
Longitudinal electron scattering response functions of3H and 3He

Victor D. Efros,1,* Winfried Leidemann,1 Giuseppina Orlandini,1 and Edward L. Tomusiak2

1Dipartimento di Fisica, Università di Trento, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Trento, I-38050 Povo, Italy
2Department of Physics and Astronomy University of Victoria, Victoria, Canada BC V8P 1A1

(Received 27 November 2003; published 1 April 2004)

Trinucleon longitudinal response functionsRLsq,vd are calculated forq values up to 500 MeV/c. These are
the first calculations beyond the threshold region in which both three-nucleons3Nd and Coulomb forces are
fully included. We employ two realisticNN potentials (configuration space BonnA, AV18) and two 3N
potentials(UrbanaIX, Tucson-Melborne). Complete final state interactions are taken into account via the
Lorentz integral transform technique. We study relativistic corrections arising from first-order corrections to the
nuclear charge operator. In addition the reference frame dependence due to our nonrelativistic framework is
investigated. Forqø350 MeV/c we find that 3N forces give effects of between 5 % and 10 % in the peak
region and of 15 % in the threshold region at the lowest considered momentum transfersq=174 MeV/cd,
while the dependence on other theoretical ingredients is small. Atqù400 MeV/c relativistic corrections to the
charge operator and effects of frame dependence, especially for largev, become more important. In compari-
son with experimental data there is generally a rather good agreement. Exceptions are the responses at exci-
tation energies close to threshold, where there exists a large discrepancy with experiment at higherq. In the
3He case one finds a much improved agreement with experiment both in the peak region and in the low-q–low-
v region if 3N forces are included. However in comparison with the existing data for3H the inclusion of 3N
forces appears to have the opposite effect in the peak region.
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I. INTRODUCTION

Inclusive electron scattering can provide detailed informa-
tion on the transition charge and current densities in nuclei.
In the one-photon exchange approximation the cross section
for this process is given by[1]

d2s

dV dv
= sMFqm

4

q4 RLsq,vd + S qm
2

2q2 + tan2u

2
DRTsq,vdG ,

s1d

whereRL andRT are the longitudinal and transverse response
functions, respectively,v is the electron energy loss,q is the
magnitude of the electron momentum transfer,u is the elec-
tron scattering angle, andqm

2 =q2−v2. Experimental data for
both RL and RT are available for a variety of energy and
momentum transfers. However because of our nonrelativistic
treatment of the nuclear dynamics we restrict our attention to
momentum transfersqø500 MeV/c and energy transfers
vø300 MeV. Datacovering various regions in this range
are given for both3H and3He by Retzlaffet al. [2], Dow et
al. [3], Marchandet al. [4], and Morgenstern[5].

The theoretical treatment of these response functions re-
quires the ability to accurately include transitions to the con-
tinuum. Techniques for doing this with realisticNN poten-
tials have only been developed and implemented during the
past ten years. These include both Faddeev and Lorentz in-
tegral transform(LIT ) methods[6,9–12]. For the 3N photo-
disintegration total cross sections results obtained with the

LIT [13] and Faddeev techniques are compared in Ref.[14].
In the work of Vivianiet al. [15] expansion techniques were
applied to solving the ground-state and continuum wave
equations, but the calculation was restricted to a3He near
threshold region where only the two-body breakup occurs.
Previous to the above references Faddeev calculations of tri-
nucleon response functions were published by Meijgaard and
Tjon [16] in 1992 using thes-wave Malfliet-Tjon potential
MT-I/III [17]. Apart from how the quantum mechanics is
done there are major differences in physics input between the
longitudinal and transverse responses. Whereas the nonrela-
tivistic longitudinal response requires only a charge operator
and nucleon form factors, the transverse response requires
exchange currents in addition to single-nucleon currents and
nucleon form factors. It is clear that if a given nuclear inter-
action cannot describe the longitudinal response then it
would be pointless to attempt a calculation of the transverse
response. In particular if one inquires into the effect of three-
body forces in nuclei it would appear natural to first investi-
gate their impact on the longitudinal response. Otherwise,
through a calculation ofRT, it would be difficult to disen-
tangle the effects of three-body forces from exchange current
effects. Further as shown in Ref.[10] the longitudinal re-
sponse appears in general insensitive to the realisticNN
force model thus removing a possible source of ambiguity
when comparing the effects of different three-body force
models onRLsq,vd.

