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Wave function for no-core effective interaction approaches
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In this paper we study the method of effective interaction as it is currently applied to few-body nuclear
systems, i.e., the no-core approach. We have demonstrated that in the limit of very large model space, the
no-core effective Hamiltonian is equivalent to the bare Hamiltonian transformed by a unitary transformation.
This result is exact to second order in the norm of the two-body Lee-Suzuki similarity transformation operator.
Using this result we propose a relation between the effeétibedy wave function and the bare wave function.
Verifying this proposition through numerical calculations we have found that the resulting wave function is a
rather good approximation.
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[. INTRODUCTION address the following questions: Under what conditions does
this approximated effective potential become exact? Alterna-

In nuclear few-body pr_oblems, where one typically en'tively, is there a unitary operator that transforms the bare
counters hard-core potentials, an attempt to expand the WaVR hody Hamiltonian into the no-core effective one?

function in the harmonic-oscillataiHO) or hyperspherical- - At first sight it seems that any unitary transformation of
harmonicgHH) basis functions usually results in notoriously the pare Hamiltonian will lead to a many-body, rather than a
slow convergence. As a consequence one is either forced {@0-body, effective interaction. Consequently, the equiva-
introduce a correlation function into the wave function or t0jence between the bare and the no-core effective Hamilto-
replace the bare interaction by an effective one, tailored tgiians can be established only when the model space coin-
the truncated model spadé,2]. Theoretically, for a given cides with the full Hilbert space.
model space one can find an effective interaction such that A more refined answer to the above questions can be ob-
the low-energy spectra of the effectivebody Hamiltonian tained if we study the limit of very large model space. Due to
will coincide with the spectra of the full space, bare Hamil- property(i) any unitary transformation, connecting the bare
tonian[3,4]. In practice, however, finding such an effective and effective Hamiltonians, becomes unity in this limit.
interaction is as difficult as solving the ful-body problem.  Moreover, the deviation of the transformation from unity can
Therefore, one resorts to an approximated effective interacserve as a small parameter. Using these observations, we
tion, usually obtained from the solution of a two-body propose a form for the transformation operator and show that
Hamiltonian. These two-body effective interactions noin the transformed Hamiltonian many-body terms fall off
longer lead to the exact spectra in the truncated space, butifiuch faster than the two-body effective interaction terms.
constructed properly they retain two important properties. The resulting effective Hamiltonian coincides with the no-

(i) They converge to the bare Hamiltonian if the modelcore one. This result holds true to second order in the small
space is enlarged up to the full Hilbert space. parameter.

(i) The energy levels of the effective Hamiltonian con-  Using this insight we attempt to bridge the gap between
verge to the exact values faster than those of the barthe effective and the bare wave functions, and propose an

Hamiltonian. approximated wave function for the bare Hamiltonian. This
Although the advantage of this approach is evidentapproximation was tested numerically for the effective-
through its recent success in nuclear few-body phy[gi¢g, interaction hyperspherical-harmoni¢g&IHH) method [2],

it has two major drawbacks: the effective wave function isgiving rather good results.
rather remote from the bare one, and the relation between the The paper is organized as follows. In Sec. Il, we review
two is obscure. Thus, a decent interpretation of the bare wavihe general features common to the different no-core effec-
function is missing. For closed shell nuclei these points wergive interaction methods currently used in few-body nuclear
addressed already 40 years ago, see, for example,[Béfls.  physics. In Sec. Ill, we study the limit of very large model
and led to the development of the effective operator theoryspace and introduce a unitary transformation operator which
In contrast, for no-core nuclei and for the no-core effectivemakes the effective and bare Hamiltonians equivalent to sec-
interaction approach no parallel treatment exist. ond order, in this limit. This transformation operator is then
In the current formulation of the no-core approach theused to propose a relation between the bare and effective
effective A-body potential is approximated by a sum of ef- wave functions. In Sec. IV we test the quality of the wave-
fective two-body(or three-bodypotentials obtained, through function ansatz proposed in Sec. lll; in order to do so we
the Lee-Suzuki unitary transformation meth@@l4], from  outline the calculation of mean values in the EIHH frame-
the solution of a two-bodythree-body Hamiltonian. Limit-  work, and apply it to the expectation values of three-body,
ing our discussion to effective two-body forces, we wish tofour-body Hamiltonians. Conclusions are given in Sec. V.
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ODED MINTKEVICH AND NIR BARNEA
Il. OUTLINE OF THE NO-CORE EFFECTIVE
INTERACTION METHOD

In the effective interaction approadi,2,7 the lowest
eigenvalues of al-body Hamiltonian,
HA = Hy+ Vv (1)

are treated as follows. The Hilbert spaceHf! is divided

into a model space and a residual space, through the use

the eigenprojector® and Q of Hy, which satisfy the rela-
tions

[Ho,P1=[Hp,Q]=0, QH,P=PH,Q=0, P+Q=1.
2
The Hamiltonian eigenvalue problem
HAW =E, W, 3

is then replaced by an effectivepn-Hermitian one

HARTD, = (PHP +PVACP)D, =ESD,  (4)

that by construction has the following characteristics.

