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A nonrelativistic potential-model version of the factorization assumption, used in perturbative QCD calcu-
lations of hadronic form factors, is used, along with the Born approximation valid at high energies, to derive
a remarkably simple relationship between the impulse approximation contribution to the deuteron form factor
at high-momentum transfer and the high-energy neutron-proton scattering amplitude. The relation states that
the form factor at a given value @? is proportional to the scattering amplitude at a specific energy and
scattering angle. This suggests that an accurate computation of the form factors @’aeggiires a simul-
taneous description of the phase shifts at a related energy, a statement that seems reasonable regardless of any
derivation. Our form factor-scattering amplitude relation is shown to be accurate for some examples. However,
if the potential consists of a strong short distance repulsive term and a strong longer-ranged attractive term, as
typically occurs in many realistic potentials, the relation is found to be accurate only for ridiculously large
values ofQ. More general arguments, using only the Schrodinger equation, suggest a strong, but complicated,
relationship between the form factor and scattering amplitude. Furthermore, the use of recently obtained soft
potentials, along with an appropriate current operator, may allow calculations of form factors that are consis-
tent with the necessary phase shifts.
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I. INTRODUCTION successfully describes the neutron-proton phase shifts for
) T>500 MeV. To our knowledge, no such consistency

The deuteron form factoA(Q?) has been measured at check of the potential used to compute the deuteron wave
Jefferson Laboratory and four momentum transfers up t@ynction has been made.
Q?=6 Ge\* [1], improving the SLAC measuremenfg], One might think that a simple kinematic relationship such
and measurements at largef are planned. These efforts a5 Eq.(1) might not apply because the nucleons in the deu-
have caused much interest on improving calculations of thgsron are bound. Therefore we need to demonstrate explicitly
form factors at higher values G up to about 11 Ge¥ The  that there is a strong relationship between the form factor and
best calculations are elegant in their use of the very lateshe scattering amplitude at large energies and large angles.
realistic, high-precision nucleon-nucleon potentials. Thesgndeed, the specific resufsee Egs(15) and (17) below]
potentials are based on using detailed knowledge of the longjiffers quantitatively from Eq(l). This is obtained using the
and medium-range parts of the potentials and on using artfimplest possible dynamics: nonrelativistic spin-less nucle-
modeling of the short-distance physics. Typically, the paramypg interacting with an energy-independent local potential.
eters of the potentials are tuned to obtain an accurate repreiearly, it is not our purpose to be realistic. Instead we
duction of the measured phase shifts up to 300 MeV laboramerely wish to point out that, under certain conditions, the
tory kinetic energyT. Increasing the range of energies of the form factor can be proportional to the scattering amplitude.
validity of the potential should increase the ability of the  The derivation of the relation between the form factor and
poter)tlal to_ describe thqse aspects of the deuteron wavige scattering amplitude proceeds in Sec. Il by applying the
function which enter at high-momentum transf8f. _ factorization approximation commonly used in perturbative

Indeed it seems reasonable to expect that describing @cp derivations of hadronic form factors along with the first
form factor at a given momentum transf@f would require  gorn approximation expected to be valid at high energies.
a reproduction of the large angle nucleon-nucleon scatteringhe requirements for each approximation are investigated

amplitude at and correction terms obtained. The accuracy of the approxi-
5 mations and the resulting form factor scattering amplitude

T~ Qo 1) relation are studied using simple interactions: attractive Cou-

2my’ lomb potential and sum of attractive and repulsive square

wells in Sec. Ill, and some implications for other models are
wheremy is the nucleon mass. Qualitatively this is becausediscussed. A detailed numerical study using the Malfliet-Tjon
the relative momentum, which dominates the overlap intepotential is made in Sec. IV. The specific approximations
gral for the form factor is~Q/2. The implication of Eq(1) used in Sec. Il appear to be marginally successful, if the
is that for Q>>1 Ge\? one needs to use a potential that potential obtains a total weak attraction by combining strong
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repulsion at short distances with strong attraction at larger d®p
distances. Therefore, a more general argument, using only Yr=0)= —(zw)g/gl/l(p)- ©)
the Schrédinger equation, is presented in Sec. V. A discus-

sion of the implications of our results is presented in Sec. Vigne may also derive Eq4) using coordinate space argu-
The reader may immediately question the use of nonrelaments and determine the leading correction term. By regard-

tivistic (NR) dynamics , because many specific relativisticing p<q/2 one findg6] the approximate form factor and its
effects are known. For a recent review, see RE€[. HOw-  |eading correction term:

ever, NR dynamics are not irrelevant B£500 MeV. Fur-

thermore, the use of relativistic light front dynamics shows d3r

that relativistic dynamics is not very different from nonrela- F(Q) :J d*pyAp) J (2—)3,2¢(r)exr[i(p +q/2) 1]
tivistic dynamics: two nucleons dominate, there is a wave T

equation, and the specific relativistic effects in the deuteron | s o 29 .

