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The cross sections of the processes4Hesg ,pd3H and4Hesg ,nd3He are calculated taking into account the full
final state interaction via the Lorentz integral transform method. This is the first consistent microscopic
calculation beyond the three-body breakup threshold. The results are obtained with a semirealistic central
nucleon-nucleon potential including also the Coulomb force. The cross sections show a pronounced dipole
peak at 27 MeV which lies within the rather broad experimental band. At higher energies, where experimental
uncertainties are considerably smaller, one finds a good agreement between theory and experiment. The
calculated sum of three- and four-body photodisintegration cross sections is also listed and is in fair agreement
with the data.
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I. INTRODUCTION

The photodisintegration of the4He nucleus has a long-
standing history. First experiments on thesg ,nd reaction
were performed some 50 years ago[1]. In the following 25
years various experimental groups carried out measurements
for both the4Hesg ,pd3H and4Hesg ,nd3He reaction channels
and the inverse capture reactions[2–15]. Dramatically con-
flicting results have been obtained as a result of this work.
The sg ,pd data were consistent in showing a rather pro-
nounced resonant peak close to the three-body breakup
threshold. At the same time, thesg ,nd data at low energy
were very spread, and measurements showed either a
strongly pronounced or a rather suppressed giant dipole
peak. In 1983 a careful and balanced review of all the avail-
able experimental data for the two mirror reactions was pro-
vided [16]. A strongly peaked cross section at low energy for
the sg ,pd channel and a flatter shape for thesg ,nd one was
recommended by the authors. Three new experiments on the
sg ,pd reaction were subsequently carried out, two of them
contradicting and one confirming the recommended cross
section. In particular, in Refs.[17] and [18] a suppressed
dipole resonance was found, whereas Ref.[19] proved to be
in agreement with the previous strongly peaked results. Mea-
surements of the ratio of thesg ,pd to sg ,nd cross sections in
the giant resonance region were performed as well and, at
variance with the cross sections recommended in Ref.[16],
results very close to unity were reported[20,21]. Finally, in
1992 additional cross section data were deduced from a
Compton scattering experiment on4He [22]. A strongly
peaked cross section for the4He total photoabsorption was
found suggesting asg ,nd cross section considerably larger
than the one recommended in Ref.[16].

In 1996 the first theoretical calculation of the two-
fragment breakup cross section with inclusion of final state

interaction(FSI) was performed in the energy range below
the three-fragment breakup threshold[23]. The semirealistic
MTI-III potential [24] was employed. The results of Ref.
[23] showed a rather suppressed giant dipole peak. In the
following year a calculation of the total4He photoabsorption
cross section up to the pion threshold was carried out[25].
Full FSI was taken into account in the whole energy range
via the Lorentz integral transform(LIT ) method [26] that
does not require calculating continuum wave functions. The
four-nucleon dynamics was described with the same
nucleon-nucleon(NN) potential as in Ref.[23]. Different
from the previous work a pronounced giant dipole peak was
found. These results have been reexamined in Ref.[27]. A
small shift of the peak position has been obtained, but the
pronounced peak has been confirmed.

In order to understand the origin of the large total photo-
nuclear cross section in terms of the various channel contri-
butions, a separate calculation of the channel cross sections
is necessary. The present paper reports a theoretical study of
the two-fragment breakup processes4Hesg ,pd3H and
4Hesg ,nd3He. For these exclusive reactions we investigate
the issue of the giant dipole peak height, and we also calcu-
late the cross section at higher energies, up to the pion
threshold. The calculation includes full FSI via the LIT
method[28] and employs the semirealistic MTI-III potential
[24].

The LIT method has already been successfully tested for
exclusive reactions in thedse,e8pdn process [29]. The
present calculation represents the first application toA.2.
We would like to emphasize that in our study FSI is taken
into account rigorously also beyond the three- and four-body
breakup thresholds. In addition, combining our cross sections
with the total photoabsorption cross section calculated in
Refs. [25,27] for the same potential, we obtain the sum of
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three- and four-body photodisintegration cross sections of
4He, for which some experimental data are available
[30–33].

