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A new computational method for solving the configuration-space Faddeev equations for three-nucleon sys-
tems has been developed. This method is based on the spline decomposition in the angular variable and a
generalization of the Numerov method for the hyperradius. Faeave calculations of the inelasticity and
phase shift as well as breakup amplitudes ffied and p-d breakup scatterings for lab energies 14.1 and
42.0 MeV were performed with the Malfliet-Tjon I-Ill potential. In the casenefl breakup scattering the
results are in good agreement with those of the benchmark soldtian Friar, B. F. Gibson, G. Berthold, W.
Glockle, Th. Cornelius, H. Witala, J. Haidenbauer, Y. Koike, G. L. Payne, J. A. Tjon, and W. M. Kloet, Phys.
Rev. C 42, 1838(1990; J. L. Friar, G. L. Payne, W. Glockle, D. Hiber, and H. Witala, Phys. Re81(2356
(1995)]. In the case op-d quartet breakup scattering disagreement for the inelasticities reaches up to 6% as
compared with those of the Pisa gro[#. Kievsky, M. Viviani, and S. Rosati, Phys. Rev. 64, 024002
(200D)]. The calculategp-d amplitudes fulfill the optical theorem with a good precision.
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|. FADDEEV EQUATIONS IN CONFIGURATION SPACE linearly related by the orthogonal transformation
This paper deals with the-wave breakup scattering in X, Capg  Sup \[Xs )
three-nucleon systems. Our approach is based on the method =\_ Sus S\y, » CaptSip=1, (4)
a « a B

of the Faddeev equatioi4], which was modified by Merku-

riev to incorporate the Coulomb for¢B]. The Faddeev com- where
ponents¥, for three-body Coulomb systems satisfy the fol-
lowing set of differential Faddeev equations: Cup=- \/ m,Mg

_ (M=-m,)(M-mg)’
{_ AYQ - AVQ + VC + Va(lZvD - E}\Pa@#ya)

— 3
== Vall) 2 V55, M Sip= (1) Usgrif-aNI-CZy, M= m,. (5
a=1

BFa

whereV; andV, are the Coulomb and nuclear potentials, 1o derive the equations to be used in numerical computa-
respectlvely The Coulomb potential has the following form:tions, we perform the partial-wave decomposition of ).

me and separate the spin-isospin and angular varigskss, for
V.= — H n= — 2 instance, Refgd6,7]). As a result, in thes-wave doublet case,
R (2 _ ! . :
« Xalica 2 h the set(1) is reduced to a system of two mtegrodlﬁerentlal

equations. In the polar coordinatgs’= X2+ y and tané

— 2 —
where €?=1.44 MeV fm and%?/m=41.47 MeV ff. The —(2/\3)(y/x) it has the following form(here we omit the

sum runs overe=1,2,3 for thethree possible pairs and

the product of the isospin projection operators runs overndex b
the indicesi of the particles belonging to the padr. As F# 1P ; . 1 .
independent coordinates, we take the Jacobi vexgs,. TR 2o +Ve(p,0) +Vi(p,0) = — —E (U(p,0)
For the paira=1, they are related to particle coordinates " _
by the formulas __ EVt(p 0)f L 6 cos 0
_ ' sin #'cos ¢’
. Iptrg
Xp=rzx="I3 Y1= -y (3 X[UY(p, 8") - 3U%(p, )],
for «=2,3 one has tanake cyclic permutations of the indi- Pl P 1
. . . . S
ces in Eq.(3). The Jacobi vectors with different’s are T 2[?02+V5(P, 0) +V(p,0) - (p, )
"1 sin@cosé
== —VS(P. 0) f u——
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X -
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[a II. NUMEROV METHOD AND SPLINE APPROXIMATION
' 1 V3 . 3.
cogd' (u,6) = Zcos’-&— ?cose sin 6u + Zsmze, (7)
Our previous calculations of elastic amplitudes fed
. T S and p-d breakup scatterings, in which the reduction of the
and t'he.f|rst ((t:ise)rlva_t;/\ée (t'g the radius is eliminated by theFadts)eev equat[ijons to angalgebraic problem was performed
substltutlon\_lf '(t;_)p U_' ._In Eq. (6), the swave Cou- by means of finite-difference approximation for the hyperra-
lomb potentialV,™(p, 6) is given by[7] dius, have demonstrated a weak dependence of the results on
the choice of the matching radiy8]. Nevertheless, to get
accurate results for breakup amplitudes, it is necessary to