are not very large unles3? is very high. The specific differ- ~ | &°pp) —(277)3/2!#(0(1 = pTr/6)expiq/2 -r)
ences between the nonrelativistic and light-front approaches v2

are relatively well understood and lead to a small easing of - 2 31292,1(r = (1) ~d

the constraint1) for Q= mj. Therefore, we turn to the nec- Fa(Q%) — (2m)™*V=ydr = 0) 6 Q). (6)

essary derivation without further apology.
If the integrals exist, and if the wave functions fall as a
power ofq, the ratio of the second to the first terms of Eq.
Il. BASIC IDEA (6) is proportional to[ fp2dpy(p)p?/ fp?dpy(p)]]/ g2 which
vanishes for sufficiently large values gf.
According to Eq.(4), the momentum transfer dependence
of the form factor is obtained from the wave function
Y(q/2), for sufficiently large values of?. Thus we attempt

The deuteron wave functiornyy is defined by the
Schrédinger equation:

2
(p_ + V) e (2) to obtainy(q) from the momentum-space version of EB):
2u '
1
- - 3

where u=my/2. The form factor is given in terms of the Wa/2) = e fd P(a/2|VIp)¥(p). (7
momentum-space wave function as - €~ a

- | 43 We again use the idea thatcan be much greater tham so

F@ fd PUAp)¥lp + a/2)). © that the wave function/(p) can be approximated as

In the widely employed Breit frameg>=Q?% For large _~8u j 3
enough values daf, and for a potentialexpressed in momen- Ya/2) o (@/2V|0) | dpy(p)
tum spacgthat decreases as a powerdgpfthe integral may 8
be simplified becausg can be much larger than the typical - 1<q/2|v|0)(27r)3’2¢(r =0). (8)
values ofp for which the wave function is near its largest 9

value. The deuteron wave function is known to have a lim-_ o ) )

ited momentum content, being essentially 0 for momental NiS approximation seems very natural, if one is used to the

greater than about 600 Me/ ideas of perturbative QCD. In particular, the entire momen-
We aim for a simplification of Eq(3) that is valid at large  {UM transfer is taken up by a single action of the potential, so

momentum transfer. The basic assumption is that, for largéat the important positions in coordinate space region are

enough values of|, one can regard>p even though the thos_e for which the p_otentlal has its greatest varlathn.

integral extends over all values pf This leads to the fac-  Itis useful to examine EqB8) from the view of coordinate

torization approximation commonly used in perturbativeSPace. One has

QCD calculations of hadronic form factors. A pedagogic dis-

cussion of the technique we employ is presented in @f. f 3

There are two regions for which the integrand of E3). is dp(@/2VIP)¥p)#p)

largest:p~=0 for which the first wave function is large, and or

p=-q/2 for which the second wave function is large. The :f ———3eX—ia/2 - r)V(r)y(r). (9

regions contribute equally so that we may say (2m)

One may now observe that the approximation, @y, relies
F(Q?) = F,(Q) :2¢(q/2)fd3p W), (4) on replacing_ the product/_(r)z,b(r) by V(r)y(0). This_is _a_I—
lowed only if the potential has a much more significant
variation than the wave function for positions near the origin.
with the integral over all momentum being proportional to  The expression, Eq8), can be used to obtain the form
the coordinate space wave function evaluated at the originfactor from Eq.(3). The result is
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-16
Fb(Qz)x< 12“ ><q/2|v|o>c1>2, (10)

D= J d®p ¢Ap). (12)

The approximation(10) has been verified numerically in

Ref. [7] for the case of the semirealistic Hulthén model.