II. GENERAL FORMALISM

A. Cross section

The total exclusive cross section of the4He photodisinte-
gration into the two fragmentsN and 3, whereN refers to the
scattered proton(neutron) and 3 refers to the3H s3Hed
nucleus, is given by

sN,3 = 4p2 e2

"c
kmvg

3 o
M3,MN=±1

2

E ukCN,3
− sEN,3duDzuCalu2dVk,

EN,3 = vg + Ea. s1d

In the equation above we neglect the very small nuclear re-
coil energy. Withm and k we denote the reduced mass and
the relative momentum of the fragments, respectively,vg is
the incident photon energy,Ca is the ground-state wave
function, CN,3

− is the final-state continuum wave function of
the minus type pertaining to theN, 3 channel[34], andEa

and EN,3 are the energies of the corresponding initial and
final states(EN,3=k2/2m+E3, E3 being the energy of frag-
ment 3), respectively. The sum goes over projectionsM3 and
MN of the fragment angular momenta in the final state.
The continuum statesCN,3

− are normalized to dsk
−k8ddM3M38

dMNMN8
.

As in Refs.[25,27] only transitions induced by the unre-
tarded dipole operator,

Dz = o
j=1

4
1 + t j

3

2
zj , s2d

are taken into account. Heret j
3 denotes the third component

of the j th nucleon isospin andzj represents thez component
of the distance between thej th nucleon and the center of
mass of the system. This form of the transition operator al-
ready includes the leading effects of meson exchange cur-
rents via Siegert’s theorem. Additional contributions to the
total cross section are small at the energies considered here
ssee also Refs.f35,36gd.

The main difficulty in the calculation of such a cross sec-
tion is the presence of the continuum wave function
CN,3

− sEN,3d in the transition matrix element

TN,3sEN,3d = kCN,3
− sEN,3duDzuCal. s3d

As will be explained in the following section, with the LIT
method one is able to perform anab initio calculation of this
transition matrix element in the whole energy range below
the pion threshold without dealing with the continuum solu-
tions of the four-body Schrödinger equation.

B. The LIT method for exclusive reactions

For the case of an exclusive perturbation-induced process,
all the information about the reaction dynamics is contained

in the transition matrix element of the perturbationÔ be-
tween the initialsC0d and finalsC f

−d states,

TfsEfd = kC f
−sEfduÔuC0l. s4d

The calculation of such a matrix element can be carried out
with the LIT method as outlined in the followingf28,29g.
For simplicity we restrict our discussion to an exclusive re-
action leading to a final state with two fragments, a fragment
a with na nucleons and a fragmentb with nb=A−na nucle-
ons, though more complex fragmentations of the initial
A-body system can be treated as well. Denoting withH the
full nuclear Hamiltonian, we have a formal expression for
C f=a,b

− in terms of the “channel state”f f=a,b
− sEf=a,bd f34g,

uCa,b
− sEa,bdl = Âufa,b

− sEa,bdl +
1

Ea,b − i« − H
ÂVufa,b

− sEa,bdl,

s5d

where Â is an antisymmetrization operator. In case that at
least one of the fragments is chargeless, the channel state
fa,b

− sEa,bd is the product of the internal wave functions of the
fragments and of their relative free motion. Correspondingly,
V in Eq. s5d is the sum of all interactions between particles
belonging to different fragments. If both fragments are
charged,fa,b

− sEa,bd is chosen to account for the average Cou-
lomb interaction between them, and the plane wave describ-
ing their relative motion is replaced by the Coulomb function
of the minus type. Correspondingly,V in Eq. s5d is the sum
of all interactions between particles belonging to different
fragments after subtraction of the average Coulomb interac-
tion, already considered via the Coulomb function. We write
fa,b

