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In this paper we study the method of effective interaction as it is currently applied to few-body nuclear
systems, i.e., the no-core approach. We have demonstrated that in the limit of very large model space, the
no-core effective Hamiltonian is equivalent to the bare Hamiltonian transformed by a unitary transformation.
This result is exact to second order in the norm of the two-body Lee-Suzuki similarity transformation operator.
Using this result we propose a relation between the effectiveA-body wave function and the bare wave function.
Verifying this proposition through numerical calculations we have found that the resulting wave function is a
rather good approximation.
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I. INTRODUCTION

In nuclear few-body problems, where one typically en-
counters hard-core potentials, an attempt to expand the wave
function in the harmonic-oscillator(HO) or hyperspherical-
harmonics(HH) basis functions usually results in notoriously
slow convergence. As a consequence one is either forced to
introduce a correlation function into the wave function or to
replace the bare interaction by an effective one, tailored to
the truncated model space[1,2]. Theoretically, for a given
model space one can find an effective interaction such that
the low-energy spectra of the effectiveA-body Hamiltonian
will coincide with the spectra of the full space, bare Hamil-
tonian [3,4]. In practice, however, finding such an effective
interaction is as difficult as solving the fullA-body problem.
Therefore, one resorts to an approximated effective interac-
tion, usually obtained from the solution of a two-body
Hamiltonian. These two-body effective interactions no
longer lead to the exact spectra in the truncated space, but if
constructed properly they retain two important properties.

(i) They converge to the bare Hamiltonian if the model
space is enlarged up to the full Hilbert space.

(ii ) The energy levels of the effective Hamiltonian con-
verge to the exact values faster than those of the bare
Hamiltonian.

Although the advantage of this approach is evident
through its recent success in nuclear few-body physics[1,2],
it has two major drawbacks: the effective wave function is
rather remote from the bare one, and the relation between the
two is obscure. Thus, a decent interpretation of the bare wave
function is missing. For closed shell nuclei these points were
addressed already 40 years ago, see, for example, Refs.[5,6],
and led to the development of the effective operator theory.
In contrast, for no-core nuclei and for the no-core effective
interaction approach no parallel treatment exist.

In the current formulation of the no-core approach the
effective A-body potential is approximated by a sum of ef-
fective two-body(or three-body) potentials obtained, through
the Lee-Suzuki unitary transformation method[3,4], from
the solution of a two-body(three-body) Hamiltonian. Limit-
ing our discussion to effective two-body forces, we wish to

address the following questions: Under what conditions does
this approximated effective potential become exact? Alterna-
tively, is there a unitary operator that transforms the bare
A-body Hamiltonian into the no-core effective one?

At first sight it seems that any unitary transformation of
the bare Hamiltonian will lead to a many-body, rather than a
two-body, effective interaction. Consequently, the equiva-
lence between the bare and the no-core effective Hamilto-
nians can be established only when the model space coin-
cides with the full Hilbert space.

A more refined answer to the above questions can be ob-
tained if we study the limit of very large model space. Due to
property(i) any unitary transformation, connecting the bare
and effective Hamiltonians, becomes unity in this limit.
Moreover, the deviation of the transformation from unity can
serve as a small parameter. Using these observations, we
propose a form for the transformation operator and show that
in the transformed Hamiltonian many-body terms fall off
much faster than the two-body effective interaction terms.
The resulting effective Hamiltonian coincides with the no-
core one. This result holds true to second order in the small
parameter.

Using this insight we attempt to bridge the gap between
the effective and the bare wave functions, and propose an
approximated wave function for the bare Hamiltonian. This
approximation was tested numerically for the effective-
interaction hyperspherical-harmonics(EIHH) method [2],
giving rather good results.

The paper is organized as follows. In Sec. II, we review
the general features common to the different no-core effec-
tive interaction methods currently used in few-body nuclear
physics. In Sec. III, we study the limit of very large model
space and introduce a unitary transformation operator which
makes the effective and bare Hamiltonians equivalent to sec-
ond order, in this limit. This transformation operator is then
used to propose a relation between the bare and effective
wave functions. In Sec. IV we test the quality of the wave-
function ansatz proposed in Sec. III; in order to do so we
outline the calculation of mean values in the EIHH frame-
work, and apply it to the expectation values of three-body,
four-body Hamiltonians. Conclusions are given in Sec. V.
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II. OUTLINE OF THE NO-CORE EFFECTIVE
INTERACTION METHOD

In the effective interaction approach[1,2,7] the lowest
eigenvalues of anA-body Hamiltonian,

HfAg = H0 + V s1d

are treated as follows. The Hilbert space ofHfAg is divided
into a model space and a residual space, through the use of
the eigenprojectorsP and Q of H0, which satisfy the rela-
tions

fH0,Pg = fH0,Qg = 0, QH0P = PH0Q = 0, P + Q = 1.

s2d

The Hamiltonian eigenvalue problem

HfAgCm = EmCm s3d

is then replaced by an effective,non-Hermitian, one

H̃fAgef fF̃m = sPH0P + PṼfAgef fPdF̃m = Em
ef fF̃m s4d

that by construction has the following characteristics.
It has the same energy levels as the low-lying states of

HfAg, i.e., Em
ef f=Em.

