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Consequences of wall stiffness for g@-soft potential
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Modifications of the infinite square well(&) and X5) descriptions of transitional nuclear structure are
considered. The eigenproblem for a potential with linear sloped walls is solved. The consequences of the
introduction of sloped walls and of a quadratic transition operator are investigated.

DOI: 10.1103/PhysRevC.69.044307 PACS nuner21.60.Ev, 21.10.Re, 27.79q

[. INTRODUCTION model has so far been used only with a first-order electric
quadrupole transition operator, but the likely importance of
The E5) and X5) models have been proposed by lach-second-order effects has been noted by Af23 and by
ello [1,2] to describe the essential characteristics of shapePietralla and GorbachenK@3]. In the present work, the in-
transitional forms of quadrupole collective structure in nu-finitely stiff confining wall is replaced with a gentler, sloped
clei. The K5) model, fory-soft nuclei, and the ¥) model,  wall, constructed using a linear potential. The effects upon
for axially symmetric nuclei, are both based upon the ap-<alculated observables of the introduction of a sloped wall
proximation of the potential energy as a square well in theand of a quadratic transition operator are addressed. A com-
Bohr deformation variablg. These models produce predic- puter code for solution of the sloped well eigenproblem is
tions for level energy spacings and electromagnetic transitioprovided through the Electronic Physics Auxiliary Publica-
strengths intermediate between those for spherical oscillatagion Service[24].
structure and for deformeg-soft [3] or deformed axially
symmetric rotoif4] structures. Il. SOLUTION METHOD
The X(5) predictions for level energy spacings and elec-
tromagnetic transition strengths have been extensively com- Consider the Bohr Hamiltoniaf#]
pared with data for nuclei in transitional regions between
spherical and rotor structuf&—13. For several such nuclei, -

219 40 1 9 . d
. : . “ =B ot oo sin 3y —
including theN=90 isotopes of Nd, Sm, Gd, and Dy, the 2B| p*apB"” 9B PBsin3ydy dy
X(5) predictions match well the yrast band level energies and

the excitation energy of thk™=0; bandheadFigs. Xa) and

1(b)]. The X(5) predictions also reproduce essential features _ 1 D Mi +V(B,y) 1)

of the electric quadrupole transitions from tK&=0; band 4> Vs

to the ground state band: the presence of strong spin- sirf| y- 3K

ascending interband transitions but highly suppressed spin-

descending transitions. where 8 and y are the Bohr deformation variables and the

However, several discrepancies exist between tii§) X M, are angular momentum operators, with potential
predictions and observed values. The spacing of level ener- 0, B<B
gies in theK™=0; band is predicted to be much larger than in V(B) = { PP Pw (2
the ground state band, but empirically at most a slightly C(B=Bw: B> Pu-

larger energy scale is found for the"=0; band[Fig. 1(C)]  gjnce this potential is a function of only, the five-
[9,11,13. This overprediction is encountered in descriptionsgimensional analog of the central force problem arises. The
of transitional nuclei with the interacting boson mod&M) | ,5,al separation of “radial(8) and “angular’ variables
and geometric collective mod¢GCM) as well[18,19. For [3,25] occurs, vyielding eigenfunctions of the form
ngc]e| with yrast band level energies matching th@)pre- W(B, v, 0)=f(B)D(y,w), wherew=(9,, 3,, 3, are the Eu-
dictions, the yrast ban8(E2) strengths tend to fall below ler angles. The angular wave functiofiy, ), common to

the X(5) predictions, and sometimes even below the PUrEI y-independent problems, are knoy26]. For the radial

rotor predictions(see Fig. 2 of Ref[11]). For the N=90 ; oo -
. - - problem, following Rakavy{25], it is most convenient to
nuclei, the transitions between th&’=0; and ground-state | . ik the “auxiliary” radial wave functione()

bands have strength ratios typically matching those pre- ,, . . . .
dicted, but their strength scale is considerably weaker thagﬁ f(B). This function obeys a - one-dimensional
predicted[5,7,9,20,21