, 6>30°

. nut(6) V3sing increase the cutoff radius considerably. To obtain accurate
Vilp, ) =——, ul(0)= 5 : results at the same time, we applied the Numerov method for
P ——, 9<30° solving partial differential equations. The idea of Numerov
cos 6 method consists in using the initial differential equation to

calculate higher derivatives in the expansion of the unknown
nus(9) 2 function in Taylor’s series. Accordin_g to N_ume_rov, one has
Vi(p,6) = ) G ( (9)) (8) to keep all terms up to the sixth derivative in this expansion.
P 0059 Summation of the equations for points-Ap and p+Ap
leads to the following finite-difference approximation of the
The Malfliet-Tjon I-11I potential(see Refs[1,2]) was chosen second radial derivative:
as the nuclear potentia™S(p, ). The set of partial differen-
tial equationg6) must be solved for the functions satisfying

the regularity conditions #U(p, 0) _U(pi+1,60) = 2U(p;, 0) + U(p;_1, 0)
2 2
U'S(0,6) = U'S(p,0) = U'(p, 7/2) = 0 ©) e n
AP2 v 4
and the following asymptotic conditiori§]: - EUP (pi, 0) + O(Ap). (12)
. - V3
U'l, . ~ Vpedp.cog0)]) Fo| 7. PP sin(6) | +a(p) The fourth radial derivative of the Faddeev component has to
— be found by differentiating the second derivative in the cor-
G V3 responding Faddeev equation. From here on we make the
X| Go| 7.~ p sin(6) analysis for the spin-quartet Faddeev equation. Irsthave

approach, this equation in the polar coordinates has the form

+iF0( Y pL;p sin(&))}} +At(0)exp{i\Ep [7]

t( 6)
2\E

In(2VE )] {— (jpz 12(;9;+Vc(p,0)+vs(p,0) i E}U(pﬁ)

- @wp,e) L_ do'U(p, ), (13

nus(6)

U5|le~AS(0)exp{i\’Ep—i = |n(2\'Ep)]. (10)
2VE

Here, ¢4 is the deuteron wave functiofr,, and G, are the  where ¢ =|6-x/3| and ¢*'=n/2-|0-=/6|. Thus for the
regular and irregular Coulomb functiong=2n/3p is the fourth derivative of the Faddeev component the following
Coulomb parameter witlp the momentum in the center-of- formula is to be obtained:

mass system, and"S(6) is defined in Eqs(8). The unknown

functionsa(p) andA'® are the elastic and breakup scattering

amplitudes: Fp,o) _ 7|1 P ~ 1
. apt asz 25 Ve V(p’6)+4p2+E}
a(p)zm (11) 2 ot
2i ' ><U(p,0)+,—EV(p,0)f dﬂ'U(p,H’)]. (14)
v v

where » and § are the inelasticity and phase shift, respec-

tively. In the case oh-d breakup scattering, the asymptotic

conditions retain the functional form of E(L0) but the Cou-  The finite-difference approximation for the second derivative
lomb functionsF, and G, should be replaced by sine and up to the fourth order im\p results from substitution of this
cosine, respectively. expression into Eq(12) as follows:
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TABLE I. n-d andp-d elastic phase shifts and inelasticities.

LA/lowa Bochum Pisa Present Pisa Present
Ref. [1] Ref. [1] Ref. [3] work Ref.[3] work
14.1 Mev Doublet n-d p-d
Re(6) 105.48 105.50 105.48 105.47 108.44 108.06
7 0.4648 0.4649 0.4649 0.4649 0.4984 0.4929
Quartet n-d p-d
Re(6) 68.95 68.96 68.952 68.93 72.604 73.64
7 0.9782 0.9782 0.9782 0.9782 0.9795 0.9202
42 Mev Doublet n-d p-d
Re(6) 41.34 41.37 41.341 41.34 43.667 43.47
7 0.5024 0.5022 0.5022 0.5022 0.5056 0.5071
Quartet n-d p-d
Re(6) 37.71 37.71 37.722 37.70 39.947 39.19
7 0.9035 0.9033 0.9033 0.9034 0.9046 0.866
PU(p,0) | _ U(pir1,6) — 2U(p;, 6) + U(p;_1, ;) Sii(%-1) =0, S,i(x41) =0, 0=0,1,2, (17
2 - 2
P Pi Ap and
A2 P[] 1 & , ,
+Ea_p2 p_zﬁ_VC(p’ 6) = V(p,0) Sitx) =1, S(x)=0, S(x)=0,
+i+E U(p, ) Si(x)=0, S;(x)=1, Sjx)=0,
4p?
2 o i(x) =0, S(x)=0, Sy(x)=1. (18
+ 2 Vip,0) f do'U(p, e’)] +0(8p"). 0070 S00=0 Sl
V3 4 pi To reduce the resulting equatigh6) to an algebraic prob-
(15) lem, one should explicitly calculate the derivatives with re-
spect top in Eq. (16) using the following spline expansion
for the Faddeev component:
Finally, replacement of the second radial derivative in the 2 Nyl
Faddeev equation by the obtained expression leads to the U(p. §) = Co()S.(0 19
following generalized formula of Numerov method: (p.9) z) go 7 (P)S4(0), (19

