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We study the muonic nuclear-polarization corrections, which provide level shifts due to the two-photon
exchange process between a bound muon and a nucleus. We éf@asa nucleus for the demonstration of
the amount and the property of the nuclear polarization in the muonic atoms. The nuclear sté@sac#
constructed in the random-phase approximation including the negative-energy states based on the relativistic
mean field model. The spatial components of the transition current have large couplings between positive- and
negative-energy states. As a result, the contribution from the negative-energy states of nucleus to the nuclear-
polarization correction is found to be significant and also essential to achieve gauge invariance. The nuclear-
polarization effect in muonié®O is also calculated using the collective model. We find that the nonrelativistic
nuclear model with the effective mass provides similar results as the relativistic one.
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I. INTRODUCTION gree of freedom is eliminated. The NP calculation in the
. relativistic field theoretical nuclear model, therefore, is inter-

High-precision measurements of the energy levels '.rl-:-sting in the viewpoint that the negative-energy states of

muonic atoms and highly charged ions recently available in, ;o5 contribute instead of the seagull diagram. The fact
the relativistic heavy ion collisions have provided a sensitivey 1 the seagull diagram has a significant role to obtain the
t?St of quantu_m ?Ielcétrogynangog?EI;l)) In strgng ;external gauge-invariant NP correction suggests that the effect of the
e ectr.omagnetlc € $-< ee Refs.[1,2] and re erences negative-energy states plays an important role in the NP cal-
therein) In the evaluation of the energy levels of muonic or .\ ition in a relativistic model of nuclei

heavy hydrogenlike atoms precisely, it is also required to Phenomenological relativistic field theories based on had-

take into account the effects that electromagnetic fields of th?ons referred to as quantum hadrodynani@8iD) [8], have
muon or the electron polarize the nucleus. The level shift du een’ successful in describing the bulk and singile-particle

main corrections in muonic atoms.

The calculations of the NP correction, which take into
account the retarded transverse part as well as the longitu
nal part of photon propagator, were recently presented i
electronic and muonié®®Pb with the nonrelativistic random-
phase approximatioiRPA) [3,4]. The NP corrections in
20%pp and?*®U were also calculated with the nuclear collec-
tive model[5]. In these studies, the ladder, cross, and seagu

diagrams in the two-photon exchange process were consigh, o first sight, since the excitation of the negative-energy

ered as the lowest-order NP correction. The common featuregios in the Dirac sea to the positive-energy states has an
of the results of these analyses show that, without the 'nd”'nperturbed energy more than 1.2 GeV. Due to the huge

sion of the seagull diagrams, there exists a large violation o inding of the negative-energy states in the QHD model,

the gauge invariance in the NP results. - . ._however, it was found that the negative-energy states are
The seagull diagram comes from the minimal prescription,se4eq in RRPA to preserve current conservation for the
of the electromagnetic coupling for the nonrelativistic o nition currents, to decouple the spurious translational
Hamiltonian of nucleor(6,7], in which the antinucleon de-  qa405 and to reproduce the excitation energies and transition
form factors obtained by the nonspectral RRPA in which the
negative-energy contribution is included automatically

servables of the proton-nucleus scattering, and energy depen-
dence of the proton-nucleus optical potential. Nuclear
Xxcitations also have been investigated by QHD using the
Pelativistic random-phase approximatigRRPA) with the

MFT basis [9-12. In the previous calculations in Refs.
[9,13,14, where the spectral method is used to solve the
RPA equation, the configuration space is restricted to ordi-
ary particle-hole pairs. This seems a reasonable approxima-
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QHD model are that nucleon scalar and vector self-energies
are very large, and cancel each other to provide the usual
binding energy in the nucleon sector. This means that there is
a very strong attractive self-energy in the antinucleon sector
leading to large binding of antinucleon. Since the negative-
energy contribution is expected to play essential role in the
NP calculation, the NP calculation with QHD may confirm or
rule out this very large binding through its sensitivity to the
contribution from the negative-energy states. @) (b)
For this purpose, the NP calculation for heavy muonic

atoms and heavy hydrogenlike ions is certainly more Smtabl?owest order:(a) ladder and(b) cross diagrams. The wavy line

because the antinucleon e_ffects are e_xpected to be[l&,pgg denotes photon, while the double straight lines denote the muon and
Unfortunately, the necessity of negative-energy states in thg . ., cleus.

relativistic calculation means that the RRPA equation must

be solved under the huge configuration space for heavy nu- L . . .
g N b y the nuclear-polarization tensor which contains all informa-

clei. Therefore, for the purpose of demonstrating the anti-. . . .
nucleon effect to the NP correction, we calculate the npion of nuclear dynamics. Using the spectral representation

correction for &,, state in muonic®O for which the con-  ©f _';?e Feynman propagator, the muonic parts of €4.is
figuration space is not so large, while enough number ofVrtten as

negative-energy states are obtained. A large overlap of the
muon wave function with the nucleus enables us to perform - Y
precise numerical calculations in comparison with the elec- I (x0) VS 00, %) ¥t ()