− sEa,bd in the partial wave expansion form

fa,b
− sEa,bd =

Fas1, . . . ,nadFbsna + 1, . . . ,Ad
s2pd3/2

34po
,=0

`

o
m=−,

,

i,e−id,skdw,sk;rd
kr

Y,msVrdY,m
* sVkd.

s6d

Here Fas1, . . . ,nad and Fbsna+1, . . . ,Ad are the internal
wave functions of the fragments,r =sr ,Vrd=Rc.m.

a −Rc.m.
b

represents the distance between them, and the energy of
the relative motion isk2/2m=Ea,b−Ea−Eb, whereEa and
Eb are the fragment ground-state energies. The functions
w,sk; rd are the regular Coulomb wave functions of order
,, andd,skd are the Coulomb phase shiftsf34g.

The internal wave functions of the fragments are assumed
to be antisymmetrized and normalized to unity, so that the
properly normalized continuum wave function in Eq.(5) is
obtained via application of the antisymmetrization operator

Â =Îna ! nb!

A! F1 − o
i=1

na

o
j=na+i

A

Pi jG , s7d
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wherePi j are particle permutation operatorsf34g.
When one inserts Eq.(5) into Eq.(4) the transition matrix

element becomes the sum of two pieces, a Born term,

Ta,b
BornsEa,bd = kfa,b

− sEa,bduÂÔuC0l, s8d

and an FSI dependent term,

Ta,b
FSIsEa,bd =Kfa,b

− sEa,bdUVÂ 1

Ea,b + i« − H
ÔUC0L . s9d

While the Born term is rather simple to deal with, the deter-
mination of the FSI dependent matrix element is rather com-
plicated. We treat this term within the LIT approach as out-
lined in the following.

Let CnsEnd be the eigenstates of the Hamiltonian labeled
by channel quantum numbersn and normalized as
kCnuCv8l=dsn−n8d. Using the completeness relation of the
setCnsEnd, the matrix elementTa,b

FSIsEa,bd can be written as

Ta,b
FSIsEa,bd = X dn kfa,b

− sEa,bduVÂuCnsEndl

3
1

Ea,b + i« − En

kCnsEnduÔuC0l

=E
Eth

−

` Fa,bsEd
Ea,b + i« − E

dE

= − ipFa,bsEa,bd

+ PE
Eth

−

` Fa,bsEd
Ea,b − E

dE, s10d

whereFa,bsEd is defined as

Fa,bsEd = X dnkfa,b
− sEa,bduVÂuCnsEndl

3kCnsEnduÔuC0ldsE − End, s11d

andEth is the lowest excitation energy in the system, i.e., the
breakup threshold energy. To calculateTa,b

FSI one needs to
know the functionFa,b for all energy values. The direct cal-
culation ofFa,b is of course far too difficult, since one should
know all the eigenstatesCn for the whole eigenvalue spec-
trum of H. However, an indirect calculation ofFa,b is pos-
sible applying the LIT method. To this end, one introduces
an integral transform ofFa,b with a kernel of Lorentzian
shape,

LfFa,bgssd =E
Eth

−

` Fa,bsEd
sE − sRd2 + sI

2dE

=E
Eth

−

` Fa,bsEd
sE − sdsE − s*d

dE

= X dnKfa,b
− sEa,bdUVÂ 1

H − s* UCnsEndL
3KCnsEndU 1

H − s
ÔUC0L

= kC̃2ssduC̃1ssdl, s12d

with s=sR+ isI. Here we denote

C̃1ssd = sH − sd−1ÔuC0l,

C̃2ssd = sH − sd−1ÂVufa,b
− sEa,bdl. s13d

Equations12d shows thatLfFa,bgssd can be calculated with-
out explicit knowledge ofFa,b provided that one solves the
two equations,

sH − sduC̃1l = ÔuC0l, s14d

sH − sduC̃2l = ÂVufa,b
− sEa,bdl, s15d

which differ in the source terms only.