where Ny+1 is the number of internal subintervals for the
U(pi+1,0) — 2U(p;, 6) + U(p;_1, 0) Ap? & angular variabled € [0,7/2]. Upon substituting the spline
- Ap? -1+ Ea_pz expansion(19) into the Faddeev equation, we use a colloca-
tion procedure with three Gaussian quadrature points per
subinterval. As the number of internal breakpoints for angu-
lar variable 6 is equal toN,, the basis of quintic splines
consists of 8l,+6 functions. Three of them should be ex-

2 Ap? & o+ : ; -
_ (1 L 2P —>[V(p,0)f dH'U(p,H’)] . (18) cluded using the last two regularity conditions fr¢&) and
e

1 & 1
X{— Eﬁz +Ve(p, 6) + V(p, 6) - 4_p2 - E}U(p,@):|

Piﬁj

3 12 9 p? continuity of the first derivative ir9 of the Faddeev compo-

nent at eitherd=0 or 6=7/2, as the collocation procedure
Modification of the Numerov method for the set of the yields 3,+3 equations.

differential equations, Eq6), does not present any difficulty

in principlg. However, due to unhandiness of the correspond- IIl. METHOD OF PARTIAL INVERSION

ing equations, we do not show them here. To ensure the

accuracy of orde(A 6)* for the approximation in the angular Using the spline approximation in the angular variable

variable, Hermitian splines of the fifth degree have been usednd the Numerov method for the hyperradius leads to an

(see Ref[9]). These splines are local and each splij¢x)  algebraic problem for the unknown coefficie@S(py). It is

is defined forx belonging to two adjacent subintervals convenient to transform this problem back to the set of linear

[%i-1,%] and[x;,%4]. Their analytical form is fixed by the equations for the Faddeev componedtg;, 6,) by means of

following smoothness conditions: Eq. (19). Thus Eq.(16) is reduced to a matrix form

Piﬂj

044003-3



V. M. SUSLOV AND B. VLAHOVIC

PHYSICAL REVIEW C 69, 044003(2004

1 -5 T T T ’J ——————— L_‘\\ T T T 0'7 T T T T ’I_ ~~~~~~ J\ T T
P N 0.6 | nd doublet, Eyy=14.1 MeV.”” .
1} nd - 05 -
//::// \\‘\\\\ 04 F d e \\ \\\Im(At) 4
o5F  pd N oar /S N
i 9 Y . N
< < 02r Re(As) N T
ok \ o1 L/ \
nd 0
05| - 01 F Re(A) . Im(AS) 4
P Eyyp=14.1 MeV 02 ST
=14, e e
R 1 1 | 1 1 |Iab 1 ) 0.3 ! 1 1 ! ! 1 1 1
0O 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
0 (deg) 9 (deg)
1 -4 T T T ’,:::—_"V\-\,\\ T T T T 0'7 T T T T L T T T
ni nd /;) g \:::::::\ | 0.6 | pddoublet, Ejyp,=14.1 MeV/,/ i
7 Ty 05| e S -
1} 7 AN .
/ “‘\ 04 g \ ImaYy
0.8
/ 03 | / ” 8
7 2 / v N, N\
< 06 = / - < \
02F / / N
/ Re(AS) N \
0.4 / )
01 |/ \
0.2 N A
0 -0.1 | Re(AY “JIm(As) S
Elab=420 MeV \\ /’
0.2 1 1 1 1 1 1 1 02 { 1 1 { { 1 [ iy
0O 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90

6 (deq)

FIG. 1. Spin-quartetn-d and p-d breakup amplitudes. The
dashed(solid) lines correspond to imaginargreal) part of the

amplitudes.
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FIG. 2. Spin-doublen-d and p-d breakup amplitudes for |k
=14.1 MeV.ASis the single{pair spins=0) breakup amplitude and

Alis the triplet(pair spins=1) one.