The effective wave functionsF̃m of these states are the
P-space components of the corresponding wave function,

i.e., F̃m=PCm.

In the Lee-Suzuki approach[3], H̃fAgef f is constructed
through the transformation

H̃fAgef f = PH0P + PVQvfAgP, s5d

where the similarity transformation operator

vfAg = QvfAgP s6d

fulfills the following equations:

Cm = sP + QvfAgPdF̃m s7d

for all the P-space energy levelsm=1, . . . ,dimsPd. An
equivalent Hermitian effective Hamiltonian can be con-
structed through the transformationf4g

HfAgef f = PsH0 + VfAgef fdP

=
P + vfAg†

ÎPs1 + vfAg†vfAgdP
HfAg P + vfAg

ÎPs1 + vfAg†vfAgdP
.

s8d

The similarity transformation operator is the same for Eqs.
s5d ands8d. The Hermitian analog of the relation, Eq.s7d, is

Cm =
P + vfAg

ÎPs1 + vfAg†vfAgdP
Fm, s9d

whereFm is the solution of theHermitian effective Hamil-
tonian, i.e.,HfAgef fFm=EmFm. In general the effective inter-
action appearing in Eq.s8d is an A-body interaction. Its
construction is as difficult as finding the full-space solu-
tions. Therefore, one has to approximateVfAgef f. However,

one must build the approximate effective potential in such
a way that it coincides with the bare one forP→1, so an
enlargement of the model space leads to a convergence of
the eigenenergies to thetrue values. The no-core shell
model sNCSMd f1g and the EIHH methods are developed
along these lines. In the simplest approximationVfAgef f is
replaced by a sum oftwo-bodyterms

VfAgef f . o
i, j

A

vi j
f2gef f. s10d

The effective two-body interaction,vi j
f2gef f, is derived from a

“two-body” Hamiltonian

Hij
f2g = H0 + vi j

f2g. s11d

This Hamiltonian is easily diagonalized, and the correspond-
ing two-body similarity transformation operator,vi j

f2g, is cal-
culated using the appropriate analog of Eq.s7d. One proceeds
applying the Lee-Suzukif4g similarity transformation toHij

f2g

in order to get the corresponding Hermitian effective Hamil-
tonian,

Hij
f2gef f =

P + vi j
f2g†

ÎPs1 + vi j
f2g†vi j

f2gdP
Hij

f2g
P + vi j

f2g

ÎPs1 + vi j
f2g†vi j

f2gdP
.

s12d

The effective two-body potential is obtained by subtraction
of H0,

vi j
f2gef f =

P + vi j
f2g†

ÎPs1 + vi j
f2g†vi j

f2gdP
Hij

f2g
P + vi j

f2g

ÎPs1 + vi j
f2g†vi j

f2gdP
− PH0P.

s13d

The resulting effective Hamiltonian,

HfAgef f . H0 + o
i j

vi j
f2gef f s14d

turns out to be an extremely good approximation as its ei-
genvalues converge rapidly when theP space is enlarged. On
the other hand, using the two-body approximation of Eq.
s10d one gives up rigor. As a consequence, the relation be-
tween the bare eigenstates and the effective ones, Eq.s9d,
does not hold any more. Moreover, even the simple interpre-
tation of the effective wave functionFm as theP-space com-
ponent of the full wave functionCm is questionable. For
obvious reasons the knowledge of the bare wave functions is
very important. It is therefore desirable to restore, at least
approximately, the fundamental relation of Eq.s9d.

III. THE LIMIT OF VERY LARGE MODEL SPACE

Trying to find the conditions under which the approxi-
mated no-core effective potential becomes exact, lead us to
seek a unitary transformation of the bare Hamiltonian,H
→U†HU, whereU is chosen in a way that theP-space part
of U†HU coincides with our effective Hamiltonian, Eq.(14).
When the model space coincides with the full Hilbert space
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then, by construction,HfAgef f=HfAg and one can use the unit
operatorU=1 for such transformation. For smaller model
spaceP,1, and the transformation operatorU deviates from
unity. Hence, the question we wish to address is, to what
order in this deviation does the relationHfAgef f

=PU†HfAgUP hold true?
We start our analysis by an educated guess for the unitary

transformation operatorU. Considering that our attention is
restricted to theP-space part of the transformed Hamil-
tonian, we can set the conditionUQ=0. Next, we must take
into account that the two-body transformation operators,
vi j

f2g, are the building blocks of our effective theory. There-
fore, one might try to constructU through a power series in
these operators,

U = P + o
i j

A

f ij
s1dvi j

f2g + o
i j ,kl

A

gij ,kl
s2d vkl

f2g†vi j
f2g

+ o
i j ,kl,mn

A

f ij ,kl,mn
s3d vmn

f2gvkl
f2g†vi j

f2g + ¯ . s15d

The conditionvi j
f2g=Qvi j

f2gP limits this expansion, and one
may collect similar terms to obtain

U = P + gsPvmn
f2g†vkl

f2gPd + o
i j

A

vi j
f2gf ijsPvmn

f2g†vkl
f2gPd, s16d

where g, f are functions of the P-space operators
Pvmn

f2g†vkl
f2gP. It should be noted that the above expansion is

rather restricted as only two particles are excited outside the
P space at a time. This is an immediate consequence of the
condition that the two-body similarity transformation opera-
tor, vi j

f2g, connects theA-bodyP andQ spaces. This condition
holds true for any state dependent effective interaction, and
in particular for the EIHH method. Leaving the general dis-
cussion, we note that the starting point for the Lee-Suzuki
similarity transformationf3,4g is the operatorG=expsvfAgd.
Introducing the approximationvfAg<oi j vi j

f2g into the defi-
nition of G we get,

G = expS o
k.l=1

A

vkl
f2gD = P + o

k.l=1

A

vkl
f2g. s17d

It is evident thatG is not a unitary operator; moreover
G†GÞP. A transformation operator that fulfills this closure
relation is given by