Our paper is organized as follows. Section II lists the two-
and three-nucleon forces considered here and details the
nuclear charge operator. In Sec. III the calculation of the
response via the LIT method is explained. Effects of the
various theoretical ingredients contributing to the longitudi-
nal response are discussed in Sec. IV, where also a compari-
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son with experimental data is made. Conclusions are drawn
in Sec. V.

II. NUCLEAR FORCES AND CHARGE OPERATOR

The functionRL represents the response of the nucleus
through the nuclear charge operatorr and is given by

RLsq,vd =o
M0

X dfkC0ur†sq,vduC flkC fursq,vduC0l

3d„Ef − E0 + q2/s2MTd − v…. s2d

HereMT is the mass of the target nucleus,C0 andC f denote
the ground and final states, respectively, whileE0 andEf are
energies pertaining to them,

sH − E0dC0 = 0, sH − EfdC f = 0, s3d

where H is the nuclear nonrelativistic Hamiltonian. The
above quantitiesC0,f and H are internal quantities in the
hadronic c.m. frame. The integrationssummationd goes over
all final states belonging to the same energyEf, andM0 is the
projection of the ground-state angular momentum.

The Hamiltonian includes the kinetic energy terms, the
NN and 3N force terms, and the proton Coulomb interaction
term in the3He case. The ground stateC0 is calculated via
an expansion in basis functions which are correlated sums of
products of hyperradial functions, hyperspherical harmonics,
and spin-isospin functions. In the present work three models
of the NN force are used: the realistic AV18[18] and con-
figuration space BonnA(herein referred to as BonnRA) [19]
models, and thes-wave MT−I / III potential. We consider
two 3N force models, the UrbIX[20] and the TM8 [21], in
the combinations AV18+UrbIX, AV18+TM8sL
=3.358 fm−1d, and BonnRA+TM8sL=2.835 fm−1d. As indi-
cated the TM8 cutoff parameterL is different in the AV18
and BonnRA combinations in order to properly fix the3H
binding energy in each case. Table I lists our results for
ground-state properties for the above potential combinations
containing the 3N force. We should mention that the UrbIX
3N force is fitted to obtain the3H binding energy of
8.48 MeV. The3He-3H mass difference is not yet completely
understood even if the AV18 electromagnetic corrections,
which we do not include, are considered[22]. For the cases
with the TM8 3N force we choose the cutoffL such that we
obtain exactly the same3H binding energy as in our calcu-
lation with AV18+UrbIX.

As nuclear charge operator we take the following one-
body operator:

rsq,vd = o
j=1

A

r j
nrsq,vd + r j

rcsq,vd, s4d

where

r j
nrsq,vd = êje

iq·r j , s5d

r j
rcsq,vd = −

q2

8M2êje
iq·r j − i
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4M2 sW j · sq 3 p jdeiq·r j , s6d
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psqm

2d
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2
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2
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1

2
fGE

Ssqm
2d + GE

Vsqm
2dtz,jg, s7d

m̂ j = GM
p sqm

2d
1 + tz,j

2
+ GM

n sqm
2d

1 − tz,j

2
. s8d

Herer , p, sW , andtW are the nucleon position, momentum, and
spin and isospin operators,M is the nucleon mass, andGE,M

p,n

are the nucleon Sachs form factors. The two terms in Eq.s6d
proportional toM−2 are the Darwin-FoldysDFd and spin-
orbit sSOd relativistic corrections to the main operators5d,
see, e.g., Refs.f1,23g. We refer to the main operators5d as
the nonrelativistic one although the dependence of nucleon
form factors onqm

2 does not allow a nonrelativistic interpre-
tation.

In this work we mainly use the well-known dipole fit for
the proton electric form factor, while the neutron electric
form factor is taken from Ref.[24]. The nucleon electric
form factors have not yet been determined with extremely
high precision. The neutron form factor, however, is small
and the fit of Ref.[24] has also been confirmed in recent
experiments(see, e.g., Ref.[25]). More important for the
reliability of our RL calculation is a check of the result due to
uncertainties in the much larger proton electric form factor.
Thus we also use the fit from Ref.[26]. In the momentum
range up toq=500 MeV/c the two different form factor fits
describe the experimental data with similar quality, but nev-
ertheless lead to somewhat different results. In case of the
SO term we adopt the usual although recently controversial

TABLE I. 3H ground-state properties with AV18+UrbIX, AV18+TM8, and BonnRA+TM8 potentials for
binding energy(EB), point charge radiussrd, and probabilities of total orbital angular momentum components
in percentage; results for3He are also given, but for AV18+UrbIX only.