(20)

The matricesD andD* are of dimensiorN,N;x N,N; and

N X N, respectively. HerelN, is the number of breakpoints
in the hyperradiugp andN;.=3N,+3 is the number of collo-

cation points in the angular variabte

Matrix D has the tri-block-diagonal structure that opti-
mizes considerably the inversion problem. Indaexl stands

Up-1=- DaglnD+Un+lr

Un=-DriD*Upss. (22)

ProvidedR,.« is large enough, the vectots, ; andU, on
the left side of Eqs(22) may be replaced by the correspond-

ing vectors obtained by evaluating Eq40) at the radiip

for hyperradiugp,1=Rmax WhereR,,,is the cutoff radius at
which the asymptotic conditions, Eq4.0), are implemented.
By formal inversion of the matri in Eq. (20), the solution

=pn-1 andp=p,. As a result we obtain a set of linear equa-
tions for the unknown amplitudes and A:

ang+ My A=Fyq,

av,+mA=F,. (23

of the problem may be written in the following form:

For the sake of brevity, we do not display here the explicit
form of vectorsv;, F; and matricesn;. As R;,—  the set

of equationg23) has a constara as a solution. At finitdR 4«

its solution is a vectoa with generally different components
The form of this equation results from keeping the incomingcorresponding to different angles. We follow the method of
wave in the asymptotic conditiond0). As a consequence, Merkuriev et al. [6], which consists in selecting the compo-
the right-hand part of Eq(21) has a single nonzero term nents ofa in the region of the maximum of the deuteron
marked with indexn+1. In Eq.(21) one should consider the wave function, where turns out to be independent of the
last two components of vectds: angle.

Uj=-DjiD'Up, j=1,2,...N,. (21)
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a-v=F, (24)

where vectors are defined as foIIovws.zun_l—mn_lmglun
and F=F,_;-m,_,m. 7. According to LSM one should
minimize the following functional:

|a-v-F|?=min, (25)

Differentiating this expression in Reand Ima we obtain
v',F

S (26)
(v',v)

where (& ,f) is an ordinary scalar product.
In the second way, it is needed to express the elastic am-

plitude a from the lower equatio23) using the scalar prod-
uct:

(VpFn~ MpA)
= 000 (27)

Substitutinga from Eq.(27) into the upper Eq(23) leads to
the following set of linear equations:

=42.0 MeV. Notations are the same as in Fig. 2.

is 2N and the number of unknowns M+ 1. Therefore it is
natural to use the least-squares metfic8M). One can ap-

(v, M A) (O Fn)
My A - Un—ln*—n =Jnp-17 Un—lr:—n- (28)
(Unvvn) (vn’vn)
The explicit form of Eq.(28) is as follows:
NC v . NC
> Mo-1j ~ Y v;,kmn,kj Aj
j=1 (Vs Un) k=1
OnFn)
= Frti=Un1i——>, i=1,...Ns. (29
(vnuvn)

Solving the set in Eq(29), we get the breakup amplitudé.
Furthermore, we propose a new method for a more adSubstituting the obtained breakup amplitude into EZy),
equate calculation of the amplitudes. The set of linear equa®ne may compute the elastic amplitualeNote that one can
tions (23) is overdetermined, since the number of equationgpply Eq.(27) to calculate the elastic amplitugeeither in

the components or via a scalar product. In the first case, the
components ofa are practically equal to a constant for all

ply it by two ways. In the first one, it is needed to express theangles # e (0,7/2) and this constant coincides with the

breakup amplituded from the lower equatioii23) and sub-

value ofa calculated by using the scalar product to the fourth

stitute it into the upper one. As a result one has the followingdecimal. It should also be noted that the elastic amplitudes

expression: calculated by the method from Rd6] and LSM coincide
TABLE 1. n-d and p-d spin-quartet reduced breakup amplitudgg,=14.1 Mev. The numbers in square brackets denote powers of

10.