It is thus necessary to ascertain which aspects of {5 X " P K
description are most important in determining the predictions TR + Y +V(B)-E|¢(B) =0, 3
for these basic observables. The square well potential in-
volves an infinitely steep “wall” in the potential as a function where the centrifugal coefficient is related to the ()

of B, presumably a radical approximation. Moreover, theseparation constant (7=0,1,..) by a=(7+1)(7+2). For

chrédinger equation with a “centrifugal” term
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FIG. 1. Evolution of the(a) 41 energy,(b) 05 energy, andc)
energy spacing scale of the excitetl €equence, all normalized to
the 2{ energy, across thB=90 transition region, for the NdJ),
Sm(O), Gd (A), and Dy( #) isotopic chains. Shown for compari-
son are the ¥6) predictions(solid line) and the present sloped well
predictions for various values of the parame&defined in Eq.
(12—S=100 (long-dashed ling S=50 (short-dashed line and S
=25 (dotted ling. Data are from Ref414—17. (Figure based upon
Ref. [9].)

problems with a more general potenti®(3,y)=V4(B)
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FIG. 2. Energies of low-lying Dand 2 levels for the sloped
well potential with S=50. The potential without the five-
dimensional centrifugal term is showsolid curve, together with
the potential including the centrifugal contributions o0 and
L=2 (dashed curvgs The energies of the corresponding states for
the X(5) model are shown for comparison at rigfithe S=50 cal-
culation is for B/#?=1 andB,,=1, while the X5) calculation is
scaled togB,,=1.40 to provide the same ground state eigenvalue.

where the potential is linear i8, an analytic solution does
not exist for the full problem with centrifugal term. Fer
=0 only, Eq.(3) reduces to the Airy equation, with solutions
o(B) = Ai[cY¥(B-B,)—c %3], wherec= (2B/#?)C.

The analytic solutions obtained far=0 provide a very
efficient basis for numerical diagonalization to obtain the
true « # 0 solutions of the radial equatigR). It is first nec-
essary to obtain a basis set@f0 solutions:

«=0(g) = NuBY 23yl (™) 28], B= Bu
g NAI[C3(B - B) = 2%, B> By
@)

The eigenvalues of are determined by the condition that
¢©(B) be continuous and smooth at the matching pgint
=B, This yields a transcendental equation which is solved
numerically fore. The normalization coefficient; andN,
then follow from continuity and the requirement
J5dBle(B)>=1. Since the radial equatidB) has the form of

a one-dimensional Schrodinger equation, its solution for gen-
eral values ofe may be carried out as the matrix diagonal-
ization problem for a corresponding “Hamiltonian” mathix
including the centrifugal potential, with respect to these

+V,(y), lachello[2] showed that an approximate separation=0 basis functions, with entries

of variables occurs, provided thet(y) confines the nucleus
to y=0 (see Ref[2] for detail9. In this “y-stabilized” case,

the eigenfunctions are of the formW¥(B,y,w)

< f(B) 7(y) dxm(w), where the ¢y m(w) are the conven-
tional rigid rotor angular wave functiorid] for angular mo-

mentumL, z-axis projectionM, and symmetry axis projec-

a= - - 1 -
dyei T+ a f dBer(B) 567(B)-
0 B
Convergence in this basis is rapid—for instance, the eigen-
values of the ground state and first excited radial solution
converge to within~1.5% oftheir true values with a trun-

hjj )

tion K. The auxiliary radial wave function again obeys EQ. cated basis of only five eigenfunctions. Values shown in

(3), but now Witha:%L(L+l)+2.
In the regionB< B, the potentialvV(B) of Eqg. (2) van-

this paper are calculated for a basis size of 25. For illus-
tration, an example potential, with centrifugal contribu-

ishes, and the radial equati@d) reduces to the Bessel equa- tion, and the corresponding calculated eigenvalues are

tion of order v=(a+1/4)2. The solutions with the correct
convergence properties at the origin arep(B)
x BY2) (£12B), wheree=(2B/#2)E. In the regionB> B,

shown in Fig. 2.
Electromagnetic transition strengths can be calculated
from the matrix elements of the collective multipole opera-
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tors. The generaE2 operator for the geometric model integrals reduce to  1,=/B%Bf ik 3(B)BF (B
[27-29 may be expanded in laboratory frame coordinatesand 1,=JB%Bf .k 3(8)B*f«3(B). Transition strengths
oy, as[30] are B(E2;J—J')=(20' +1)/(23+ (I’ |M(ED)||) 2
o 2 uadrupole moments, defined b e
M(E2; ) = Aray, +Agla X al )+ - 6) 2(1677/%)1/2(JJ|EDT(E2;O)|JJ>, may be calculate)cli ae%
For the present purposes, it is necessary to reexpress thig167/5)Y2(31J20[JI)(J||9N(E2)|J).
operator in terms of the intrinsic frame coordinates and The following calculations can be considerably simplified

