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A nonrelativistic potential-model version of the factorization assumption, used in perturbative QCD calcu-
lations of hadronic form factors, is used, along with the Born approximation valid at high energies, to derive
a remarkably simple relationship between the impulse approximation contribution to the deuteron form factor
at high-momentum transfer and the high-energy neutron-proton scattering amplitude. The relation states that
the form factor at a given value ofQ2 is proportional to the scattering amplitude at a specific energy and
scattering angle. This suggests that an accurate computation of the form factors at largeQ2 requires a simul-
taneous description of the phase shifts at a related energy, a statement that seems reasonable regardless of any
derivation. Our form factor-scattering amplitude relation is shown to be accurate for some examples. However,
if the potential consists of a strong short distance repulsive term and a strong longer-ranged attractive term, as
typically occurs in many realistic potentials, the relation is found to be accurate only for ridiculously large
values ofQ. More general arguments, using only the Schrödinger equation, suggest a strong, but complicated,
relationship between the form factor and scattering amplitude. Furthermore, the use of recently obtained soft
potentials, along with an appropriate current operator, may allow calculations of form factors that are consis-
tent with the necessary phase shifts.
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I. INTRODUCTION

The deuteron form factorAsQ2d has been measured at
Jefferson Laboratory and four momentum transfers up to
Q2=6 GeV2 [1], improving the SLAC measurements[2],
and measurements at largerQ2 are planned. These efforts
have caused much interest on improving calculations of the
form factors at higher values ofQ2 up to about 11 GeV2. The
best calculations are elegant in their use of the very latest
realistic, high-precision nucleon-nucleon potentials. These
potentials are based on using detailed knowledge of the long-
and medium-range parts of the potentials and on using artful
modeling of the short-distance physics. Typically, the param-
eters of the potentials are tuned to obtain an accurate repro-
duction of the measured phase shifts up to 300 MeV labora-
tory kinetic energy,T. Increasing the range of energies of the
validity of the potential should increase the ability of the
potential to describe those aspects of the deuteron wave
function which enter at high-momentum transfer[3].

Indeed it seems reasonable to expect that describing a
form factor at a given momentum transferQ2 would require
a reproduction of the large angle nucleon-nucleon scattering
amplitude at

T ,
Q2

2mN
, s1d

wheremN is the nucleon mass. Qualitatively this is because
the relative momentum, which dominates the overlap inte-
gral for the form factor is,Q/2. The implication of Eq.s1d
is that for Q2.1 GeV2 one needs to use a potential that

successfully describes the neutron-proton phase shifts for
T.500 MeV. To our knowledge, no such consistency
check of the potential used to compute the deuteron wave
function has been made.

One might think that a simple kinematic relationship such
as Eq.(1) might not apply because the nucleons in the deu-
teron are bound. Therefore we need to demonstrate explicitly
that there is a strong relationship between the form factor and
the scattering amplitude at large energies and large angles.
Indeed, the specific result[see Eqs.(15) and (17) below]
differs quantitatively from Eq.(1). This is obtained using the
simplest possible dynamics: nonrelativistic spin-less nucle-
ons interacting with an energy-independent local potential.
Clearly, it is not our purpose to be realistic. Instead we
merely wish to point out that, under certain conditions, the
form factor can be proportional to the scattering amplitude.

The derivation of the relation between the form factor and
the scattering amplitude proceeds in Sec. II by applying the
factorization approximation commonly used in perturbative
QCD derivations of hadronic form factors along with the first
Born approximation expected to be valid at high energies.
The requirements for each approximation are investigated
and correction terms obtained. The accuracy of the approxi-
mations and the resulting form factor scattering amplitude
relation are studied using simple interactions: attractive Cou-
lomb potential and sum of attractive and repulsive square
wells in Sec. III, and some implications for other models are
discussed. A detailed numerical study using the Malfliet-Tjon
potential is made in Sec. IV. The specific approximations
used in Sec. II appear to be marginally successful, if the
potential obtains a total weak attraction by combining strong
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repulsion at short distances with strong attraction at larger
distances. Therefore, a more general argument, using only
the Schrödinger equation, is presented in Sec. V. A discus-
sion of the implications of our results is presented in Sec. VI.