U = G
1

ÎG†G
= SP + o

kl

vkl
f2gD 1

ÎPs1 + oi j ,kl
vi j

f2g†vkl
f2gdP

,

s18d

which is our choice for the transformation operator. With
this choice we can define an Hermitian effective Hamil-
tonian,

HfAg = U†HfAgU

=
sP + okl

vkl
f2g†d

ÎPs1 + oi j ,kl
vi j

f2g†vkl
f2gdP

HfAg

3
sP + omn

vmn
f2gd

ÎPs1 + oi j ,kl
vi j

f2g†vkl
f2gdP

. s19d

The above transformation would not reproduce our effective
Hamiltonian Heff

fAg, Eq. s14d, since HfAg contains not only
two-body terms but also three, four, and other many-body
terms. The question is under what conditions do the two
Hamiltonians coincide. In order to answer this question
we now turn to theP→1 limit. In this limit one can as-
sume the following.

(i) The operatorsvi j
f2g are very small,iPi@ ivi j

f2g†vi j
f2gi.

(ii ) The Q-space overlap between two different pairs is
small with respect to same pair overlap, i.e.,ivi j

f2g†vi j
f2gi

@ ivi j
f2g†vkl

f2gi for skldÞ si j d.
(iii ) For different pairssi j dÞ skld the commutator be-

tween the two-body interactionvi j
f2g and vkl

f2g is negligible,

i.e., Pvi j
f2g†vkl

f2g vmn
f2gP< Pvi j

f2g†vmn
f2gvkl

f2gP.
With these observations we see that, retaining only qua-

dratic terms invf2g,

H0
fAg = U†H0U

<SP −
1

2
o
i j

vi j
f2g†vi j

f2gDSP + o
kl

vkl
f2g†DH0SP + o

pq

vpq
f2gDSP −

1

2
o
rs

vrs
f2g†vrs

f2gD
<SP −

1

2
o
i j

vi j
f2g†vi j

f2gDSPH0P + o
kl

vkl
f2g†H0 vkl

f2gDSP −
1

2
o
rs

vrs
f2g†vrs

f2gD
<PH0P + o

i j
Svi j

f2g†H0 vi j
f2g −

1

2
vi j

f2g†vi j
f2gH0P −

1

2
PH0vi j

f2g†vi j
f2gD

<PH0P + o
i j
S P + vi j

f2g†

ÎPs1 + vi j
f2g†vi j

f2gdP
H0

P + vi j
f2g

ÎPs1 + vi j
f2g†vi j

f2gdP
− PH0PD , s20d
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and

VfAg = o
i j

U†vi j
f2gU

<o
i j
SP −

1

2
o
pq

vpq
f2g†vpq

f2gDSP + o
kl

vkl
f2g†Dvi j

f2gSP + o
mn

vmn
f2gDSP −

1

2
o
rs

vrs
f2g†vrs

f2gD
<o

i j
SP −

1

2
o
pq

vpq
f2g†vpq

f2gDS o
skldÞsi j d

vkl
f2g†vkl

f2gvi j
f2g + sP + vi j

f2g†dvi j
f2gsP + vi j

f2gdDSP −
1

2
o
rs

vrs
f2g†vrs

f2gD
<o

i j
SP −

1

2
vi j

f2g†vi j
f2gDsP + vi j

f2g†dvi j
f2gsP + vi j

f2gdSP −
1

2
vi j

f2g†vi j
f2gD

<o
i j

P + vi j
f2g†

ÎPs1 + vi j
f2g†vi j

f2gdP
vi j

f2g
P + vi j

f2g

ÎPs1 + vi j
f2g†vi j

f2gdP
. s21d

Combining these two results, Eqs.s20d ands21d, we find that

HfAg = H0
fAg + VfAg

< PH0P + o
i j
S P + vi j

f2g†

ÎPs1 + vi j
f2g†vi j

f2gdP
sH0 + vi j

f2gd

3
P + vi j

f2g

ÎPs1 + vi j
f2g†vi j

f2gdP
− PH0PD . s22d

Thus, we can see that if our assumptions hold true, our ap-
proximated Hamiltonian of Eq.s19d coincides with the Ef-
fective Hamiltonian, Eq.s14d, in the limit P→1. Of course,
it is by construction that forP=1 the bare Hamiltonian and
the effective one should coincide. However, this construction
is not sufficient to ensure that many-body terms fall off
much faster than the effective corrections to the two-body
interaction. The fact that the effective Hamiltonian is exact
to second order invf2g is nontrivial. Having crossed this
bridge we achieved two goals: first, we have established the-
oretical justification for the two-body approximation, and
second, by inverting this argument we expect thatCm

<UFm. In Sec. III A we shall elaborate on this point and
discuss some further simplifications for the wave function.