3HsAV18+UrbIXd 3HsAV18+TM8d 3HsBonnRA+TM8d 3HesAV18+UrbIXd

EB (MeV) 8.47 8.47 8.47 7.73

rsfmd 1.588 1.589 1.587 1.772

S8 wave 1.05 1.05 1.02 1.23

P wave 0.13 0.13 0.08 0.13

D wave 9.27 9.23 7.23 9.22
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[31] approximationGM
p,nsqm

2d=mp,nGE
psqm

2d in Eq. (8), mp,n be-
ing proton and neutron magnetic momenta. We have checked
by using a wide range of form factor models that for the
kinematics considered here deviations from this scaling law
would not lead to any visible effect in our various figures.

For the calculation ofRL it is convenient to rewrite the
operatorr in terms of the isoscalar and isovector charge
nucleon form factors from Eq.(7),

rsq,vd = GE
Ssqm

2drssqd + GE
Vsqm

2drvsqd. s9d

The inclusion of relativistic corrections for the one-body
charge operator only is not completely consistent. In fact
there exist additional relativistic effects: a wave function
boost(as done in Refs.[29,30] for the dse,e8d reaction) and
additional two-body terms in the charge operator(as done in
Ref. [15] for the low-energy two-body breakup channel of
the 3Hese,e8d reaction). In our case there are two reasons
why we include the relativistic corrections to the one-body
charge operator.

(i) At higherq they lead to an important reduction of the
RL quasielastic peak height. As illustrated in Ref.[30] such a
reduction is confirmed if boost corrections are included.
Moreover, the frame dependence of the response functions is
studied in Ref.[29] where it is shown that in the Breit frame
boost corrections are negligibly small for the quasielastic
peak region(different kinematics are not shown). We believe
that one has a similar frame dependence of boost corrections
also for the electromagnetic response of the three-nucleon
systems. Thus we will make the comparison with experimen-
tal data takingRL from a Breit frame calculation with a sub-
sequent transformation into theRL lab frame result(see dis-
cussion of Fig. 5).

(ii ) They enable us to make a direct comparison of our
results with those of Ref.[15]. Since realistic few-body cal-
culations are rather complicated it is of great importance to
have these kinds of checks.

III. CALCULATION OF RESPONSE

We calculateRLsq,vd by the LIT method as described in
Refs. [6,7]. The technique is, however, directly applicable
only when the transition operator does not depend onv. To
separate out thev dependence of the transition operator we
use Eq.(9) to represent the response function(2) as

RLsq,vd = fGE
Ssqm

2dg2 Rs + GE
Ssqm

2dGE
Vsqm

2dRsv + fGE
Vsqm

2dg2Rv,

s10d

whereRs and Rv are the responses which emerge ifrssqd
andrvsqd are taken as transition operators, and the quantity
Rsv is the mixed response,

Rsvsq,vd =o
M0

X dffkC0urs
†sqduflkf urvsqduC0l + kC0urv

†sqdufl

3kf urssqduC0lgd„Ef − E0 + q2/s2MTd − v…. s11d

To calculate the subsidiary responses entering Eq.s10d with
the LIT method one can solve the inhomogeneous equations

sH − E0 − sdC̃sssd = rsC0, sH − E0 − sdC̃vssd = rvC0

s12d

for a set of complexs values and then form the scalar prod-

ucts kC̃sssd uC̃sssdl, kC̃vssd uC̃vssdl, and kC̃sssd uC̃sssdl.
These scalar products represent integral transforms with
Lorentzian kernels, e.g., one has

kC̃sssduC̃sssdl =
Fs

2sqd
usu2

+E
vth

`

dv
Rssq,vd

sv − vel − sdsv − vel − s*d
.

s13d

Herevth is the threshold for the inelastic energy transfer and
Fssqd is the isoscalar elastic form factor with the nucleon
form factor GE

Ssqm
2d divided out. The elastic contribution to

Rs equalsFs
2sqddsv−veld, wherevel=q2/ s2MTd. From the

inversion of such integral transforms one then obtains the
response functionsRs, Rv, andRsv.