It has the same energy levels as the low-lying states of

Al i ff—
HIAL ie., ES'=E,.

The effective wave function® . Of these states are the
P-space components of the corresponding wave function,

e, ®,=PV,.
In the Lee-Suzuki approacfB], H"f is constructed
through the transformation

HIAR! = pH P + PVQwIAIP, (5)
where the similarity transformation operator
oA = QAP (6)
fulfills the following equations:
— Alp\d
V,=(P+QuNP)d, 7

for all the P-space energy levelg.=1,...,dim{P). An

equivalent Hermitian effective Hamiltonian can be con-

structed through the transformatipf
HIATeff = p(H, + \IAlef)p
P+ AT
- \J/P(l + AT lA P

P+ oAl
VP(1 + o ATAN P
(8)

(Al
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one must build the approximate effective potential in such
a way that it coincides with the bare one fér~ 1, so an
enlargement of the model space leads to a convergence of
the eigenenergies to th&ue values. The no-core shell
model (NCSM) [1] and the EIHH methods are developed
along these lines. In the simplest approximatidA’e’ is
replaced by a sum divo-bodyterms

A

ViRt = S vi[jz]eff.

i<j

of
(10)

The effective two-body interactiom,[jz]Eff

“two-body” Hamiltonian

, is derived from a

HIZ = Ho + ul?. (12)

This Hamiltonian is easily diagonalized, and the correspond-
ing two-body similarity transformation operatmsgjz], is cal-
culated using the appropriate analog of Ef}. One proceeds
applying the Lee-SuzuK#é] similarity transformation tcb-li[jz]

in order to get the corresponding Hermitian effective Hamil-
tonian,

P+ wi[jZ]T P+ wi[jz]

H?! :
VP + ofTolPhP
(12)

The effective two-body potential is obtained by subtraction
of Hy,

2]eff _
HL2leff =

VP(L+ o/ lZ)P

o Prei  Pof
ert —
R o s el
(13
The resulting effective Hamiltonian,
H[A]eff ~ HO + E vi[jz]eff (14)

1]

turns out to be an extremely good approximation as its ei-
genvalues converge rapidly when tRepace is enlarged. On
the other hand, using the two-body approximation of Eg.
(10) one gives up rigor. As a consequence, the relation be-
tween the bare eigenstates and the effective ones(3kg.
does not hold any more. Moreover, even the simple interpre-
tation of the effective wave functiod,, as theP-space com-
ponent of the full wave functionV’,, is questionable. For
obvious reasons the knowledge of the bare wave functions is
very important. It is therefore desirable to restore, at least

The similarity transformation operator is the same for Eqsapproximately, the fundamental relation of E§).

(5) and(8). The Hermitian analog of the relation, EJ), is
P+ o
R AT Al p e
VP(1 + o ATeA) P

9

WhereCD# is the solution of theHermitian effective Hamil-

Ill. THE LIMIT OF VERY LARGE MODEL SPACE

Trying to find the conditions under which the approxi-
mated no-core effective potential becomes exact, lead us to

tonian, i.e.,H[A]efQI)M:EM(I)M. In general the effective inter- seek a unitary transformation of the bare Hamiltonigh,

action appearing in Eq(8) is an A-body interaction. Its

—UTHU, whereU is chosen in a way that the-space part

construction is as difficult as finding the full-space solu- of UTHU coincides with our effective Hamiltonian, E(L4).

tions. Therefore, one has to approxim&té'. However,

When the model space coincides with the full Hilbert space
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then, by constructiorH¢f'=H[Al and one can use the unit A A
operatorU=1 for such transformation. For smaller model G=exg > o |=P+ > o2 (17)
spaceP <1, and the transformation operatdrdeviates from k>1=1 k>1=1

unity. Hence, the question we wish to address is, o Whaj; i evident thatG is not a unitary operator; moreover

orde[r [L? this deviation does the relatioH"*"  GiGp A transformation operator that fulfills this closure
=PU'H™UP hold true? relation is given by

We start our analysis by an educated guess for the unitary
transformation operatdd. Considering that our attention is ) = G——= <P+ D w%) 1 ,
restricted to theP-space part of the transformed Hamil- VG'G ki \/p(1+2‘_ oD l2\p
tonian, we can set the conditia#Q=0. Next, we must take it
into account that the two-body transformation operators, (18