Considering now the validity of our assumptions, it is
evident that assumption(i) is justified. For translational in-
variant basis functions, i.e. basis functions that are formu-
lated in the center of mass free(Jacobi) coordinate system, it
is difficult to present a general argument in support of as-
sumption(ii ). Therefore, we shall consider this point in Sec.
III B, through the specific example of the HH formalism. For
single-particle states the situation is somewhat simpler. In
Sec. III C, we shall discuss the validity of assumptions(ii )
and (iii ) using single-particle plane-wave basis functions.

A. The wave-function ansatz

Having demonstrated that in the limitP→1 the effective
Hamiltonian, Eq.(14), can be obtained through a unitary

transformationU, one would expect that the bare wave func-
tion can be derived from the effective one through the rela-
tion

uCml <
G

ÎG†G
uFml. s23d

In the following we wish to check the quality of this ansatz
through numerical evaluation of the Hamiltonian expectation
value for the ground-state wave function. Before we proceed,
one should note that many-body operators such as 1/ÎG†G
are extremely difficult to evaluate. In the transformation

HfAg → 1
ÎG†G

G†HfAgG
1

ÎG†G
, s24d

the main role of the operator 1/ÎG†G is to insure the uni-
tarity of the transformation, or to normalize the eigen-
states of the Hamiltonian. If so, it may be instructive to
use different normalization, this time not ofHfAg but rather
of its eigenstates,

uC̃ml =
1

ÎkFmuG†GuFml
GuFml. s25d

If we take seriously the statement that 1/ÎG†G is nothing
more than normalization, then we can use Eq.s25d and
assume that

kFmu
1

ÎG†G
G†HG

1
ÎG†G

uFml .
kFmuG†HGuFml
kFmuG†GuFml

. s26d

This form is very convenient for numerical integration, see
Sec. IV. In the following we shall use Eq.s25d as our ap-
proximated wave function.

B. The validity of the second assumption in the HH formalism

In Sec. III above we have assumed that asP→1 the
many-body terms fall off much faster than the two-body
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terms in the effective Hamiltonian. In general, it might be
rather complicated to prove this assumption. Nevertheless, in
some particular cases it is possible to demonstrate its valid-
ity. Let us consider a system ofA bosons and expand its
wave function using a hyperspherical-harmonics basis. The
first term in this expansion is the completely symmetricKA
=0 state. In most cases this state is also the dominant basis
state in the wave functions of low-lying energy levels. It is,
therefore, interesting to check whether our assumption holds
for this case, and evaluate the ratio between its matrix ele-
ments for the two-body and many-body terms. For simplicity
let us consider a coordinate system in which thesA−1dth
Jacobi coordinate is

hW A−1 =Î1

2
srWA−1 − rWAd. s27d

In this coordinate system all the quantum numbers but the
principal hyperspherical quantum number,KA, remain fixed
upon application of a two-body operator, such asvA,A−1

f2g or
vA,A−1

f2g , to the uKA=0l state. Thus, it is sufficient, for our
purpose, to denote the basis functions byuKAl.

In order to evaluate the ratio

kKA = 0uoi j
vi j

f2g†vA,A−1
f2g uKA = 0l

kKA = 0uvA,A−1
f2g† vA,A−1

f2g uKA = 0l
, s28d

we replace the particle pairsi j d by the pairsA,A−1d using
two-particle permutations, and then insert a complete set of
Q-space HH states to obtain

k0uo
i j

vi j
f2g†vA,A−1

f2g u0l

= o
i j

k0usi,Ads j ,A − 1dvA,A−1
f2g† si,Ads j ,A − 1dvA,A−1

f2g u0l

= o
i j

o
KPQ

k0uvA,A−1
f2g† uKlkKusi,Ads j ,A − 1duKlkKuvA,A−1

f2g u0l.

s29d

In the second line we have used the fact that the principal
hyperspherical quantum number is invariant to particle per-
mutations. The two-body term is given by

k0uvA,A−1
f2g† vA,A−1

f2g u0l = o
KPQ

k0uvA,A−1
f2g† uKlkKuvA,A−1

f2g u0l.

s30d

The ratio between the two-body matrix element and the
many-body matrix element depends on the magnitude of the
pair interchanging matrix elementkKusi ,Ads j ,A−1duKl. For-
tunately, as was shown by Fabre de la Ripellef8g, these
matrix elements can be evaluated analytically. For two pairs
with no common particle,i , j ÞA,A−1,

kKusi,Ads j ,A − 1duKl =
PK

s1/2,3A−8/2ds1d
PK

s1/2,3A−8/2ds− 1d
. s31d

When the pairs contain one common particle, for instancej
=A−1,i ÞA,

kKusi,AduKl =
PK

s1/2,3A−8/2ds1/2d
PK

s1/2,3A−8/2ds− 1d
. s32d

Summing Eqs.s31d and s32d we get

o
i j ÞA,A−1

kKusi,Ads j ,A − 1duKl

= H2sA − 2d
PK

s1/2,3A−8/2ds1/2d
PK

s1/2,3A−8/2ds− 1d

+
sA − 3dsA − 4d

2

PK
s1/2,3A−8/2ds1d

PK
s1/2,3A−8/2ds− 1dJ . s33d

Calculated values of the matrix element, Eq.s33d, are given
in Figs. 1–3 for three, four, and six bosons, respectively.
Recalling that the corresponding value for the two-body term
is kKuKl=1, we observe that Figs. 1–3 indicate that the con-

FIG. 1. The matrix element, Eq.(33), of the pair permutation
sum,oi. j=1kKusi ,Ads j ,A−1duKl, as a function of the principal hy-
perspherical quantum numberK, evaluated numerically for a sys-
tem of three identical particles.