. . 'IU, . v .
tronic NP calculations. _f d_Ee—iE(trt»E J (X Dii i (X2)in
2 i’ E_wM+iEirE '
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FIG. 1. Diagrams contributing to the nuclear polarization in the

This paper is organized as follows. In Sec. Il A, we first = 3
give general formulas needed for the evaluation of the NP
correction and then explain the present RRPA calculation in
Sec. Il B. In Sec. Il C, the effective single-particle OperatorwherewM:Ei,—Ei is the excitation energy of the muon, and
used in the calculation of the transition form factors is ex-

plained with respect to the charge conservation and gauge

invariance. The details of the present spectral RRPA + MFT ()i :EM.(X)V’WM.,(X) (4)
calculation is explained and numerical accuracy of the NP ' '

results is discussed in Sec. Il D. In Sec. lll, we present the

result of the NP correction in muon#O and discuss the s the transition current density of the muon. The suffikes
role of gauge invariance, the reason of large contributiorand i’ stand for the initial and intermediate states of the
from the antinucleon states, and the difference from nonrelmuon, respectively.

ativistic calculation. In Sec. IV, we give summary of the The nuclear-polarization paﬂﬁg(xslxdf) in RRPA is writ-
present analysis. ten as

IRXi IR Xy

Il. RELATIVISTIC NUCLEAR-POLARIZATION
( w-—wytiE; €

do _
CORRECTION Hﬁg(xg,x4): f ;e—lw(t3—t4)2
A. Formalism for nuclear-polarization correction I’

(5

The interaction between the muon and the nucleus is de- IRXa)n I (Xa) i1y
scribed by the interaction-Hamiltonian density B

w+ N~ iE|rE
T = €lfaA + €A, &)
S ) where J{(x),. is the transition current density calculated
wherejy (j{) is the muonic(nucleaj current operator and yith the RRPA andwy=E,,~E is excitation energy of the
A, is the electromagnetic field operator. Following the nucleus. The suffixesandl’ stand for the initial and inter-
S-matrix theory[19,20, the lowest-order NP correction for mediate states of the nucleus, respectively. It should be noted
the interaction-Hamiltonian density of E€l) in the natural that, in Eq.(5), the positions of poles depend on the sign of
unit with A=c=1 ande?*=4ma is given by[21] the excitation energy since the excited stdtesclude the
- negative-energy eigenstates which correspond to Pauli
AE :i(47m)2f A% - - A% gty (%) (X1,%0) Yty (Xo) blocking of the vacuum polarization.
NP ! 4% yﬂgg 127 PuiXe After substituting Eqs(3) and (5) into Eq.(2), and per-
XD 5 XITE (X XD 1 (X X5) 2 forming the integral over all time variables, we transfer the
X0 XTI (6, Xa) D, (X4 o) @ expressions for the nuclear-polarization energies to the mo-
Here ¢y is the muon wave functior§Y is the external-field mentum space. For the NP energy shifts due to the ladder
muon propagatorD,. is the photon propagator, arlﬂ]% is  and cross diagrams depicted in Fig. 1, we obtain

044308-2



RELATIVISTIC RANDOM-PHASE APPROXIMATION...

L _ _iame2| %[ 99 [ da” :
AEyp= |(47Ta)f2ﬂ_f (2m? (277_)3DM§(w,q)D§,,(w,q)

i“(=a):i%a): & /{_ ",
XE Je( Q)u ]e(q )| IE ‘]N(q)ll ‘]N( q )I |

: , (6)
i (l)+(1)e_|Ei!€ ) w—wN+IE|re
and
. do ( dq dg’ ,
AE)N(P: |(47Ta)2f ZT (277)3[ W’D/‘Lg(w,q)ng(w,q )
%3 je(= Q)n/J';(Q’)m Jr{J(‘ a "Jlﬁ(Q)I’I @
n w+ w.—IEj € v w+toy—IE; €
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(7), w integrations can be carried out analytically for photon
propagators in both gauges, taking the singularities of Egs.
(3) and(5) into account properly in the contour integration.
After the integration ovew, the formulas for the Feynman
and Coulomb gauges can be obtained as explained in Ref.
[3]. Then, angular integral oveyandq’ in Egs.(6) and(7)

can be carried out after multipole expansion of the muonic
and nuclear form factors. Hence, omyandq’ remain to be
integrated numerically. The nuclear-polarization correction is
thus given by the sum of these double integrals over the
nuclear and muon intermediate states.