(2] i :
w;;", are the building blocks of our effective theory. There-nich is our choice for the transformation operator. With
fore, one might try to construdd through a power series in  {his choice we can define an Hermitian effective Hamil-

these operators, fomian,
. ), [2] : @ . [2t [2] HW = UTHAY
o +% i IJ% e (P2 w0ld") ey
* § ikl @i+ - (15 \/P(l +2ij,kl off Tl P
i kl.mn s
The conditione/?'=Qw!?P limits this expansion, and one X \/P(l’fzij ) wi[jz]Twﬁ])P. (19)

may collect similar terms to obtain

The above tra[n?formation would not reproduce our effective

Hamiltonian HY{, Eq. (14), since H!"! contains not only

U=P+g(Puil wjiP) + E ol (PolZlwliP), (16)  two-body terms but also three, four, and other many-body
g terms. The question is under what conditions do the two

i Hamiltonians coincide. In order to answer this question
where g,f are functions of the P-space operators \ye now turn to theP— 1 limit. In this limit one can as-
Pw[nfgfwﬁ]P. It should be noted that the above expansion issyme the following.
rather restricted as only two particles are excited outside the (i) The operatorso.[.z] are very small||P||>|| w_[_Z]‘rw_[?]”_

P space at a time. This is an immediate consequence of the (i) The Q-space gverlap between two different pairs is
condition that the two-body similarity transformation opera- g \with respect to same pair overlap, i.m[?]TwL2]||

[2] . - ; :
tor, -, connects thé-body P andQ spaces. This condition 3
& Pl for (i) # (if).

A

holdsI true for any state dependent effective interaction, and '’ ; .
in particular for the EIHH method. Leaving the general dis- (iif) For different pairs(ij) # (kI) the commutator be-

. . . f . 2 2] . .
cussion, we note that the starting point for the Lee-Suzukifween the two-body 'nteraCthDi[j] and v}’ is negligible,

similarity transformatior{3,4] is the operatoG=expo!?).  je. Pl A2 2P~ pl2T 2] 121p,
Introducing the approximatiow[A]inj wi[jz] into the defi- With these observations we see that, retaining only qua-
nition of G we get, dratic terms inwt?,
|
HM = UTHU
1 1
=\ P el (P X off g P+ i) P- S efeef?
2 ij Kl pq 2rs

1 1
(P23 o)+ S gl o3 ot
ki

2 ij 2rs

1 1
~PHP + 2 <wi[]?”Ho wl? - Ewi[f”wi[f]HOP - EPHOwi[jz]Twi[jz]>
ij

]

~PHP + 2,
i

(20)

P+ 2 P+ ol
Ho ~PHP |,
VP +dTlPhP P2+l ATol?)P
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and

WA= Uy

1 1
=3 (P2l o S ol (S ol i)
kl mn

2 pg 2rs

1 1
~2 (P - EE w%TwE,Zq])< > a)E]Tw[k%]vi[jz] +(P+ wi[jz]T)vi[jz](P + wl[jz])) ( P- 52 WEJT“’%]>
pq

(K= (ij) rs

1 1
~> ( p- 5wi[jz]w“wi[f]) (P+ wi[jZ]T)Ui[jZ](P + wi[jzl)( p- 5wi[jz]‘rwi[jz]>

P+ o2t P+ o
. E 1] U[Z] 1]

~ : :
i VP(L+ o ToZ)P  VP(1+ o/ TulZ)P

(21)

Combining these two results, Eq20) and(21), we find that  transformatiorlJ, one would expect that the bare wave func-

A HEA] S A ::82 can be derived from the effective one through the rela-
~ PHyP + _(H0+Uij ) |V, = —/—|¢) ) (23
i \ P+ offTolPP SR

2

X
VP(L+ofTl?hP

(22 through numerical evaluation of the Hamiltonian expectation
value for the ground-state wave function. Before we proceed,
one should note that many-body operators such a&iG

) In the following we wish to check the quality of this ansatz
- P OP .

:)—rhouxsi'}nv;;gagafﬁi?tgzia;r:fo?ué;i;?r:gitr:?:ir:jsegovlv?trt]“:ﬁé c:;r aB3re extremely difficult to evaluate. In the transformation
fective Hamiltonian, Eq(14), in the limit P— 1. Of course, [A] Al 1

it is by construction that foP=1 the bare Hamiltonian and H™ — Jr%G H Gia’ (24)
the effective one should coincide. However, this construction \ A

is not sufficient to ensure that many-body terms fall off the main role of the operator {G'G is to insure the uni-
much faster than the effective corrections to the two-bodstarity of the transformation, or to normalize the eigen-
interaction. The fact that the effective Hamiltonian is exactstates of the Hamiltonian. If so, it may be instructive to
to second order iw'? is nontrivial. Having crossed this use different normalization, this time not BfA) but rather
bridge we achieved two goals: first, we have established thesf its eigenstates

oretical justification for the two-body approximation, and

second, by inverting this argument we expect thay 7 >:;G|¢ ). (25)
~U®,. In Sec. Il A we shall elaborate on this point and "oV e,

discuss some further simplifications for the wave function.

