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Modifications of the infinite square well E(5) and X(5) descriptions of transitional nuclear structure are
considered. The eigenproblem for a potential with linear sloped walls is solved. The consequences of the
introduction of sloped walls and of a quadratic transition operator are investigated.
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I. INTRODUCTION

The E(5) and X(5) models have been proposed by Iach-
ello [1,2] to describe the essential characteristics of shape-
transitional forms of quadrupole collective structure in nu-
clei. The E(5) model, forg-soft nuclei, and the X(5) model,
for axially symmetric nuclei, are both based upon the ap-
proximation of the potential energy as a square well in the
Bohr deformation variableb. These models produce predic-
tions for level energy spacings and electromagnetic transition
strengths intermediate between those for spherical oscillator
structure and for deformedg-soft [3] or deformed axially
symmetric rotor[4] structures.

The X(5) predictions for level energy spacings and elec-
tromagnetic transition strengths have been extensively com-
pared with data for nuclei in transitional regions between
spherical and rotor structure[5–13]. For several such nuclei,
including theN=90 isotopes of Nd, Sm, Gd, and Dy, the
X(5) predictions match well the yrast band level energies and
the excitation energy of theKp=02

+ bandhead[Figs. 1(a) and
1(b)]. The X(5) predictions also reproduce essential features
of the electric quadrupole transitions from theKp=02

+ band
to the ground state band: the presence of strong spin-
ascending interband transitions but highly suppressed spin-
descending transitions.

However, several discrepancies exist between the X(5)
predictions and observed values. The spacing of level ener-
gies in theKp=02

+ band is predicted to be much larger than in
the ground state band, but empirically at most a slightly
larger energy scale is found for theKp=02

+ band[Fig. 1(c)]
[9,11,12]. This overprediction is encountered in descriptions
of transitional nuclei with the interacting boson model(IBM )
and geometric collective model(GCM) as well [18,19]. For
nuclei with yrast band level energies matching the X(5) pre-
dictions, the yrast bandBsE2d strengths tend to fall below
the X(5) predictions, and sometimes even below the pure
rotor predictions(see Fig. 2 of Ref.[11]). For the N=90
nuclei, the transitions between theKp=02

+ and ground-state
bands have strength ratios typically matching those pre-
dicted, but their strength scale is considerably weaker than
predicted[5,7,9,20,21].

It is thus necessary to ascertain which aspects of the X(5)
description are most important in determining the predictions
for these basic observables. The square well potential in-
volves an infinitely steep “wall” in the potential as a function
of b, presumably a radical approximation. Moreover, the

model has so far been used only with a first-order electric
quadrupole transition operator, but the likely importance of
second-order effects has been noted by Arias[22] and by
Pietralla and Gorbachenko[23]. In the present work, the in-
finitely stiff confining wall is replaced with a gentler, sloped
wall, constructed using a linear potential. The effects upon
calculated observables of the introduction of a sloped wall
and of a quadratic transition operator are addressed. A com-
puter code for solution of the sloped well eigenproblem is
provided through the Electronic Physics Auxiliary Publica-
tion Service[24].

II. SOLUTION METHOD

Consider the Bohr Hamiltonian[4]
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whereb and g are the Bohr deformation variables and the
Mk are angular momentum operators, with potential

Vsbd = H0, b ø bw

Csb − bwd, b . bw.
s2d

Since this potential is a function ofb only, the five-
dimensional analog of the central force problem arises. The
usual separation of “radial”sbd and “angular” variables
f3,25g occurs, yielding eigenfunctions of the form
Csb ,g ,vd= fsbdFsg ,vd, wherev;sq1,q2,q3d are the Eu-
ler angles. The angular wave functionsFsg ,vd, common to
all g-independent problems, are knownf26g. For the radial
problem, following Rakavyf25g, it is most convenient to
work with the “auxiliary” radial wave functionwsbd
;b2fsbd. This function obeys a one-dimensional
Schrödinger equation with a “centrifugal” term
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b2 + Vsbd − EGwsbd = 0, s3d

where the centrifugal coefficienta is related to the Os5d
separation constantt st=0,1, . . .d by a=st+1dst+2d. For
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problems with a more general potentialVsb ,gd=Vbsbd
+Vgsgd, Iachellof2g showed that an approximate separation
of variables occurs, provided thatVgsgd confines the nucleus
to g<0 ssee Ref.f2g for detailsd. In this “g-stabilized” case,
the eigenfunctions are of the formCsb ,g ,vd
~ fsbdhsgdfKLMsvd, where thefKLMsvd are the conven-
tional rigid rotor angular wave functionsf4g for angular mo-
mentumL, z-axis projectionM, and symmetry axis projec-
tion K. The auxiliary radial wave function again obeys Eq.
s3d, but now witha= 1

