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A new computational method for solving the configuration-space Faddeev equations for three-nucleon sys-
tems has been developed. This method is based on the spline decomposition in the angular variable and a
generalization of the Numerov method for the hyperradius. Thes-wave calculations of the inelasticity and
phase shift as well as breakup amplitudes forn-d and p-d breakup scatterings for lab energies 14.1 and
42.0 MeV were performed with the Malfliet-Tjon I-III potential. In the case ofn-d breakup scattering the
results are in good agreement with those of the benchmark solution[J. L. Friar, B. F. Gibson, G. Berthold, W.
Glöckle, Th. Cornelius, H. Witala, J. Haidenbauer, Y. Koike, G. L. Payne, J. A. Tjon, and W. M. Kloet, Phys.
Rev. C 42, 1838(1990); J. L. Friar, G. L. Payne, W. Glöckle, D. Hüber, and H. Witala, Phys. Rev. C51, 2356
(1995)]. In the case ofp-d quartet breakup scattering disagreement for the inelasticities reaches up to 6% as
compared with those of the Pisa group[A. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. C64, 024002
(2001)]. The calculatedp-d amplitudes fulfill the optical theorem with a good precision.
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I. FADDEEV EQUATIONS IN CONFIGURATION SPACE

This paper deals with thes-wave breakup scattering in
three-nucleon systems. Our approach is based on the method
of the Faddeev equations[4], which was modified by Merku-
riev to incorporate the Coulomb force[5]. The Faddeev com-
ponentsCa for three-body Coulomb systems satisfy the fol-
lowing set of differential Faddeev equations:

h− Dx̄a
− Dȳa

+ Vc + Vasux̄aud − EjCasx̄a,ȳad

= − Vasux̄aud o
bÞa

Cbsx̄b,ȳbd, s1d

where Vc and Va are the Coulomb and nuclear potentials,
respectively. The Coulomb potential has the following form:

Vc = o
a

n

uxau pi,a
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2
s1 + tz

i d, n =
me2

"2 , s2d

where e2=1.44 MeV fm and "2/m=41.47 MeV fm2. The
sum runs overa=1,2,3 for thethree possible pairs and
the product of the isospin projection operators runs over
the indicesi of the particles belonging to the paira. As
independent coordinates, we take the Jacobi vectorsx̄a , ȳa.
For the paira=1, they are related to particle coordinates
by the formulas

x̄1 = r̄2 − r̄3, ȳ1 =
r̄2 + r̄3

2
− r̄1; s3d

for a=2,3 one has tomake cyclic permutations of the indi-
ces in Eq.s3d. The Jacobi vectors with differenta’s are

linearly related by the orthogonal transformation
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ȳa
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− Sab Cab
DSx̄b

ȳb
D, Cab

2 + Sab
2 = 1, s4d

where
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,
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2 , M = o

a=1

3

ma. s5d

To derive the equations to be used in numerical computa-
tions, we perform the partial-wave decomposition of Eq.(1)
and separate the spin-isospin and angular variables(see, for
instance, Refs.[6,7]). As a result, in thes-wave doublet case,
the set(1) is reduced to a system of two integrodifferential
equations. In the polar coordinates,r2=x2+ 4

3y2 and tanu
=s2/Î3dsy/xd, it has the following form(here we omit the
index 1):
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where
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cos2u8su,ud =
1

4
cos2u −

Î3

2
cosu sin uu +

3

4
sin2u, s7d

and the first derivative in the radius is eliminated by the
substitutionCst,sd=r−1/2Ust,sd. In Eq. s6d, the s-wave Cou-
lomb potentialVc

st,sdsr ,ud is given byf7g

Vc
t sr,ud =

nmtsud
r

, mtsud =5
2

Î3 sin u
, u . 30°

2

cosu
, u ø 30°

,

Vc
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nmssud
r
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1

3
S 2

cosu
+ mtsudD . s8d

The Malfliet-Tjon I-III potential(see Refs.[1,2]) was chosen
as the nuclear potentialVt,ssr ,ud. The set of partial differen-
tial equations(6) must be solved for the functions satisfying
the regularity conditions