The content of Eq(10) is that the form factor is propor-
tional to the square of the bound state wave function at th

origin times the Fourier transform of the potential:

(q/2|V|0y = (2717)3 f dr e/297v(r) (12)
1
4o sinZqr
:(271_)3Jr2 dr I V(r). (13)
20

The desired relation between the form factor and the scat-
tering amplitude can be obtained by realizing that at energies
E much greater than the characteristic strength of the poten-
tial, the first Born approximation is valid and the scattering

amplitude for a c.m. angl®, fe(0)=fe(k,k’),E=k?/2u

=k’?/2u,k -k’ =k?cos 6 is also a Fourier transform of the
potential. The validity of the first Born approximation, at
high energies, for energy-dependent local potentials, is well

PHYSICAL REVIEW C 69, 044004(2004)

theorems. However, these have not been used often for
nuclear targets. We therefore discuss two simple examples.

A. Coulomb binding
We take the potential to be

2

g

V(r) =~ FE (18
fith the exact wave function given by
(r)=Ne"?, (19

with a=1/(ug?). The form factorF(q) of Eq. (3) is given by

1
FA) =S5 2
@)= 7+ 167 (20
The wave function in momentum space is
47N 2
= 21
'ﬂ(p) (277)3/2a< 2+l>2, ( )
q 2
so that the approximation of E(4) yields
1
Fi®) = 55— 22
CR Rt (22

verified in many quantum mechanics textbooks. In that case

4r’p
(2m)®
The relation betweerfg(6) and (q/2|V|0) is obtained by

fe(6) =~ — f dBre!kKIry(ry, (14)

F, is close toF for g?a?> 3. Usingeg=a?/2u and the deu-
teron binding energy an@g.=My/2 means that all that is
required isq>75 MeV/c. The approximation of Eq(10)
yields

specifying 1
1 Fo(0®) = =2 (23
Zqz = 2k?(1 - cos ) = 4uE(1 - cosh) = Tmy(1 — cos¥). aq
which is valid under similar conditions.
The next task is to determine the conditions that the first
Born approximation, Eq.14), be valid. It is well known that,
for the Coulomb interaction, this approximation reproduces
the exact scattering cross section. However, the correct scat-
tering amplitude is complex, while the approximation, Eq.
(14), gives a real result. Thus the condition that Et¥) be
valid is the condition that the-wave scattering phase shift
be small. This is the condition thaMy/(2k)<1, or ka
>1. Sincea=1/45 MeV/c, one needs onlk>45 MeV/c.
This is the result we have been seeking. The key pointis that Thys the approximations of the preceding section are eas-
the form factor is expressed as the high-energy scatteringy satisfied for dynamics defined by the Coulomb potential.
amplitude times well-defined factors, implying that a correctyore generally, it is reasonable to expect that, if the potential
calculation for the form factor can only be achieved in mod-is |ocal, purely attractive with a significant gradient at the
els in which the scattering amplitude is accurately reprogrigin and magnitude determined by the very small deuteron
duced. binding energy(2.2 MeV), the approximations needed to
reach the form factor scattering amplitude relat{a®) are
well satisfied. In such cases, the potential varies more rapidly
than the wave function for positions near the origin, and the
The arguments used in the preceding section are anal@otential is weak enough so that the first Born approximation
gous to those presented in derivations of QCD factorizatiortan be accurate for reasonable momentum transfers.

(15)
Imposing the relatior{15) immediately yields
fe(6) = - 47 u(q/2|V|0), (16)

and with Eq.(10)

1
F(Q?) = 71Z—QZfE(ﬁ) P2, (17)

Ill. TOY MODELS
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ST T T T T T T the derivation. The point is that the factorization, E4),
depends on the potential varying more rapidly near the origin
than the wave function.

One might then be amazed that the approximate form fac-
tor is even close to the exact one. That this occurs can be
understood from the discussion below, E8). The action of
Vg does not introduce an extra factor of @ because the
momentum-space  wave function contains  terms
~sin QRy 1/ Q2.

This section contains two simple models. The approxima-
tions work magnificently if the Coulomb potential is used,
but fail miserably with the nucleon-force-motivated model of
Eq. (24). Let us examine a more realistic model to see if our
approximations are relevant for understanding deuteron
physics.