In previous work[7] equations similar to those in Eq.(12)
were solved numerically in order to calculate the above men-

tioned scalar productskC̃issd uC̃ jssdl. An alternative and
computationally more efficient way of calculating the trans-
form is by a direct evaluation of the scalar products via the
Lanczos technique[28]. Thus we use this method in our
calculation.

As for C0 we perform expansions in terms of basis func-
tions uml which are correlated sums of products of hyperra-
dial functions, hyperspherical harmonics, and spin-isospin
functions. The first Lanczos vector is given by

uw0l =
uCl

ÎkCuCl
s14d

with

uCl = g−1r̂uC0l, s15d

where g−1 denotes the inverse of the norm matrixg with
matrix elementsgmn=km unl. One then applies the following
relations fornù0 recursively:

bn+1uwn+1l = g−1Huwnl − anuwnl − bnuwn−1l, s16d

with

kwnuwnl = 1, an = kwnuHuwnl, b0 = 0. s17d

The transform can then be written as a continuous fraction,

kC̃uC̃l =
2i

s − s* Im
kCuCl

sz− a0d −
b1

2

sz− a1d −
b2

2

sz− a2d − b3
2
¯ .

s18d

with z=s+E0.
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The functionsC̃ possess definite values of parityP, an-
gular momentaJ, and magnetic quantum numbersMJ. Vari-
ous Lanczos sets are separated with respect to these quantum
numbers. Multipole expansions of the operatorsrs andrv are
performed, which allows elimination of dependencies onMJ
and on the ground-state angular momentum projectionM0.
In our case there exists only one multipole, compatible with
a givenJ andP value. Indeed, one hasJ=,±1/2 andparity
equal tos−1d,.

In order to calculate Eq.(18) we perform, as already men-
tioned, expansions of the Lanczos statesuwnl over basis func-
tions. Let r and hVj be the hyperradius and hyperangles
defined as usual. The basis functions are products of hyper-
radial functionsRnsrd and spin-isospin-hyperangular func-
tions. The latter functions include hyperspherical harmonics
(HH) depending onhVj and functions of spin and isospin
variables. We use HH belonging to given permutational sym-
metry types which are obtained via application of the corre-
sponding symmetrization operators to HH of the typeYKLML

l1l2 .
Here K is the grand-angular momentum,L and ML are the
total orbital momentum and its projection, andl1 and l2 are
the orbital momenta associated with the relative motion of a
given pair of particles and the relative motion of the third
particle with respect to the pair. The spin-isospin functions
possess given spinS, isospinT, and permutational symmetry.
The HH obtained are coupled to the spin-isospin functions of
conjugated permutational symmetry types to get functions
antisymmetric with respect to permutations of nucleons and
also to get a given total momentum. Thus our basis functions
have givenJ, MJ, K, L, S, T values, given parity equal to
s−1dK, and given type of symmetry with respect to permuta-
tions of spatial, or spin-isospin, variables. In order to accel-
erate the convergence of the HH expansion a spin and iso-
spin dependent correlation operator is applied to the basis
functions(see Ref.[13] for details). Matrix elements are cal-
culated analytically with respect to three Euler angles deter-
mining the orientation of the system as a whole, and the
remaining three-dimensional integrations are done numeri-
cally.

For any value ofJ one has four separate systems accord-
ing to isospin and parity, thus, in case of a maximal value of
J=21/2 one has 44 separate systems. Rather many basis
functions are retained to achieve convergence, and a selec-
tion of basis HH has been done to reduce their net numbers
in the calculation. The selection is based upon the property
[27] that the uncorrelated symmetrized basis HH obtained in
the above mentioned way from the subset of HHYKLML

l1l2 with
only small l1 and smalll2 suffice to provide a predominant
contribution to bound state wave functions. We have found
that in practice this property is also valid for our correlated
HH and for the case of our inhomogeneous equations. At the
same time, the selection depended onL, K, J values and
symmetry types of HH as well. Typically we include about
150 HH states for any system. We should also mention that
we dropped in the final calculation the isospin mixing of the
AV18 potential after having checked that it leads only to
very small effects on the response functions(much below
1%).