Ut,ss0,ud = Ut,ssr,0d = Ut,ssr,p/2d = 0 s9d

and the following asymptotic conditionsf5g:

uUtur→` , Îrwdfr,cossudgHFoSg,p
Î3

2
r sinsudD + aspd

3FGoSg,p
Î3

2
r sinsudD

+ iFoSg,p
Î3

2
r sinsudDGJ + AtsudexpFiÎEr

− i
nmtsud
2ÎE

lns2ÎErdG ,

uUsur→` , AssudexpFiÎEr − i
nmssud
2ÎE

lns2ÎErdG . s10d

Here, wd is the deuteron wave function,Fo and Go are the
regular and irregular Coulomb functions,g=2n/3p is the
Coulomb parameter withp the momentum in the center-of-
mass system, andmt,ssud is defined in Eqs.(8). The unknown
functionsaspd andAt,s are the elastic and breakup scattering
amplitudes:

aspd =
h expsi2dd − 1

2i
, s11d

whereh and d are the inelasticity and phase shift, respec-
tively. In the case ofn-d breakup scattering, the asymptotic
conditions retain the functional form of Eq.s10d but the Cou-
lomb functionsFo and Go should be replaced by sine and
cosine, respectively.

II. NUMEROV METHOD AND SPLINE APPROXIMATION

Our previous calculations of elastic amplitudes forn-d
and p-d breakup scatterings, in which the reduction of the
Faddeev equations to an algebraic problem was performed
by means of finite-difference approximation for the hyperra-
dius, have demonstrated a weak dependence of the results on
the choice of the matching radius[8]. Nevertheless, to get
accurate results for breakup amplitudes, it is necessary to
increase the cutoff radius considerably. To obtain accurate
results at the same time, we applied the Numerov method for
solving partial differential equations. The idea of Numerov
method consists in using the initial differential equation to
calculate higher derivatives in the expansion of the unknown
function in Taylor’s series. According to Numerov, one has
to keep all terms up to the sixth derivative in this expansion.
Summation of the equations for pointsr−Dr and r+Dr
leads to the following finite-difference approximation of the
second radial derivative:

U ]2Usr,ud
] r2 U

ri

=
Usri+1,ud − 2Usri,ud + Usri−1,ud

Dr2

−
Dr2

12
Ur

IVsri,ud + OsDr4d. s12d

The fourth radial derivative of the Faddeev component has to
be found by differentiating the second derivative in the cor-
responding Faddeev equation. From here on we make the
analysis for the spin-quartet Faddeev equation. In thes-wave
approach, this equation in the polar coordinates has the form
f7g

H−
]2

] r2 −
1

r2

]2

] u2 + Vcsr,ud + Vssr,ud −
1

4r2 − EJUsr,ud

=
2
Î3

Vsr,udE
u−

u+

du8Usr,u8d, s13d

where u−= uu−p /3u and u+=p /2−uu−p /6u. Thus for the
fourth derivative of the Faddeev component the following
formula is to be obtained:

]4Usr,ud
] r4 = −

]2

] r2FH 1

r2

]2

] u2 − Vcsr,ud − Vsr,ud +
1

4r2 + EJ
3Usr,ud +

2
Î3

Vsr,udE
u−

u+

du8Usr,u8dG . s14d

The finite-difference approximation for the second derivative
up to the fourth order inDr results from substitution of this
expression into Eq.s12d as follows:
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Finally, replacement of the second radial derivative in the
Faddeev equation by the obtained expression leads to the
following generalized formula of Numerov method:

− FUsri+1,ud − 2Usri,ud + Usri−1,ud
Dr2 − S1 +
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12
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Modification of the Numerov method for the set of the
differential equations, Eq.(6), does not present any difficulty
in principle. However, due to unhandiness of the correspond-
ing equations, we do not show them here. To ensure the
accuracy of ordersDud4 for the approximation in the angular
variable, Hermitian splines of the fifth degree have been used
(see Ref.[9]). These splines are local and each splineSsisxd
is defined for x belonging to two adjacent subintervals
fxi−1,xig and fxi ,xi+1g. Their analytical form is fixed by the
following smoothness conditions:

Ssisxi−1d = 0, Ssisxi+1d = 0, s = 0,1,2, s17d

and

S0isxid = 1, S0i8 sxid = 0, S0i9 sxid = 0,

S1isxid = 0, S1i8 sxid = 1, S1i9 sxid = 0,

S2isxid = 0, S2i8 sxid = 0, S2i9 sxid = 1. s18d

To reduce the resulting equation(16) to an algebraic prob-
lem, one should explicitly calculate the derivatives with re-
spect tor in Eq. (16) using the following spline expansion
for the Faddeev component:

Usr,ud = o
s=0

2

o
j=0

Nu+1

Cj
ssrdSs jsud, s19d

whereNu+1 is the number of internal subintervals for the
angular variableuP f0,p /2g. Upon substituting the spline
expansions19d into the Faddeev equation, we use a colloca-
tion procedure with three Gaussian quadrature points per
subinterval. As the number of internal breakpoints for angu-
lar variable u is equal toNu, the basis of quintic splines
consists of 3Nu+6 functions. Three of them should be ex-
cluded using the last two regularity conditions froms9d and
continuity of the first derivative inu of the Faddeev compo-
nent at eitheru=0 or u=p /2, as the collocation procedure
yields 3Nu+3 equations.

III. METHOD OF PARTIAL INVERSION

Using the spline approximation in the angular variable
and the Numerov method for the hyperradius leads to an
algebraic problem for the unknown coefficientsCj

ssrkd. It is
convenient to transform this problem back to the set of linear
equations for the Faddeev componentsUsri ,ukd by means of
Eq. (19). Thus Eq.(16) is reduced to a matrix form

TABLE I. n-d andp-d elastic phase shifts and inelasticities.

LA/Iowa Bochum Pisa Present Pisa Present

Ref. [1] Ref. [1] Ref. [3] work Ref. [3] work

14.1 Mev Doublet n-d p-d

Resdd 105.48 105.50 105.48 105.47 108.44 108.06

h 0.4648 0.4649 0.4649 0.4649 0.4984 0.4929

Quartet n-d p-d

Resdd 68.95 68.96 68.952 68.93 72.604 73.64

h 0.9782 0.9782 0.9782 0.9782 0.9795 0.9202

42 Mev Doublet n-d p-d

Resdd 41.34 41.37 41.341 41.34 43.667 43.47

h 0.5024 0.5022 0.5022 0.5022 0.5056 0.5071

Quartet n-d p-d

Resdd 37.71 37.71 37.722 37.70 39.947 39.19

h 0.9035 0.9033 0.9033 0.9034 0.9046 0.866
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sD * Udi = − dinD+Un+1, n = Nr. s20d

The matricesD and D+ are of dimensionNrNc3NrNc and
Nc3Nc, respectively. Here,Nr is the number of breakpoints
in the hyperradiusr andNc=3Nu+3 is the number of collo-
cation points in the angular variableu.

Matrix D has the tri-block-diagonal structure that opti-
mizes considerably the inversion problem. Indexn+1 stands
for hyperradiusrn+1=Rmax, whereRmax is the cutoff radius at
which the asymptotic conditions, Eqs.(10), are implemented.
By formal inversion of the matrixD in Eq. (20), the solution
of the problem may be written in the following form:

Uj = − Djn
−1D+Un+1, j = 1,2, . . . ,Nr. s21d

The form of this equation results from keeping the incoming
wave in the asymptotic conditionss10d. As a consequence,
the right-hand part of Eq.s21d has a single nonzero term
marked with indexn+1. In Eq.s21d one should consider the
last two components of vectorU:

Un−1 = − Dn−1n
−1 D+Un+1,

Un = − Dnn
−1D+Un+1. s22d

ProvidedRmax is large enough, the vectorsUn−1 and Un on
the left side of Eqs.(22) may be replaced by the correspond-
ing vectors obtained by evaluating Eqs.(10) at the radiir
=rn−1 andr=rn. As a result we obtain a set of linear equa-
tions for the unknown amplitudesa andA:

avn−1 + mn−1A = Fn−1,

avn + mnA = Fn. s23d

For the sake of brevity, we do not display here the explicit
form of vectorsv j ,F j and matricesmj. As Rmax→` the set
of equations(23) has a constanta as a solution. At finiteRmax
its solution is a vectora with generally different components
corresponding to different angles. We follow the method of
Merkuriev et al. [6], which consists in selecting the compo-
nents ofa in the region of the maximum of the deuteron
wave function, wherea turns out to be independent of the
angle.