FIG. 2. The matrix element, Eq.(33), of the pair permutation
sum,oi. j=1 kKusi ,Ads j ,A−1duKl, as a function of the principal hy-
perspherical quantum numberK, evaluated numerically for a sys-
tem of four identical particles.
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tributions of the many-body terms to the matrix elements of
the leadingKA=0 state are indeed small and fall off very fast
with increasing values ofK. We conclude that our assump-
tion holds for this example. Taking into account that a simi-
lar behavior is expected for all the HH states with small
values ofKA, one would expect that this assumption should
hold in general.

C. The single-particle plane-wave case

In the spirit of the preceeding section, we shall consider
the validity of our second and third assumptions for single-
particle states through a specific example. For simplicity we
shall choose a set of plane-wave basis functions. Ignoring
internal degrees of freedom, we shall use the notation

ukW1kW2 . . .kWAl

to denote a generalA-body state. Our model spaceP is de-

fined by the condition that each of the momentakW i is con-

tained in a sphere of radiusP, i.e., ki = ukW iuø P. TheQ space
is the complementary space. In the following we shall usepW
to denote model space momentum and byqW to denote mo-
mentum lying outside theP-space sphere. With these defini-
tions it is clear thatvf2g can either excite both particles into
ki . P states or excite only one particle outside theP-space
sphere. Using these observations it is convenient to writevf2g

in the form

v12
f2g = o

pW1pW2¯pWA

o
qW18pW28

uqW18pW28pW3 ¯ pWAlvqW18pW28,pW1pW2

f2gsad kpW1pW2 ¯ pWAu

+ 1↔ 2 + o
pW1pW2¯pWA

o
qW18qW28

uqW18qW28pW3 ¯ pWAlvqW18qW28,pW1pW2

f2gsbd

3kpW1pW2 ¯ pWAu. s34d

In the following we shall assume thatvf2g is translationaly
invariant. Subject to this condition, it is clear that if the ac-

tion of vf2g on the leadingP-space states,upW1¯pWAl ;pi ! P, is
to excite one particle outside theP-space sphere, then the
other particle must acquire more or less the same momentum
but in the opposite direction. Limiting, for the moment, our
attention to these states we can use the following approxima-
tion

v12
f2g < v12

f2gsbd

= o
pW1pW2¯pWA

o
qW18qW28

uqW18qW28pW3 ¯ pWAlvqW18qW28,pW1pW2

f2gsbd kpW1pW2 ¯ pWAu.

s35d

With this result at hand it is evident that assumptionsii d
holds,

kpW1pW2 . . . pWAuvi j
f2g†vkl

f2gupW18pW28 . . . pWA8l

< kpW1pW2 . . . pWAuvi j
f2gsbd†vkl

f2gsbdupW18pW28 . . . pWA8l = di j ,kl.

s36d

In order to verify assumptionsiii d we have to consider the
following matrix elements:

kpW1pW2 ¯ pWAuvi j
f2g†vkl

f2g vmn
f2gupW18pW28 ¯ pWA8l,

which we can divide into four topologically distinct terms,

A = kpW1pW2 ¯ pWAu v12
f2gsbd†v34

f2g v12
f2gsbd upW18pW28 ¯ pWA8l,

B = kpW1pW2 ¯ pWAu v12
f2gsbd†v13

f2g v23
f2gsbd upW18pW28 ¯ pWA8l,

C = kpW1pW2 ¯ pWAu v12
f2gsbd†v13

f2g v12
f2gsbd upW18pW28 ¯ pWA8l,

D = kpW1pW2 ¯ pWAu v12
f2gsbd†v12

f2g v12
f2gsbd upW18pW28 ¯ pWA8l. s37d

All the other matrix elements vanish due to Eq.(35). For
caseA it is trivial that assumption(iii ) holds.