3LsL+1d+2.
In the regionb,bw, the potentialVsbd of Eq. (2) van-

ishes, and the radial equation(3) reduces to the Bessel equa-
tion of ordern=sa+1/4d1/2. The solutions with the correct
convergence properties at the origin arewsbd
~b1/2Jns«1/2bd, where«;s2B/"2dE. In the regionb.bw,

where the potential is linear inb, an analytic solution does
not exist for the full problem with centrifugal term. Fora
=0 only, Eq.(3) reduces to the Airy equation, with solutions
wsbd~Ai fc1/3sb−bwd−c−2/3«g, wherec;s2B/"2dC.

The analytic solutions obtained fora=0 provide a very
efficient basis for numerical diagonalization to obtain the
true aÞ0 solutions of the radial equation(3). It is first nec-
essary to obtain a basis set ofa=0 solutions:

wi
a=0sbd = HN1b1/2J1/2fs«i

a=0d1/2bg, b ø bw

N2Ai fc1/3sb − bwd − c−2/3«i
a=0g, b . bw.

s4d

The eigenvalues of« are determined by the condition that
wsbd be continuous and smooth at the matching pointb
=bw. This yields a transcendental equation which is solved
numerically for«. The normalization coefficientsN1 andN2
then follow from continuity and the requirement
e0

`dbuwsbdu2=1. Since the radial equations3d has the form of
a one-dimensional Schrödinger equation, its solution for gen-
eral values ofa may be carried out as the matrix diagonal-
ization problem for a corresponding “Hamiltonian” matrixh,
including the centrifugal potential, with respect to thesea
=0 basis functions, with entries

hij ; di,j«i
a=0 + aE

0

`

dbwi
a=0sbd

1

b2w j
a=0sbd. s5d

Convergence in this basis is rapid—for instance, the eigen-
values of the ground state and first excited radial solution
converge to within,1.5% of their true values with a trun-
cated basis of only five eigenfunctions. Values shown in
this paper are calculated for a basis size of 25. For illus-
tration, an example potential, with centrifugal contribu-
tion, and the corresponding calculated eigenvalues are
shown in Fig. 2.

Electromagnetic transition strengths can be calculated
from the matrix elements of the collective multipole opera-

FIG. 1. Evolution of the(a) 41
+ energy,(b) 02

+ energy, and(c)
energy spacing scale of the excited 0+ sequence, all normalized to
the 21

+ energy, across theN=90 transition region, for the Ndshd,
Sm sOd, Gd sDd, and Dysld isotopic chains. Shown for compari-
son are the X(5) predictions(solid line) and the present sloped well
predictions for various values of the parameterS defined in Eq.
(12)—S=100 (long-dashed line), S=50 (short-dashed line), and S
=25 (dotted line). Data are from Refs.[14–17]. (Figure based upon
Ref. [9].)

FIG. 2. Energies of low-lying 0+ and 2+ levels for the sloped
well potential with S=50. The potential without the five-
dimensional centrifugal term is shown(solid curve), together with
the potential including the centrifugal contributions forL=0 and
L=2 (dashed curves). The energies of the corresponding states for
the X(5) model are shown for comparison at right.[The S=50 cal-
culation is for 2B/"2=1 andbw=1, while the X(5) calculation is
scaled tobw=1.40 to provide the same ground state eigenvalue.]
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tors. The generalE2 operator for the geometric model
[27–29] may be expanded in laboratory frame coordinates
a2m as [30]

MsE2;md = A1a2m + A2fa 3 agm
s2d + ¯ . s6d

For the present purposes, it is necessary to reexpress this
operator in terms of the intrinsic frame coordinates and
D2svd f31g, giving, to second order inb,