6(deg 0 10 20 30 40 50 60 70 80
Present workn-d results,Rya—

Re(3S)) -1.97-1] -1.93-1] -1.94-1] -1.89-1] -1.79-1] -15§-1] -1.47-1] -151-1] -1.7§-1]

Im(3S,) 3.69-1] 3.67-1] 3.70-1] 3.79-1] 3.794-1] 3.81-1] 4.00-1] 4.37-1] 4.67-1]

LA/lowa, n-d results,Rya— %, Ref.[2]

Re(3S)) -1.994-1] -1.93-1] -1.94-1] -1.89-1] -1.79-1] -15§-1] -1.47-1] -151-1] -1.7§-1]

Im(3S,) 3.69-1] 3.67-1] 3.70-1] 3.79-1] 3.79-1] 3.81-1] 4.00-1] 4.31-1] 4.67-1]
Present workp—d results,Ry,a—

Re(3S)) -2.21-1] -2.24-1] -2.31-1] -2.44-1] -2.07-1] -1.87-1] -1.6§-1] -1.71-1] -1.94-1]

Im(3s;) 3.21-1] 3.19-1] 3.14-1] 2.99-1] 3.34-1] 3.57-1] 3.83-1] 4.14-1] 4.39-1]
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TABLE Ill. n-d and p-d spin-quartet reduced breakup amplitudgg,=42.0 MeV. The numbers in square brackets denote powers of

10.
6(deg 0 10 20 30 40 50 60 70 80
Present workn-d results,Rya—

Re(®S)) 1.44-2] 1.65-3] -3.11-2] -3.17-2] 7.74-2] 2.57-1] 4.57-1] 6.53-1] 6.99-1]
Im(3S,) 1.69-0] 1.74-0] 1.87-0] 1.97-0] 1.80-0] 1.671-0] 1.74-0] 1.94-0] 2.57-0]
LA/lowa, n-d results,Ryax— ©, Ref.[2]

Re(®S)) 1.44-2] 9.27-4] -3.21-2] -3.09-2] 7.70-2] 2.57-1] 4.51-1] 6.53-1] 6.93-1]
Im(3S,) 1.69-0] 1.74-0] 1.87-0] 1.97-0] 1.84-0] 1.64-0] 1.74-0] 1.99-0] 2.57-0]
Present workp-d results,Ryax— %

Re(3S)) -8.23-2] -1.09-1] -1.83-1] -2.56-1] -3.83-2] 1.81-1] 3.90-1] 5.74-1] 5.89-1]
Im(3s,) 1.61-0] 1.77-0] 1.83-0] 1.84-0] 1.79-0] 1.74-0] 1.74-0] 1.99-0] 2.54-0]

with this constant to the same accuracy. To control the ac- It is important to note that in ous-wave approach higher

curacy of calculations, all methods are used.

IV. RESULTS OF THE CALCULATIONS

The elastic amplitudea and breakup amplituded for
n-d and p-d scatterings were computed Bt,,=14.1 and

partial waves of the Coulomb potential have not been taken
into account. Nevertheless, the accuracy of this approach is
about 1% for energies exceeding 1 MeV as was already
pointed out by Merkuriewet al. in Ref. [10]. From Fig. 1, it
follows that the Coulomb interaction has a noticeable effect
on the real and imaginary parts of tiped quartet breakup

42.0 MeV. The following values were used for the param-amplitude at E,=14.1 MeV, especially for angles in the

eters of the calculatiori,~ 10 000,N,~ 600, and values of

vicinity of 7/3. At E,,=42.0 MeV, the effect of the Cou-

the hyperradiuR,,., as large as 800 fm. In Table I, the elas- lomb interaction is perceptible only in the real part of the

tic phase-shiftsy and inelasticitiesy are presented for vari-

amplitude. In the spin-doublet case, a substantial effect of the

ous energies and spin cases. As one can see from Table |, a@oulomb interaction persists for the energy,E14.1 MeV.
results forn-d breakup are in very good agreement with As one can see in Fig. 2, a large enough influence of the

calculations of other groups. However, fod breakup, they
differ from those of the Pisa grouj3]. To see the influence
of the Coulomb interaction omp-d breakup scattering as
compared to-d one, we calculated the-d andp-d breakup
amplitudesA(6) for the total spinS=3/2 (spin-quartet cage
and.A"S(#) for the total spinS=1/2 (spin-doublet cageOur
results are shown in Figs. 1-3.

Coulomb force is noticeable for the real part of both the
singlet and triplet breakup amplitudes. Atf=42.0 MeV, a
small influence of the Coulomb interaction is felt in the be-
havior of the singlet breakup amplitude for angles exceeding
/3 (see Fig. 3. Oscillations of the singlet breakup ampli-
tudes for angles in a small vicinity af/2 reflect the behav-
ior of the breakup part in the singlet asymptotic condition in

TABLE IV. n-d and p-d spin-doublet reduced breakup amplitudgg,=14.1 MeV. The numbers in square brackets denote powers of

10.