D?(w) [31], giving, to second order i, if it is noted that the eigenvalue spectrum and wave functions
1 depend upon the Hamiltonian parametBrs3,,, andC only
M(E2; ) = A1B|: Di’60057+ ﬁ(Di; + Di*-z)Sin 7] in the combination
v
2B
- ;Azﬁ D;,0C0s 2y — 3

to within an overall normalization factor on the eigenvalues
and overall dilation of all wave functions with respectgo
(This follows from invariance of the Schrodinger equation
solutions under multiplication of the Hamiltonian by a con-
In both they-independent ang-stabilized cases, the ma- stant factor and under a transformation of the potential
trix element ofN(E2; 1) between two eigenstate factors into \v'(B8)=a?V(ap) [33].) For a given value oS, the numerical
an angular integral and a radial integral. Here we considegolution need only be obtained once, at some “reference”
matrix elements between unsymmetrizgdtabilized wave choice of parameterge.g., B/#%=1 and B8,=1), and the

X(D2,+ D% ,)sin 27} . 7)

functions[4] solution for any other well of the san® can be deduced
23+ 1\12 analytically. Specifically, suppose the reference calculation
W okom = (W) D,J\;;K(w)q)aKJ(B, 7, (8) yields an eigenvalue and a normalized radial wave function

f(B). Then a calculation performed for the saBi@andS but

as needed in calculations for the rigid rotor(sx or for adifferent widthp, produces the eigenvalug and nor-
y-stabilized sloped well models. The matrix element sepaMalized wave functiorf’(8) given by the simple rescalings,

rates into intrinsic and Euler angle integrals, yielding

(W iy [|OEZ; | aicam)

7—28

’—
& =Py €&,

£'(8) =By >(BIB,), (13

, 2
=(=)?(IK2(K - K')|JK)[A1|1 - \/;Azb} (9 and the radial integrals scale Itp=81, andl,=.2,. Thus,
the essential parameter which controls the relative strengths
in terms of of the linear and quadratic terms of tli®2 operator isA’
=A,B6,/A,, in terms of which the matrix element in E(R)

ly= f dT(D;;K;J;(,B, Y)B cos y® .xy(B, ), 'S
(=) I'K'2(K - K")IK)
* 2
l,= f dr® . 5(B, %) B% cos 2yD 5(B,y)  (10) ><A1,8W{I1|BW:1— \/;Ar|2| 5 1} (14)
for K'=K=0 or Ratios of E2 matrix elements depend only up&andA’.
1 A computer code for solution of the sloped well eigen-
|1Efd7q);'wy(:3’ Y)—=pB sin y® (B,7), problem and for calculation of the radial matrix elements
V2 between eigenstates is provided through the Electronic Phys-

ics Auxiliary Publication Servicg24]. This code also calcu-

* 1 ) lates observables for thg® and X5) models.
lo= f dr® 15 (B y)(—)TEﬁz sin 2y® 5(8,7)
\“‘

(11 Ill. RESULTS

for K'=K+2, wheredr= g*dg|sin 3y|dy and the reduced In the following discussion, let us restrict our attention to
matrix element normalization convention is that of Rosey-stabilized structure relatively close to thg¢5Xlimit of the

[32]. (The matrix elements of theymmetrizedvave func-  sloped well model, since this regime is most directly relevant
tions, forK# 0, may be calculated from this matrix element to the transitional nuclei recently considered in the context of
as usuall4].) Considering the preser-y separated wave the X(5) model. The sloped well potential approaches a pure
functions®(B, y) =f(B) (), for the case of noy excitation  linear potential as3, vanishes at fixed slopghat is, asS