FIG. 1. Spin-quartetn-d and p-d breakup amplitudes. The
dashed(solid) lines correspond to imaginary(real) part of the
amplitudes.

FIG. 2. Spin-doubletn-d and p-d breakup amplitudes for Elab

=14.1 MeV.As is the singlet(pair spins=0) breakup amplitude and
At is the triplet(pair spins=1) one.

V. M. SUSLOV AND B. VLAHOVIC PHYSICAL REVIEW C 69, 044003(2004)

044003-4



Furthermore, we propose a new method for a more ad-
equate calculation of the amplitudes. The set of linear equa-
tions (23) is overdetermined, since the number of equations
is 2Nc and the number of unknowns isNc+1. Therefore it is
natural to use the least-squares method(LSM). One can ap-
ply it by two ways. In the first one, it is needed to express the
breakup amplitudeA from the lower equation(23) and sub-
stitute it into the upper one. As a result one has the following
expression:

a ·v = F, s24d

where vectors are defined as follows:v=vn−1−mn−1mn
−1vn

and F=Fn−1−mn−1mn
−1Fn. According to LSM one should

minimize the following functional:

ia ·v − Fi2 = min. s25d

Differentiating this expression in Rea and Ima we obtain

a =
sv* ,Fd
sv* ,vd

, s26d

wheresj* , fd is an ordinary scalar product.
In the second way, it is needed to express the elastic am-

plitudea from the lower equation(23) using the scalar prod-
uct:

a =
svn

* ,Fn − mnAd

svn
* ,vnd

. s27d

Substitutinga from Eq. s27d into the upper Eq.s23d leads to
the following set of linear equations:

mn−1A − vn−1

svn
* ,mnAd

svn
* ,vnd

= Fn−1 − vn−1

svn
* ,Fnd

svn
* ,vnd

. s28d

The explicit form of Eq.s28d is as follows:

o
j=1

Nc Hmn−1,i j −
vn−1,i

svn
* ,vndok=1

Nc

vn,k
* mn,kjJA j

= Fn−1,i − vn−1,i

svn
* ,Fnd

svn
* ,vnd

, i = 1, . . . ,Nc. s29d

Solving the set in Eq.s29d, we get the breakup amplitudeA.
Substituting the obtained breakup amplitude into Eq.s27d,
one may compute the elastic amplitudea. Note that one can
apply Eq.s27d to calculate the elastic amplitudea either in
the components or via a scalar product. In the first case, the
components ofa are practically equal to a constant for all
angles uP s0,p /2d and this constant coincides with the
value ofa calculated by using the scalar product to the fourth
decimal. It should also be noted that the elastic amplitudes
calculated by the method from Ref.f6g and LSM coincide

TABLE II. n-d and p-d spin-quartet reduced breakup amplitudesElab=14.1 Mev. The numbers in square brackets denote powers of
10.

usdegd 0 10 20 30 40 50 60 70 80

Present work,n-d results,Rmax→`

Res3S1d −1.91f−1g −1.93f−1g −1.94f−1g −1.89f−1g −1.75f−1g −1.58f−1g −1.47f−1g −1.51f−1g −1.78f−1g
Ims3S1d 3.65f−1g 3.67f−1g 3.70f−1g 3.72f−1g 3.73f−1g 3.81f−1g 4.00f−1g 4.32f−1g 4.62f−1g

LA/Iowa, n-d results,Rmax→`, Ref. [2]

Res3S1d −1.92f−1g −1.93f−1g −1.94f−1g −1.89f−1g −1.75f−1g −1.58f−1g −1.47f−1g −1.51f−1g −1.78f−1g
Ims3S1d 3.65f−1g 3.67f−1g 3.70f−1g 3.72f−1g 3.73f−1g 3.81f−1g 4.00f−1g 4.31f−1g 4.62f−1g