Considering now the validity of our assumptions, it is
evident that assumptiofi) is justified. For translational in-
variant basis functions, i.e. basis functions that are form

If we take seriously the statement thaty&'G is nothing
more than normalization, then we can use E2f) and
yassume that

lated in the center of mass frégacob) coordinate system, it 1 1 (®,|GTHG|D,)
is difficult to present a general argument in support of as- (P,| ==GHG==®,) = W (26)
sumption(ii). Therefore, we shall consider this point in Sec. VG'G VG'G (®,|G'G|D,)

il B, through the specific example of the HH formalism. For Thjs form is very convenient for numerical integration, see

single-particle states the situation is somewhat simpler. Ii5ec. |v. In the following we shall use EG25) as our ap-
Sec. Il C, we shall discuss the validity of assumptiéi$  proximated wave function.

and iii ) using single-particle plane-wave basis functions.
A. The wave-function ansatz B. The validity of the second assumption in the HH formalism
Having demonstrated that in the linft— 1 the effective In Sec. Ill above we have assumed thatRs>1 the
Hamiltonian, Eq.(14), can be obtained through a unitary many-body terms fall off much faster than the two-body
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terms in the effective Hamiltonian. In general, it might be
rather complicated to prove this assumption. Nevertheless, ir o4
some patrticular cases it is possible to demonstrate its valid:
ity. Let us consider a system @& bosons and expand its £
wave function using a hyperspherical-harmonics basis. Thes o2

first term in this expansion is the completely symmekKic

=0 state. In most cases this state is also the dominant bass | /\ A /\ /\
5 AWAWA

state in the wave functions of low-lying energy levels. It is,
therefore, interesting to check whether our assumption hold™ | \/ \/ \/ \/ \/ \/ \/ V |

A)G,A:

for this case, and evaluate the ratio between its matrix ele-™
ments for the two-body and many-body terms. For simplicity %2
let us consider a coordinate system in which tiAe-1)th L i
Jacobi coordinate is

y . ! . ! . 1 . 1 . 1
04

- 1. .
Ma-1= \/;(rA—l —fp). (27) K

FIG. 1. The matrix element, E¢33), of the pair permutation
In this coordinate system all the quantum numbers but theum, = ;-i(K|(i,A)(j,A-1)[K), as a function of the principal hy-
principal hyperspherical quantum numbg, remain fixed  perspherical quantum numbks, evaluated numerically for a sys-

upon application of a two-body operator, suchvé?é\_1 or  tem of three identical particles.
(2] ’

wany 10 the [K4=0) state. Thus, it is sufficient, for our
purpose, to denote the basis functions|Ky). _ p%/z,%—8/2>(1/2)
In order to evaluate the ratio (K[(i,A)K) = U ) (32
K
_ T _
(Ka= 0|Eij wi[jZ] W2k 1[Ka=0) 28 Summing Eqgs(31) and(32) we get
<KA = O|w[A2,]AJr—1w[A2,}°\—l|KA = O> ' 2 <K|(| ,A)(] ,A _ 1)|K>
we replace the particle paiij) by the pair(A,A-1) using f#AA-1
two-particle permutations, and then insert a complete set of pl/2:3-812)(1 /)
Q-space HH states to obtain =1 2A-2)—ipacem, o
P -1
(012 0w 1|0) (A-3)(A-4) P22
1] + > P%’Z*EA"B/Z)(— 1) . (33)

=>0/(,A(,A- D2 (1,A)(,A- D2k |0 . .
%< 6.4 Jopn-(LA] Jonn-1/0 Calculated values of the matrix element, E83), are given

in Figs. 1-3 for three, four, and six bosons, respectively.

