsmnĉNd, s15d

where the second term is the anomalous current operator.
The charge and three-vector current operators,%̂N and ĵN, are
given by

%̂N = ĉ†Qĉ +
ikN

2mN
= · ĉ†baĉ, s16d

ĵN = ĉ†aQĉ +
kN

2mN
= 3 Fĉ†Ss 0

0 − s
DĉG −

kN

2mN

]

] t
ĉ†gĉ,

s17d

respectively.
To obtain the gauge-invariant result in the two-photon ex-

change process without the seagull contribution, it is re-
quired that the commutation relation between the charge and
current operators vanishes. However, it is easy to see that the
charge-current operators of Eqs.(16) and (17) do not com-
mute. We shall eliminate the second term in Eq.(16) and the
third term in Eq.(17), which cause the noncommutation be-
tween charge and current operators.(More detailed argument
for this prescription is given in the Appendix.) Thus, we use
the following operators in the calculation of the NP correc-
tion:

%̂N = ĉ†Q̂ĉ, s18d

ĵN = ĉ†aQ̂ĉ +
kN

2mN
= 3 Fĉ†Ss 0

0 − s
DĉG . s19d

The multipole form factors are defined by the Fourier trans-
form of transition current densities as

kI8iMlsqdiIl =E dx jlsqxdkI8iYlsVxd%NsxdiIl, s20d

TABLE I. Parameter sets used in the present calculations.

mN ms mv mr gs g2 g3 gv gr

HS 939.0 520.0 783.0 770.0 10.47 0.0 0.0 13.80 8.08

NL-SH 939.0 526.06 783.0 763.0 10.44 −6.91 215.83 12.95 8.77
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kI8iTlLsqdiIl =E dx jLsqxdkI8iYlLsVxd · jNsxdiIl, s21d

where jlsqxd is a spherical Bessel function.YlL is a vector
spherical harmonics andl is the multipolarity of transition.
If RRPA equation is solved without truncation of basis, it is
known that transition charge and current densities satisfy the
charge conservation relationf15,16g

kI8iMlsqdiIl = −
q

vN
Î l

2l + 1
kI8iTll−1sqdiIl

+
q

vN

Î l + 1

2l + 1
kI8iTll+1sqdiIl. s22d

As shown in the following section, the electromagnetic
RRPA transition current is sufficiently conserved with the
present calculation.

D. Numerical detail

We shall explain here the main aspects of solving the
RRPA equation. The RRPA equation can be solved using
either “spectral” or “nonspectral” methods. The complete-
ness of the basis is conveniently treated by the nonspectral
method where negative-energy contribution is included auto-
matically [15,16]. However, NP calculation involves the in-
tegral over the loop variablesv, and this can be performed
analytically only in the spectral method. Thus there is some
trade-off between the integration over the nuclear intermedi-
ate states and the loop integrations. Moreover, we are not
certain whether the singularity structure in the complex en-
ergy plane which is crucial in the loop integral is properly
treated by the nonspectral method used in the above refer-
ences.

Therefore we have employed the spectral method to solve
the RRPA equation. First, Eq.(10) is written for each angular
momentum and isospin. In the nonrelativistic case, then, it
can be reduced to a Hermitian eigenvalue problem of half
dimension[26]. In the relativistic case, however, the RRPA
equation can no longer be reduced to a Hermitian problem of
half dimension, because the sum or difference of partial ma-
trices of Eq.(10), sA±Bd, is not positive definite due to the
negative-energy state in the MFT basis. As a result, we have
to solve the RRPA eigenvalues and eigenvectors by comput-
ing the left and right eigenvectors ofsA+BdsA−Bd.

In heavy nuclei, the necessity of negative-energy states
means that the RRPA equation must be solved under the
huge configuration space. Therefore, for the purpose of see-
ing the effect of antinucleon states to the NP correction, we
choose16O for which configuration space is not so large,
while enough number of antinucleon states are obtained. We
calculate the NP correction for 1s1/2 muon state since the NP
effect for electronic O16 is much smaller.

The MFT basis functions in the RRPA calculation are ob-
tained by solving the single-particle Dirac equation(9), using
the method of discretization for the continuum states, as
shown in Ref.[16]. For the calculation of excitation states of
16O used in the NP calculation, we have included the
positive-energy states up to 250 MeV and practically all of

the negative-energy bound states. There are a large number
of bound states in the negative-energy spectrum because the
scalar and vector potentials add in the effective negative-
energy potential.