Present work,p−d results,Rmax→`

Res3S1d −2.21f−1g −2.24f−1g −2.31f−1g −2.44f−1g −2.07f−1g −1.82f−1g −1.68f−1g −1.71f−1g −1.96f−1g
Ims3S1d 3.21f−1g 3.19f−1g 3.14f−1g 2.99f−1g 3.34f−1g 3.57f−1g 3.83f−1g 4.14f−1g 4.39f−1g

FIG. 3. Spin-doubletn-d and p-d breakup amplitudes for Elab

=42.0 MeV. Notations are the same as in Fig. 2.
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with this constant to the same accuracy. To control the ac-
curacy of calculations, all methods are used.

IV. RESULTS OF THE CALCULATIONS

The elastic amplitudea and breakup amplitudeA for
n-d and p-d scatterings were computed atElab=14.1 and
42.0 MeV. The following values were used for the param-
eters of the calculation:Nr,10 000,Nu,600, and values of
the hyperradiusRmax as large as 800 fm. In Table I, the elas-
tic phase-shiftsd and inelasticitiesh are presented for vari-
ous energies and spin cases. As one can see from Table I, our
results for n-d breakup are in very good agreement with
calculations of other groups. However, forp-d breakup, they
differ from those of the Pisa group[3]. To see the influence
of the Coulomb interaction onp-d breakup scattering as
compared ton-d one, we calculated then-d andp-d breakup
amplitudesAsud for the total spinS=3/2 (spin-quartet case)
andAt,ssud for the total spinS=1/2 (spin-doublet case). Our
results are shown in Figs. 1–3.

It is important to note that in ours-wave approach higher
partial waves of the Coulomb potential have not been taken
into account. Nevertheless, the accuracy of this approach is
about 1% for energies exceeding 1 MeV as was already
pointed out by Merkurievet al. in Ref. [10]. From Fig. 1, it
follows that the Coulomb interaction has a noticeable effect
on the real and imaginary parts of thep-d quartet breakup
amplitude at Elab=14.1 MeV, especially for angles in the
vicinity of p /3. At Elab=42.0 MeV, the effect of the Cou-
lomb interaction is perceptible only in the real part of the
amplitude. In the spin-doublet case, a substantial effect of the
Coulomb interaction persists for the energy Elab=14.1 MeV.
As one can see in Fig. 2, a large enough influence of the
Coulomb force is noticeable for the real part of both the
singlet and triplet breakup amplitudes. At Elab=42.0 MeV, a
small influence of the Coulomb interaction is felt in the be-
havior of the singlet breakup amplitude for angles exceeding
p /3 (see Fig. 3). Oscillations of the singlet breakup ampli-
tudes for angles in a small vicinity ofp /2 reflect the behav-
ior of the breakup part in the singlet asymptotic condition in

TABLE III. n-d and p-d spin-quartet reduced breakup amplitudesElab=42.0 MeV. The numbers in square brackets denote powers of
10.

usdegd 0 10 20 30 40 50 60 70 80

Present work,n-d results,Rmax→`

Res3S1d 1.48f−2g 1.65f−3g −3.11f−2g −3.12f−2g 7.76f−2g 2.52f−1g 4.51f−1g 6.53f−1g 6.98f−1g
Ims3S1d 1.69f−0g 1.74f−0g 1.87f−0g 1.92f−0g 1.80f−0g 1.67f−0g 1.70f−0g 1.94f−0g 2.52f−0g

LA/Iowa, n-d results,Rmax→`, Ref. [2]

Res3S1d 1.48f−2g 9.22f−4g −3.21f−2g −3.09f−2g 7.70f−2g 2.52f−1g 4.51f−1g 6.53f−1g 6.93f−1g
Ims3S1d 1.69f−0g 1.74f−0g 1.87f−0g 1.92f−0g 1.80f−0g 1.68f−0g 1.70f−0g 1.95f−0g 2.52f−0g