= E > (0|2 KXK|(,A)(j,A = DIKXK|wiZh_1|0). Recalling that the corresponding value for the two-body term

ij KeQ is (K|K)=1, we observe that Figs. 1-3 indicate that the con-
(29

04 T T T T
In the second line we have used the fact that the principal ' '

hyperspherical quantum number is invariant to particle per- - 1
mutations. The two-body term is given by

(0|2l 02 110y = > (0]l [K)(K|wlh 1]0).
KeQ

(30)

bl

<K|GA)GAD | K>
>
=
=
>
>

The ratio between the two-body matrix element and the*¥
many-body matrix element depends on the magnitude of the*

pair interchanging matrix elemei|(i,A)(j,A-1)|K). For- ’
tunately, as was shown by Fabre de la RipgBé these L 1
matrix elements can be evaluated analytically. For two pairs

with no common particle,j #A,A-1, M0 0 30 w0 0 e
%/2,%—8/2)(1) K
(K[(i,A)(j,A-1)|K) = PE(1/2,3A—8/2)(_ 1) (3D FIG. 2. The matrix element, Eq33), of the pair permutation

_ . . _ . sum, ;- =1 (K|(i,A)(j,A-1)[K), as a function of the principal hy-
When the pairs contain one common particle, for instance perspherical quantum numbkt, evaluated numerically for a sys-
=A-1,i#A, tem of four identical particles.
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04 . . r T r T

tion of w'?! on the leadind®-space state$p; - --pa); pi <P, is
to excite one particle outside the-space sphere, then the
other particle must acquire more or less the same momentum

5 oz s but in the opposite direction. Limiting, for the moment, our
=) attention to these states we can use the following approxima-
3 I tion
2 A (2] _  [2(b)
:v:' \/ w13 = W13
. 1 _ e T T W (3 R
& = E E |Qiqép3' . pA>wqfqr B.p (P1P2 - - pA|-
S oS L 12/ F1F2
02 ] P1P2" **PA qiqé
] (35
o4 L With this result at hand it is evident that assumpti@in
holds,
K
. . ) <" = = | [2]t [2]| —>r>
FIG. 3. The matrix element, E¢33), of the pair permutation P1P2 - .. Pal @i~ 0 |P1P2 - - - Pa
sum, - j=; (K|(i,A)(j,A-1)[K), as a function of the principal hy- ~ (R R 5,12 L2550 sy = s
perspherical quantum numbkt, evaluated numerically for a sys- (BaPz - Palo ™ @id T PaP - Ba) = i
tem of six identical particles. (36)

o . In order to verify assumptiofiii) we have to consider the
tributions of the many-body terms to the matrix elements Offollowing matrix elements:

the leadingK ,=0 state are indeed small and fall off very fast

with increasing values oK. We conclude that our assump- By F3A|wi[j2]1‘v[kf] 2B, B

tion holds for this example. Taking into account that a simi-

lar behavior is expected for all the HH states with smallwhich we can divide into four topologically distinct terms,
values ofK,, one would expect that this assumption should

. 2= > b b) |21 = >
hold in general. A=(pipy - Pal w305 03 (5155 .
— /R R ...R [2l(b)t, [2]  [2](b) |grar ... &Y
C. The single-particle plane-wave case B=(piP,+ Pal @iz viz w3 PiP2 e P,
In th_e.spirit of the preceeding_section, we shall consider C =By Bl L2 [2] [2]0) 1615~ B
the validity of our second and third assumptions for single- 12 Al %12 P13 ™12 1F2 A
particle states through a specific example. For simplicity we
shall choose a set of plane-wave basis functions. Ignoring D =(p,p,-- pal 031012 lJ® |5:5s--- 5. (37)

internal degrees of freedom, we shall use the notation
. All the other matrix elements vanish due to E§5). For
[kiKs ... Ka) caseA it is trivial that assumptiortiii ) holds.

. Now, let us consider cadg,
to denote a generd-body state. Our model spa¢eis de-

fined by the condition that each of the momeittds con-  B= (B, al @13 0 w3 5155~ B

tained in a sphere of radilB, i.e., ki=|k|<P. The Q space _ DORPRE A C e R

is the complementary space. In the following we shall pse ~ ~ %Paf; " by 2 qlqz'ﬁlﬁzquds,ﬁé§é<q1p3|v P10
to denote model space momentum anddoto denote mo- s

mentum lying outside th@-space sphere. With these defini- (38)

tions it is clear thaw!'?! can either excite both particles into Since the potential depends onlv on the relative coordinate
k;> P states or excite only one particle outside tspace P P y '

sphere. Using these observations it is convenient to wfte  the matrix elemen(k1k2|zi[2]|k1l<§> depends only on the rela-
in the form tive momentum transfek=3(ky —kp) — 3 (k; —k3). For central
— =2y 2 > 2](a) . N potentials,
w[122] = 2 i E [CHAEEE pA>w%i],52,3152<p1p2“' Pal

P1P2 **Pa Gy ARE o - - o 1
(kakolv'#kiky) = 8(ky + ko —ky —ky) -—
Flo2+ > X |Gi6Ps PowLr 2m
142M3 A qiqé'plpz

1Py - Pa didé
X(P1P " Pal- (34)