The resulting RRPA equation has the eigenstates with the
negative energy, which we shall hereafter refer to as the an-
tinucleon states in order to distinguish them from the
negative-energy states of the MFT basis. The contribution
from these states represents the blocking effect of the
nucleon-antinucleon creation due to the states occupied by
the spectator nucleon. The longitudinal and transverse form
factors for the 1− state with the transition energy of
−1076 MeVare shown in Fig. 2(a). The transverse form fac-
tor is an order of magnitude larger than that of the positive-
energy 1− state shown in Fig. 2(b). It is also seen that the
form factors of antinucleon states have a peak in a very
lower momentum than the corresponding transition energy,
because the states are bound strongly. Thus, the form factors
of the vacuum polarized states overlap with the muonic form
factors and give the non-negligible contribution in the NP
correction.

The violation of charge-current conservation in the tran-
sition densities, defined by the difference between the left-
hand and right-hand sides of Eq.(22) (hereafter referred to as
D% ), is very small with a large configuration space showing
that our truncation is reasonable. Figure 3 shows theD% for
the lowest positive-energy 1− state with each configuration
space truncated by energies of 40, 80, 150, and 250 MeV,
and the 250 MeV without the negative-energy states. It is
found that the charge-current conservation is satisfied very
well in the calculation truncated by energy of 250 MeV with

FIG. 2. Nuclear form factors for the isoscalar 1− state obtained
in the RRPA calculation with HS:(a) the 1076 MeV highest
negative-energy state and(b) the 8.5 MeV lowest positive-energy
state in 16O. The longitudinal and transverse form factors
kI8iM1sqdiIl, kI8iT10sqdiIl, and kI8iT12sqdiIl are displayed by the
solid, dotted, and dashed curves, respectively.
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negative-energy states included, and confirmed the impor-
tance of the negative-energy states for a correct description
of the transition currents as pointed out in Ref.[16].

In electronic atoms with the much larger size of the elec-
tronic orbits, it is well known that the NP energy shifts in-
duced by the Coulomb interaction are approximately in pro-
portion to the reduced electric transition probabilities[21].
Hence, it is useful for the discussion of the muonic NP cor-
rection in light nuclei to present the energy-weighted sum of
the reduced matrix elementBsEld calculated by the relativ-
istic nuclear model. The result for16O is shown in Table II,
where we take the summation over only the positive-energy
states in the RRPA excitation. Both in HS and NL-SH, the
present results are somewhat larger than the classical energy-
weighted sum rule(EWSR) values of Ref.[27] in any mul-
tipole states. The reason has been presumed as due to the
effective massmN

* in Ref. [15]. Certainly, our EWSR agrees
better with the classical EWSR value when the effective
mass is used as shown in the fourth column of Table II. In
addition, this role of the effective mass explains the result
that EWSR values in HS become larger than those in NL-
SH; HS provides smaller effective mass as compared to
NL-SH in the nuclear matter calculation.

In passing, we mention that since the charge operator of
Eq. (18) commutes with the single-particle Hamiltonian of
nucleus, the EWSR value vanishes in the present calculation
if the vacuum polarized states with negative energies are also

taken into account in the sum. The result is that the RRPA
states satisfy a completeness relation by including the anti-
nucleon states.

III. RESULTS AND DISCUSSION

We calculate the nuclear-polarization correction here by
computing an energy shift due to each multipole of the ex-
citations and summing the results. The 0+, 1−, and 2+ nuclear
states up to 250 MeV excitations in the positive-energy
states and −1870 MeV in the antinucleon states are taken
into account in the present calculation. The muonic 1s1/2
state has been calculated by solving the Dirac equation with
the finite Coulomb potential due to the charge distribution of
16O [3].

Tables III and IV summarize the NP correction of the
1s1/2 state for muonic16O by parameter sets HS and NL-SH,
respectively. In these tables, the first column denotes nuclear
spin parities. The + and − in the second column indicate the
contributions from the positive-energy states and the anti-
nucleon states of16O to the NP correction, while the + and −
in the third column indicate the contributions from the
positive- and negative-energy states of the muon to the NP
correction. The fourth column shows the results in the Feyn-
man gauge, while the fifth column shows the results in the
Coulomb gauge. Finally, the last column shows the Coulomb
NP correction, which is the result in the Coulomb gauge
without the transverse-photon contribution.