Present work,p-d results,Rmax→`

Res3S1d −8.22f−2g −1.09f−1g −1.83f−1g −2.56f−1g −3.83f−2g 1.81f−1g 3.90f−1g 5.78f−1g 5.85f−1g
Ims3S1d 1.67f−0g 1.72f−0g 1.83f−0g 1.86f−0g 1.79f−0g 1.70f−0g 1.74f−0g 1.99f−0g 2.54f−0g

TABLE IV. n-d and p-d spin-doublet reduced breakup amplitudesElab=14.1 MeV. The numbers in square brackets denote powers of
10.

usdegd 0 10 20 30 40 50 60 70 80

Present work,n-d results,Rmax→`

Res1Sd 8.81f−2g 8.61f−2g 8.04f−2g 7.29f−2g 6.65f−2g 6.42f−2g 6.84f−2g 8.42f−2g 1.11f−1g
Ims1Sd 1.84f−1g 1.81f−1g 1.72f−1g 1.50f−1g 1.14f−1g 7.18f−2g 2.59f−2g −3.49f−2g −1.76f−1g
Res3S1d −2.44f−2g −2.21f−2g −1.59f−2g −7.77f−3g −3.46f−4g 4.75f−3g 5.21f−3g −2.31f−3g −1.82f−2g
Ims3S1d 8.00f−2g 8.44f−2g 9.79f−2g 1.20f−1g 1.48f−1g 1.76f−1g 2.00f−1g 2.14f−1g 2.09f−1g

LA/Iowa, n-d results,Rmax→`, Ref. [2]

Res1Sd 8.79f−2g 8.59f−2g 8.03f−2g 7.28f−2g 6.65f−2g 6.41f−2g 6.84f−2g 8.43f−2g 1.11f−1g
Ims1Sd 1.84f−1g 1.82f−1g 1.72f−1g 1.50f−1g 1.14f−1g 7.19f−2g 2.60f−2g −3.49f−2g −1.78f−1g
Res3S1d −2.43f−2g −2.21f−2g −1.60f−2g −7.89f−3g −4.11f−4g 4.68f−3g 5.10f−3g −2.40f−3g −1.82f−2g
Ims3S1d 8.01f−2g 8.45f−2g 9.80f−2g 1.20f−1g 1.48f−1g 1.76f−1g 1.99f−1g 2.14f−1g 2.09f−1g

Present work,p-d resultsRmax→`

Res1Sd 7.97f−2g 7.65f−2g 6.96f−2g 6.06f−2g 6.18f−2g 6.24f−2g 6.62f−2g 7.42f−2g 7.45f−2g
Ims1Sd 1.87f−1g 1.86f−1g 1.75f−1g 1.52f−1g 1.12f−1g 6.65f−2g 1.59f−2g −5.10f−2g −1.49f−1g
Res3S1d −2.57f−2g −2.48f−2g −2.34f−2g −2.73f−2g −1.53f−2g −8.79f−3g −7.87f−3g −1.55f−2g −3.11f−2g
Ims3S1d 6.95f−2g 7.37f−2g 8.66f−2g 1.07f−1g 1.40f−1g 1.70f−1g 1.95f−1g 2.10f−1g 2.02f−1g
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Eqs.(10) since the essential singularity occurs for the angle
u=p /2.

In Tables II and III, our results for reduced quartet
breakup amplitudes are presented. These amplitudes are de-
fined in Ref.[2], as follows:

Aredsud =
AsudK2

sinsudcossud
, K2 = mE/"2. s30d

As one can see from Tables II and III in the spin-quartet
case, the agreement between our results and those of the
Los-Alamos and Bochum groups, Ref.[2], is excellent(in
Tables II–V, we do not show the results of the Bochum
group since they practically coincide with those of the Los-
Alamos one). It should be noted that one cannot explicitly
calculate the reduced breakup amplitude for the angleu
=p /2 because it is necessary to resolve an uncertainty in Eq.
(30) for this angle. It is impossible numerically, since the
breakup amplitude for the angleu=p /2 cannot be calculated
using the Faddeev equations with sufficient accuracy in prin-
ciple and one has to use another way to calculate it(for
example, to exploit an integral representation from Ref.[6]).
Unfortunately, there is no possibility to compare our results
for the p-d quartet amplitudes because of absence of others
in literature. In Tables IV and V, the reduced doublet
breakup amplitudes are presented. The agreement between
our results and those of Los-Alamos and Bochum groups[2]
is again excellent. From these tables one can again see a
large enough influence of the Coulomb interaction for the
p-d doublet reduced amplitudes. In view of the large enough
Coulomb effects in the case of spin-quartet breakup scatter-
ing, it is undoubtedly of interest to see it in more detail. In
Fig. 4, the spin-quartet reduced breakup amplitudes are pre-
sented. Obviously, the Coulomb interaction effects are no-
ticeable in the behavior of these amplitudes in the entire
angular range, especially for lab energyElab=14.1 MeV.