It can be seen thatC̃1 and C̃2 are localized, i.e., have
finite norms. Assuming thatsI Þ0, this is ensured by the fact
that the source terms in the right-hand sides of Eqs.(14) and
(15) are localized. In fact in the coordinate representation the
source term in Eq.(14) decreases exponentially for increas-
ing distances between particles. The source term in Eq.(15)
contains two potential contributions, i.e., the nuclear force
component and the Coulomb interaction. The contribution
due to the nuclear interaction vanishes exponentially for in-
creasing distances between particles. Since the average Cou-
lomb potential between the fragments is already taken into
account via Eq.(6), the remaining Coulomb contribution be-
haves liker−2, as the distancer from the fragments increases.
Therefore, the source term remains localized also in the pres-
ence of the Coulomb force. In our calculation this Coulomb
term arises in case of thep, 3H channel and its contribution
to the results is found to be very small.

In case of breakups into more than two fragments it is
convenient to write Eq.(12) in another form:

LfFa,bgssd =
1

2isI
Kf−sEa,bdUVÂF 1

H − s
−

1

H − s* GÔUC0L
=

1

2isI
fkfa,b

− sEa,bduVÂuC̃1ssdl

− kfa,b
− sEa,bduVÂuC̃18ssdlg. s16d

HereC̃1ssd is the same as above, andC̃18ssd satisfies
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sH − s*duC̃18ssdl = ÔuC0l. s17d

Therefore, also in this case, one has to deal with a localized
solution.

When solving Eqs.(14), (15), and(17), it is sufficient to
require that the solutions are localized, and no other bound-
ary conditions are to be imposed. Therefore, similar to what
is done in bound-state calculations, one can use an expansion
over a basis set of localized functions. A convenient choice is
the basis set consisting of correlated hyperspherical harmon-
ics (CHH) multiplied by hyperradial functions.

As discussed in Ref.[27] for the case of the total4He
photoabsorption cross section, special attention has to be
paid to the convergence of such expansions. A rather large
number of basis states is necessary in order to reach conver-
gence, thus leading to large Hamiltonian matrices. Instead of
using a time consuming inversion method we directly evalu-
ate the scalar products in Eq.(16) with the Lanczos tech-
nique [37]. Inserting the Lanczos orthonormal basishwi , i
=0, . . . ,nj into Eq. (16), wherewo is taken to be the right-
hand side(normalized to unity) of Eqs. (14) and (17), one
gets

LfFa,bgssd =
ÎkC0uÔ†ÔuC0l

2isI
o
i=0

n

kfa,b
− sEa,bduVÂuwil

3KwiU 1

H − s
−

1

H − s* UwoL . s18d

The matrix elementskwiusH−sd−1uwol can be written as con-
tinued fractions of the Lanczos coefficients.

After having calculatedLfFa,bgssd one obtains the func-
tion Fa,bsEd, and thusTa,bsEa,bd, via the inversion of the LIT,
as described in Ref.[38].

III. RESULTS

The ground states of4He, 3He, and3H as well as the LIT
in Eq. (18) are calculated using the CHH expansion method.
In order to speed up the convergence, state independent cor-
relations are introduced as in Ref.[39]. We use the MTI-III
[24] potential and identical CHH expansions for the ground-
state wave functions of4He and of the three-nucleon systems
as in Refs.[27,40], respectively.