A
NATAAART M At )

IV. MALFLIET-TJON POTENTIAL

||||||||||||||-:|'|||||||||

Q

P IFEP PN P PR PRI N R The short-distance repulsion and longer-ranged attraction
5 6 7 are simulated via potentials of the Yukawa form in the

8
—1 Malfliet-Tjon potential[8]:
loglO<Q/fm ) — AT e MR

V(I‘) =- )\A + )\R
FIG. 1. Ratio of approximate to exact form factor. r
The parameters were chosen to reproduce the deuteron bind-
B. Short-ranged repulsive square well plus long-ranged ing energy, scattering length, effective range, and phase
attractive square well shifts up to a laboratory energy of 300 MeVhis potential

The nuclear force is repulsive at short distances and ai$ Much smoother than the square wells of EZf).
tractive at long distances between nucleons. Thus we con- OUr @im is to study the approximations given in E@.

[<e]

(26)

sider the model defined by and (8) and the Born approximation of E¢l4). The com-
parison between the exact form factb(Q? and the ap-
V(r) =Vpb(Ry—r) = V18R, - 1)6(r —Ry), Vp1>0. proximationF,(Q?) of Eq. (4) is displayed in Fig. 2.
(24) The approximation does work, but only for huge values of

Q. The value ofQ~ 140 fni! or Q?~ 900 (GeV/c)? for its
We take Ry=0.4 fm andR;=1.5 fm. Then the observed natural logarithm to reach the value of 5. One may search for
deuteron binding energy is reproduced using, the cause of this bizarre limit by examining the correction
=0.302 fm*,V,=29.18 fm'=5.757 GeV. This corre- term shown of Eq(6). This is governed by the kinetic energy
sponds to a hard core repulsion. The wave functlon is  operator acting on the wave function at the origin. The

given (up to an overall normalization constauity Schrédinger equation says that this is essentially the poten-
. . tial times the wave function, with a product that varies as
) = MM <Ry (Agr—\a) near the origin. The strong nature of the repulsive
sin KRy sinh yR, term\g=7.41 causes the expansion shown in @gto con-
sin Kr verge very slowly.
=———, Rysr<R; One may gain further insight by studying the relationship
sin KRy between the exact and approximate wave function of(&q.
exp(-r/a) As shown in Fig. 3, the approximation attains validity only at
—m’ r=Ry. (25) supremely large values of the relative momentum. Here ac-

curacy required/(r)(r) = V(r)y(0) for values ofr near the

The exact{F(q)] and approximaté¢F,(q) Eq. (4)] form  origin. For the Malfliet-Tjon potentiaV/(r)~1/r and (r)
factors are compared by displaying their ratio in Fig. l.approaches 0, in contrast to the Coulomb wave function.
There are some wild fluctuations arising from nodeE@),  From this, the failure of the approximation seems natural.
but these are not the most interesting feature. The true diffiMoreover, many realistic potentials behave in a similar fash-
culty is that the approximation becomes valid only for ex-ion.
tremely large values aff> 100 fnit. Furthermore, the ratio The final requirement needed to achieve the regdit is
Fa(a)/F(q) is 0.87 instead of unity. That difficulties exist can the validity of the Born approximation. Our comparison of
be seen immediately by comparing E@$) and (25). The the exact and Born approximation to the forward scattering
coordinate-space wave function vanishes at the origin, so themplitude is shown in Fig. 4. The partial wave expansion is
leading approximation vanishes. This signals a breakdown afised unless the energy is large enoulgilb energy greater
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FIG. 4. Ratio of approximate to the real part of the exact for-
ward scattering amplitude for the Malfliet-Tjon potenti.is a
e1aboratory energy.

FIG. 2. Ratio of approximate to exact form factor for the
Malfliet-Tjon deuteron wave function. The solid curve compares th
approximation of Eq(17) with the exact form factor. The dashed

curve compares the approximation of Ed) with the exact form ] ) )
factor. ing, whereas our relatiol7) requires high-momentum

transfer. The convergence to the Born approximation occurs

than 1 or 2 GeY for the eikonal approximation to reproduce fqr higher epergies for large scattering angles, if the Malfliet-
the exact scattering amplitude. Figure 4 shows that the BorfiOn Potential is used.

approximation does become valid, but only at absurdly high 1he slow approach to the Born approximation can be un-

energies. This figure shows results only for forward scatterderstood from the eikonal formalism in which the scattering

amplitude is expressed in terms of an integral

A L L B o .
L 1 fe(6) = - ik f bdbd[2kb sin(/2)](éX? - 1), (27)
0

1.0

. with the phase shift functio(b) given as

~~ 4 M *© —

Oios — X(b)z—;f dzMvb? + Z2). (28)
N’ 4 0
3 ] For the Malfliet-Tjon potentialy(b) is given by
o . m