The mixed response(11) is calculated as

Rsv = Rs+v − Rs − Rv, s19d

whereRs+v is the response, which emerges from the scalar

product kC̃s+vssd uC̃s+vssdl, and C̃s+vssd is obtained if rs

+rv, instead ofrs or rv, is taken as the transition operator in
Eq. s12d.

IV. RESULTS AND DISCUSSION

Before showing detailed results of our calculations it is
necessary to address the question of convergence with re-
spect to the maximum angular momentumJmax retained in
our calculation. This requires some measure of convergence.
In this connection we consider here the3H Coulomb sum
rule results computed for the caseGE

S=GE
V=1. The sum rule

reads in this case

E
vth

`

RLsq,vddv + F2sqd = 1. s20d

HereFsqd is the elastic form factor atGE
S=GE

V=1. Since in
the case considered a single proton interacts with the elec-
tromagnetic field, Eq.s20d does not contain the nucleon
charge correlation contribution and is valid for anyq. It is
clear that largerq values require the expansion to include
larger values ofJ. Table II shows the results of usingJmax
=15/2 for the q=250, and 300 MeV/c cases andJmax
=21/2 for theq=350–500 MeV/c cases. One notes that
the lowerq sum rules are nearly fully converged while the
500 MeV/c case still requires about 2 % more strength.
Although this could be improved by increasingJmax we
consider the convergence tolerable for the present inves-
tigation. Table II also demonstrates that the convergence
is faster for the simple MT−I / III potential as compared to
the realistic potential models.

In Fig. 1 we illustrate the dependence ofRL on theNN
potential. The results with the two realistic potentials, Bon-
nRA and AV18, are very similar atq=500 MeV/c, but ex-
hibit somewhat stronger differences for the quasielastic peak
height atq=250 MeV/c. With the semirealistic MT−I / III
potential one observes a rather similar picture forq
=250 MeV/c as with the realistic potentials, whereas atq
=500 MeV/c a greater peak height and considerably less
high-energy strength than for the realistic potentials is found.

TABLE II. 3H Coulomb sum rule for AV18, AV18+UrbIX, and
MT−I / III Potentials (we estimate to have an error of 0.005 in cal-
culating the sum rules).

q sMeV/cd Jmax AV18 AV18+UrbIX MT-I / III

250 15
2 0.998 0.999 1.000

300 15
2 0.993 0.994

350 21
2 0.992 0.993

400 21
2 1.003 0.998

450 21
2 0.998 0.999

500 21
2 0.977 0.977 0.994
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In Fig. 2 we show the 3N force effect. It is seen that it
decreases the peak height and enhances the high-energy tail.
At lower momentum transfer the reduction of the peak height
is more pronounced. Comparing the three cases, where a 3N
force is included, one finds only rather small differences
among them except for the low-energy range atq
=500 MeV/c as will be seen next in Fig. 3.

In order to study the low-energy behavior better, in Fig. 3
we illustrate the nuclear force model dependence of the triton
RL close to threshold at three momentum transfers covered
also by the data of Ref.[2]. In this figureRL is shown as a
function of Ex, the relative kinetic energy of the outgoing
three nucleons. Atq=174 MeV/c there is a rather strong
decrease ofRL due to the 3N force. The reduction becomes
considerably smaller at q=324 MeV/c, and at q
=487 MeV/c the 3N force leads to an opposite effect,
namely, a moderate increase. From the comparison of the
cases AV18+UrbIX and AV18+TM8 it becomes clear that
the 3N force model dependence for all the three momentum
transfers is very small. The only evident potential model de-
pendence is found at the highestq, where the case
BonnRA+TM8 exhibits considerably more strength than the
other cases with inclusion of 3N force.

In Fig. 4 we show the effect of the relativistic corrections
on RL. One sees that the SO term leads only to rather small
contributions, while the DF term is more important. It occurs

that separate contributions from the SO term are not so
small, only their net sum proves to be very small. This prob-
ably means that in the inclusive case we have an effect of
averaging out due to the spin dependence of the SO operator.
Because of the smallness of the SO contribution we have
neglected it in most of the following cases. In Fig. 4 we also
showRL results, where a different proton electric form factor
[26] is taken. At q=250 MeV/c the different proton form
factor leads to a similar small reduction as the DF contribu-
tion, while atq=500 MeV/c there is an almost 5 % reduc-
tion of RL. In the results which follow we will always use the
dipole nucleon form factors. However as seen here there will
be uncertainties inRL at higherq values due to uncertainties
in the proton electric form factor.