The reader may immediately question the use of nonrela-
tivistic (NR) dynamics , because many specific relativistic
effects are known. For a recent review, see Ref.[4]. How-
ever, NR dynamics are not irrelevant atT=500 MeV. Fur-
thermore, the use of relativistic light front dynamics shows
that relativistic dynamics is not very different from nonrela-
tivistic dynamics: two nucleons dominate, there is a wave
equation, and the specific relativistic effects in the deuteron
are not very large unlessQ2 is very high. The specific differ-
ences between the nonrelativistic and light-front approaches
are relatively well understood and lead to a small easing of
the constraint(1) for Q2ùmd

2. Therefore, we turn to the nec-
essary derivation without further apology.

II. BASIC IDEA

The deuteron wave functionc is defined by the
Schrödinger equation:

S p2

2m
+ VDc = − eBc, s2d

where m=mN/2. The form factor is given in terms of the
momentum-space wave function as

Fsqd =E d3pcspdcsup + q/2ud. s3d

In the widely employed Breit frameq2=Q2. For large
enough values ofq, and for a potentialsexpressed in momen-
tum spaced that decreases as a power ofq, the integral may
be simplified becauseq can be much larger than the typical
values ofp for which the wave function is near its largest
value. The deuteron wave function is known to have a lim-
ited momentum content, being essentially 0 for momenta
greater than about 600 MeV/c.

We aim for a simplification of Eq.(3) that is valid at large
momentum transfer. The basic assumption is that, for large
enough values ofq, one can regardq@p even though the
integral extends over all values ofp. This leads to the fac-
torization approximation commonly used in perturbative
QCD calculations of hadronic form factors. A pedagogic dis-
cussion of the technique we employ is presented in Ref.[5].
There are two regions for which the integrand of Eq.(3) is
largest:p<0 for which the first wave function is large, and
p<−q /2 for which the second wave function is large. The
regions contribute equally so that we may say

FsQ2d < FasQ2d = 2csq/2d E d3p cspd, s4d

with the integral over all momentum being proportional to
the coordinate space wave function evaluated at the origin:

csr = 0d =E d3p

s2pd3/2cspd. s5d

One may also derive Eq.s4d using coordinate space argu-
ments and determine the leading correction term. By regard-
ing p!q/2 one findsf6g the approximate form factor and its
leading correction term:

Fsqd =E d3pcspd E d3r

s2pd3/2csrdexpfisp + q/2d · r g

< E d3pcspd E d3r

s2pd3/2csrds1 − p2r2/6dexpsiq/2 ·r d

<FasQ2d − s2pd3/2¹2csr = 0d
¹q

2

6
csqd. s6d

If the integrals exist, and if the wave functions fall as a
power ofq, the ratio of the second to the first terms of Eq.
s6d is proportional tofep2dpcspdp2/ep2dpcspdgg /q2 which
vanishes for sufficiently large values ofq2.

According to Eq.(4), the momentum transfer dependence
of the form factor is obtained from the wave function
csq/2d, for sufficiently large values ofQ2. Thus we attempt
to obtaincsqd from the momentum-space version of Eq.(2):

csq/2d =
1

− eB −
q2

8m

E d3pkq/2uVuplcspd. s7d

We again use the idea thatq can be much greater thanp, so
that the wave functioncspd can be approximated as

csq/2d <
− 8m

q2 kq/2uVu0l E d3pcspd

=
− 8m

q2 kq/2uVu0ls2pd3/2csr = 0d. s8d

This approximation seems very natural, if one is used to the
ideas of perturbative QCD. In particular, the entire momen-
tum transfer is taken up by a single action of the potential, so
that the important positions in coordinate space region are
those for which the potential has its greatest variation.

It is useful to examine Eq.(8) from the view of coordinate
space. One has

E d3pkq/2uVuplcspdcspd

=E d3r

s2pd3/2exps− iq/2 ·r dVsrdcsrd. s9d

One may now observe that the approximation, Eq.s8d, relies
on replacing the productVsrdcsrd by Vsrdcs0d. This is al-
lowed only if the potential has a much more significant
variation than the wave function for positions near the origin.

The expression, Eq.(8), can be used to obtain the form
factor from Eq.(3). The result is
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FbsQ2d < S− 16m

q2 Dkq/2uVu0lF2, s10d

F ;E d3p cspd. s11d

The approximations10d has been verified numerically in
Ref. f7g for the case of the semirealistic Hulthén model.