>l ] X(b) =+ [AaKo(brer) = MaKo(bpza)], (29
\-/crj 1 k

ﬁ i which is small only for very large values of the relative mo-

_ mentumk. While the overall potential is able to produce only
g one weakly bound state, the weak attraction arises from the
1 cancellation of two very strong terms of opposite sign that
generally causes large values @b).
R B The factorization approximations for Eq4) and(8) and
4 6 8 10 the Born approximation of Eq¢14) work for sufficiently
1 ( f ) large values of the transferred momenta. A reasonable reader
Og 10 p m might examine the Figs. 2—4 and conclude that “sufficiently
large” means too large to be relevant for real experiments.
FIG. 3. Ratio of approximate to exact wave function for the However, success at asymptotically high momenta indicates
Malfliet-Tjon deuteron wave function. that the key assumption Eggl) and(8) that the form factor

0.4

0.2
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iS proportiona! to the wave functiop at the_ origin is a very Enlén) = (Too * Voo |én), (35
stringent requirement that is especially difficult to satisfy for ) o i o _

a wave function that vanishes at the origin. Furthermorei® Which |y IS a scattering state with incoming boundary
high-momentum transfer scattering may proceed via a set gonditions, E;=k*/2u, and E,# -eg,|¢,) are the energies
small momentum transfer processes under certain circunfnd wave functions of any bound states that may exist. The
stances. Thus the condition that the Born approximatiort!S€ Of completeness in E(B3) leads to

(scattering by a single action of the potentia¢ \_/alld is aIsp B 1 ; Vpol d)) (_)<¢k|VQP
a very strong one, as is spectacularly manifest in Fig. 4. |¢>p—? Vep+ | d%k

B~ Ipp

Truly magnificently high energies are required for the Born —es Bk
approximation to be valid. v vV

While the relation, Eq(17), suggests a close connection +, M)M)p. (36)
between the form factor and the scattering amplitude it is n ~e~En

worthwhile to ask if one can derive a connection between the The form factor depends on the high-momentum compo-

form factor and the scattering amplitude that does not dipenis of the deuteron wave function, so consider the quantity
rectly involve the wave function at the origin and smgle-< 12| p)p for QI2> A. Then(q/2|¥)p=(q/2| ). The sec-
scattering assumptions. The desired connection is displaye d term on the right-hand side of E@6) is determined by
in the next section. the matrix elementéq/2|V|¢)”, which are scattering am-
plitudes for off-energy-shell kinemati¢9]. These matrix el-
V. GENERAL APPROACH ements are the terms which contain the relation between the

The central idea is that the wave function is dominated b>}‘orm factor and the scattering amplitude. To see this, take the

its low-momentum components and that high-moment arameter\ to be just a bit less thag/2. The largest of the
S low-mome components at mgh-momentuiiy, iy elements(q/2|V| )™ will be those for whichk is
components are obtained by at most one hlgh-momentumst a bit less than\. In this case, the kinematics are nearl
transfer operation. We intend to manipulate the Schr('jdingeh!J : ’ y

equation to derive an explicit relation between the form fac.0n shell. Transition matrix elements are continuous, so that it

tor and the scattering amplitude. Projection operators arls reasonable to expect that reproducing the observed scatter-

used to develop the necessary formalism. Let Ihg amplitudes at high energy is important for reproducing
' the important features of the high-momentum components of

bound state wave functions.
Q= f d®pf(A - p)lpXp|, P= f d®pé(p - A)pXpl,

(30)

VI. DISCUSSION

The use of two factorization approximations, E@h.and

with P a projection operator on high-momentum states.and (8), combined with the first Born approximation, Ed.4),

a parameter, approximately 600 Me¥/ér higher, denoting lead to a statemeiril7) that the form factor is proportional to
the separation between the high- and low-momentunth€ scattering amplitude times the square of the coordinate
transfer regions. Then the Schrodinger equation can bgPace wave function at the origin divided K. A relation

expressed in terms of lowQ|y)=|y)q, and high, P|y) very similar to Eq.(17) was derived long ag$lQ] using a
= |y/)», Momentum components: scale-invariant, six-quark model. It is also true that the rela-