B. Relativistic random-phase approximation

In QHD, the nucleus is described as a system of Dirac

respectively. The total NP correction is given by the sumnucleons which interact in a relativistic covariant manner

L X
AERpt+AERp.

through the exchange of virtual mesons and phof8hsWe

We evaluate the NP correction both in the Feynman anémploy the following Lagrangian density in the present

Coulomb gauges for the photon propagator. In E§s.and

calculation:

1

- 1 1 1 1
‘CN = lﬂN(I ’yuap, - mN) lﬂN + E(a,ua-aMO- - m(ZTOZ) - 5920-3 - Zg30-4 - _(a,uwv - avwﬂ)z + Emfuw#«w’u

4

1 1 1 — —
- Z(ap,gv - aVQ/.L)z + Englu, ot - Z(ap,AV - ﬁVA,u,)z = OoNoN gw{ﬂNﬂy,u,w'ulﬂN

1 — — eky—
- Egglﬂm’#@” TN~ Ny, A Qi+ 4_le//NU“ (0,A, = A N (8)

This Lagrangian density is based on the nonlineas model
with ¢ meson and the photon field added. Whilep meson

is required to describe the isospirF1 states, there is no

contribution frome meson in the MFT calculation dfO. In

Eqg. (8), @=(1+73)/2 projects proton and,=1.7928 and
kp,=-1.9131. Assuming that the nuclear ground state is

the RRPA prescription for discrete states described in Ref.
[15], RRPA matrix equation is given as

2 ( Aaﬁ:)\,u BCYB:)\M )(Xg"\’l’“)) = wN<X(N) ) y (10)

aB
N N
) _BOK,B:)\/L _Aaﬂi)\p, Yg\lu) Y(aﬁ)

where,

spherically symmetric, the MFT basis is constructed from

eigenfunctions of the following Dirac equation:

[12(€a~ G000~ 30,705 — OA)
+|y V_(mN+g0'O-)]¢-Na:01 (9)

in which there are solutions for the negative energies i
Dirac sea as well as the ordinary positive energies. The co

n

Aa,B:ML = [5[3M5a)\wa[3 + Vaﬂi)\,u(wN)]’ (11)

BQB:)\M = Vaﬁ:,u)\(wN) . (12)

The indicesa and\ label the particle space, while the indi-
cesB andu label the hole space. Here, the hole labgksnd

are restricted to positive-energy occupied levels. On the
other hand, the particle labels and \ indicate entire MFT

tinuum states are discretized by “putting the system in a boxXgpectrum, including the negative-energy levels which take
and thus we express the MFT Green function in terms of th@are of the Pauli blocking of the response of vacuum. The

basisiy, Vvia a spectral expansion.

forward and backward amplitudes of particle-hole pairs are

The RRPA polarization insertion is represented by polardenoted byX andY, respectively. In the RRPA kerneb,; is
ization insertion constructed from the MFT Green functionthe difference betwees, ands,; which are the eigenvalues
and two-body interaction between the nucleons. Followingof the Dirac equatiorf9), and

044308-3



HAGA, HORIKAWA, TANAKA, AND TOKI PHYSICAL REVIEW C 69, 044308(2004)

TABLE |. Parameter sets used in the present calculations.

My m, m, mp 9o 92 O3 Jw gp
HS 939.0  520.0 783.0 7700  10.47 0.0 0.0 1380  8.08
NL-SH  939.0 526.06 7830 7630 1044 -6.91 —1583 1295  8.77
Veagaru(on) :J drdr’ [efng(r) én, (r OV = r") g (r) g (r') ], (13
where
g a9
V(r=r')==_"2D(r =t on) + 2Dy (r = 1" on) (¥)(v)
47 47
% &
DR =T e (¥ 7) - (Y'7) + D o) (4 Q(Y'Q) (14

is used as a two-body interaction. He®7, D, , D¢ , and s N KN . 2 e
D”, denoteo, w, ¢ mesons, and photon propagators, respec- IN= N Qi+ o9 (Yo" i), (15
tively. The propagator ofr meson is modified from Yukawa N
form due to the nonlinear term. In this calculation, we em-Where the second term is the anomalous current operator.
ploy the uncharge@-meson interaction in order to describe The charge and three-vector current operatogsandjy, are
the isospinT=1 states. For simplicity, residual mesons, i.e.,given by
pion, chargec® meson, and so on, are not considered. .

In these equationsuN is the energy difference between On= zAﬁTQ;H 1en \v -fﬂ,@af//, (16)
the RRPA excited state and the ground state. The dependence 2my
of wy may be usually ignored in the calculation for the low-
lying states with the excitation energy much smaller than the. np A KN ~if O N KN O~y »
meson massefl6]. The RRPA negative-energy states that IN~ aQy+ 2_mN VXl 0 -0 ¥|- 2_rn,\,5¢ Y,
we take into account, however, involve the states generated
from the Dirac sea, hence the excitation energies are larger 17
than the meson masses. Therefore, it may not be justified tespectively.
set wy=0 neglecting the retardation. However, if we retain  To obtain the gauge-invariant result in the two-photon ex-
the retardation in the RRPA interaction in E¢kl) and(12), change process without the seagull contribution, it is re-
the proof of the current conservation and the gauge invariguired that the commutation relation between the charge and
ance no longer hold because the nuclear intermediate statesrrent operators vanishes. However, it is easy to see that the
do not have a completeness relation any loriggrThen, the  charge-current operators of Eq46) and(17) do not com-
NP corrections calculated by RRR¥# not satisfygauge in- mute We shall eliminate the second term in Efj6) and the
variance. In the present calculation, we regard the effect ofhird term in Eq.(17), which cause the noncommutation be-
the retardation as a higher-order correction studied in a futween charge and current operatghore detailed argument
ture work and ignore it. The parameter sets we have chosef' this prescription is given in the Appendixthus, we use
in the present calculation are given in Table I. The linearthe following operators in the calculation of the NP correc-
version of the relativistic mean field Lagrangian called HStON:
[22] is used while the nonlinear version called NL-$38] is el
used out of various nonlinear versions as N23] and TM1 on=4'Q4, (18)