(so K'=K=0), and under the approximatiop=~0, these —0) and approaches a square well as the slope goes to in-
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larger averag@ values than do the low-spin members, so the
quadratic term is relatively more important for the higher-
spin levels. In the case of destructive interference, the curve
showing the spin dependenceR(E2) values, normalized to
B(E2;2; —07), falls below that obtained with the simple lin-
earE2 operator, as seen in Figiad. The broad range of such
curves obtained experimentaligee Ref[11]) can be quali-
tatively reproduced with different values &f. Destructive
interference also reduces the interbd@(&?2) strengths and
the in-bandB(E2) strengths within the&K™=0} band, relative
to B(E2;2; — 07) [Fig. 5(b)], ameliorating the overprediction
of interband strengths in the (¥ model. The spin-

FIG. 3. Yrast andk™=05 band level energies, normalized to descending interband transitions in thg5X model have
E(2}), for 15Nd (0), 152%Sm(0), 15Gd(A), 5Dy (4), and highly suppressed lined2 matrix elements, so these tran-
162yh (¢). The predictions for ¥5) (solid curve and the sloped Sitions are very sensitive to even a small quadratic contribu-
well with S=50 (dashed curveare shown for comparison. Data are tion. Values ofA’ which give only moderate modifications to
from Refs.[12,14-17,3% the other transitions can give complete destructive interfer-

ence for these spin-descending transitions. The spin depen-

finity at fixed B, (that is, asS— ). It can thus produce a dence of quadrupole moments within the yrast band is shown
much wider variety of structures than are considered in thén Fig. 4(b).
present discussion. However, calculations for the full range Observe that the situation just described differs consider-
of these cases may be obtained with the provided computébly from that encountered for a pure rotor. For a rigid rotor,
code[24]. the intrinsic wave functiond «(8,7v) is the same for all

First we examine the energy spectrum, comparing it to théevels within a band, sd, provides only a uniform adjust-
X(5) spectrum. Naturally, the eigenvalues for the sloped wellment to the intrinsic matrix element between bands. Inclu-
are lowered relative to those for thg’5§ well of the same sion of the second-order term #(E2) thus leaves un-
B.., as the outward slope of the wall effectively widens thechanged the ratio of any twB(E2) values within a band or
well, causing level energies to “settle” lower. The essentiathe ratio of any twoB(E2) values between the same two
feature is that the widening of the well introduced by thebands.
wall slope is a relatively small fraction of the well width at  Although inclusion of a quadratic term in tH€2 operator
low energies, while it is much greater at high energies, agvith A’>0 can at least qualitatively explain the discrepan-
may be seen by inspection of the potentrb. 2). Thus, the cies between the (§) B(E2) predictions and empirical val-
high-lying levels experience a disproportionately greater inyes, this explanation is not entirely satisfactory. Many differ-
crease in the accessible rangefvalues than do low-lying ent spin dependences of tiE2) values within the yrast
levels and consequently are lowered in energy relative to thBand are observed for nuclei with similar energy spelditi
low-lying levels. and these require correspondingly varied, appareadijoc

From the calculated energies, it is seen thaSds de-  choices of the parameté( for their reproduction. Moreover,
creased from infinity the higher-spin levels within a band areit is possible to obtain estimates for the coefficieAisand
lowered more rapidly than the lower-spin members, resulting, in the geometri€2 operator based on a simple model of
in a reduction of the ratidR,,=E(41)/E(2]) for the yrast the nuclear charge and current distribution, as described in
band[Fig. 1(a)] and a lowering of the curve & versus) for  Refs.[28,29, and these values yiel ~-0.2, giving weak
each bandFig. 3). The excited bandhead energies are low-constructiveinterference for the low-lying transitions. In the
ered as wel[Fig. 1(b)]. But the most dramatic change is the interacting boson model, tHg2 transition operator is of the
rgpld collapse of_the spacing scale of levels within .the eXform TE? o (d x§+s*xa)(2)+x(dea)(2), in terms of the
cited bands relative to that of the ground state bgi?lgs. boson creation operators’ and df, where the valuey=
1(.c).and 3. for?z 50, .the predicted energy spacing SCf"lIe—\ﬁ/Z is commonly used in calculations involving the tran-
W|th|n.the K7=0; pand is reduced sufﬁmentlyito be CONSIS- sition from spherical to axially symmetric deformed structure
tent with the spacings found for ti¢=90 transitional nuclei, . _ ~ ~