The content of Eq.(10) is that the form factor is propor-
tional to the square of the bound state wave function at the
origin times the Fourier transform of the potential:

kq/2uVu0l =
1

s2pd3 E d3r esi/2dq·rVsrd s12d

=
4p

s2pd3 E r2 dr

sin
1

2
qr

1

2
qr

Vsrd. s13d

The desired relation between the form factor and the scat-
tering amplitude can be obtained by realizing that at energies
E much greater than the characteristic strength of the poten-
tial, the first Born approximation is valid and the scattering
amplitude for a c.m. angleu, fEsud= fEsk ,k8d ,E=k2/2m
=k82/2m ,k ·k8=k2cosu is also a Fourier transform of the
potential. The validity of the first Born approximation, at
high energies, for energy-dependent local potentials, is well
verified in many quantum mechanics textbooks. In that case

fEsud < −
4p2m

s2pd3 E d3reisk−k8d·rVsrd. s14d

The relation betweenfEsud and kq /2uVu0l is obtained by
specifying

1

4
q2 = 2k2s1 − cosud = 4mEs1 − cosud = TmNs1 − cosud.

s15d

Imposing the relations15d immediately yields

fEsud = − 4p2mkq/2uVu0l, s16d

and with Eq.s10d

FsQ2d =
1

p2q2 fEsud F2. s17d

This is the result we have been seeking. The key point is that
the form factor is expressed as the high-energy scattering
amplitude times well-defined factors, implying that a correct
calculation for the form factor can only be achieved in mod-
els in which the scattering amplitude is accurately repro-
duced.

III. TOY MODELS

The arguments used in the preceding section are analo-
gous to those presented in derivations of QCD factorization

theorems. However, these have not been used often for
nuclear targets. We therefore discuss two simple examples.

A. Coulomb binding

We take the potential to be

Vsrd = −
g2

r
, s18d

with the exact wave function given by

csrd = Ne−r/a, s19d

with a=1/smg2d. The form factorFsqd of Eq. s3d is given by

Fsq2d =
1

sa2q2 + 16d2 . s20d

The wave function in momentum space is

cspd =
4pN

s2pd3/2

2

aSq2 +
1

a2D2 , s21d

so that the approximation of Eq.s4d yields

Fasq2d =
1

sa2q2 + 4d
, s22d

Fa is close toF for q2a2@3. UsingeB=a2/2m and the deu-
teron binding energy andm=MN/2 means that all that is
required isq@75 MeV/c. The approximation of Eq.s10d
yields

Fbsq2d =
1

a4q4 , s23d

which is valid under similar conditions.
The next task is to determine the conditions that the first

Born approximation, Eq.(14), be valid. It is well known that,
for the Coulomb interaction, this approximation reproduces
the exact scattering cross section. However, the correct scat-
tering amplitude is complex, while the approximation, Eq.
(14), gives a real result. Thus the condition that Eq.(14) be
valid is the condition that thes-wave scattering phase shift
be small. This is the condition thatg2MN/ s2kd!1, or ka
@1. Sincea=1/45 MeV/c, one needs onlyk@45 MeV/c.

Thus the approximations of the preceding section are eas-
ily satisfied for dynamics defined by the Coulomb potential.
More generally, it is reasonable to expect that, if the potential
is local, purely attractive with a significant gradient at the
origin and magnitude determined by the very small deuteron
binding energys2.2 MeVd, the approximations needed to
reach the form factor scattering amplitude relation(17) are
well satisfied. In such cases, the potential varies more rapidly
than the wave function for positions near the origin, and the
potential is weak enough so that the first Born approximation
can be accurate for reasonable momentum transfers.
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B. Short-ranged repulsive square well plus long-ranged
attractive square well

The nuclear force is repulsive at short distances and at-
tractive at long distances between nucleons. Thus we con-
sider the model defined by

Vsrd = V0usR0 − rd − V1usR1 − rdusr − R0d, V0,1 . 0.