Now, let us consider caseB,

B = kpW1pW2 ¯ pWAu v12
f2gsbd†v13

f2g v23
f2gsbd upW18pW28 ¯ pWA8l

= dpW4,pW48
¯ dpWA,pWA8 o

qW1qW2qW3

vqW1qW2,pW1pW2

f2gsbd* vqW2qW3,pW28pW38
f2gsbd kqW1pW3uvf2gupW18qW3l.

s38d

Since the potential depends only on the relative coordinate,

the matrix elementkkW1kW2uvf2gukW18k
W

28l depends only on the rela-

tive momentum transfer,kW = 1
2skW1−kW2d− 1

2skW18−kW28d. For central
potentials,

kkW1kW2uvf2gukW18k
W

28l = dskW1 + kW2 − kW18 − kW28d
1

2p2

3E r2dr vf2gsrd
sin kr

kr
, s39d

which for a hard-core potentialvf2gsrd=V0 usa0−rd takes the
explicit form

FIG. 3. The matrix element, Eq.(33), of the pair permutation
sum,oi. j=1 kKusi ,Ads j ,A−1duKl, as a function of the principal hy-
perspherical quantum numberK, evaluated numerically for a sys-
tem of six identical particles.
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kkW1kW2uvf2gukW18k
W

28l = dskW1 + kW2 − kW18 − kW28d
a0

3V0

2p2

3Ssin ka0

ska0d3 +
coska0

ska0d2 D . s40d

The momentum transfer in caseB is approximately given by

kW = 1
2sqW1 − pW3d − 1

2spW18 − qW3d < 1
2sqW1 + qW3d < qW1,

where the last equality results from translation invariance,
qW1+pW3=pW18+qW3. For large enough model space,Pa0@1 and
therefore

kqW1pW3uvf2gupW18qW3l ~ S 1

a0q1
D2

! 1. s41d

To summarize, the contribution of caseB is strongly sup-
pressed due to the large momentum transfer.

Turning now to caseC, we get

C = kpW1pW2 ¯ pWAu v12
f2gsbd†v13

f2g v12
f2gsbd upW18pW28 ¯ pWA8l

= dpW4,pW48
¯ dpWA,pWA8 o

qW1qW18qW2

vqW1qW2,pW1pW2

f2gsbd* vqW18qW2,pW18pW28
f2gsbd kqW1pW3uvf2guqW18pW38l.

s42d

Sinceq1@p3 and qW18@pW38 we can use momentum conserva-
tion to deduce the following approximation:

qW1 + pW3 = qW18 + pW38 ⇒ qW1 < qW18.

On the other hand thevf2gsbd matrix elements are zero unless
qW1+qW2=pW1+pW2 and qW18+qW2=pW18+pW28. Subtracting these equa-
tions we can deduce thatqW1−qW18=pW1+pW2−spW18+pW28d. Combin-
ing these results with the observation that

kqW1pW3uvf2guqW18pW38l = kpW1 + pW2,pW3uvf2gupW18 + pW28,pW38l,

we get

C < dpW4,pW48
¯ dpWA,pWA8 o

qW1qW2

vqW1qW2,pW1pW2

f2gsbd* vqW1qW2,pW18pW28
f2gsbd kpW1 + pW2,pW3uvf2g

3upW18 + pW28,pW38l. s43d

It is instructive to compare this matrix element with the ma-
trix element

kpW1pW2 ¯ pWAu v12
f2gsbd†v12

f2gsbdv13
f2g upW18pW28 ¯ pWA8l

=dpW4,pW48
¯ dpWA,pWA8 o

qW1qW2pW19

vqW1qW2,pW1pW2

f2gsbd* vqW1qW2,pW19pW28
f2gsbd kpW19pW3uvf2gupW18pW38l

=dpW4,pW48
¯ dpWA,pWA8 o

qW1qW2

vqW1qW2,pW1pW2

f2gsbd* v
qW1qW2,spW1+pW2−pW28dpW28
f2gsbd

3kspW1 + pW2 − pW28dpW3uvf2gupW18pW38l

=dpW4,pW48
¯ dpWA,pWA8 o

qW1qW2

vqW1qW2,pW1pW2

f2gsbd* v
qW1qW2,spW1+pW2−pW28dpW28
f2gsbd

3kpW1 + pW2,pW3uvf2gupW18 + pW28,pW38l. s44d

Comparing Eq.s43d with Eq. s44d we can conclude that case
C fulfills the third assumption.

In conclusion, we have shown that forP→1 the single-
particle plane-wave basis functions fulfill our assumptions.
Assumption(ii ) follows from Eq.(36). Assumption(iii ) fol-
lows from the fact that all thevf2g†vf2gvf2g matrix elements
vanish except for casesA, B, C, andD. Of these, casesA
andC fulfill assumption(iii ), B is negligible, and caseD is
singled out as the direct two-body term. During our discus-
sion we have used the conditionpi ! P. Of course this con-
dition is not valid through all theP space. However, enlarg-
ing the P space we can fulfill this condition for any given
state. We can, therefore, conclude that the transformed
Hamiltonian converges to the effective one in a nonuniform
way from the bottom of theP-space upward.

IV. EXPECTATION VALUES IN THE EIHH METHOD

One of the conclusions we have drawn in Sec. III is that it
should be possible to approximate the bare wave function
through Eq.(25). Here we would like to numerically assess
the quality of this ansatz. Doing so, we shall abandon the
general discussion and limit our attention for the HH formal-
ism and, in particular, to the EIHH method.