Next we would like to check the frame dependence of our
calculation. To this end we calculateRL also in the Breit(B)
frame and the so-called antilab(AL ) frame. In the AL frame
the virtual photon and initial target nucleus have momenta
qAL and −qAL, respectively, whereas the total momentum of
the final three-nucleon state is equal to zero. Note that in the
lab frame one has the opposite case: the target nucleus in the
initial state is at rest and the total momentum of the final
three-nucleon state is equal toq. Finally, in the Breit frame
one has total momenta of initial and final hadron states equal
to −qB/2 and qB/2, respectively, while the photon four-
momentum issvB,qBd. Formally there are no differences be-

FIG. 1. NN potential model dependence of triton
RL

LABsqLAB,vLABd at qLAB=250 (a) and 500(b) MeV/c (charge op-
erator, nonrelativistic plus DF term): AV18 (solid), BonnRA (dot-
ted), and MT-I/III (dashed).

FIG. 2. Effect of 3N force on tritonRL
LABsqLAB,vLABd at qLAB

=250 (a) and 500(b) MeV/c (charge operator, nonrelativistic plus
DF term): AV18 (dashed), AV18+UrbIX (solid), AV18+TM8 (dot-
ted), and BonnRA+TM8 (dash dotted).
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tween the calculations in the various frames. One obtains a
response function which has the argumentsv and q of the
given frame, i.e., RL

LABsqLAB,vLABd, RL
ALsqAL,vALd, and

RL
BsqB,vBd. For a comparison of the results we transform

RL
ALsqAL,vALd and RL

BsqB,vBd into RL
LABsALdsqLAB,vLABd and

RL
LABsBdsqLAB,vLABd, respectively. To this end we use that the

various reference frames are connected via Lorentz boosts
and thusvAL, qAL, vB, andqB can be expressed throughvLAB
andqLAB. However in order to obtain anRL in the lab frame
from RL’s in AL and Breit frames it is not sufficient to trans-
form the relative arguments ofv andq into the correspond-
ing lab frame arguments. In addition one has

RL
LABsframed =

qLAB
2

qframe
2 RL

frame, s21d

where “frame” stands for AL or Breit. The origin of the
additional factor is the following. The cross section of Eq.
s1d contains three separate pieces, namely,sM, a part regard-
ing the electronse.g., qm

4 /q4;VL
LABd and a hadronic part

se.g., RLd. The latter two originate from a reduction of a
product of leptonic and hadronic Lorentz tensorsf1g. The

product of these two tensors forms a Lorentz scalar and thus
is frame independent. One can show that for the longitudinal
part of the cross section of Eq.s1d one hasf29g

VL
LAB =

qframe
2

qLAB
2 VL

frame s22d

and thus Lorentz invariance requires the additional factor in
Eq. s21d.

In Fig. 5 we compare the longitudinal response functions
of the various frames. Atq=250 MeV/c differences are
rather small, in particular between Breit and AL frame re-
sults. Except for the threshold region there is not such a
similar good agreement atq=500 MeV/c. In the quasielastic
peak there are rather pronounced differences:RL

LABsALd is
about 7% andRL

LABsBd about 4% higher thanRL
LAB, their peak

positions are shifted by about 6(AL ) and 5 MeV (B) to-
wards lower energies. In a consistent relativistic theory one
would of course have identical results and thus the obtained

FIG. 3. Effect of 3N force on low-energy tritonRL
LABsqLAB,Ex,d

at qLAB174 (a), 324 (b), and 487(c) MeV/c (charge operator, non-
relativistic plus DF term): AV18 (dashed), AV18+UrbIX (solid),
AV18+TM8 (dotted), and BonnRA+TM8 (dash dotted).