In the following we shall assume that?! is translationaly ~ which for a hard-core potential?(r)=V, 6(a,-r) takes the
invariant. Subject to this condition, it is clear that if the ac- explicit form

sin kr
, 39
o (39

xJ r2dr vl(r)

044005-6



WAVE FUNCTION FOR NO-CORE EFFECTIVE. PHYSICAL REVIEW C 69, 044005(2004)

o e o e agvo In conclusion, we have shown that f&r— 1 the single-
(kekolokik) = 8Ky + Ky =~ ki = k)52 particle plane-wave basis functions fulfill our assumptions.
Assumption(ii) follows from Eg.(36). Assumption(iii ) fol-
(sin kay . Coskao) (40) lows from the fact that all the!2Ty[2w!2 matrix elements
(kag)®  (kag)? /" vanish except for cases, B, C, andD. Of these, caseé

. ) ) ) and C fulfill assumption(iii), B is negligible, and casB is
The momentum transfer in caBeis approximately given by  singled out as the direct two-body term. During our discus-
R PP DU 1. . . sion we have used the conditign<P. Of course this con-
k=301~ Ps) = 5(P1~ Ga) = 5(Ga + Gg) = G, dition is not valid through all thé space. However, enlarg-
where the last equality results from translation invarianceind the P space we can fulfill this condition for any given

G, +Pa=p, +Gs For large enough model spadea,>1 and State. We can, therefore, conclude that the transformed
thereforel Hamiltonian converges to the effective one in a nonuniform

way from the bottom of thé>-space upward.

.. - 1\?
(GiyPalo?)| P ) o (—) <1. (41)
001 IV. EXPECTATION VALUES IN THE EIHH METHOD
To summarize, the contribution of ca&eis strongly sup- One of the conclusions we have drawn in Sec. Il is that it
pressed due to the large momentum transfer. should be possible to approximate the bare wave function
Turning now to case&, we get through Eq.(25). Here we would like to numerically assess

C=(B:Bo- - Bal WAOT[2] J210) 153rar . 50 the quality of this ansat'z. 'Doing so, we shall abandon the
(Pabz Pl 0227013 @3 lp]lpz Pa) general discussion and limit our attention for the HH formal-
S D N L R LRt A A L 1A A ism and, in particular, to the EIHH method.
540, " Opab : 6,5, 013 1P3 . . . L
wPa PR < A1%2:PiPe 6, 92P1P In the HH formalism the Jacobi coordinatesy;,j

d19,92
' (42) =1...A-1) are replaced by a hyperradial coordinate
Sinceq; > p; and d;>p; we can use momentum conserva- N I
tion to deduce the following approximation: p= 2 i (45)

=1

Oi+Ps=G* Pl 61 =0y and a hyperanglé€),. The unperturbed HamiltoniaH, is
On the other hand the!2!® matrix elements are zero unless chosen to be
g1 +G,=p1+P, and G; +G,=p; +pP,. Subtracting these equa- R
tions we can deduce thgi—d;=p;+p,—(p; +p5). Combin- 1 K;

ing these results with the observation that Ho=Tk(p) = 2m (46)
(G1Pafv'?)|GP3) = (By + Po, Balv? 51 + B2, 55). the hypercentrifugal kinetic energy operator, with the hyper-
spherical harmonic3i« 1 as eigenfunction§ K,] stands for
we get [Kal
a set of quantum numbers, see Réfl). The model spac®
Cm 65 585 5 > 0 2O 5 45 5lul2 is defined as the complete set of HH basis functions with
Paba  TPaba s 2 PiP2 G PPy P1+ PaxPo generalized angular momentum quantum nunmige Kp,
o)y and theQ space as the complete set of HH basis functions
X [Py + P2, B3)- (43 With K,>Kp. The hyperradial coordinate serves as a pa-
It is instructive to compare this matrix element with the ma-fameter in the construction of the HH effective interaction as
trix element it commutes withT(p). It should be noted that in the EIHH
method w'?'=w!?(p). Moreover, because the HH effective
(PP Pal [21b)t [2](b). [2] [HEEA : N [2]
PPz Pal w12 w13 Uiz [P1P2" " Pa interaction is state dependenty” transforms anA-body
=8 e O E G wE2]5b>»,,~,<ﬁ'{§3|v[2]|ﬁiﬁé P-space state into aA-body Q-space state. The structure of
PP pA'pAdlqzﬁrl/ P12 402 1P o/?! becomes simple if we choosg;=1/V2(f,~f) as the
X - “last,” (A-1), Jacobi coordinate. For such a coordinate
=85 50 05, 5 > WAL 2w system
Pafy PaPh et a1z P10y i (Bu+Pz ) y
142
2 — : Ka_olj :
X((By + Pa — By Balo!? 6,55 w(p) = ) QEK ) I[Ka-2IK i) i A2 (D) [Ka-2 Kpit],
QeQKpe
S S N [2pyx  [2](b)
=%5,5, 5pA,pA% 632,518, 6y (555 ) (47)
142
. 21 =y = wherej,t are the angular momentum and isospin of the two-
X(Py + Pa: Palol?)| By + B3, B3). (44) J g P