In the HH formalism the Jacobi coordinatesshW j , j
=1. . .A−1d are replaced by a hyperradial coordinate

r =Îo
j=1

N

hW j
2, s45d

and a hyperangleVA. The unperturbed HamiltonianH0 is
chosen to be

H0 = TKsrd ;
1

2m

K̂A
2

r2 , s46d

the hypercentrifugal kinetic energy operator, with the hyper-
spherical harmonicsYfKAg as eigenfunctionssfKAg stands for
a set of quantum numbers, see Ref.f2gd. The model spaceP
is defined as the complete set of HH basis functions with
generalized angular momentum quantum numberKAøKP,
and theQ space as the complete set of HH basis functions
with KA.KP. The hyperradial coordinater serves as a pa-
rameter in the construction of the HH effective interaction as
it commutes withTKsrd. It should be noted that in the EIHH
methodvi j

f2g=vi j
f2gsrd. Moreover, because the HH effective

interaction is state dependent,vi j
f2g transforms anA-body

P-space state into anA-body Q-space state. The structure of
vi j

f2g becomes simple if we choosehW i j = 1/Î2srWi −rW jd as the
“last,” sA−1d, Jacobi coordinate. For such a coordinate
system

vi j
f2gsrd = o

KQPQ,KPPP

ufKA−2gKQjtlvKQ,KP

fKA−2g jtsrdkfKA−2gKPjt u,

s47d

where j ,t are the angular momentum and isospin of the two-
particle system, andfKA−2g stands for the hyperspherical-
spin-isospin quantum numbers of the residualsA−2d-body
system.
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The resulting effective Hamiltonian is written in the HH
formalism as

HfAgef f = Tr + TKsrd + o
i j

vi j
f2gef fsrd, s48d

where

Tr = −
1

2m
Dr s49d

is the hyperradial kinetic energy. The operatorDr is the
Laplace operator with respect to the hyperradial coordinate
r.

In order to diagonalize the effective Hamiltonian we ex-
pand the effective,P space, wave functions in the following
way:

uFml = o
fKAgn

CfKAgn
m unlufKAgl, s50d

where for brevity we have used the notation

fKAg ; KAJAJA
zTAT A

zGAaAbA.

The antisymmetricA-body hyperspherical-spin-isospin
basis functions with total angular momentumJA,JA

z and iso-
spin TAT A

z are given by[12–14]

uKAJAJA
zTAT A

zGAaAbAl = o
YA−1

LGA,YA−1

ÎuGAu
fuKALAMAGAYA−1aAl

3uSASA
zTAT A

z G̃A,ỸA−1 bAlgJAJA
z
,

s51d

where

YKALAMAGAYA−1aA

A sVAd ; kVAuKALAMAGAYA−1aAl s52d

are HH functions with hyperspherical angular momentum
K=KA, and orbital angular momentum quantum numbers
LA,MA that belong to well defined irreducible representa-
tions sirrepsd G1PG2¯ PGA, of the permutation group-
subgroup chainS1,S2¯ ,SA, denoted by the Yamanouchi
symbolfGA,YA−1g;fGA,GA−1,¯ ,G1g. The dimension of the
irrep Gm is denoted byuGmu andLGA,YA−1

is a phase factorf9g.
Similarly, the function

x
SASA

zTAT A
z G̃A,ỸA−1 bA

A sstd ; kstuSASA
zTAT A

z G̃A,ỸA−1bAl

s53d

are the symmetrized spin-isospin basis functions, where the
A-dimensional vectorss;ss1

z ,s2
z
¯sA

zd and t;st1
z ,t2

z
¯ tA

zd
stand for theA-body spin and isospin states. The quantum
numbersaA,bA are used to remove the degeneracy of the
HH and spin-isospin states, respectively. For the hyperradial
basis functions, we have used the associated Laguerre poly-
nomials,Ln

asxd, with range parameterb,

Rnsrd ; krunl =Î n!

sn + ad!
b−a/2ra−s3A−4d/2Ln

asr/bd

3exps− r/2bd. s54d

Takingm=0 to be the ground state of anA body system, we
find that the corresponding bare wave function is approxi-
mately given by Eq.s25d,

C0sr,V,s,td = kr,V,s,tuC0l =
1

ÎN kr,V,s,tuGuF0l

=
1

ÎN kr,V,s,tuS1 + o
i. j=1

A

vi j
f2gsrdDuF0l,

s55d

wereN is the normalization constant,

N = kF0uG†GuF0l = o
st
E dVdrr3N−1ukr,V,s,tuGuF0lu2.

s56d

In order to evaluate the quality of this wave function, we
would like to evaluate its expectation value of the Hamil-
tonian, and see how well it reproduces the binding energy of
anA body system. The expectation value of any local opera-
tor defined in our Hilbert space 1=P+Q is given by,

kC0uÔuC0l =
1

N o
ss8,tt8

E dVdrr3N−1C0sr,V,s,td*

3Ôst,s8t8sV,rdC0sr,V,s8,t8d. s57d

Since in our Jacobi coordinate system of choice the “last”
[i.e., sA−1d] Jacobi coordinate is proportional to the separa-
tion of particlesA and sA−1d it is convenient to make the
substitution

vi j
f2g = sA − 1,idsA, jdvA,A−1

f2g sA, jdsA − 1,id, s58d

use the permutational symmetry ofF0, and evaluateC0 in
the form,

C0sr,V,s,td

=
1

ÎN kr,V,s,tuS1 + o
i. j=1

A

sA − 1,idsA, jdvA,A−1
f2g srdDuF0l

=
1

ÎNSkr,V,s,tuF0l + o
i. j=1

A

ijkr,V,s,tuvA,A−1
f2g

3srduF0lD . s59d

In the last equation we used the notation

ur,V,s,tli j = si,A − 1ds j ,Adur,V,s,tl s60d

to denote the permutation of the space-spin-isospin configu-
ration. The symmetrized hyperspherical-harmonics functions
f13,14g are constructed through a recursive permutation of
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the HH “tree” functionsf10g. By successive implementation
of the recursive construction we get

uKALAMAYAbAl

= o
,A

o
bA

o
fKA−2g

p
i=1

A−2

fKiLi,i+1biGiuKi+1Li+1bi+1Gi+1

3fKA−1LA−1GA−1bA−1uKALAGAbAu

3sfKA−2g;,AdKALAMAl

; o
fKA−2g,,APKA,LA

UfKA−2g,,A

KA,LA,YA,bA usfKA−2g;,AdKALAMAl.