[25].
~ ~ A A K ~Ll O 0 ~
in=dlaQy+ o -V X [w*(o _U)w]. (19
N
C. Transition current densities

The multipole form factors are defined by the Fourier trans-

To calculate the transition current densities of the nucleusf,Orm of transition current densities as

the following electromagnetic current operators are usually
used with the relativistic Hartree wave functions: My (@1 =f dxjr (@)1 [YA(Q eI, (20)
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03
(M@l = [ 0 @R M) e, @0 o o [
E o2} .
. . . . . @ 015 F (@)
wherej,(qx) is a spherical Bessel functiolY,, is a vector 5 ot |
spherical harmonics and is the multipolarity of transition. 3 005 |
If RRPA equation is solved without truncation of basis, it is g o
known that transition charge and current densities satisfy the *  _ ) )
charge conservation relatigt5,16| 0 05 1 15 2 25 3
q A q (fm)
I'||M ==—/ 7—{"|[Th- I
"My (@lIy o 2)\+1< [Tn-2(a)[[D)
i1 0.008
q 1. 0.006
+——'|T . (22 &
o 2)\_'_1( M@l (22) E oo (b)
. . . . @2 0002
As shown in the following section, the electromagnetic .§ 0
RRPA transition current is sufficiently conserved with the g ~0.002
present calculation. 5 _o004
—0.006 : :
D. Numerical detail ] 0.5 1 15 2 25 3
We shall explain here the main aspects of solving the q (fm)

RRPA equation. The RRPA equation can be solved using ) )
either “spectral” or “nonspectral” methods. The complete- FIG. 2. Nuclear form factors for the isoscalar dtate obtained
ness of the basis is conveniently treated by the nonspectrd] the RRPA calculation with HS1a) the 1076 MeV highest
method where negative-energy contribution is included autogegatlye-?nergy state art[_ti) the 8.5 MeV lowest positive-energy
matically [15,1G. However, NP calculation involves the in- Stf"te in **0. ,The Iong'tUd'na,l and transverse form factors
tegral over the loop variables, and this can be performed IIM@[ID, ("[Tao(@)l, and{I"[T1(q)]l) are displayed by the

. - . lid, ted, hed , tively.
analytically only in the spectral method. Thus there is some® 'd, dotted, and dashed curves, respectively

trade-off between the integration over the nuclear intermedithe negative-energy bound states. There are a large number
ate states and the loop integrations. Moreover, we are n@f bound states in the negative-energy spectrum because the
certain whether the singularity structure in the complex enscalar and vector potentials add in the effective negative-
ergy plane which is crucial in the loop integral is properly energy potential.
treated by the nonspectral method used in the above refer- The resulting RRPA equation has the eigenstates with the
ences. negative energy, which we shall hereafter refer to as the an-
Therefore we have employed the spectral method to solvgnucleon states in order to distinguish them from the
the RRPA equation. First, EGLO) is written for each angular negative-energy states of the MFT basis. The contribution
momentum and isospin. In the nonrelativistic case, then, ifrom these states represents the blocking effect of the
can be reduced to a Hermitian eigenvalue problem of halfucleon-antinucleon creation due to the states occupied by
dimension[26]. In the relativistic case, however, the RRPA the spectator nucleon. The longitudinal and transverse form
equation can no longer be reduced to a Hermitian problem ofactors for the 1 state with the transition energy of
half dimension, because the sum or difference of partial ma-1076 MeVare shown in Fig.(8). The transverse form fac-
trices of Eq.(10), (A£B), is not positive definite due to the tor is an order of magnitude larger than that of the positive-
negative-energy state in the MFT basis. As a result, we havenergy I state shown in Fig. ®). It is also seen that the
to solve the RRPA eigenvalues and eigenvectors by computerm factors of antinucleon states have a peak in a very
ing the left and right eigenvectors GA+B)(A-B). lower momentum than the corresponding transition energy,
In heavy nuclei, the necessity of negative-energy statebecause the states are bound strongly. Thus, the form factors
means that the RRPA equation must be solved under thef the vacuum polarized states overlap with the muonic form
huge configuration space. Therefore, for the purpose of sedactors and give the non-negligible contribution in the NP
ing the effect of antinucleon states to the NP correction, wesorrection.
choose'®O for which configuration space is not so large, The violation of charge-current conservation in the tran-
while enough number of antinucleon states are obtained. Wsition densities, defined by the difference between the left-
calculate the NP correction fois, muon state since the NP hand and right-hand sides of E&2) (hereafter referred to as
effect for electronic & is much smaller. Ap), is very small with a large configuration space showing
The MFT basis functions in the RRPA calculation are ob-that our truncation is reasonable. Figure 3 showsAhefor
tained by solving the single-particle Dirac equat{®y using  the lowest positive-energy~Istate with each configuration
the method of discretization for the continuum states, aspace truncated by energies of 40, 80, 150, and 250 MeV,
shown in Ref[16]. For the calculation of excitation states of and the 250 MeV without the negative-energy states. It is
180 used in the NP calculation, we have included thefound that the charge-current conservation is satisfied very
positive-energy states up to 250 MeV and practically all ofwell in the calculation truncated by energy of 250 MeV with
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00002 taken into account in the sum. The result is that the RRPA
0.0001 1 states satisfy a completeness relation by including the anti-
- 0 nucleon states.
S -0.0001 [
§1 =0.0002 |
—0.0003 | Ill. RESULTS AND DISCUSSION
:g'ggg: We calculate the nuclear-polarization correction here by
’ 0 05 1 15 9 25 3 computing an energy shift due to each multipole of the ex-