MsE2;md = A1bFDm0
2* cosg +

1
Î2

sDm2
2* + Dm−2

2* dsin gG
−Î2

7
A2b2FDm0

2* cos 2g −
1
Î2

3sDm2
2* + Dm−2

2* dsin 2gG . s7d

In both theg-independent andg-stabilized cases, the ma-
trix element ofMsE2;md between two eigenstate factors into
an angular integral and a radial integral. Here we consider
matrix elements between unsymmetrizedg-stabilized wave
functions[4]

CaKJM = S2J + 1

8p2 D1/2

DMK
J* svdFaKJsb,gd, s8d

as needed in calculations for the rigid rotor, Xs5d, or
g-stabilized sloped well models. The matrix element sepa-
rates into intrinsic and Euler angle integrals, yielding

kCa8K8J8M8iMsE2;mdiCaKJMl

= s− dJ8−JsJ8K82sK − K8duJKdFA1I1 −Î2

7
A2I2G s9d

in terms of

I1 ;E dtFa8K8J8
* sb,gdb cosgFaKJsb,gd,

I2 ;E dtFa8K8J8
* sb,gdb2 cos 2gFaKJsb,gd s10d

for K8=K=0 or

I1 ;E dtFa8K8J8
* sb,gd

1
Î2

b sin gFaKJsb,gd,

I2 ;E dtFa8K8J8
* sb,gds− d

1
Î2

b2 sin 2gFaKJsb,gd

s11d

for K8=K±2, wheredt;b4dbusin 3gudg and the reduced
matrix element normalization convention is that of Rose
f32g. sThe matrix elements of thesymmetrizedwave func-
tions, forKÞ0, may be calculated from this matrix element
as usualf4g.d Considering the presentb-g separated wave
functionsFsb ,gd= fsbdhsgd, for the case of nog excitation
sso K8=K=0d, and under the approximationg<0, these

integrals reduce to I1=eb4dbfa8K8J8sbdbfaKJsbd
and I2=eb4dbfa8K8J8sbdb2faKJsbd. Transition strengths
are BsE2;J→J8d=s2J8+1d / s2J+1dukJ8iMsE2diJlu2.
Quadrupole moments, defined by eQJ
;s16p /5d1/2kJJuMsE2;0duJJl, may be calculated aseQJ

=s16p /5d1/2sJJ20uJJdkJiMsE2diJl.
The following calculations can be considerably simplified

if it is noted that the eigenvalue spectrum and wave functions
depend upon the Hamiltonian parametersB, bw, andC only
in the combination

S;
2B

"2 bw
3C, s12d

to within an overall normalization factor on the eigenvalues
and overall dilation of all wave functions with respect tob.
(This follows from invariance of the Schrödinger equation
solutions under multiplication of the Hamiltonian by a con-
stant factor and under a transformation of the potential
V8sbd=a2Vsabd f33g.) For a given value ofS, the numerical
solution need only be obtained once, at some “reference”
choice of parametersse.g., 2B/"2=1 and bw=1d, and the
solution for any other well of the sameS can be deduced
analytically. Specifically, suppose the reference calculation
yields an eigenvalue« and a normalized radial wave function
fsbd. Then a calculation performed for the sameB andS but
for a different widthbw8 produces the eigenvalue«8 and nor-
malized wave functionf8sbd given by the simple rescalings,

«8 = bw8
−2«,

f8sbd = bw8
−5/2fsb/bw8 d, s13d

and the radial integrals scale toI18=bw8 I1 andI28=bw8
2I2. Thus,

the essential parameter which controls the relative strengths
of the linear and quadratic terms of theE2 operator isA8
;A2bw/A1, in terms of which the matrix element in Eq.s9d
is

s− dJ8−JsJ8K82sK − K8duJKd

3A1bwFI1ubw=1 −Î2

7
A8I2ubv=1G . s14d

Ratios ofE2 matrix elements depend only uponS andA8.
A computer code for solution of the sloped well eigen-

problem and for calculation of the radial matrix elements
between eigenstates is provided through the Electronic Phys-
ics Auxiliary Publication Service[24]. This code also calcu-
lates observables for the E(5) and X(5) models.