s61d

Here we used the notationfKA−2g to denote the HH tree
quantum numbers and the relationsKA=KA−1,LA=LA−1. The
spin-isospin states are constructed very much the same way.
After having transformed the symmetrized HH functions into
tree functions and the symmetrized spin-isospin states into
regular unsymmetrized states, one can use standard angular
momentum techniques and evaluateC0sr ,V ,s ,td. The re-
sulting expression can then be used to evaluate the expecta-
tion value, Eq.s57d. In practice we have used Monte-Carlo
integration with the metropolis algorithm to evaluate the spa-
tial integral,

kC0uÔuC0l <
1

NMC
o
i=1

NMC

o
ss8,tt8

C0sri,Vi,s,td*

3Ôst,s8t8sri,VidC0sri,Vi,s8,t8d. s62d

This scheme is very effective, sinceuC0sr ,V ,s ,tdu2 is the
distribution probability and therefore serves as a natural
weight function.

As an example we consider a system ofA nucleons inter-
acting via the simple Malfliet-Tjon[11], MTV, nucleon-
nucleon interaction. Numerical results for theA=3 case are
presented in Table I and for theA=4 case in Table II. In
these tables we study the convergence of the Hamiltonian
expectation value for the ground state as a function ofKP,
which fixes the size of the model space. For comparison we
also present the value of the ground-state energy obtained
through direct diagonalization of the bare Hamiltonian in the
model space. Also presented are ground-state energies ob-
tained by different methods. It can be seen that the proposed
wave function can reproduce the binding energies of these
systems to few parts per thousand, and as expected the qual-
ity of the wave function improves with enlargement of the
model space.

V. CONCLUSIONS

In this paper we studied the method of the effective inter-
action as it is currently applied to few-body nuclear systems,
i.e., all nucleons active. We have managed to demonstrate
that in the limit P→1 the no-core effective Hamiltonian is
equivalent through unitary transformation to the bare Hamil-
tonian. We have also shown that this holds true to second
order in the norm of the two-body Lee-Suzuki similarity

transformation operator,ivf2gi. Using this result, we have
proposed a new interpretation for the relation between the
effectiveA-body wave function and the bare wave function.
Verifying this proposition through numerical calculations, we
have found out that the resulting wave function is a rather
good approximation.

TABLE I. Ground-state energysMeVd of three-particle system,
interacting via the MTV potential. The Hamiltonian expectation
value, right-side column, and the noneffective binding energy,
middle column, are given as a function of theP-space size by the
principal HH quantum numberKP. The expectation value is ap-
proximated using Eq.(26).

KP Noneffective kC0uHfAguC0l

0 0.6825 6.7020±0.2637

4 2.1443 8.1970±0.0891

6 4.6407 8.1735±0.0428

8 5.4207 8.2134±0.0242

10 6.3405 8.2442±0.0203

12 7.0954 8.2197±0.0226

EIHH [2] 8.244(8)

NCSM [1] 8.235(5)

SVM [17] 8.2527

Faddeev[20] 8.25273

GFMC [18] 8.26(1)

CHH [21] 8.240

ATMS [19] 8.26(1)

VMC [17] 8.27(3)

TABLE II. Ground-state energysMeVd of four-particle system,
interacting via the MTV potential. The Hamiltonian expectation
value, right-side column, and the noneffective binding energy,
middle column, are given as a function of theP-space size by the
principal HH quantum numberKP. The expectation value is ap-
proximated using Eq.(26).

KP Noneffective kC0uHfAguC0l

0 7.4059 27.137±0.824

4 9.5749 30.536±0.462

6 13.934 30.284±0.678

8 20.500 30.911±0.315

10 23.502 30.865±0.302

12 26.585 31.024±0.220

14 28.036 31.156±0.115

16 29.163 31.287±0.045

EIHH [2] 31.358(9)

SVM [17] 31.360

FY [20] 31.36

ATMS [19] 31.36

CRCG [22] 31.357

GFMC [18] 31.3(2)

VMC [17] 31.30(5)
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As a result, effective two-body operators constructed
through the relation[15,16]

Oij
f2gef f =

P + vi j
f2g†

ÎPs1 + vi j
f2g†vi j

f2gdP
Oij

f2g
P + vi j

f2g

ÎPs1 + vi j
f2g†vi j

f2gdP
s63d

can be regarded as accurate to second order in the limitP
→1. This observation opens the way to the application of the

EIHH and similar methods to relatively high-energy scatter-
ing processes.
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