citations and summing the results. The 07, and 2 nuclear
states up to 250 MeV excitations in the positive-energy

FIG. 3. Violation of charge-current conservation in the transitionstates and —-1870 MeV in the antinucleon states are taken
densitiesA o for the lowest positive-energy isoscalarstate in'°0.  into account in the present calculation. The muonsg;,1
The results of the calculation with configuration space truncated bgtate has been calculated by solving the Dirac equation with
the energies of 40, 80, 150, 250 MeV, and 250 MeV without thethe finite Coulomb potential due to the charge distribution of
negative-energy states are displayed by the dotted, dashed, dasfO [3].
dotted, solid, and thick-solid curves, respectively. The parameter set Tables Ill and IV summarize the NP correction of the
HS is employed. 1s,,, state for muonid®0 by parameter sets HS and NL-SH,

respectively. In these tables, the first column denotes nuclear
negative-energy states included, and confirmed the impowpin parities. The + and - in the second column indicate the
tance of the negative-energy states for a correct descriptiogontributions from the positive-energy states and the anti-
of the transition currents as pointed out in Ref6]. nucleon states offO to the NP correction, while the + and —

In electronic atoms with the much larger size of the elecin the third column indicate the contributions from the
tronic orbits, it is well known that the NP energy shifts in- positive- and negative-energy states of the muon to the NP
duced by the Coulomb interaction are approximately in procorrection. The fourth column shows the results in the Feyn-
portion to the reduced electric transition probabilit[@4]. man gauge, while the fifth column shows the results in the
Hence, it is useful for the discussion of the muonic NP cor-Coulomb gauge. Finally, the last column shows the Coulomb
rection in light nuclei to present the energy-weighted sum ofNP correction, which is the result in the Coulomb gauge
the reduced matrix elemeB(EN) calculated by the relativ- without the transverse-photon contribution.
istic nuclear model. The result f3PO is shown in Table I, From Tables Ill and IV, we see that the linear and the
where we take the summation over only the positive-energyonlinear models give the similar result in the NP correction.
states in the RRPA excitation. Both in HS and NL-SH, theThe slight difference between them comes from the effective
present results are somewhat larger than the classical energypass as mentioned for the EWSR in the preceding section.
weighted sum ruléEWSR) values of Ref[27] in any mul-  For both the parameter sets, the NP corrections in the Feyn-
tipole states. The reason has been presumed as due to timan and Coulomb gauges agree fairly well. The results are
effective massnL in Ref. [15]. Certainly, our EWSR agrees gauge invariant for each multipole excitation. This means
better with the classical EWSR value when the effectivethat the completeness for the intermediate states of the muon
mass is used as shown in the fourth column of Table Il. Inand*®O nucleus is quite satisfactory by present truncation of
addition, this role of the effective mass explains the resulthe configuration space.
that EWSR values in HS become larger than those in NL- It is also found that the antinucleon states contributions
SH; HS provides smaller effective mass as compared tare about 8% in the Feynman gauge and 4% in Coulomb
NL-SH in the nuclear matter calculation. gauge of the total NP correction in spite of its large excita-

In passing, we mention that since the charge operator dion energy more than 1 GeV. An interesting feature of the
Eqg. (18) commutes with the single-particle Hamiltonian of results is that a violation of gauge invariance occurs due to
nucleus, the EWSR value vanishes in the present calculatioine different contributions of antinucleon states between
if the vacuum polarized states with negative energies are alsgauges, if the antinucleon states are not taken into account;

g (m™7)

TABLE Il. Energy-weighted sums dB(EN) over positive-energy RRPA states in unitefo* MeV. The
classical EWSR value27] with and without effective mass are also shown for comparison. The effective
massm?\l is calculated by MFT with the HS parameter set.