III. RESULTS

In the following discussion, let us restrict our attention to
g-stabilized structure relatively close to the X(5) limit of the
sloped well model, since this regime is most directly relevant
to the transitional nuclei recently considered in the context of
the X(5) model. The sloped well potential approaches a pure
linear potential asbw vanishes at fixed slope(that is, asS
→0) and approaches a square well as the slope goes to in-
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finity at fixed bw (that is, asS→`). It can thus produce a
much wider variety of structures than are considered in the
present discussion. However, calculations for the full range
of these cases may be obtained with the provided computer
code[24].

First we examine the energy spectrum, comparing it to the
X(5) spectrum. Naturally, the eigenvalues for the sloped well
are lowered relative to those for the X(5) well of the same
bw, as the outward slope of the wall effectively widens the
well, causing level energies to “settle” lower. The essential
feature is that the widening of the well introduced by the
wall slope is a relatively small fraction of the well width at
low energies, while it is much greater at high energies, as
may be seen by inspection of the potential(Fig. 2). Thus, the
high-lying levels experience a disproportionately greater in-
crease in the accessible range ofb values than do low-lying
levels and consequently are lowered in energy relative to the
low-lying levels.

From the calculated energies, it is seen that asS is de-
creased from infinity the higher-spin levels within a band are
lowered more rapidly than the lower-spin members, resulting
in a reduction of the ratioR4/2wEs41

+d /Es21
+d for the yrast

band[Fig. 1(a)] and a lowering of the curve ofE versusJ for
each band(Fig. 3). The excited bandhead energies are low-
ered as well[Fig. 1(b)]. But the most dramatic change is the
rapid collapse of the spacing scale of levels within the ex-
cited bands relative to that of the ground state band[Figs.
1(c) and 3]. For S<50, the predicted energy spacing scale
within the Kp=02

+ band is reduced sufficiently to be consis-
tent with the spacings found for theN=90 transitional nuclei,
while the energies of low-spin yrast band members and the
Kp=02

+ bandhead are still relatively close to their X(5) val-
ues, as shown in Fig. 3.

The second-order term in theE2 operator(7) can interfere
either constructively or destructively with the first-order
term. For all transitions between low-lying levels considered
here, the radial integralsI1 and I2 in Eq. (14) have the same
sign. Thus, negative values ofA8 lead to constructive inter-
ference [note the negative coefficient in Eq.(14)], while
positive values lead to destructive interference. For the X(5)
square well, the higher-spin members of the yrast band have

larger averageb values than do the low-spin members, so the
quadratic term is relatively more important for the higher-
spin levels. In the case of destructive interference, the curve
showing the spin dependence ofBsE2d values, normalized to
BsE2;21

+→01
+d, falls below that obtained with the simple lin-

earE2 operator, as seen in Fig. 4(a). The broad range of such
curves obtained experimentally(see Ref.[11]) can be quali-
tatively reproduced with different values ofA8. Destructive
interference also reduces the interbandBsE2d strengths and
the in-bandBsE2d strengths within theKp=02

+ band, relative
to BsE2;21

+→01
+d [Fig. 5(b)], ameliorating the overprediction

of interband strengths in the X(5) model. The spin-
descending interband transitions in the X(5) model have
highly suppressed linearE2 matrix elements, so these tran-
sitions are very sensitive to even a small quadratic contribu-
tion. Values ofA8 which give only moderate modifications to
the other transitions can give complete destructive interfer-
ence for these spin-descending transitions. The spin depen-
dence of quadrupole moments within the yrast band is shown
in Fig. 4(b).

Observe that the situation just described differs consider-
ably from that encountered for a pure rotor. For a rigid rotor,
the intrinsic wave functionFaKsb ,gd is the same for all
levels within a band, soI2 provides only a uniform adjust-
ment to the intrinsic matrix element between bands. Inclu-
sion of the second-order term inMsE2d thus leaves un-
changed the ratio of any twoBsE2d values within a band or
the ratio of any twoBsE2d values between the same two
bands.