From Tables III and IV, we see that the linear and the
nonlinear models give the similar result in the NP correction.
The slight difference between them comes from the effective
mass as mentioned for the EWSR in the preceding section.
For both the parameter sets, the NP corrections in the Feyn-
man and Coulomb gauges agree fairly well. The results are
gauge invariant for each multipole excitation. This means
that the completeness for the intermediate states of the muon
and16O nucleus is quite satisfactory by present truncation of
the configuration space.

It is also found that the antinucleon states contributions
are about 8% in the Feynman gauge and 4% in Coulomb
gauge of the total NP correction in spite of its large excita-
tion energy more than 1 GeV. An interesting feature of the
results is that a violation of gauge invariance occurs due to
the different contributions of antinucleon states between
gauges, if the antinucleon states are not taken into account;

FIG. 3. Violation of charge-current conservation in the transition
densitiesD% for the lowest positive-energy isoscalar 1− state in16O.
The results of the calculation with configuration space truncated by
the energies of 40, 80, 150, 250 MeV, and 250 MeV without the
negative-energy states are displayed by the dotted, dashed, dash-
dotted, solid, and thick-solid curves, respectively. The parameter set
HS is employed.

TABLE II. Energy-weighted sums ofBsEld over positive-energy RRPA states in unit ofe2 bl MeV. The
classical EWSR values[27] with and without effective mass are also shown for comparison. The effective
massmN

* is calculated by MFT with the HS parameter set.

El Present(HS) Present(NL-SH) ClassicalsmNda ClassicalsmN
* da

E0b 0.0416 0.0394 0.0350 0.0460

E1c 0.8052 0.7835 0.5940 0.8637

E2 0.5211 0.4940 0.4372 0.5745

aThe radial momentskrllp in the classical EWSR are calculated with the charge distribution from the MFT
with parameter set HS.
bThe E0 operator is defined asOsE0d=opr

2/Î4p.
cThe E1 operator is defined asOsE1d=oi −1/2t3rY1m.
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namely, with only the positive-energy states of16O, the NP
correction for the 1s1/2 in Table III is −10.101 eV in the
Feynman gauge, while −10.492 eV in the Coulomb gauge
hence the gauge dependence is 0.391 eV. On the other hand,
after the inclusion of the antinucleon states, it is −10.910 eV
in the Feynman gauge and −10.913 eV in the Coulomb
gauge hence the gauge dependence is reduced to only
0.003 eV. We can see the similar effect of antinucleon states
in Table IV, too. This shows that the antinucleon states have
an important role for the gauge invariance of the two-photon
exchange process involving the nucleus even in this light
muonic atoms where the relativistic effects are not so large.

Why the antinucleon states provide a non-negligible effect
on the NP correction can be understood as follows. The
transverse form factors which connect upper and lower com-
ponents of Dirac spinors become large in the transition to the
negative-energy states due to the inversion between the large
and small components of Dirac spinors. Since the form fac-
tor to the highly excited states usually has a peak around the
momentum corresponding excitation energy, it may be ex-
pected that the form factor of antinucleon states with the
excitation energy more than 1 GeV cannot overlap with
those of the muon, in which the excitation energies are taken
into account up to ±250 MeV in the present calculation. For
the antinucleon states which are bound strongly, however,

this is not the case and the peak of a form factor appears in
the considerably low momentum region as shown in Fig.
2(a). Consequently, large transverse form factors in anti-
nucleon states can overlap enough with form factors of muon
and contribute to the NP correction visibly. Comparing the
contributions in the fourth and fifth columns and the Cou-
lomb NP contributions in the last columns in Tables III and
IV, one can confirm that almost all of the antinucleon con-
tribution comes from the transverse contributions.

In the NP calculation with the nonrelativistic RPA, there
exists a large violation of gauge invariance, when only the
ladder and cross diagrams are taken into account. It was then
found that the seagull diagram was necessary for the gauge
invariance[3,4]. Therefore, it is interesting to see whether
the effect of antinucleon states corresponds to the effect of
the seagull diagram in the nonrelativistic nuclear model in
the NP correction(see Fig. 4). Indeed, these two effects are
analogous to each other; namely, the contribution from the
antinucleon states to the NP correction mostly comes from
the transverse-photon exchange, while the seagull diagram
involves only the transverse-photon field.