s24d

We take R0=0.4 fm andR1=1.5 fm. Then the observed
deuteron binding energy is reproduced usingV0
=0.302 fm−1,V1=29.18 fm−1=5.757 GeV. This corre-
sponds to a hard core repulsion. The wave functioncsrd is
given sup to an overall normalization constantd by

csrd =
sin KR0

sin KR1

sinh gr

sinh gR0
, r , R0

=
sin Kr

sin KR1
, R0 ø r , R1

=
exps− r/ad

exps− R1/ad
, r ù R1. s25d

The exactfFsqdg and approximate[Fasqd Eq. (4)] form
factors are compared by displaying their ratio in Fig. 1.
There are some wild fluctuations arising from nodes ofFsQd,
but these are not the most interesting feature. The true diffi-
culty is that the approximation becomes valid only for ex-
tremely large values ofq.100 fm−1. Furthermore, the ratio
Fasqd /Fsqd is 0.87 instead of unity. That difficulties exist can
be seen immediately by comparing Eqs.(4) and (25). The
coordinate-space wave function vanishes at the origin, so the
leading approximation vanishes. This signals a breakdown of

the derivation. The point is that the factorization, Eq.(4),
depends on the potential varying more rapidly near the origin
than the wave function.

One might then be amazed that the approximate form fac-
tor is even close to the exact one. That this occurs can be
understood from the discussion below, Eq.(6). The action of
¹q

2 does not introduce an extra factor of 1/Q2 because the
momentum-space wave function contains terms
,sin QR0,1/Q

2.
This section contains two simple models. The approxima-

tions work magnificently if the Coulomb potential is used,
but fail miserably with the nucleon-force-motivated model of
Eq. (24). Let us examine a more realistic model to see if our
approximations are relevant for understanding deuteron
physics.

IV. MALFLIET-TJON POTENTIAL

The short-distance repulsion and longer-ranged attraction
are simulated via potentials of the Yukawa form in the
Malfliet-Tjon potential[8]:

Vsrd = − lA
e−mAr

r
+ lR

e−mRr

r
. s26d

The parameters were chosen to reproduce the deuteron bind-
ing energy, scattering length, effective range, and phase
shifts up to a laboratory energy of 300 MeV.This potential
is much smoother than the square wells of Eq.s24d.

Our aim is to study the approximations given in Eqs.(4)
and (8) and the Born approximation of Eq.(14). The com-
parison between the exact form factorFsQ2d and the ap-
proximationFasQ2d of Eq. (4) is displayed in Fig. 2.

The approximation does work, but only for huge values of
Q. The value ofQ,140 fm−1 or Q2<900 sGeV/cd2 for its
natural logarithm to reach the value of 5. One may search for
the cause of this bizarre limit by examining the correction
term shown of Eq.(6). This is governed by the kinetic energy
operator acting on the wave function at the origin. The
Schrödinger equation says that this is essentially the poten-
tial times the wave function, with a product that varies as
slR−lAd near the origin. The strong nature of the repulsive
termlR=7.41 causes the expansion shown in Eq.(6) to con-
verge very slowly.

One may gain further insight by studying the relationship
between the exact and approximate wave function of Eq.(8).
As shown in Fig. 3, the approximation attains validity only at
supremely large values of the relative momentum. Here ac-
curacy requiresVsrdcsrd<Vsrdcs0d for values ofr near the
origin. For the Malfliet-Tjon potentialVsrd,1/r and csrd
approaches 0, in contrast to the Coulomb wave function.
From this, the failure of the approximation seems natural.
Moreover, many realistic potentials behave in a similar fash-
ion.

The final requirement needed to achieve the result(17) is
the validity of the Born approximation. Our comparison of
the exact and Born approximation to the forward scattering
amplitude is shown in Fig. 4. The partial wave expansion is
used unless the energy is large enough(lab energy greater

FIG. 1. Ratio of approximate to exact form factor.
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than 1 or 2 GeV) for the eikonal approximation to reproduce
the exact scattering amplitude. Figure 4 shows that the Born
approximation does become valid, but only at absurdly high
energies. This figure shows results only for forward scatter-

ing, whereas our relation(17) requires high-momentum
transfer. The convergence to the Born approximation occurs
for higher energies for large scattering angles, if the Malfliet-
Tjon potential is used.

The slow approach to the Born approximation can be un-
derstood from the eikonal formalism in which the scattering
amplitude is expressed in terms of an integral

fEsud = − ikE
0

`

bdbJ0f2kb sinsu/2dgseixsbd − 1d, s27d

with the phase shift functionxsbd given as

xsbd = −
m

k
E

0

`

dzVsÎb2 + z2d. s28d

For the Malfliet-Tjon potential,xsbd is given by

xsbd =
m

k
flRK0sbmRd − lAK0sbmAdg, s29d

which is small only for very large values of the relative mo-
mentumk. While the overall potential is able to produce only
one weakly bound state, the weak attraction arises from the
cancellation of two very strong terms of opposite sign that
generally causes large values ofxsbd.