EX PreseniHS) PreseniNL-SH) Classical(my)? Classical(my)?
EQ° 0.0416 0.0394 0.0350 0.0460
E1° 0.8052 0.7835 0.5940 0.8637
E2 0.5211 0.4940 0.4372 0.5745

*The radial momentsr*)p in the classical EWSR are calculated with the charge distribution from the MFT
with parameter set HS. o

®The EO operator is defined &B(E0) =3 r?/ 4.

‘The E1 operator is defined @®(E1)=X;-1/273rYy,,.
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TABLE llI. Nuclear-polarization correctionieV) to the Is;;, TABLE IV. Same as Table lll, except for the parameter set
state of muonict®0 with the parameter set HS. In the colurag NL-SH is employed in the NP calculation.
(w,), + denotes contribution from ordinary positive-energy states of
160 (muon), while — denotes contribution from antinucleganti- AT oy ®
muon) states.

.  Feynmafi Coulomi® CNF*

o + + -0.723 -0.724 -0.724
T oy w, Feynmafi Coulomt CNF + - +0.051 +0.038 +0.038
o* R R 0.821 0.822 0.822 - + +0.017 +0.001 +0.001
' ' ' - - -0.030 -0.000 -0.000
- +0.053 +0.039 +0.039
~ . +0.017 +0.001 +0.001 Total -0.685 -0.685 -0.685
B _ _0'030 —o.ooo —olooo 1 + + -8.149 -8.185  -7.789
Total _0.781 0782 0782 T +0.779 0482 +0.131
I R . _8.878 8017 8513 - + +0.286 +0.164  +0.004
' ' ' - - -0.990 -0.541 -0.000
+ - +0.820 +0.518 +0.135
~ . +0.292 +0.167 +0.004 Total -8.074 -8.076 -7.654
B ~ _1'021 0'556 0'001 2F + + -1.350 -1.353 -1.289
Total —8.787 8. 788 8.375 " - 0171 +0.142 +0.082
ot R N 1458 1462 1387 - + +0.084 +0.048  +0.002
' ' ' - - -0.151 -0.082 0.000
+ - +0.183 +0.152 +0.085
Total -1.245 -1.246 -1.205
- + +0.083 +0.047 +0.002
- - -0.149 -0.081 -0.000 Total + + -10.222 -10.262 -9.803
Total -1.341 -1.343 -1.301 + - +1.002 +0.662 +0.251
Total R . 11157 11202 10.723 - + +0.387 +0.213 +0.007
' ' ' - - -1.171 -0.623 -0.001
- +1.056 +0.710 +0.259
Total -10.005 -10.008 -9.546
- + +0.392 +0.216 +0.007
_ _ ~1.200 —~0.637 ~0.001 #The NP correction in the Feynman gauge.
Total -10.910 -10.913 -10.458 ®The NP correction in the Coulomb gauge.

“The NP correction in the Coulomb gauge without transverse part.

*The NP correction in the Feynman gauge.
PThe NP correction in the Coulomb gauge.

“The NP correction in the Coulomb gauge without transverse partthis is not the case and the peak of a form factor appears in

namely, with only the positive-energy states®, the NP the considerably low momentum region as shown_in Fig.
correction for the &, in Table Il is —10.101 eV in the 2(a). Consequently, large transverse form factors in anti-

Feynman gauge, while —10.492 eV in the Coulomb gaug@ucleon states can overlap enough with form factors of muon
hence the gauge dependence is 0.391 eV. On the other har@hd contribute to the NP correction visibly. Comparing the
after the inclusion of the antinucleon states, it is —10.910 e\contributions in the fourth and fifth columns and the Cou-
in the Feynman gauge and —-10.913 eV in the CoulombBomb NP contributions in the last columns in Tables Il and
gauge hence the gauge dependence is reduced to orly, one can confirm that almost all of the antinucleon con-
0.003 eV. We can see the similar effect of antinucleon stateibution comes from the transverse contributions.
in Table IV, too. This shows that the antinucleon states have In the NP calculation with the nonrelativistic RPA, there
an important role for the gauge invariance of the two-photorexists a large violation of gauge invariance, when only the
exchange process involving the nucleus even in this lightadder and cross diagrams are taken into account. It was then
muonic atoms where the relativistic effects are not so largefound that the seagull diagram was necessary for the gauge
Why the antinucleon states provide a non-negligible effecinvariance[3,4]. Therefore, it is interesting to see whether
on the NP correction can be understood as follows. Théhe effect of antinucleon states corresponds to the effect of
transverse form factors which connect upper and lower comthe seagull diagram in the nonrelativistic nuclear model in
ponents of Dirac spinors become large in the transition to théhe NP correctior(see Fig. 4 Indeed, these two effects are
negative-energy states due to the inversion between the largemalogous to each other; namely, the contribution from the
and small components of Dirac spinors. Since the form facantinucleon states to the NP correction mostly comes from
tor to the highly excited states usually has a peak around thiéae transverse-photon exchange, while the seagull diagram
momentum corresponding excitation energy, it may be exinvolves only the transverse-photon field.
pected that the form factor of antinucleon states with the For quantitative comparison, we have calculated the
excitation energy more than 1 GeV cannot overlap withmuonic NP correction for'®0 in the collective model
those of the muon, in which the excitation energies are takef21,2g, in which the excitation modes are assumed to be
into account up to £250 MeV in the present calculation. Forconcentrated in a single resonant state for each spamd
the antinucleon states which are bound strongly, howeveisospinr with excitation energies given by
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E::#+ %>::<%+ E:::% %>::<%
D
FIG. 4. The relation between