For quantitative comparison, we have calculated the
muonic NP correction for16O in the collective model
[21,28], in which the excitation modes are assumed to be
concentrated in a single resonant state for each spinl and
isospint with excitation energies given by

TABLE III. Nuclear-polarization correction(eV) to the 1s1/2

state of muonic16O with the parameter set HS. In the columnvN

svmd, + denotes contribution from ordinary positive-energy states of
16O (muon), while − denotes contribution from antinucleon(anti-
muon) states.

lp vN vm Feynmana Coulombb CNPc

0+ + + −0.821 −0.822 −0.822

+ − +0.053 +0.039 +0.039

− + +0.017 +0.001 +0.001

− − −0.030 −0.000 −0.000

Total −0.781 −0.782 −0.782

1− + + −8.878 −8.917 −8.513

+ − +0.820 +0.518 +0.135

− + +0.292 +0.167 +0.004

− − −1.021 −0.556 −0.001

Total −8.787 −8.788 −8.375

2+ + + −1.458 −1.462 −1.387

+ − +0.183 +0.152 +0.085

− + +0.083 +0.047 +0.002

− − −0.149 −0.081 −0.000

Total −1.341 −1.343 −1.301

Total + + −11.157 −11.202 −10.723

+ − +1.056 +0.710 +0.259

− + +0.392 +0.216 +0.007

− − −1.200 −0.637 −0.001

Total −10.910 −10.913 −10.458

aThe NP correction in the Feynman gauge.
bThe NP correction in the Coulomb gauge.
cThe NP correction in the Coulomb gauge without transverse part.

TABLE IV. Same as Table III, except for the parameter set
NL-SH is employed in the NP calculation.

lp vN vm Feynmana Coulombb CNPc

0+ + + −0.723 −0.724 −0.724

+ − +0.051 +0.038 +0.038

− + +0.017 +0.001 +0.001

− − −0.030 −0.000 −0.000

Total −0.685 −0.685 −0.685

1− + + −8.149 −8.185 −7.789

+ − +0.779 +0.482 +0.131

− + +0.286 +0.164 +0.004

− − −0.990 −0.541 −0.000

Total −8.074 −8.076 −7.654

2+ + + −1.350 −1.353 −1.289

+ − +0.171 +0.142 +0.082

− + +0.084 +0.048 +0.002

− − −0.151 −0.082 0.000

Total −1.245 −1.246 −1.205

Total + + −10.222 −10.262 −9.803

+ − +1.002 +0.662 +0.251

− + +0.387 +0.213 +0.007

− − −1.171 −0.623 −0.001

Total −10.005 −10.008 −9.546

aThe NP correction in the Feynman gauge.
bThe NP correction in the Coulomb gauge.
cThe NP correction in the Coulomb gauge without transverse part.
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vN = 5f100s1 − td + 200tgs1 − A−1/3dA−1/3 for l = 0,

95s1 − A−1/3dA−1/3 for l = 1,

f75s1 − td + 160tgs1 − A−1/3dA−1/3 for l ù 2.

s23d

In Table V, we show the results with the effective mass
generated from MFT and with the ordinary nucleon mass
snumbers in parenthesisd. The comparison reveals that for the
net NP correction, the results with the effective mass repro-
duces the relativistic results better as in the case of the
EWSR. It may be expected that the EWSR value gives a
good prediction for the NP estimate of the light muonic at-
oms as well as the electronic atoms. The contribution to the
NP energy from 1− state, however, is smaller than that of the
RRPA in spite of the result that the EWSR value of nonrel-
ativistic model with effective mass is enhanced over that of
the relativistic calculation. This discrepancy may be attrib-
uted to the difference between the nuclear excitation energies
given by Eq.s23d and the RRPA calculation. In particular,
the NP effects with the collective model are more sensitive
to the excitation energy since the excitations have only one
collective state for each spin-parity mode.