6(deg 0 10 20 30 40 50 60 70 80
Present workn-d results,Ryax— %

Re(1S) 8.81-2] 8.61-2] 8.04-2] 7.29-2] 6.69-2] 6.47-2] 6.84-2] 8.47-2] 1.17-1]

Im(S) 1.84-1] 1.81-1] 1.73-1] 1.50-1] 1.14-1] 7.14-2] 2.59-2] -3.49-2] -1.764-1]

Re(3S)) -2.44-2] -2.21-2] -1.59-2] -7.71-3] -3.44-4] 4.79-3] 5.21-3] -2.31-3] -1.84-2]

Im(3S,) 8.00-2] 8.44-2] 9.79-2] 1.20-1] 1.44-1] 1.7-1] 2.00-1] 2.14-1] 2.09-1]

LA/lowa, n-d results,Rya— ©, Ref.[2]

Re(lS) 8.79-2] 8.59-2] 8.03-2] 7.24-2] 6.69-2] 6.41-2] 6.84-2] 8.43-2] 1.17-1]

Im(ts) 1.84-1] 1.87-1] 1.73-1] 1.50-1] 1.14-1] 7.19-2] 2.60-2] -3.49-2] -1.7§-1]

Re(3S)) -2.43-2] -2.21-2] -1.6(4-2] -7.89-3] -4.11-4] 4.64-3] 5.10-3] -2.40-3] -1.84-2]

Im(3S,) 8.01-2] 8.49-2] 9.80-2] 1.20-1] 1.44-1] 1.74-1] 1.99-1] 2.14-1] 2.09-1]
Present workp-d resultsR,ax—

Re(1S) 7.97-2] 7.69-2] 6.94-2] 6.04-2] 6.14-2] 6.24-2] 6.67-2] 7.42-2] 7.49-2]

Im(1s) 1.871-1] 1.84-1] 1.79-1] 1.57-1] 1.13-1] 6.69-2] 1.59-2] -5.10-2] -1.49-1]

Re(3S;) -251-2] -2.44-2] -2.34-2] -2.73-2] -153-2] -8.79-3] -7.81-3] -1.59-2] -3.11-2]

Im(3S,) 6.99-2] 7.31-2] 8.66-2] 1.071-1] 1.40-1] 1.70-1] 1.99-1] 2.10-1] 2.07-1]
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TABLE V. n-d and p-d spin-doublet reduced breakup amplitudgs,=42.0 MeV. The numbers in square brackets denote powers of
10.

6(deg 0 10 20 30 40 50 60 70 80
Present workn-d results,Rya—

Re(1S) 5.01-1] 494-1] 459-1] 3.63-1] 2.19-1] 8.74-2] -3.49-2] -2.1J-1] -7.04-1]

Im(S) 5.54-1] 5.90-1] 6.7d-1] 6.61-1] 4.63-1] 2.04-1] -2.54-2] -2.99-1] -8.13-1]

Re(®S)) -1.3¢4-2] 1.41-2] 1.01-1] 2.41-1] 3.89-1] 5.08-1] 6.24-1] 7.00-1] 5.69-1]
Im(3S;) 2.64-1] 2.64-1] 2.84-1] 3.69-1] 5.39-1] 7.29-1] 9.34-1] 1.29-0] 1.7q-0]
LA/lowa, n-d results,Rax— <, Ref.[2]
Re(1S) 5.00-1] 494-1] 4.59-1] 3.634-1] 2.19-1] 8.74-2] -3.5Q0-2] -2.1Q0-1] -7.09-1]
Im(1s) 5.5-1] 5.91-1] 6.74-1] 6.64d-1] 4.63-1] 2.09-1] -2.571-2] -2.99-1] -8.14-1]
Re(3S)) -1.30-2] 1.33-2] 1.0q4-1] 2.44-1] 3.89-1] 5.07-1] 6.20-1] 7.00-1] 5.69-1]
Im(3S,) 2.63-1] 2.64-1] 2.84-1] 3.70-1] 5.39-1] 7.23-1] 9.34-1] 1.259-0] 1.70-0]
Present workp-d results,Rya,—

RelS) 4.99-1] 4.84-1] 4.39-1] 3.24-1] 2.07-1] 8.0§-2] -4.04-2] -2.17-1] -6.76-1]
Im(ts) 594-1] 6.271-1 7.09-1] 6.93-1] 4.71-1] 2.03-1] -4.41-2] -3.39-1] -8.90-1]
Re®S,)  -2.61-2] 6.74-4] 8.23-2] 1.97-1] 3.44-1] 4.74-1] 584-1] 6.4§-1]  4.87-1]