Because of the choice of the excitation operator[see Eq.
(2)], in solving Eqs.(14) and (15) the hyperspherical har-
monics(HH) must be characterized by the quantum numbers
L=1, S=0, andT=1. In this calculation the maximal value of
the grand-angular quantum numberKmax is equal to 29. Such
a high value ofKmax has been made possible by neglecting
states which have proved to give very small contributions to
the LIT. The selection of states has been done in the follow-
ing way. Our HH depend on three Jacobi vectorsj1,j2,j3,
among whichj1 represents the distance between a pair of
particles. The HH entering the calculation are obtained via
symmetrization of the HH possessing a definite relative or-
bital momentum,1 associated withj1 and a definite grand-

angular momentumK̃ in the subspace of vectorsj2,j3. We
have found that beyondKmax=13 we can neglect all symme-

trized HH which originate from the nonsymmetrized HH

with ,1 greater than 2 andK̃ greater than 3 and, beyond

Kmax=19, those with,1 greater than 0 andK̃ greater than 1.
This selection is similar to that justified and used in noncor-
related HH bound-state calculations(see Ref.[41] and refer-
ences therein). An additional selection has been performed
with respect to the permutational symmetry types of the HH.
For the quantum numbersS=0, T=1, HH of two permuta-
tional symmetry types enter the expansion, those belonging
to the irreducible representationsffg=f+g andffg=f−g of the
four-particle permutation groupS4 [39,41]. For basis states
constructed from the HH of thef+g type the probability for a
nucleon pair to be in a relative even state and, in particular,
in the s state is substantially higher. We have found that the
contribution to the LIT of states with the spatial symmetry
f−g is suppressed, and the corresponding HH withK values
higher than 9 can be neglected in the calculation.

In Fig. 1, the convergence of the LIT with respect toKmax
is shown. One sees that forKmax=29 a good convergence is
reached.

In Fig. 2 we present our results for the4Hesg ,nd3He cross
section together with experimental data. The shaded area
around the full result represents an estimate of the uncertain-
ties of our calculation, which will be explained below, in
connection with the comparison of the present result with
that obtained in the inclusive case. The difference between
the total cross section and its Born approximation shows
large effects of FSI. At small energies FSI enhances the tran-
sition matrix element since the final-state continuum wave
function inside the reaction zone becomes larger due to the
attraction between the fragments. At higher energies the tran-
sition matrix element including FSI becomes smaller than
the Born one. This is due to shorter wavelengths(higher
particle momenta) leading to faster oscillations in the inte-
grands.

As it was pointed out in the Introduction, the experimental
results do not show a unique picture. In the energy region
beyond 35 MeV there is an overall agreement of the data of
Refs.[4,6,8,9,11,12,42], whereas in the dipole resonance re-
gion big discrepancies are present. The data from Refs.

FIG. 1. The Lorentz transform of Eq.(18) for sI =20 MeV at
En,3He=27.9 MeV with variousKmax values. In the inset the devia-
tions R=100fLsKmax=29d−LsKmaxdg /LsKmax=29d are shown.
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[4,8–10] show a rather pronounced dipole peak, while the
more recent ones from Refs.[12,13] show a flatter behavior
[for more detailed information see also reviews ofsg ,nd ex-
periments[12,16]]. In the low-energy region our full calcu-
lation favors the strongly peaked data of Refs.[4,8–10]. It is
seen from the figure that the higher-energy experimental
cross section agrees quite well with our full calculation. We
would like to point out the large effect of FSI in the high-
energy tail. This is probably the region where large depen-
dences of the cross sections from the details of the force and
in particular of the three-body force are expected(see Ref.
[43]) and where it would be desirable to have more accurate
data.

In Fig. 2 also the4Hesg ,nd3He cross section of Ellerk-
mann et al. [23], obtained with the MTI-III potential, is
shown. It is evident that the two theoretical results are at
variance. In Ref.[23] the cross section is calculated using
Alt-Grassenberger-Sandhas-(AGS)-type integral equations.
Since the Born matrix element[see Eq.(8)] is an ingredient
of both the AGS calculation and ours, it is instructive to
make a comparison between the two cross sections in Born

approximation, since in this case only the ground-state wave
functions of 3He and 4He are needed. In Fig. 3 the Born
cross sections are shown. The result of Ref.[23] has a very
similar shape as ours, but a much reduced strength(about
60 %).