Muon Nucleus Muon Nucleus Muon Nucleus Muon Nucleus
the relativistic and nonrelativistic
(a) Diagrams defined by positive-energy  (¢) Ladder and cross diagrams nuclear models in the two-photon
intermediate states for nuclear lines exchange diagrams. The contribu-
- tion from the antinucleon states in
the relativistic nuclear model cor-
Muon Nucleus Muon Nucleus responds to the seagull diagram in
the nonrelativistic nuclear model
_ _ if the positive-energy excitations
— calculated by the relativistic
nuclear model agree with the ex-
citations calculated by the nonrel-
Muon  Nucleus Muon  Nucleus Muon  Nucleus ativistic nuclear model.
(b} Diagrams defined by negative-energy (d) Seagull diagram
intermediate states for nuclear lines
(A) Relativistic nuclear model (B) Nonrelativistic nuclear model
[100(1 - 7) + 2007](1 - A"Y3A"Y3 for A =0, above, however, it should not be concluded that the nonrel-

- _ A-1/3)p-1/3 _ ativistic treatment of nucleus cannot provide reliable esti-
oy =1 951 -ATHA 13 a1/ forr=1, mate of the NP correction since the contribution of the anti-
[75(1 - 7) +1607](1 -A"9A forx=2. nucleon states is similar to that of seagull diagram which
(23)  arises from the nonrelativistic treatment of the nucleus.
Hence, as far as the present numerical estimate of the NP
In Table V, we show the results with the effective massenergy shifts is concerned, there exists an essential equiva-
generated from MFT and with the ordinary nucleon masdence between the nonrelativistic treatment of NP and the
(numbers in parenthesisThe comparison reveals that for the relativistic calculation with RRPA based on QHD in which
net NP correction, the results with the effective mass reprothe energy dependence in E@.5) is ignored. As seen in
duces the relativistic results better as in the case of th&able V, on the other hand, we have to note that present
EWSR. It may be expected that the EWSR value gives aelativistic results are somewhat enhanced over nonrelativis-
good prediction for the NP estimate of the light muonic at-tic one if the usual nucleon mass is used in the nonrelativistic
oms as well as the electronic atoms. The contribution to thealculation. The effective mass effect in the NP correction
NP energy from 1state, however, is smaller than that of the may give the explanation of the anomaly in th@ fine-
RRPA in spite of the result that the EWSR value of nonrel-structure splitting energies of muonic heavy atoms, in which
ativistic model with effective mass is enhanced over that othe nuclear polarization contributes to the muonic levels at a
the relativistic calculation. This discrepancy may be attrib-keV [4,29].
uted to the difference between the nuclear excitation energies It is extremely important to carry out a similar analysis for
given by Eq.(23) and the RRPA calculation. In particular, electronic NP correction in heavy atoms, where it is expected
the NP effects with the collective model are more sensitivehat the effect of antinucleon states is more remarkable in
to the excitation energy since the excitations have only onerder to obtain the gauge-invariant resf#{2§. The inves-
collective state for each spin-parity mode. tigation of the antinucleon contribution to the NP corrections
For the contribution of the seagull diagram, on the otherin electronic ground and excited states as well as muonic
hand, only the charge distribution of the nuclear ground statstates may provide an evidence of the strong attractive self-
is required together with the nucleon mass. Therefore, thenergy of antinucleon in the nucleus.
seagull diagram is mostly independent of the model. The
total contributions of seagull diagram with the effective mass V. SUMMARY
are —0.898 eV and -0.473 eV in the Feynman and Coulomb ’
gauges, respectively. Comparing with Table Ill, in which the We have evaluated the NP correction to ttsg lstate of
contributions of antinucleon states are —0.808 eV in themuonic'®0O using the RRPA on the MFT basis and obtained
Feynman gauge, while —0.421 eV in the Coulomb gauge, ithe similar results between the linear and the nonlinear
is confirmed numerically that the correction due to thenuclear models. By relativistic treatment, the antinucleon
seagull diagram with the effective mass agrees with the corstates, as well as the antimuon states, both of which represent
tribution from the antinucleon states very well. the blocking effect of the response of vacuum, appear in the
We have shown that the antinucleon states have an impomtermediate states and contribute to the NP correction. The
tant role in the nuclear-polarization calculation. As discussedransverse form factor of the bound antinucleon state has a
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TABLE V. Same as Table Il except for the nonrelativistwollective) model is employed in the NP
calculation. The seagull diagram contributes to the NP correétienoted by SG in second coluinnstead
of the contribution from antinucleon states. The effective mass from the MFT calculation with HS is taken
into account in the NP calculation. In the parenthesis, the result with ordinary mass of nucleon is also shown

for comparison.