Im(3S,) 2.49-1] 247-1 2771-1] 3.84-1 563-1 759-1 979-1] 1.29-0]  1.74-0]

Egs.(10) since the essential singularity occurs for the angle
O=1l2. 0.5 . . . .
In Tables Il and Ill, our results for reduced quartet E.. 2141 MeV T
breakup amplitudes are presented. These amplitudes are d 94 [ o ™ e
fined in Ref.[2], as follows:

03 T T pd |
Ared(0) = L)Kz K2 = mE/#2 (30) 0.2 |
77 sin(9)cog 6) = MmER™ ol _

<

As one can see from Tables Il and Il in the spin-quartet
case, the agreement between our results and those of tr
Los-Alamos and Bochum groups, R€R], is excellent(in 01 F -
Tables 1I-V, we do not show the results of the Bochum —/,"/d,/’—\
group since they practically coincide with those of the Los- 02 '\/’—\'
Alamos ong. It should be noted that one cannot explicitly 03 ! ! . P ! . . .
calculate the reduced breakup amplitude for the ar#@le 0 10 20 30 40 5 60 70 8 90
=m/2 because it is necessary to resolve an uncertainty in Eq 6 (deg)
(30) for this angle. It is impossible numerically, since the
breakup amplitude for the angl=7r/2 cannot be calculated 35 ' T ' ' ' T T '
using the Faddeev equations with sufficient accuracy in prin- | Blap=42.0MeV P
ciple and one has to use another way to calculatgoit o
example, to exploit an integral representation from R&}. 25| / .
Unfortunately, there is no possibility to compare our results
for the p-d quartet amplitudes because of absence of other:
in literature. In Tables IV and V, the reduced doublet 3 5
breakup amplitudes are presented. The agreement betwe¢®
our results and those of Los-Alamos and Bochum grd@ps 1F y
is again excellent. From these tables one can again see

-------------------

large enough influence of the Coulomb interaction for the 05T i
p-d doublet reduced amplitudes. In view of the large enough 0 nd \|
Coulomb effects in the case of spin-quartet breakup scatter pd

ing, it is undoubtedly of interest to see it in more detail. In 05 ' ' ' ' ' ' ' '

0 10 20 30 40 50 60 70 80 20

Fig. 4, the spin-quartet reduced breakup amplitudes are pre o (deg)

sented. Obviously, the Coulomb interaction effects are no-
ticeable in the behavior of these amplitudes in the entire FIG. 4. Reduced quartet breakup amplitudes. The dagudid)
angular range, especially for lab ener@y,,=14.1 MeV. lines correspond to imaginaxyeal) part of the amplitudes.
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TABLE VI. The optical theorem results.
Eap nd quartet pd quartet nd doublet pd doublet
(MeV) Ihs rhs lhs rhs lhs rhs lhs rhs
14.1 0.8626 0.8626 0.8871 0.8776 0.6994 0.6994 0.6991 0.7061
42.0 0.3860 0.3860 0.4127 0.4086 0.4679 0.4679 0.4864 0.4881

This effect should be important for the calculation of the
total breakup amplitude, which should be quite different for
n-d and p-d breakup scatterings.

To verify our results, optical theoref8] is applied. In the
spin-quartet case for threwave approach, it reads

K 2 . y
Imzao(p)=|ao(p)|2+5 JO dO[AGA + AGA® ¢

K 2 .
Im“*ag(p) = [ag(p)|? + Pfo d6AGA,

AL(6) = AY0) + = f " doTANe) - 34%01 ¢,
V3| o

1] (¢
As(6) = A%(6) + = J dO'LANG) - 3AYO)] |
. V3 (Yo
4
A0 = A(0) - Ef de’ A(o"). (31 (32
V3Jg
In Table VI, our optical theorem results are presented. Table
For the spin-doublet case in tisavave approackiRef. [6]),
the optical theorem reads 0.45 : : : : : . : .
04 Ejgp=14.1 MeV -
0.09 . . . . . T - T B} e °
0.08 " Ejap=14-1 MeV - bl I A \ . 1
0.07 | F . 03 r i
/o - a_ L i
0.06 - . . W2 025
;oo < L 4
o 005 F pd | i = o2
5 / \ ,’I ‘\\ L .
< 04} i - 015
0.03 - i Voo 01 r T
0.02 | \ . 0.05 - N
‘\ 2 ‘\\ 0
0.01 | VT 0 10 20 30 40 50 60 70 80 90
0 . 0 (deg)
0O 10 20 30 40 50 60 70 80 90
0 (deg) 0.35
014 T T T T T T T T 03
0.12 0.25
0.1 w02
3
2
<€
o 008 = o015
k<
<
0.06 0.1
0.04 0.05
0.02 0
0

amplitudes.