In Ref. [23] the 3He and4He bound states are determined
by solving the homogeneous three- and four-nucleon AGS
equations via theW-matrix method[44] and the energy-
dependent pole expansion(EDPE) [45]. As already stated
above, our3He and4He bound states are calculated using the
CHH expansion as in Refs.[27] and [40]. As a simple test
we perform an analytical calculation using simpleA-body
bound-state wave functionssA=3,4d of the type

CA = S2bA

p
D3sA−1d/4

p
i=1

A

e−bAur i − Rc.m.
sAd u2xTASA

a , s19d

wherexTASA

a represents the antisymmetric spin-isospin func-
tion andbA is a free parameter.

This leads to the following Born model cross section
(BMCS):

sn,3He
Born = 4p2 e2

"c
kmvgS4

3
D9/2 4 b3

3

Î2pb4sb3 + b4d6
k2 e−2k2/3b4.

s20d

If we choose the parametersb3=0.167 fm−2 and b4
=0.279 fm−2 in order to reproduce the same rms radii of
3He s1.73 fmd and 4He s1.42 fmd as for the MTI-III poten-
tial we obtain the BMCS result shown in Fig. 3. The
BMCS and Born CHH results have almost identical peak
heights, while the peak positions are shifted by about
10 MeV.

We have calculated the BMCS result both by using di-
rectly the analytical expression of Eq.(20) and by our com-
puter code, and found identical results.

The 4Hesg ,pd3H cross section is compared with data in
Fig. 4. The experimental situation is similar to thesg ,nd case
considered above. Again some experimental results show a

FIG. 2. 4Hesg ,nd3He cross section up to 120 MeV(a) and
35 MeV (b): full result with FSI included(solid curve), Born ap-
proximation only(dotted curve), full result from Ref.[23] (dashed
curve). The shaded area around the full line represents the uncer-
tainties of our calculation(see text). Experimental data up to 1983:
Ref. [4] (full gray squares), Ref. [6] (open diamonds), Ref. [8] (full
gray diamonds), Ref. [9] (open squares), Ref. [10] (full gray
circles), Ref. [11] (open upward triangles), Ref. [12] (open circles),
Ref. [13] (full gray downward triangles). Experimental data after
1983: Ref.[42] (full black upward triangles).

FIG. 3. 4Hesg ,nd3He in Born approximation: CHH(solid
curve), available results from Ref.[23] (dashed curve), BMCS (dot-
ted curve).
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pronounced giant dipole peak at low energies, as in case of
Refs. [4–6,9,11,14,15], and others present much less
strength, such as Refs.[17] and[18]. At higher energies there
is quite a satisfactory agreement among experimental data of
different groups. As in the4Hesg ,nd3He case, our full results
have a large cross section in the dipole resonance region and
favor the strongly peaked data, while beyond the peak one
finds a rather good agreement between our calculation and
all data.

In Fig. 5 we show the effect of the Coulomb interaction in
the 4Hesg ,Nd3 reactions. As expected, it is very small all
over the energy range.

Since the4Hesg ,ddd reaction is not induced by the dipole
operator of Eq. (2), the sum of the 4Hesg ,pd3H and
4Hesg ,nd3He cross sections has to be equal to the4He total
inclusive photoabsorption cross section below then+p+d
breakup threshold. Comparison of the sum of our exclusive
cross sections in this region with the total inclusive photoab-
sorption cross section calculated independently can therefore
serve as a test of our results. To this aim, we have calculated
also the total photoabsorption cross section. This was done

using the fact that the normkC̃1ssduC̃1ssdl represents the
LIT of this total cross section. Our present CHH calculation
reproduces the results obtained for the total photoabsorption
cross section with the effective interaction HH method[27].
This can be considered as one more test of our calculation,
and this is accomplished thanks to the present efforts made in
order to increase theKmax value up to 29.