tion between the deuteron form factor and the scattering am-
1 plitude has also been the subject of R@fl] in which dis-
l)p= —(Vppltlf>p+VpQ|¢>Q), (31) persion relations are used to compute the deuteron charge
~€~ Tpep form factor with experimental phase shifts as the essential
input. Thus one sees the close relation betwe@®’) andfg
from a variety of different approaches: nonrelativistic dy-
[¥)o= ?(VQd o+ Vorlte), (32 namics, light-front dynamics, quark models, and dispersion
BT relations.
where the notatio®TP=Tpp, PVP=Vpp, etc. is used for the But the validity of Eq.(17) depends on the use of factor-

kinetic energyT and potential energy operators. SubstitutelZation approximations and the Born approximation that
Eq. (32) into Eq.(31) to obtain might not be valid for realistic nucleon-nucleon potentials.

The analysis of toy models, Sec. Il, and the Malfliet-Tjon

1 1 potential, Sec. Ill, suggests that only a soft potential can be
|¢>P:?<VPP+VPQ_ T v VQP)|¢>F,. expected to satisfy the conditions necessary to obtain the
€~ 'pp €8~ '0Q” VaQ result(17). Until recently, the idea that a soft potential could

(33)  also be realistic was only a faint hope. But recent work,
. . - using effective field theory have introduced a set of soft-
Consider the complete eigenstates of the Hermitian, energyealistic potential{12-14. It is possible that these poten-

independent operatdigg+Voq! tials, which do not contain those features of the Malfliet-Tjon
potential that violate the necessary approximations, could
Edgo'” = (Too+ VQQ)|¢k>(_)r (34 satisfy Eq.(17).
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It is worthwhile to suppose that E(L7) could be accurate Ref.[16]. Then one would need to include either new had-
for some soft realistic potential. Then we may estimate theaonic degrees of freedom in the deuteron wave function:
kinetic energies required for reproducing the phase shiftstNN,AA,..., or toaccount explicitly for quark-gluon de-
Since we are dealing with th&wave deuteron wave func- grees of freedom.
tion we can take cog=0, to correspond to the maximal The implications of our resultl7) is that potentials used
momentum transfer for identical particles. In this case, Eqto obtain the deuteron wave function should be tested by
(15) gives computing the corresponding phase shifts. If one wants an

5 accurate calculation, the phase shifts need to be correctly
Q" =4mT. (37)  obtained up to kinetic energies given by E§7). This re-
(ﬁuirement appears, according to the arguments of Sec. V, to
e more generalsee EQ.(36)] than the accuracy of the
stated upper limit. Then one can calculate the form fact0|""symptOtiC relation between the scattering amplitgde and the
form factor, Eq.(17). The slow onset of asymptotia occurs,

up to only Q°~1.4 Ge\~. But modern high-precisiohlN . . i
potentials actually describe the data up to laboratory ent part, because the wave function at the origin is severely

ergies of aboul GeV/[15,16. Thus one may compute the s_uppressed by str(_)ng_short distance rep_ulsion, and because
form factors u toQ2~4, Ge\? However. bresent mea- single hard scattering is not strongly dominant over the pos-
surements reaE@Z:G Ge\2 an.d there aré Elans to reach sibility of achieving a high-momentum transfer as a result of
higher values. Thus the éonstraints we present may bgeveral small momentum transfer processes. Thus there are
relevant for pfesent and future measurements Cancellations between the contribution dominating in the
An additional worry is that the analysis of the previous asymptoﬂc region and the other contribution. All together

paragraph might require a relativistic treatment. If we instea&hls suggests that potentials currently employed to compute
were to use light cone models as in Refs7,18 we would deuteron form fa_ctors be tested for consistency with high-
find that up t0Q2~m§ the light cone fractions of the nucle- energy phase shifts. A soft potentidll-13 and an appro-

ons are approximately equal and the relation, @), holds, priately derived current operator should also be used.
but with T=2E+E?/2m,. At larger values of)?, the increase
of the effective invariant energy witl)? decreases some-
what. In any case, one can see that @=2 Ge\? one This work was partially supported by the U.S. M.S. ac-
reaches the region where masses in the intermediate stdtaowledges the INT for hospitality during the time this work
exceed 3 GeV and the legitimacy of the two nucleon apwas completed. We thank Rupert Machleidt for useful dis-
proximation becomes highly questionable, as discussed ioussions.

The use of this is simple. Suppose the phase shifts are wi
described up to abouf=350 MeV, which is the standard
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