TABLE V. n-d and p-d spin-doublet reduced breakup amplitudesElab=42.0 MeV. The numbers in square brackets denote powers of
10.

usdegd 0 10 20 30 40 50 60 70 80

Present work,n-d results,Rmax→`

Res1Sd 5.01f−1g 4.94f−1g 4.59f−1g 3.63f−1g 2.19f−1g 8.78f−2g −3.49f−2g −2.10f−1g −7.04f−1g
Ims1Sd 5.56f−1g 5.90f−1g 6.70f−1g 6.67f−1g 4.63f−1g 2.08f−1g −2.58f−2g −2.99f−1g −8.13f−1g
Res3S1d −1.30f−2g 1.41f−2g 1.01f−1g 2.41f−1g 3.85f−1g 5.08f−1g 6.20f−1g 7.00f−1g 5.69f−1g
Ims3S1d 2.64f−1g 2.66f−1g 2.85f−1g 3.69f−1g 5.39f−1g 7.23f−1g 9.34f−1g 1.25f−0g 1.70f−0g

LA/Iowa, n-d results,Rmax→`, Ref. [2]

Res1Sd 5.01f−1g 4.94f−1g 4.59f−1g 3.62f−1g 2.19f−1g 8.78f−2g −3.50f−2g −2.10f−1g −7.05f−1g
Ims1Sd 5.56f−1g 5.91f−1g 6.70f−1g 6.66f−1g 4.63f−1g 2.09f−1g −2.57f−2g −2.99f−1g −8.14f−1g
Res3S1d −1.30f−2g 1.33f−2g 1.00f−1g 2.42f−1g 3.85f−1g 5.07f−1g 6.20f−1g 7.00f−1g 5.69f−1g
Ims3S1d 2.63f−1g 2.66f−1g 2.85f−1g 3.70f−1g 5.39f−1g 7.23f−1g 9.34f−1g 1.25f−0g 1.70f−0g

Present work,p-d results,Rmax→`

Res1Sd 4.95f−1g 4.84f−1g 4.35f−1g 3.24f−1g 2.02f−1g 8.06f−2g −4.02f−2g −2.17f−1g −6.76f−1g
Ims1Sd 5.94f−1g 6.27f−1g 7.05f−1g 6.93f−1g 4.71f−1g 2.03f−1g −4.41f−2g −3.39f−1g −8.90f−1g
Res3S1d −2.61f−2g 6.74f−4g 8.23f−2g 1.97f−1g 3.44f−1g 4.70f−1g 5.82f−1g 6.48f−1g 4.87f−1g
Ims3S1d 2.43f−1g 2.47f−1g 2.77f−1g 3.84f−1g 5.63f−1g 7.55f−1g 9.73f−1g 1.29f−0g 1.74f−0g

FIG. 4. Reduced quartet breakup amplitudes. The dashed(solid)
lines correspond to imaginary(real) part of the amplitudes.
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This effect should be important for the calculation of the
total breakup amplitude, which should be quite different for
n-d andp-d breakup scatterings.

To verify our results, optical theorem[6] is applied. In the
spin-quartet case for thes-wave approach, it reads

Im4a0spd = ua0spdu2 +
K

p
E

0

p/2

duAtot
* A,

Atotsud = Asud −
2
Î3
E

u−

u+

du8Asu8d. s31d

For the spin-doublet case in thes-wave approach(Ref. [6]),
the optical theorem reads

Im2a0spd = ua0spdu2 +
K

pHE0

p/2

dufAtot
* t At + Atot

*sAsgJ ,

Atot
t sud = Atsud +

1
Î3
HE

u−

u+

du8fAtsu8d − 3Assu8dgJ ,

Atot
s sud = Assud +

1
Î3
HE

u−

u+

du8fAssu8d − 3Atsu8dgJ .

s32d

In Table VI, our optical theorem results are presented. Table

TABLE VI. The optical theorem results.