FIG. 4. Effect of relativistic contributions and nucleon form
factor dependence for tritonRL

LABsqLAB,vLABd at qLAB=250 (a) and
500 (b) MeV/c (potential model, AV18+UrbIX): nonrelativistic
charge operator(solid), additional inclusion of SO term(dotted),
and total result with further inclusion of DW term(dashed), all
three cases with neutron electric form factor from[24] and dipole fit
for the other three nucleon form factors. Total result also with pro-
ton electric form factor from Ref.[26] and other form factors as
above(dash dotted).

EFROS, LEIDEMANN, ORLANDINI, AND TOMUSIAK PHYSICAL REVIEW C69, 044001(2004)

044001-6



differences point to a relativistic inconsistency in the calcu-
lation.

As mentioned before Becket al. [29] studied the electro-
magnetic response functions in deuteron electrodisintegra-
tion in the quasielastic region. They have shown that an in-
clusion of boost effects on the hadron wave functions leads
essentially to the same results for the various reference
frames discussed here. In addition they have found that boost
corrections are almost vanishing in the Breit frame. We be-
lieve that also in the three-nucleon electrodisintegration one
probably has a similar picture with a strong cancellation of
boost effects in the Breit frame. Therefore we will take the
RL

LABsBd results in comparison with quasielastic experimental
data.

A comparison of the3H and 3He theoretical longitudinal
response functions with experimental data of Refs.[3–5] is
shown in Fig. 6 atq=250, 300, and 350 MeV/c. In the peak
region one does not find a clear picture, since there is a better
agreement once with the 3N force s3Hed and once without
the 3N force s3Hd. Except for the triton case atq
=250 MeV/c one observes rather similar theoretical and ex-
perimental results for the high-energy tail. At higher energies
the size of the experimental errors is larger than the effect of
the 3N force, thus nothing can be said there about an im-
provement of the theoretical result with the 3N force.

In Fig. 7 we show equivalent results as in Fig. 6 but at the
higher momentum transfers of 400, 450, and 500 MeV/c.
Also here one finds a better agreement with experimental
data without the 3N force in case of3H and with the 3N
force in case of3He. It is worthwhile to note that for all six
cases of Fig. 7 one has a good agreement of theoretical and
experimental peak positions. Concerning the low- and high-
energy tails one has a rather good agreement between theory
and experiment.

Next we turn to a comparison of the triton low-energy
longitudinal response functions with the experimental data of
Ref. [2]. In Fig. 8 we show theRL of 3H at variousq. Since
theRL frame dependence is very small close to threshold we
illustrate directly the results from a lab frame calculation.
For the lower two momentum transfers there is a rather good
agreement between experiment and theory, but the size of the
experimental error is too large to draw definite conclusions
about possible improvements due to the 3N force. At q
=487 MeV/c the picture is different: the theoretical response
functions are larger than the experimental one, in particular
very close to threshold. It is also evident that the effect of the
3N force moves the calculatedRL even further away from the
data.

In Fig. 9 we show a similar comparison with experimental
data as in Fig. 8 but for theRL of 3He. Again one finds a
rather good agreement between theory and experiment for

FIG. 5. Frame dependence of tritonRLsqLAB,vLABd at qLAB

=250 (a) and 500 (b) MeV/c (potential model, AV18+UrbIX;
charge operator, nonrelativistic plus DF term): RL

LAB (dashed),
RL

LABsALd (dotted), andRL
LABsBd (solid).

FIG. 6. Comparison of theoretical and experimental
RL

LABsBdsqLAB,vLABd at qLAB as indicated in figure for3H (left) and
3He (right) (charge operator, nonrelativistic plus DF term): AV18
+UrbIX potentials(solid) and AV18 potential(dotted); experimen-
tal data from Ref.[3] (circles) and Refs.[4,5] (triangles).
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the two lowerq’s, but contrary to the triton case here the 3N
force is important for this agreement atq=174 MeV/c. Also
for the highest momentum transfer one finds a similar picture
as for the triton case, namely, a large overestimation of the
experimental data by the theoretical response functions and
also an increase ofRL due to the 3N force.

In Fig. 9 we also illustrate theoretical results from Ref.
[15]. It is an approach to calculating responses, which is
entirely different from ours. The calculation[15] has been
carried out with the AV18+UrbIX potentials, relativistic DF-
and SO-terms have been included, and the same nucleon
form factors as by us have been used(dipole fit, neutron
electric form factor from Ref.[24]). In order to have a clean
comparison of the two different calculations, we also take
into account the SO term for our result with AV18 and Ur-
bIX, though its effect is also very small here. For the two
higher momentum transfers there is a rather good agreement
between both calculations. Some differences are visible at
q=174 MeV/c, but the difference between the two calcula-
tions is still considerably smaller than the experimental error
bars.