AT oN Feynmaf Coulom® CNP

o+ -0.894-0.680 -0.896-0.682 -0.896-0.682
+0.068+0.052 +0.057+0.043 +0.057+0.043

SG +0.019+0.019 +0.000+0.000

SG -0.036-0.027 -0.000-0.000
Total -0.843-0.64) -0.839-0.639 -0.839-0.639
1~ + -6.968-4.792 -6.992-4.809 -6.673-4.589
+ +0.849+0.589 +0.518+0.356 +0.138+0.095

SG +0.315+0.203 +0.179+0.119

SG -1.114-0.738 -0.609-0.401
Total -6.918-4.743 -6.904-4.740 -6.535-4.4949
2+ + -2.177-1.65% -2.188-1.665 -2.148-1.635
+ +0.196+0.149 +0.176+0.139 +0.145+0.110

SG +0.101+0.0759 +0.057+0.042

SG -0.188-0.140 -0.100-0.076
Total -2.063-1.573 -2.055-1.565 -2.003-1.525
Total -10.039-7.129 -10.076-7.156 -9.717-6.906
+1.113+0.785 +0.75%+0.533 +0.340+0.248

SG +0.435+0.292 +0.236+0.156

SG -1.338-0.905 -0.709-0.477
Total -9.824-6.957) -9.798-6.9449 -9.3771-6.657

*The NP correction in the Feynman gauge.
The NP correction in the Coulomb gauge.
“The NP correction in the Coulomb gauge without transverse part.

large overlap with that of muon. Therefore, the contribution APPENDIX: GAUGE INVARIANCE IN THE NUCLEAR
of antinucleon states is non-negligible in the NP correction POLARIZATION

though the energy denominators are considerably large. Even In the nuclear-polarization tensor defined by

in the NP correction for the light muonic atom #©, there

is a 4—8% effect of antinucleon states and it is essential for (

auge invariance. 4 " —
? F%r muonic®0, we could obtain the result that the cor- (a9 )_?
rection due to the seagull diagram and the contribution from
the antinucleon states agree fairly well. Consequently, the (A1)
relativistic QHD gives similar results with the nonrelativistic
results by taking into account the effective mass. However, ifye assume the completeness of the nuclear intermediate

remains to be studied for heavy muonic and electronic atgiates and the charge-current conservation in the transition
oms, for which the N_P effects can be measured experimenyensities. Then, multiplying EqAL) by q,, one obtains
tally. The NP effects in these atoms may depend rather sen- ”

sitively on the details of the relativistic nuclear models. The
quantitative estimate of NP effects with the QHD-type mod- 9,14 (@,0,9') = 2 {on(=a") ’|],Q(q’)|i>
els may provide information on the strong binding of the I

antinucleon. R R
= (IIR@)X1 [en(=a)l)
U CINHCRIDE (A2)

JR@Dn I (=), ~ =D IR@ )

(l)_(,')N+iE|rE (,()+(J)N_iE|rE
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diagrams. For the electromagnetic charge and current operased in the present paper, the commutation relation in Eqg.

tors of the nucleus,

A
o= Q(; g)eiq-fi.

A
]N(Q')ZE{Q(S 0->e_iq"ri+ﬂvi.<a 0 )e—iq’-ri]

0 0 -0
(A3)

(A2) vanishes and hence, the relation leading to the gauge
invarianceq, I1{"(»,q,q")=0 follows.

The charge-current operators indicated in Ed$) and
(17), on the other hand, do not commute due to the second
term of the right-hand side in E@16). Therefore this con-
tribution results in gauge dependence when the ladder and
cross diagrams only are considered. The gauge invariance
with the charge-current operators of Eq%6) and (17) is
achieved if the seagull contribution is also included. To see
this, consider the reduction formula for the polarization
propagator of virtual photof30]:

(2m)* 8K + Pg—k=P )" =i J d4Xd4ye_ik'Xe_iky{ (BITLI*003 ()| = 50 = YO)( Bl 3“(), A*(y) ]| @)

- &iyo[é(xo - y°)</3|[J“(X),A”(Y)]|a>]} :

(A4)

The last term of the right-hand side usually vanishes. In factyyiting A*(x) in terms of the canonical variables it is pos-
adding the gauge fixing term and using the indefinite metricgjpe to show thafl?% vanishes and
guantization of the electromagnetic field, the canonical elec- s¢

tromagnetic fieldA, commutes with the electromagnetic cur-
rent of Eqs.(16) and(17) too. The second term of the right-

hand side is the so-called seagull contribution

TT4% = [A(x), J"(y) Jo=yo- (A5)

[A(X), 3(y) oo = — ﬁN[Z(x) ), 3 eoyo.
(A6)

It can be easily seen that the four-divergence of this seagull
term cancels the nonvanishing term of the(x),J"(y)]
showing the gauge invariances of the model.
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