For the contribution of the seagull diagram, on the other
hand, only the charge distribution of the nuclear ground state
is required together with the nucleon mass. Therefore, the
seagull diagram is mostly independent of the model. The
total contributions of seagull diagram with the effective mass
are −0.898 eV and −0.473 eV in the Feynman and Coulomb
gauges, respectively. Comparing with Table III, in which the
contributions of antinucleon states are −0.808 eV in the
Feynman gauge, while −0.421 eV in the Coulomb gauge, it
is confirmed numerically that the correction due to the
seagull diagram with the effective mass agrees with the con-
tribution from the antinucleon states very well.

We have shown that the antinucleon states have an impor-
tant role in the nuclear-polarization calculation. As discussed

above, however, it should not be concluded that the nonrel-
ativistic treatment of nucleus cannot provide reliable esti-
mate of the NP correction since the contribution of the anti-
nucleon states is similar to that of seagull diagram which
arises from the nonrelativistic treatment of the nucleus.
Hence, as far as the present numerical estimate of the NP
energy shifts is concerned, there exists an essential equiva-
lence between the nonrelativistic treatment of NP and the
relativistic calculation with RRPA based on QHD in which
the energy dependence in Eq.(15) is ignored. As seen in
Table V, on the other hand, we have to note that present
relativistic results are somewhat enhanced over nonrelativis-
tic one if the usual nucleon mass is used in the nonrelativistic
calculation. The effective mass effect in the NP correction
may give the explanation of the anomaly in theDp fine-
structure splitting energies of muonic heavy atoms, in which
the nuclear polarization contributes to the muonic levels at a
keV [4,29].

It is extremely important to carry out a similar analysis for
electronic NP correction in heavy atoms, where it is expected
that the effect of antinucleon states is more remarkable in
order to obtain the gauge-invariant result[3,28]. The inves-
tigation of the antinucleon contribution to the NP corrections
in electronic ground and excited states as well as muonic
states may provide an evidence of the strong attractive self-
energy of antinucleon in the nucleus.

IV. SUMMARY

We have evaluated the NP correction to the 1s1/2 state of
muonic 16O using the RRPA on the MFT basis and obtained
the similar results between the linear and the nonlinear
nuclear models. By relativistic treatment, the antinucleon
states, as well as the antimuon states, both of which represent
the blocking effect of the response of vacuum, appear in the
intermediate states and contribute to the NP correction. The
transverse form factor of the bound antinucleon state has a

FIG. 4. The relation between
the relativistic and nonrelativistic
nuclear models in the two-photon
exchange diagrams. The contribu-
tion from the antinucleon states in
the relativistic nuclear model cor-
responds to the seagull diagram in
the nonrelativistic nuclear model
if the positive-energy excitations
calculated by the relativistic
nuclear model agree with the ex-
citations calculated by the nonrel-
ativistic nuclear model.
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large overlap with that of muon. Therefore, the contribution
of antinucleon states is non-negligible in the NP correction
though the energy denominators are considerably large. Even
in the NP correction for the light muonic atom as16O, there
is a 4–8% effect of antinucleon states and it is essential for
gauge invariance.

For muonic16O, we could obtain the result that the cor-
rection due to the seagull diagram and the contribution from
the antinucleon states agree fairly well. Consequently, the
relativistic QHD gives similar results with the nonrelativistic
results by taking into account the effective mass. However, it
remains to be studied for heavy muonic and electronic at-
oms, for which the NP effects can be measured experimen-
tally. The NP effects in these atoms may depend rather sen-
sitively on the details of the relativistic nuclear models. The
quantitative estimate of NP effects with the QHD-type mod-
els may provide information on the strong binding of the
antinucleon.
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APPENDIX: GAUGE INVARIANCE IN THE NUCLEAR
POLARIZATION

In the nuclear-polarization tensor defined by

PN
jzsv,q,q8d = o

I8
SJN

j sqdII8JN
z s− q8dI8I

v − vN + iEI8e
−

JN
z s− q8dII8JN

j sqdI8I

v + vN − iEI8e
D ,

sA1d

we assume the completeness of the nuclear intermediate
states and the charge-current conservation in the transition
densities. Then, multiplying Eq.sA1d by qm, one obtains

qmPN
mnsv,q,q8d = o

I8

skI u%̂Ns− qduI8lkI8u ĵN
n sq8duil

− kI u ĵN
n sq8duI8lkI8u%̂Ns− qduIld

= kI uf%̂Ns− qd, ĵN
n sq8dguIl. sA2d

It is well known that Eq.sA2d must vanish if the gauge
invariance is satisfied in the sum of the ladder and cross