Although inclusion of a quadratic term in theE2 operator
with A8.0 can at least qualitatively explain the discrepan-
cies between the X(5) BsE2d predictions and empirical val-
ues, this explanation is not entirely satisfactory. Many differ-
ent spin dependences of theBsE2d values within the yrast
band are observed for nuclei with similar energy spectra[11],
and these require correspondingly varied, apparentlyad hoc
choices of the parameterA8 for their reproduction. Moreover,
it is possible to obtain estimates for the coefficientsA1 and
A2 in the geometricE2 operator based on a simple model of
the nuclear charge and current distribution, as described in
Refs.[28,29], and these values yieldA8<−0.2, giving weak
constructiveinterference for the low-lying transitions. In the
interacting boson model, theE2 transition operator is of the

form TsE2d~ sd†3 s̃+s†3 d̃ds2d+xsd†3 d̃ds2d, in terms of the
boson creation operatorss† and d†, where the valuex=
−Î7/2 is commonly used in calculations involving the tran-
sition from spherical to axially symmetric deformed structure

[35,36]. In the classical limit,sd†3 s̃+s†3 d̃ds2d may be ap-
proximately identified with the linear term of the geometric

model transition operator andxsd†3 d̃ds2d with the quadratic
term. The addition of these terms is constructive for low-
lying transitions, and the relative contribution of the second-
order term is comparable to that obtained forA8<−1 in the
present description.

The effect of sloped walls on the calculatedBsE2d
strengths is dominated by the greater broadening of the well
at high energies than at low energies discussed above. While
all the eigenfunctions “spread” inb extent relative to those

FIG. 3. Yrast andKp=02
+ band level energies, normalized to

Es21
+d, for 150Nd shd, 152Sm sOd, 154Gd sDd, 156Dy sld, and

162Yb sLd. The predictions for X(5) (solid curve) and the sloped
well with S=50 (dashed curve) are shown for comparison. Data are
from Refs.[12,14–17,34].
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for the square well, this spreading is most pronounced for the
high-lying levels. Since the first-orderE2 operator is propor-
tional to b, the E2 matrix elements tend to be enhanced for
the higher-lying levels. In the yrast band, the in-bandBsE2d
strengths for higher-spin band members are increased rela-
tive to those for the lower-spin band members, as are the
quadrupole moments for higher-spin band members[Figs.
4(c) and 4(d)]. Several of the interbandBsE2d strengths are
also increased relative toBsE2;21

+→01
+d (Fig. 5). The

changes inBsE2d values induced by decreasingS are largely

opposite in sense to those produced by introduction of the
second-order term in theE2 operator. The parametersS and
A8 may be chosen so as to balance these two effects against
each other, except that for the spin-descending interband
transitions the strong destructive interference tends to domi-
nate.

To allow comparison with empirical values, in Fig. 6(a)
predictions obtained with the sloped wall potential and qua-
draticE2 operator are shown for parameter values chosen to
approximately reproduce the observed low-energy structure

FIG. 4. Yrast bandBsE2d strengths and squared quadrupole moments, normalized toBsE2;21
+→01

+d. (a,b) Values for the X(5) model
sS→`d calculated with a quadraticE2 transition operator, forA8 ranging from −1 to 2 in equal steps.(c,d) Values for the sloped well(S
=50, 100, 200, 500 and̀) calculated with a linearE2 transition operator.

FIG. 5. Level schemes and se-
lectedBsE2d strengths for(a) the
X(5) model with a linearE2 op-
erator,(b) the X(5) model with a
quadratic E2 operator sA8=0.7d,
and (c) the sloped wellsS=50d
with a linear E2 operator. Arrow
thicknesses are proportional to the
logarithm of theBsE2d strength.
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of 150Nd. The experimental values are given in Fig. 6(b).
Finally, let us consider the effects of wall slope on the

properties of theKp=21
+ band, or g band. Within the

g-stabilized separation of variables of Ref.[2], the properties

of this band are largely independent of the specific choice of
g-confining potentialVgsgd. This potential determines the
bandhead energy as well as theg-dependent wave function
hsgd. The wave function, however, simply contributes a nor-
malization factoreusin 3gudgh1sgdsin gh0sgd to I1 in Eq.
(11), and an analogous factor toI2, common to all electro-
magnetic matrix elements between theKp=21

+ band and the
Kp=01

+ and 02
+ bands. Although these quantities can be cal-

culated for any particular hypothesized form forVgsgd, such
as a harmonic oscillator potential[2], they in practice may be
treated as free parameters.