particle system, andlK,_,] stands for the hyperspherical-
Comparing Eq(43) with Eqg. (44) we can conclude that case spin-isospin quantum numbers of the resid(at 2)-body
C fulfills the third assumption. system.
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The resulting effective Hamiltonian is written in the HH n! 12 o (SA2
formalism as Ra(p) = (p|n) = e )|b"“ p A2 2 p/)
HART =T + T (p) + X ol (p), (48) xexp(- p/2b). (54)
! Taking =0 to be the ground state of @body system, we
where find that the corresponding bare wave function is approxi-

mately given by Eq(25),

- _ = 1
Tp ZmAp (49) \I,O(pvﬂya.y T) = <p1910-1 7-|\I,O> = /__<p!Q|O-| T|G|q)0>
\rN
is the hyperradial kinetic energy. The operatby is the 1 A
Laplace operator with respect to the hyperradial coordinate = —W@,Q,U,q—i(l + > [2](p) |Dg),
p. N i>j=1
In order to diagonalize the effective Hamiltonian we ex- (55)
pand the effectiveP space, wave functions in the following
way: were N is the normalization constant,
[©,)= 20 Chic i MIKAD, (50)  N=(dgG'Gldgy=2> J dQdpp™Y(p,Q, 0, 7G|D)[%.
[Kaln oT
: : (56)
where for brevity we have used the notation
) In order to evaluate the quality of this wave function, we
[Kal = KaJaJATAT AL AcaBa. would like to evaluate its expectation value of the Hamil-

tonian, and see how well it reproduces the binding energy of

Th ti tricA- h h [-spin-i i .
e antisymmetricA-body hyperspherical-spin-isospin anA body system. The expectation value of any local opera-

basis functions with total angular momentuiq J; and iso-

spin T,TZ are given by[12-14 tor defined in our Hilbert space 1”+Q is given by,
A
. 1 .
Ar, v (PolOlwgy =— > fdePPSN_l‘I’o(P,Q,U, 7)
|KA‘]AJ5\TAT iFAaABA> = 2 |A A| 1 |KA|—AMAF AYA-10p) Nu’(r',ﬂ"
Yaq VITa -
_ — ; XOyr0r 7 (Q,p)¥o(p, Q07 , 7). (57)
X|SaSATAT A Ta Yo Ba) 1A, o _ _ _
(51) Since in our Jacobi coordinate system of choice the “last”
[i.e., (A-1)] Jacobi coordinate is proportional to the separa-
where tion of particlesA and (A-1) it is convenient to make the

substitution
(Qp) = (Q|KALAMAT AYp-1a)  (52)

P10 o= (A= LA DO (ADA-10), (59
are HH functions with hyperspherical angular momentumuse the permutational symmetry @, and evaluatel, in
K=K,, and orbital angular momentum quantum numbershe form,

La, M4 that belong to well defined irreducible representa-

tions (irrep9 I'yel,--- ey, of the permutation group- Yolp,Q,0,7)

subgroup chaiib; C S,- -+ CS,, denoted by the Yamanouchi 1 A
symbol[Ta,Ya1]=[Ta.Ta_1,"-*.I';]. The dimension of the =—=(p. Q07| 1+ > (A=A )P 1(p) || Do)
irep I'y, is denoted byI'y| andAr, v, is a phase factdi9]. v i>j=1
Similarly, the function ( A
=T < ,Q,O’,Tq)>+ E < QO’ w
A \/JT/ P | 0 = ij\Ps TI AA 1

(07) = (0T SASTAT 4 Ta, Ya 180

(53 X (p)|q>0>) : (59

are the symmetrized spin-isospin basis functions, where the

A-dimensional vectorsr=(s?,s%+++s%) and 7= (£t --t2) In the last equation we used the notation

stand for theA-body spin and isospin states. The quantum A AV

numbersa,, B, are used to remove the degeneracy of the P 0,7 = (A= DGAlp, 20,7 (60)

HH and spin-isospin states, respectively. For the hyperradiab denote the permutation of the space-spin-isospin configu-
basis functions, we have used the associated Laguerre polsation. The symmetrized hyperspherical-harmonics functions
nomials,L;(x), with range parametds, [13,14 are constructed through a recursive permutation of

XSASiTAT AaYa1 Ba
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the HH “tree” functiong 10]. By successive implementation
of the recursive construction we get

[KaLAMAYaB)
A-2

=22 X2 ITIKLi€BTiKiaLisBilin

€n Ba [Ka-p] i=1

PHYSICAL REVIEW C 69, 044005(2004)

TABLE |. Ground-state energgMeV) of three-particle system,
interacting via the MTV potential. The Hamiltonian expectation
value, right-side column, and the noneffective binding energy,
middle column, are given as a function of tRespace size by the
principal HH quantum numbeKp. The expectation value is ap-
proximated using Eq.26).