[35,38. In the classical limit(d" x3+s'x d)® may be ap-

while the energies of low-spin yrast band members and th X } > i : )
K7=0} bandhead are still relatively close to thei5X val- proximately identified with the linear term of the geometric

ues, as shown in Fig. 3. model transition operator angdd’ x d)® with the quadratic
The second-order term in ti€2 operator7) can interfere  term. The addition of these terms is constructive for low-
either constructively or destructively with the first-order lying transitions, and the relative contribution of the second-
term. For all transitions between low-lying levels consideredorder term is comparable to that obtained Adr=-1 in the
here, the radial integralg andl, in Eq. (14) have the same present description.
sign. Thus, negative values &f lead to constructive inter- The effect of sloped walls on the calculatdg(E2)
ference[note the negative coefficient in E@1l4)], while  strengths is dominated by the greater broadening of the well
positive values lead to destructive interference. For tff® X at high energies than at low energies discussed above. While
square well, the higher-spin members of the yrast band havall the eigenfunctions “spread” i extent relative to those

20

EWJ)/EQD)
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FIG. 4. Yrast band3(E2) strengths and squared quadrupole moments, normalizBgE®; 2; — 0;). (a,b) Values for the X5) model
(S—) calculated with a quadratig2 transition operator, foA’ ranging from -1 to 2 in equal step&,d) Values for the sloped wellS
=50, 100, 200, 500 and) calculated with a lineaE2 transition operator.

for the square well, this spreading is most pronounced for thepposite in sense to those produced by introduction of the
high-lying levels. Since the first-ord&2 operator is propor- second-order term in thE2 operator. The paramete®sand
tional to 8, the E2 matrix elements tend to be enhanced forA’ may be chosen so as to balance these two effects against
the higher-lying levels. In the yrast band, the in-b@{&2)  each other, except that for the spin-descending interband
strengths for higher-spin band members are increased relgansitions the strong destructive interference tends to domi-
tive to those for the lower-spin band members, as are thaate.

quadrupole moments for higher-spin band memtjéigs. To allow comparison with empirical values, in Fig(ah

4(c) and 4d)]. Several of the interbanB(E2) strengths are predictions obtained with the sloped wall potential and qua-
also increased relative t®(E2;2;—0;) (Fig. 5. The dratic E2 operator are shown for parameter values chosen to
changes irB(E2) values induced by decreasifgre largely  approximately reproduce the observed low-energy structure
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Sloped well

FIG. 5. Level schemes and se-
lected B(E2) strengths for(a) the
X(5) model with a linearE2 op-
erator,(b) the X(5) model with a
quadratic E2 operator (A’ =0.7),
and (c) the sloped well(S=50)
with a linear E2 operator. Arrow
thicknesses are proportional to the
logarithm of theB(E2) strength.
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of this band are largely independent of the specific choice of
y-confining potentialV,(y). This potential determines the
bandhead energy as well as thaependent wave function
7(y). The wave function, however, simply contributes a nor-
malization factor [|sin 3y|dyz,(y)sin yn(y) to I, in Eq.
(11), and an analogous factor tg, common to all electro-
magnetic matrix elements between #&=2] band and the
K™=0; and G, bands. Although these quantities can be cal-
culated for any particular hypothesized form foy(y), such

as a harmonic oscillator potenti@], they in practice may be
treated as free parameters.

The essential feature of th€™=2] band is that the radial
wave function for each of its members is the “ground state”
solution of the radial equatio¢8) for the given angular mo-
mentum. ThisK™=2] band is thus essentially a duplicate of
the yrast band, displaced to a higher energy by the excitation

sloped well with parameters chosen to approximately reproduce thenergy in they degree of freedom, with energy spacings and

observed low-energy structure 5™Nd (S=75, A’=0.6) and(b) as
measured forrNd [7,14. Arrow thicknesses are proportional to
the logarithm of theB(E2) strength. Limits are indicated on experi-
mentalB(E2) strengths for transitions with unknovE2 /M1 mix-

ing ratios.

of 1Nd. The experimental values are given in Figh)6
Finally, let us consider the effects of wall slope on thements by<5% relative to those of the yrast bap@hus, the

properties of theK™=2; band, or y band. Within the
y-stabilized separation of variables of REd], the properties

E(J)/E2])

BIE2,J}—(J-2)31/B(E2;25 -07)

20

0.2
0.1

0.0

radial wave functions for the even spin members identical to
those for the yrast band, but with the addition of odd spin
members and with different angular wave functio(idote

that for K# 0 Bijker et al. [13] use a different separation
procedure from that in Ref$2,6], yielding a modified form

of the radial equation witha=3[L(L+1)-K?]+2, which
changes the energy spacings and in-band radial matrix ele-

dependence oK™=2; band properties upon wall slope
closely matches that of the yrast band properties. Notably,

0.8 (b)

0.4}

0.2

B[E2;J; - (J+2){1/BIE2;J; - (/-2)1]

0.0

1.0 J

osf @ 2
0.6 ' /
04 T ~ ; ;

0.2f RN RN /
. .