The rather large discrepancy between theory and experi-
ment of the low-energyRL at q=487 MeV/c requires further
theoretical and experimental investigations. We should men-
tion that in the calculation of Ref.[15] relativistic two-body
charge operators were also considered. Although they were
not sufficient to give agreement with experiment, they did
diminish the discrepancy by about a factor of 2. Concerning
the nucleon form factors one could only obtain a small re-

duction(about 5 %) using the fit of Ref.[26]. In addition the
potential model dependence should be further studied. In the
discussion of Fig. 3 we have already mentioned a rather
strong potential model dependence of the low-energyRL at
q=487 MeV/c. Therefore it would be interesting to consider
other modern realisticNN potentials in addition to the AV18
and BonnRA models used here.

V. CONCLUSIONS

In the following we give a brief summary of our work.
The trinucleon longitudinal response functionRLsq,vd is cal-
culated with realisticNN interactions and 3N and Coulomb
forces for a variety of kinematical settings that include mo-
mentum transfersq between 174 and 500 MeV/c and wide
ranges of energy transfersv. The results are fully conver-
gent. The calculations are performed via the Lorentz integral
transform method.

As NN interaction we use a modern realisticsAV18d, a
realistic (BonnRA), and also a semirealisticsMT−I/ III d po-
tential model. Two modelssUrbIX,TM8d of the 3N force are
employed. The treatment of the trinucleon dynamics is com-

FIG. 7. As Fig. 6 but for different momentum transfersqLAB as
indicated in figure.

FIG. 8. Comparison of theoretical and experimental
RL

LABsqLAB,Exd for 3H at qLAB as indicated in figure(charge opera-
tor, nonrelativistic plus DF term): AV18+UrbIX potentials(solid)
and AV18 potential(dashed); experimental data from Ref.[2].
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pletely nonrelativistic. Nonetheless we apply a minimal
check on the uncertainties related to this. For this purpose we
evaluateRL in three different reference frames, namely, in
lab, antilab, and Breit frames. For the charge operator we
take the leading relativistic corrections into account(Darwin-
Foldy and spin-orbit terms).

In general we find a rather smallNN potential model de-
pendence, but in some cases there are also larger effects.
These include the height of the quasielastic peak at lowerq

and the threshold behavior at higherq. The effect of the 3N
force is typically between 5% and 10%, but reaches up to
15% for the low-energy response at lowq. The dependence
on the 3N force model is very small for all considered cases.

Concerning the relativistic contributions to the charge op-
erator, our inclusive case shows negligible effects due to the
spin-orbit term, while the DF term leads to non-negligible
effects at higherq. With respect to theRL calculation in the
various reference frames, we observe a non-negligible frame
dependence at higherq, except for the threshold region. In
order to restore a more consistent relativistic behavior one
would need to consider additional relativistic effects. Similar
results have been found indse,e8d and it is shown that addi-
tional boost corrections lead to a much better agreement
among the various frame results[29]. In the same work it is
also shown that boost effects are negligible in the Breit
frame. We assume a similar behavior also in trinucleon elec-
trodisintegration. Thus we compare theRL calculated in the
Breit frame with experimental data.

The comparison of our results with experimental data is
generally rather satisfying for all considered momentum
transfers, in particular for theRL of 3He. The experimental
data, however, are in most cases not precise enough to draw
definite conclusions about the 3N force effect. A nice excep-
tion is the3He low-energy response, where a 3N force proves
to be necessary to obtain agreement with experiment. In ad-
dition for the 3He quasielastic peak heights atq
ø400 MeV/c three-nucleon forces considerably improve
the agreement with experiment. At higher-q and low-v val-
ues one finds a considerably higherRL response in theory
than in experiment.

Last but not the least we would like to mention that at
very low energies, i.e., up to the three-body breakup thresh-
old, we can compare our results with those of Ref.[15]. We
find quite a good agreement. The differences which do show
up at very low-q are still smaller than the experimental error
bars.
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