Elab nd quartet pd quartet nd doublet pd doublet

(MeV) lhs rhs lhs rhs lhs rhs lhs rhs

14.1 0.8626 0.8626 0.8871 0.8776 0.6994 0.6994 0.6991 0.7061

42.0 0.3860 0.3860 0.4127 0.4086 0.4679 0.4679 0.4864 0.4881

FIG. 5. Squares of the module of the physical quartet breakup
amplitudes.

FIG. 6. Squares of the module of the physical doublet breakup
amplitudes. The solid lines correspond to the spin-triplet amplitudes
(pair spin s=1). The dashed lines correspond to the spin-singlet
amplitudes(pair spins=0).

V. M. SUSLOV AND B. VLAHOVIC PHYSICAL REVIEW C 69, 044003(2004)

044003-8



VI clearly confirms the accuracy of our results and the esti-
mation of Merkurievet al. [10] of the contribution of higher
Coulomb partial waves under ans-wave approach, which is
less than 1%. In Figs. 5 and 6, the physicaln-d and p-d
breakup amplitudes are depicted. The physicalp-d quartet
breakup amplitudes clearly demonstrate the influence of the
Coulomb interaction, though they themselves have a small
magnitude. For the doublet scattering, the Coulomb interac-
tion has a smaller effect on the breakup amplitudes. The
magnitude of these amplitudes is large as compared with the
quartet ones. Therefore, the differential cross sections of the
n-d andp-d processes should have some difference.

To directly study the dependence of the optical theorem
results on the inelasticity in the spin-quartet case, we rewrite
the first equation in Eqs.(31) in another form using the defi-
nition of the elastic amplitude, Eq.(11),

1 = h2 + 4
K

p
E

0

p/2

duAtot
* A. s33d

The results presented in Table VII show that ourn-d am-
plitudes fulfill the optical theorem with a very high accuracy.
In the case ofp-d breakup scattering, the accuracy is a little
bit worse. It is a consequence of our truncation of the partial-
wave decomposition of the Coulomb potential. Analyzing
Eq. (33) and then-d andp-d quartet results for inelasticities
of the Pisa group from Table I, one inevitably comes to the
conclusion about the equality of the contributions from inte-
gral terms of the optical theorem for then-d andp-d breakup
processes. On the other hand, our quartet breakup amplitudes
are quite different for these two reactions as one can see in
Fig. 7, which is hardly compatible with the equality of these
contributions. This casts some doubts on the Pisa results for
the p-d quartet breakup scattering.

V. CONCLUSION

We have shown that by using the Numerov method very
accurate calculations can be performed with minimal com-
putation resources(PC).

By retaining the incident wave in the asymptotics for the
Faddeev components, unnecessary additional computations
are eliminated casting the problem in a form that enables
partial inversion.

The stability of our solutions for relatively large values of
Rmax illustrates its advantages for the investigation of the
asymptotic behavior of solutions. In fact, the Numerov
method allows us to compute the breakup amplitudes as well

as the Faddeev components with a high accuracy forRmax
=800 fm and more.

The disagreement of our results for the phase shifts and
inelasticities with those of the Pisa group in thep-d spin-
quartet case reaches up to 6% as one can see from Table I. It
cannot be explained by truncation of the partial-wave expan-
sion of the Coulomb interaction in our calculation since the
error introduced by neglecting higher partial Coulomb waves
should not exceed 1% as it follows from the optical theorem
results in Table VI.
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TABLE VII. The quartet optical theorem results.

Elab (MeV) nd pd

14.1 0.9999 0.9621

42.0 0.9999 0.9835

FIG. 7. The quartet breakup and total amplitudes forElab

=14.1 MeV. The dashed(solid) lines correspond to imaginary(real)
part of the amplitudes.
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