6 (deg)

FIG. 6. Squares of the module of the physical doublet breakup

amplitudes. The solid lines correspond to the spin-triplet amplitudes
FIG. 5. Squares of the module of the physical quartet breakugpair spins=1). The dashed lines correspond to the spin-singlet

amplitudes(pair spins=0).
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TABLE VII. The quartet optical theorem results. 15 . T L — T '
Epa (MeV) nd pd L na = ]
14.1 0.9999 0.9621 \\
42.0 0.9999 0.9835 osf N
< 4.’//'/;/// \‘\
VI clearly confirms the accuracy of our results and the esti- 0K )
mation of Merkurievet al. [10] of the contribution of higher g
Coulomb partial waves under aawave approach, which is 8
less than 1%. In Figs. 5 and 6, the physicatl and p-d 05 i
breakup amplitudes are depicted. The physigal quartet pd
breakup amplitudes clearly demonstrate the influence of the A ! L L ! ! A A !
Coulomb interaction, though they themselves have a smal 0 10 20 30 40 S50 60 70O 80 90
magnitude. For the doublet scattering, the Coulomb interac- 6 (deg)
tion has a smaller effect on the breakup amplitudes. The
. R . . 0.25 T T T T T T T T
magnitude of these amplitudes is large as compared with the
quartet ones. Therefore, the differential cross sections of the 0.2 - T
n-d and p-d processes should have some difference. 0.15
To directly study the dependence of the optical theorem o1
results on the inelasticity in the spin-quartet case, we rewrite ’
the first equation in Eqg31) in another form using the defi- 0.05
nition of the elastic amplitude, E@l11), £ 0
, K w2 -0.05
1= 7+ 4BJ0 dﬁAmt.A. (33) 04
, -0.15
The results presented in Table VII show that oed am- N
plitudes fulfill the optical theorem with a very high accuracy. 02 F T
In the case op-d breakup scattering, the accuracy is a little -0.25 L L L L L L ' L

0 10 20 30 40 50 60 70 80 90

bit worse. It is a consequence of our truncation of the partial- 6 (dog)

wave decomposition of the Coulomb potential. Analyzing

Eq. (33) and then-d and p-d quartet results for inelasticities FIG. 7. The quartet breakup and total amplitudes Epg,

of the Pisa group from Table I, one inevitably comes to the-14.1 MeV. The dashegolid) lines correspond to imaginatyeal
conclusion about the equality of the contributions from inte-part of the amplitudes.

gral terms of the optical theorem for thed andp-d breakup
processes. On the other hand, our quartet breakup amplitudgg the Faddeev components with a high accuracyRigy
are quite different for these two reactions as one can see iDgy5 fm and more. X
Fig. 7, which is hardly compatible with the equality of these

o ) ) The disagreement of our results for the phase shifts and
contributions. This casts some doubts on the Pisa results for .| «icities with those of the Pisa group in thel spin-
the p-d quartet breakup scattering.

quartet case reaches up to 6% as one can see from Table I. It
cannot be explained by truncation of the partial-wave expan-
V. CONCLUSION sion of the Coulomb interaction in our calculation since the

We have shown that by using the Numerov method Veryerror introduced by neglec.tmg higher partial Cou_Iomb waves
: : - should not exceed 1% as it follows from the optical theorem
accurate calculations can be performed with minimal com-

: results in Table VI.
putation resource@Q).

By retaining the incident wave in the asymptotics for the
Faddeev components, unnecessary additional computations
are eliminated casting the problem in a form that enables The authors wish to thank M. A. Braun for useful discus-
partial inversion. sion and J. L. Friar for clear explanation on the breakup

The stability of our solutions for relatively large values of amplitude extrapolation. The work of B.V. and V.M.S. was
Rmax illustrates its advantages for the investigation of thesupported in part by the U.S. Department of Defense under
asymptotic behavior of solutions. In fact, the NumerovGrant No. 19-01-1-0795. and that of V.M.S. was partially
method allows us to compute the breakup amplitudes as wedlupported by the RFFI under Grant No. 02-02-16562.
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