The factorization approximations for Eqs.(4) and(8) and
the Born approximation of Eq.(14) work for sufficiently
large values of the transferred momenta. A reasonable reader
might examine the Figs. 2–4 and conclude that “sufficiently
large” means too large to be relevant for real experiments.
However, success at asymptotically high momenta indicates
that the key assumption Eqs.(4) and(8) that the form factor

FIG. 2. Ratio of approximate to exact form factor for the
Malfliet-Tjon deuteron wave function. The solid curve compares the
approximation of Eq.(17) with the exact form factor. The dashed
curve compares the approximation of Eq.(4) with the exact form
factor.

FIG. 3. Ratio of approximate to exact wave function for the
Malfliet-Tjon deuteron wave function.

FIG. 4. Ratio of approximate to the real part of the exact for-
ward scattering amplitude for the Malfliet-Tjon potential.E is a
laboratory energy.
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is proportional to the wave function at the origin is a very
stringent requirement that is especially difficult to satisfy for
a wave function that vanishes at the origin. Furthermore,
high-momentum transfer scattering may proceed via a set of
small momentum transfer processes under certain circum-
stances. Thus the condition that the Born approximation
(scattering by a single action of the potential) be valid is also
a very strong one, as is spectacularly manifest in Fig. 4.
Truly magnificently high energies are required for the Born
approximation to be valid.

While the relation, Eq.(17), suggests a close connection
between the form factor and the scattering amplitude it is
worthwhile to ask if one can derive a connection between the
form factor and the scattering amplitude that does not di-
rectly involve the wave function at the origin and single-
scattering assumptions. The desired connection is displayed
in the next section.

V. GENERAL APPROACH

The central idea is that the wave function is dominated by
its low-momentum components and that high-momentum
components are obtained by at most one high-momentum
transfer operation. We intend to manipulate the Schrödinger
equation to derive an explicit relation between the form fac-
tor and the scattering amplitude. Projection operators are
used to develop the necessary formalism. Let

Q ;E d3pusL − pduplkpu, P ;E d3pusp − Lduplkpu,

s30d

with P a projection operator on high-momentum states andL
a parameter, approximately 600 MeV/c or higher, denoting
the separation between the high- and low-momentum
transfer regions. Then the Schrödinger equation can be
expressed in terms of low,Qucl;uclQ, and high, Pucl
;uclP, momentum components:

uclP =
1

− eB − TPP
sVPPuclP + VPQuclQd, s31d

uclQ =
1

− eB − TQQ
sVQQuclQ + VQPuclPd, s32d

where the notationPTP=TPP,PVP=VPP, etc. is used for the
kinetic energyT and potential energy operators. Substitute
Eq. s32d into Eq. s31d to obtain

uclP =
1

− eB − TPP
SVPP + VPQ

1

− eB − TQQ − VQQ
VQPDuclP.

s33d

Consider the complete eigenstates of the Hermitian, energy-
independent operatorTQQ+VQQ:

Ekufkls−d = sTQQ + VQQdufkls−d, s34d

Enufnl = sTQQ + VQQdufnl, s35d

in which ufkls−d is a scattering state with incoming boundary
conditions,Ek=k2/2m, and EnÞ−eB, ufnl are the energies
and wave functions of any bound states that may exist. The
use of completeness in Eq.s33d leads to

uclP =
1

− eB − TPP
SVPP +E d3k

VPQufkls−d s−dkfkuVQP

− eB − Ek

+ o
n

VPQufnl kfnuVQP

− eB − En
DuclP. s36d

The form factor depends on the high-momentum compo-
nents of the deuteron wave function, so consider the quantity
kq /2uclP for Q/2.L. Then kq /2uclP=kq /2ucl. The sec-
ond term on the right-hand side of Eq.(36) is determined by
the matrix elementskq /2uVufkls−d, which are scattering am-
plitudes for off-energy-shell kinematics[9]. These matrix el-
ements are the terms which contain the relation between the
form factor and the scattering amplitude. To see this, take the
parameterL to be just a bit less thanq/2. The largest of the
matrix elementskq /2uVufkls−d will be those for whichk is
just a bit less thanL. In this case, the kinematics are nearly
on shell. Transition matrix elements are continuous, so that it
is reasonable to expect that reproducing the observed scatter-
ing amplitudes at high energy is important for reproducing
the important features of the high-momentum components of
bound state wave functions.