TABLE V. Same as Table III except for the nonrelativistic(collective) model is employed in the NP
calculation. The seagull diagram contributes to the NP correction(denoted by SG in second column) instead
of the contribution from antinucleon states. The effective mass from the MFT calculation with HS is taken
into account in the NP calculation. In the parenthesis, the result with ordinary mass of nucleon is also shown
for comparison.

lp vN vm Feynmana Coulombb CNPc

0+ + + −0.894s−0.680d −0.896s−0.682d −0.896s−0.682d
+ − +0.068s+0.052d +0.057s+0.043d +0.057s+0.043d

SG + +0.019s+0.014d +0.000s+0.000d
SG − −0.036s−0.027d −0.000s−0.000d

Total −0.843s−0.641d −0.839s−0.639d −0.839s−0.639d
1− + + −6.968s−4.792d −6.992s−4.809d −6.673s−4.589d

+ − +0.849s+0.584d +0.518s+0.356d +0.138s+0.095d
SG + +0.315s+0.203d +0.179s+0.114d
SG − −1.114s−0.738d −0.609s−0.401d

Total −6.918s−4.743d −6.904s−4.740d −6.535s−4.494d
2+ + + −2.177s−1.657d −2.188s−1.665d −2.148s−1.635d

+ − +0.196s+0.149d +0.176s+0.134d +0.145s+0.110d
SG + +0.101s+0.075d +0.057s+0.042d
SG − −0.183s−0.140d −0.100s−0.076d

Total −2.063s−1.573d −2.055s−1.565d −2.003s−1.525d

Total + + −10.039s−7.129d −10.076s−7.156d −9.717s−6.906d
+ − +1.113s+0.785d +0.751s+0.533d +0.340s+0.248d

SG + +0.435s+0.292d +0.236s+0.156d
SG − −1.333s−0.905d −0.709s−0.477d

Total −9.824s−6.957d −9.798s−6.944d −9.377s−6.657d
aThe NP correction in the Feynman gauge.
bThe NP correction in the Coulomb gauge.
cThe NP correction in the Coulomb gauge without transverse part.
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diagrams. For the electromagnetic charge and current opera-
tors of the nucleus,

%̂Ns− qd = o
i

A

QS1 0

0 1
Deiq·r i ,

ĵNsq8d = o
i

A FQS0 s

s 0
De−iq8·r i +

kN

2M
=i ·Ss 0

0 − s
De−iq8·r iG ,

sA3d

used in the present paper, the commutation relation in Eq.
(A2) vanishes and hence, the relation leading to the gauge
invarianceqmPN

mnsv ,q,q8d=0 follows.
The charge-current operators indicated in Eqs.(16) and

(17), on the other hand, do not commute due to the second
term of the right-hand side in Eq.(16). Therefore this con-
tribution results in gauge dependence when the ladder and
cross diagrams only are considered. The gauge invariance
with the charge-current operators of Eqs.(16) and (17) is
achieved if the seagull contribution is also included. To see
this, consider the reduction formula for the polarization
propagator of virtual photon[30]:

s2pd4dsk8 + Pb − k − PadPmn = − iE d4xd4ye−ik8xe−ikyHkbuTfJmsxdJnsydgual − dsx0 − y0dkbufJmsxd,Ȧnsydgual

−
]

] y0fdsx0 − y0dkbufJmsxd,AnsydgualgJ . sA4d

The last term of the right-hand side usually vanishes. In fact,
adding the gauge fixing term and using the indefinite metric
quantization of the electromagnetic field, the canonical elec-
tromagnetic fieldAm commutes with the electromagnetic cur-
rent of Eqs.s16d ands17d too. The second term of the right-
hand side is the so-called seagull contribution

PSG
mn = fȦmsxd,Jnsydgx0=y0. sA5d

Writing Ȧmsxd in terms of the canonical variables it is pos-
sible to show thatPSG

0n vanishes and

fȦisxd,Jnsydgx0=y0 = −
kN

2MN
fc̄ˆ sxds0iĉsxd,Jnsydgx0=y0.

sA6d

It can be easily seen that the four-divergence of this seagull
term cancels the nonvanishing term of thef%sxd ,Jnsydg
showing the gauge invariances of the model.
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