The comparison of the sum of our cross sections for the
4Hesg ,pd3H and 4Hesg ,nd3He reactions with the CHH total
photoabsorption cross section below the three-body breakup
threshold is presented in Fig. 6. The agreement of the two
curves in this region is quite satisfactory. There is only some
discrepancy very close to threshold. The discrepancy could
presumably be resolved by a calculation of the LIT in the
threshold region with a smallersI. However, this also re-
quires an increase of the number of hyperradial basis func-
tions along with a more precise determination of the nine-

FIG. 4. 4Hesg ,pd3H cross section up to 120 MeV(a) and
35 MeV (b): full result with FSI included(solid curve); experimen-
tal data up to 1983 from Ref.[4] (full gray squares), Ref. [5] (full
gray diamonds), Ref. [6] (open diamonds), Ref. [9] (open squares),
Ref. [11] (open upward triangles), Ref.[14] (open circles), Ref.[15]
(open downward triangles); experimental data after 1983 from Ref.
[17] (full black upward triangles), Ref.[18] (full black circles), Ref.
[19] (full black diamonds), and Ref.[46] (full black downward
triangles).

FIG. 5. Ratio between the4Hesg ,pd3H and the4Hesg ,nd3He
cross sections(solid curve); experimental data up to 1983 from Ref.
[20] (open circles and open squares), Ref. [6] (reanalyzed, as re-
ported in Ref.[20]) (open upward triangles); experimental data after
1983 from Ref.[21] (full black circles and full black downward
triangles).

FIG. 6. Total 4He photoabsorption cross section(solid curve)
compared to the sum of4Hesg ,pd3H and 4Hesg ,nd3He cross sec-
tions (dashed curve); more-body breakup cross section obtained by
subtraction(dotted curve).
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dimensional integrals(at present Monte Carlo integrations),
and thus a considerable improvement of the numerical cal-
culation. At present this discrepancy has to be considered as
an estimate of the uncertainty of our result. This uncertainty
is in any case smaller than the error bars of available experi-
ments in that energy range.

Figure 6 also shows an indirect determination of the
three- and four-body breakup cross sections, which is ob-
tained by subtraction of the4Hesg ,pd3H and 4Hesg ,nd3He
cross sections from the total photoabsorption cross section in
the region where significant differences are found. This
more-body breakup cross section is shown in Fig. 7 together
with the three- and four-body disintegration data. Though
there are some differences at lower energies and the peak of
the theoretical cross section is more pronounced, one finds
an overall fair agreement between theory and experiment.

In conclusion we summarize our work. We have calcu-
lated the total photodisintegration cross section of4He in the

two mirror channelsp, 3H and n, 3He with the MTI-III po-
tential using the LIT method and the CHH expansion. For
the first time a microscopic calculation for these reactions
has been carried out taking fully into account final state in-
teraction also beyond the three- and four-body breakup
thresholds. The pronounced dipole resonance found in the
total photonuclear cross sections[25,27] is almost exhausted
by the two-body break up channel. The4Hesg ,pd3H and
4Hesg ,nd3He cross sections we obtain have a very similar
structure. Both show a pronounced giant dipole resonance
peak at low energy as obtained in a previous calculation of
the total4He photoabsorption cross section with the sameNN
potential model. This low-energy behavior of the cross sec-
tion is in agreement with the experimental data of Refs.
[4,5,8–10,14,15,19] whereas other measurements
[12,13,17,18] show less strength. At higher energies there are
much less differences among the experimental data and one
finds a rather good agreement with the theoretical results.
Our indirect determination of the sum of three- and four-
body breakup cross sections shows an overall fair agreement
with the sum of three- and four-body breakup data.

We hope to have convinced the reader that further theo-
retical and experimental efforts are necessary for a better
understanding of the4He photodisintegration. The present
theoretical results are fully consistent and complete regard-
ing the treatment of the dynamics in the initial and final state,
though obtained with a simpleNN potential. In order to con-
firm the size of the giant dipole peak one would need a more
realistic description of this process considering modern real-
istic NN potentials together with a three-nucleon force.
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