VI. DISCUSSION

The use of two factorization approximations, Eqs.(4) and
(8), combined with the first Born approximation, Eq.(14),
lead to a statement(17) that the form factor is proportional to
the scattering amplitude times the square of the coordinate
space wave function at the origin divided byQ2. A relation
very similar to Eq.(17) was derived long ago[10] using a
scale-invariant, six-quark model. It is also true that the rela-
tion between the deuteron form factor and the scattering am-
plitude has also been the subject of Ref.[11] in which dis-
persion relations are used to compute the deuteron charge
form factor with experimental phase shifts as the essential
input. Thus one sees the close relation betweenFsQ2d and fE

from a variety of different approaches: nonrelativistic dy-
namics, light-front dynamics, quark models, and dispersion
relations.

But the validity of Eq.(17) depends on the use of factor-
ization approximations and the Born approximation that
might not be valid for realistic nucleon-nucleon potentials.
The analysis of toy models, Sec. II, and the Malfliet-Tjon
potential, Sec. III, suggests that only a soft potential can be
expected to satisfy the conditions necessary to obtain the
result(17). Until recently, the idea that a soft potential could
also be realistic was only a faint hope. But recent work,
using effective field theory have introduced a set of soft-
realistic potentials[12–14]. It is possible that these poten-
tials, which do not contain those features of the Malfliet-Tjon
potential that violate the necessary approximations, could
satisfy Eq.(17).
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It is worthwhile to suppose that Eq.(17) could be accurate
for some soft realistic potential. Then we may estimate the
kinetic energies required for reproducing the phase shifts.
Since we are dealing with theS-wave deuteron wave func-
tion we can take cosu=0, to correspond to the maximal
momentum transfer for identical particles. In this case, Eq.
(15) gives

Q2 = 4mNT. s37d

The use of this is simple. Suppose the phase shifts are well
described up to aboutT=350 MeV, which is the standard
stated upper limit. Then one can calculate the form factor
up to only Q2<1.4 GeV2. But modern high-precisionNN
potentials actually describe the data up to laboratory en-
ergies of about1 GeV f15,16g. Thus one may compute the
form factors up toQ2<4 GeV2. However, present mea-
surements reachQ2=6 GeV2, and there are plans to reach
higher values. Thus the constraints we present may be
relevant for present and future measurements.

An additional worry is that the analysis of the previous
paragraph might require a relativistic treatment. If we instead
were to use light cone models as in Refs.[17,18] we would
find that up toQ2,md

2 the light cone fractions of the nucle-
ons are approximately equal and the relation, Eq.(15), holds,
but with T=2E+E2/2mN. At larger values ofQ2, the increase
of the effective invariant energy withQ2 decreases some-
what. In any case, one can see that forQ2ù2 GeV2 one
reaches the region where masses in the intermediate state
exceed 3 GeV and the legitimacy of the two nucleon ap-
proximation becomes highly questionable, as discussed in

Ref. [16]. Then one would need to include either new had-
ronic degrees of freedom in the deuteron wave function:
pNN,DD , . . ., or to account explicitly for quark-gluon de-
grees of freedom.

The implications of our result(17) is that potentials used
to obtain the deuteron wave function should be tested by
computing the corresponding phase shifts. If one wants an
accurate calculation, the phase shifts need to be correctly
obtained up to kinetic energies given by Eq.(37). This re-
quirement appears, according to the arguments of Sec. V, to
be more general[see Eq.(36)] than the accuracy of the
asymptotic relation between the scattering amplitude and the
form factor, Eq.(17). The slow onset of asymptotia occurs,
in part, because the wave function at the origin is severely
suppressed by strong short distance repulsion, and because
single hard scattering is not strongly dominant over the pos-
sibility of achieving a high-momentum transfer as a result of
several small momentum transfer processes. Thus there are
cancellations between the contribution dominating in the
asymptotic region and the other contribution. All together
this suggests that potentials currently employed to compute
deuteron form factors be tested for consistency with high-
energy phase shifts. A soft potential[11–13] and an appro-
priately derived current operator should also be used.
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