0.0F ~ ~~

BIE2,J} - (J+2)1/B(E2;25-07) (107%)
/
/

FIG. 7. Dependence of properties of tK&=2] band upon wall slope. Values are shown for thg)Xmodel (solid line), S=100
(long=dashed ling S=50 (short=dashed ling and S=25 (dotted ling. (a) Yrast, K™=0, and K™=2; band energies, illustrating the
identical dependences of the yrast aB=2] bands. TheK"=2] bandhead energy is arbitrafgee text (b) B(E2) branching ratios for
AJ=+2 transitions from th&K™=2] band to the yrast bandc,d) B(E2) strengths forAJ=+2 transitions from th&(™=2] band to theK™
=05 band, normalized t(B(EZ;z;—> 0;). The separation of variables of Refg,6] has been used for all calculations.
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the K™=27 band does not demonstrate the rapid decrease in IV. CONCLUSION
energy spacing scale with decreasing wall slope exhibited by
the K™=0; band, as illustrated in Fig.(®. This is at least The use of g3-soft potential within the geometric picture

qualitatively copsistent with th+e observed similarity of t.he has recently received attention as providing a simple descrip-

yrast andk"=2;, but notK"=0, band energy spacings in-tion of nuclei intermediate between spherical and rigidly de-

the N-90 5(5) candld'ate nuctI)eL f t@=2" band formed structure. From the present results, it is seen that the
Since the even spin members of #ié=2, band possess gnergy spacing scale of states within excited bands is highly

the same radial wave functions as the yrast band membe nsitive 1o the stiff f th Il bound L. A pot
the strengths of transitions within tH€™=2} band or be- SSNSIVE 10 the SUTNEsS ot the Well boundary wall. A poten-

tween this band and the yrast band depend upon the sartig! for which the well W|dth_|ncreases with energy can pro-
radial matrix elements as do the yrast in-band transitiorfluce & more compact spacing scale for excited states than is
strengths and quadrupole moments already considered. Co@btained with a pure square well, providing much closer
sequently, decreasing wall slope leads to a moderate e@greement with the observed energy spectra for nuclei in the
hancement of the interband transition strengths involvingN= 90 transition region. It is also found that a second-order
higher-spin levels, directly commensurate with the increasesontribution to theE2 transition operator can lead to a wide
shown in Figs. &) and 4d). The dependence of branching range of possible yrast bam®{E2) spin dependences, as well
ratios from theK™=2; band to the yrast band on wall slope is as to modifications of off-yrast matrix elements. However, a
shown in Fig. Th). Transitions between th€”=27 band and  systematic understanding of the proper strength for this

the K™=0; band depend instead upon radial matrix elementgecond-order contribution is needed if tB2 operator is to
which contribute to theK™=0; to yrast band transition pe applied effectively.

strengths.(The small radial matrix element values which
yield the characteristic suppression of spiscendingran-
sitions from theK™=0; band to the yrast band here yield a
suppression of spiascending K=2; to 0; transitions) De-
creasing wall slope yields enhancement of the allowed tran- . ) ]
sitions and, for the low-spin levels, either little change or Discussions with F. lachello, N. V. Zamfir, R. F. Casten,
substantial reduction of the Suppressed transit[ﬁﬁ'@_ Kc) N. Pietralla, E. A. McCutchan, L. Fortunato, and A. Leviatan
and 7d)]. Detailed quantitative predictions for th¢"=2;  are gratefully acknowledged. This work was supported by
band level energies and electromagnetic observables, usiiige U.S. DOE under Grant No. DE-FG02-91ER-40608 and
either the separation of variables of R¢f.6] or that of Ref.  was carried out in part at the European Centre for Theoretical
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