The essential feature of theKp=21
+ band is that the radial

wave function for each of its members is the “ground state”
solution of the radial equation(3) for the given angular mo-
mentum. ThisKp=21

+ band is thus essentially a duplicate of
the yrast band, displaced to a higher energy by the excitation
energy in theg degree of freedom, with energy spacings and
radial wave functions for the even spin members identical to
those for the yrast band, but with the addition of odd spin
members and with different angular wave functions.(Note
that for KÞ0 Bijker et al. [13] use a different separation
procedure from that in Refs.[2,6], yielding a modified form
of the radial equation witha= 1

3fLsL+1d−K2g+2, which
changes the energy spacings and in-band radial matrix ele-
ments by&5% relative to those of the yrast band.) Thus, the
dependence ofKp=21

+ band properties upon wall slope
closely matches that of the yrast band properties. Notably,

FIG. 6. Level scheme and selectedBsE2d strengths(a) for the
sloped well with parameters chosen to approximately reproduce the
observed low-energy structure of150Nd sS=75, A8=0.6d and(b) as
measured for150Nd [7,14]. Arrow thicknesses are proportional to
the logarithm of theBsE2d strength. Limits are indicated on experi-
mentalBsE2d strengths for transitions with unknownE2/M1 mix-
ing ratios.

FIG. 7. Dependence of properties of theKp=21
+ band upon wall slope. Values are shown for the X(5) model (solid line), S=100

(long5dashed line), S=50 (short5dashed line), and S=25 (dotted line). (a) Yrast, Kp=02
+, and Kp=21

+ band energies, illustrating the
identical dependences of the yrast andKp=21

+ bands. TheKp=21
+ bandhead energy is arbitrary(see text). (b) BsE2d branching ratios for

DJ= ±2 transitions from theKp=21
+ band to the yrast band.(c,d) BsE2d strengths forDJ= ±2 transitions from theKp=21

+ band to theKp

=02
+ band, normalized toBsE2;2g

+→01
+d. The separation of variables of Refs.[2,6] has been used for all calculations.
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the Kp=21
+ band does not demonstrate the rapid decrease in

energy spacing scale with decreasing wall slope exhibited by
the Kp=02

+ band, as illustrated in Fig. 7(a). This is at least
qualitatively consistent with the observed similarity of the
yrast andKp=21

+, but not Kp=02
+, band energy spacings in

the N=90 X(5) candidate nuclei.
Since the even spin members of theKp=21

+ band possess
the same radial wave functions as the yrast band members,
the strengths of transitions within theKp=21

+ band or be-
tween this band and the yrast band depend upon the same
radial matrix elements as do the yrast in-band transition
strengths and quadrupole moments already considered. Con-
sequently, decreasing wall slope leads to a moderate en-
hancement of the interband transition strengths involving
higher-spin levels, directly commensurate with the increases
shown in Figs. 4(c) and 4(d). The dependence of branching
ratios from theKp=21

+ band to the yrast band on wall slope is
shown in Fig. 7(b). Transitions between theKp=21

+ band and
theKp=02

+ band depend instead upon radial matrix elements
which contribute to theKp=02

+ to yrast band transition
strengths.(The small radial matrix element values which
yield the characteristic suppression of spin-descendingtran-
sitions from theKp=02

+ band to the yrast band here yield a
suppression of spin-ascending Kp=21

+ to 02
+ transitions.) De-

creasing wall slope yields enhancement of the allowed tran-
sitions and, for the low-spin levels, either little change or
substantial reduction of the suppressed transitions[Figs. 7(c)
and 7(d)]. Detailed quantitative predictions for theKp=21

+

band level energies and electromagnetic observables, using
either the separation of variables of Refs.[2,6] or that of Ref.
[13], may be obtained with the provided code[24].

IV. CONCLUSION

The use of ab-soft potential within the geometric picture
has recently received attention as providing a simple descrip-
tion of nuclei intermediate between spherical and rigidly de-
formed structure. From the present results, it is seen that the
energy spacing scale of states within excited bands is highly
sensitive to the stiffness of the well boundary wall. A poten-
tial for which the well width increases with energy can pro-
duce a more compact spacing scale for excited states than is
obtained with a pure square well, providing much closer
agreement with the observed energy spectra for nuclei in the
N<90 transition region. It is also found that a second-order
contribution to theE2 transition operator can lead to a wide
range of possible yrast bandBsE2d spin dependences, as well
as to modifications of off-yrast matrix elements. However, a
systematic understanding of the proper strength for this
second-order contribution is needed if theE2 operator is to
be applied effectively.
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