Kp Noneffective (Wl HA P o)
X[Ka1ba-aT a-18a-1/KaLAT aBAl
0 0.6825 6.7020+0.2637
X ([(Ka-2li €A KalaAMw 4 2.1443 8.1970+0.0891
= > UF@EQ]',YQEA |([Kp-); € ) KALAM &) 6 4.6407 8.1735+0.0428
(Ka-2l.ta=Kala 8 5.4207 8.2134+0.0242
(61 10 6.3405 8.2442+0.0203
Here we used the notatiofK,_,] to denote the HH tree 12 7.0954 8.2197+0.0226
quantum numbers and the relatiakg=K_;,La=La_;. The  EIHH[2] 8.2448)
spin-isospin states are constructed very much the same wajjCSM [1] 8.2355)
After having transformed the symmetrized HH functions intoSvVMm [17] 8.2527
tree functions and the symmetrized spin-isospin states intpaddeevj20] 8.25273
regular unsymmetrized states, one can use standard angulggyc [18] 8.261)
momentum techniques and evaludtg(p,Q),o,7). The re- CHH [21] 8.240
sulting expression can then be used to evaluate the expectgﬁvIS [19] 8.261)
tion value, Eq.(57). In practice we have used Monte-Carlo '
integration with the metropolis algorithm to evaluate the spa—V MC [17] 8.213)
tial integral,
R 1 Nme . transformation operatofjw!?]|. Using this result, we have
(Vo|O[Wg) = N—MCE > Yo(p, Q0,7 proposed a new interpretation for the relation between the
i=1

X Oy (01 2 Wolpi, Qi 0, 7). (62)

This scheme is very effective, sin¢¥q(p,Q,0,7? is the

effective A-body wave function and the bare wave function.
Verifying this proposition through numerical calculations, we
have found out that the resulting wave function is a rather
good approximation.

distribution probability and therefore serves as a natural

weight function.

As an example we consider a systemPofiucleons inter-
acting via the simple Malfliet-Tjor{11], MTV, nucleon-
nucleon interaction. Numerical results for the3 case are
presented in Table | and for thd=4 case in Table Il. In

TABLE Il. Ground-state energyMeV) of four-particle system,
interacting via the MTV potential. The Hamiltonian expectation
value, right-side column, and the noneffective binding energy,
middle column, are given as a function of tRespace size by the
principal HH quantum numbeKp. The expectation value is ap-

these tables we study the convergence of the HamiltoniaRroXimated using Eq26).

expectation value for the ground state as a functioiK gf

which fixes the size of the model space. For comparison w&p Noneffective (WolHAwo)
also present thg value_ of .the ground-state energy optaine(g 7.4059 27.137+0.824
through direct diagonalization of the bare Hamiltonian in the 9.5749 30.536+0.462
model space. Also presented are ground-state energies ob-
tained by different methods. It can be seen that the propose 13.934 30.284+0.678
wave function can reproduce the binding energies of thesé 20.500 30.911+0.315
systems to few parts per thousand, and as expected the quaf 23.502 30.865+0.302
ity of the wave function improves with enlargement of the 12 26.585 31.024+0.220
model space. 14 28.036 31.156+0.115
16 29.163 31.287+0.045
V. CONCLUSIONS EIHH [2] 31.35§9)
In this paper we studied the method of the effective inter->YM [17] 81.360
action as it is currently applied to few-body nuclear systemsfY [20] 31.36
i.e., all nucleons active. We have managed to demonstra®T™MS [19] 31.36
that in the limitP—1 the no-core effective Hamiltonian is CRCG[22] 31.357
equivalent through unitary transformation to the bare Hamil-grmc [18] 31.32)
tonian. We have also shown that this holds true to secongyc 17 31.305)

order in the norm of the two-body Lee-Suzuki similarity
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As a result, effective two-body operators constructedElHH and similar methods to relatively high-energy scatter-

through the relatioril5,16 ing processes.
+ w_[_2]T P+ w.[.z]
Ol2leff— ! o2 !
ij / 1]
VP +oflP  VP(1+ ol PTol?)P ACKNOWLEDGMENT
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