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Calculating single-particle(Nilsson) levels in axially symmetric quadrupole-deformed potentials in coordi-
nate space, the structure of weakly bound neutron orbits is studied in the absence of pair correlation. It is
shown that in the wave functions ofVp=1/2+ orbits, whereV expresses the projection of the particle angular
momentum along the symmetry axis, the,=0 ss1/2d component becomes overwhelmingly dominant as the
binding energy of the orbits approaches zero, irrespective of the size of the deformation and the kind of Nilsson
orbits. Consequently, allVp=1/2+ levels become practically unavailable for both deformation and many-body
pair correlation, when the levels approach continuum or lie in the continuum.
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The physics of nuclei far from the line ofb stability,
especially close to the neutron drip line, which has been
developed for the last years together with the experiments
using radioactive nuclear ion beams, issues an intensive chal-
lenge to the conventional theory of nuclear structure. A char-
acteristic feature unique to the weakly bound neutron sys-
tems is the importance of the coupling to the nearby
continuum of unbound states, as well as the impressive role
played by weakly bound neutrons with low orbital angular
momenta,. A typical phenomenon is the observed change of
magic numbers in very light neutron-rich nuclei[1,2] from
those known inb stable nuclei. The change can be under-
stood from the difference in the properties of small, neu-
trons from those of weakly bound large, neutrons, of which
the wave functions stay mostly inside the nuclear potential.
Weakly bound small-, neutrons have an appreciable prob-
ability to be outside of the core nucleus and are thereby
insensitive to the strength of the potential provided by the
well-bound nucleons in the system. As seen in the shell-
structure change, the competition between pairing and shape
deformation, which has been a central issue in the many-
body problem ofb stable nuclei[3], is expected to be a
fundamentally important theme also in the study of nuclear
structure far from the stability line[4]. In neutron drip line
nuclei the presence of loosely bound neutrons as well as the
very neutron rich environment near the nuclear surface opens
new interesting aspects in this competition, which have not
yet been well studied.

In Ref. [5] the pair correlation in spherical nuclei close to
the neutron drip line, especially the unique role played by
weakly bound low, neutrons, was studied by solving the
Hartree-Fock-Bogoliubov equation in a simplified model in
coordinate space with the correct asymptotic boundary con-
ditions[6–8]. It was shown that for a given bound system the
occupation probability of the lower, levels of the Hartree-
Fock(HF) potential decreases considerably when the binding
energy of the HF one-particle level becomes small, and those
orbits soon become almost unavailable for the pair correla-
tion of the many-body system. It was concluded in Ref.[5]
that the unavailability of those lower, orbits would be much
more serious in deformed nuclei, since the components of
lower , orbits spread in essence over all Nilsson orbits with

smallerV values. In textbooks[3,9] we learn that the Nils-
son orbits can be classified in terms of asymptotic quantum
numbersfNnzLVg, where V is a good quantum number.
Other three quantum numbersfNnzLg would become ap-
proximately good quantum-numbers for larger deformation
where the effect of axially symmetric quadrupole deforma-
tion dominates over the spin-orbit splitting. Indeed, various
kinds of experimental data on deformed nuclei close to theb
stability line have been very successfully analyzed in terms
of the asymptotic quantum numbers[3]. The asymptotic
quantum numbers are derived based on the axially symmet-
ric quadrupole-deformed harmonic-oscillator plus spin-orbit
potentials, which can be appropriate for analyzing the prop-
erties of well-boundb stable nuclei.

In the present paper we study the structure of one-particle
orbits in axially symmetric quadrupole-deformed Woods-
Saxon plus spin-orbit potentials, solving the Schrödinger
equation in coordinate space with the correct asymptotic
boundary conditions. We focus our attention on the structure
of weakly bound neutron orbits in deformed finite-well po-
tentials.

In order to study the behavior of weakly bound orbits, it is
absolutely necessary to use a realistic finite-well potential.
For simplicity, we use the Woods-Saxon potential as a re-
placement of the HF potential and include the deformed part
of the Woods-Saxon potential. Our axially symmetric
quadrupole-deformed potential consists of the following
three parts:

Vsrd = VWS fsrd,

VcouplsrWd = − bksrdY20sr̂d,

Vsosrd = − VWS vSL

2
D21

r

dfsrd
dr

ssW · ,Wd, s1d

where L is the reduced Compton wavelength of nucleon
" /mrc,
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fsrd =
1

1 + expS r − R

a
D s2d

and

ksrd = RVWS
dfsrd

dr
. s3d

We fix the parameters to bea=0.67 fm, VWS=−51 MeV,
and v=32, which are the standard parameters used inb
stable nucleif10g. The nuclear radiusR is varied so as to
vary the strength of our one-body potential. Or, equiva-
lently, we vary the mass numberA of the system withR
=r0A

−1/3 where r0=1.27 fm is used. In the expressions1d
we have included only the lowest-order term in deforma-
tion parameterb of the deformed Woods-Saxon potential.
This is an approximation, however, for our present pur-
pose to illustrate the unique behavior of weakly bound
low-, neutrons the simple form of the deformed potential
is sufficient. We write the single-particle wave function as

CmsrWd =
1

r
o
, j

R, jmsrdY, jmsr̂d, s4d

which satisfies

H Cm = «m Cm. s5d

The coupled equation for the radial wave function is written
as

S d2

dr2 −
,s, + 1d

r2 +
2m

"2 f«m − Vsrd − VsosrdgDR, jmsrd

=
2m

"2 o
,8 j8

kY, jmuVcoupluY,8 j8mlR,8 j8msrd, s6d

where

kY, jmuVcoupluY,8 j8ml = − b ksrdkY, jmuY20sr̂duY,8 j8ml

= − b ksrds− 1dm−1/2 Îs2j + 1ds2j8 + 1d
20p

3 Cs j , j8,2;m,− m,0d

3Cs j , j8,2;1
2,− 1

2,0d . s7d

The eigenvalue«ms,0d of the coupled equations(6) for a
given value ofm, which is equivalent toV in the usual
notation of asymptotic quantum numbersfNnzLVg, is ob-
tained by solving the equations in coordinate space for given
values ofb and R, with the asymptotic behavior ofR, jmsrd
for r →`,

R, jm ~ r h,sard, s8d

whereh,s−izd; j,szd+ in,szd, in which j, andn, are spheri-
cal Bessel and Neumann functions, respectively, and

a2 ; −
2m «m

"2 . s9d

The normalization condition is written as

o
,,j
E

0

`

uR, jmsrdu2 dr = 1. s10d

For a given value of the deformation parameterb we vary
the potential radiusR so as to obtain the required one-
particle energy«m.

In Fig. 1 we show the calculated«m values, which are
relevant to s-d shell nuclei for the neutron numberN
=6–24, for b=0.5 as a function ofR. The spherical one-
particle levels,s1/2, d3/2, d5/2, and g9/2, are included in the
calculation for positive parity, while for negative parity the
p1/2, p3/2, f5/2, and f7/2 levels are taken into account. Here
intentionally we do not write the radial quantum-numbern
for the levels included, since the shape of radial wave func-
tions R, jmsrd obtained from Eq.(6) can be very different
from that of eigenfunctions of the Woods-Saxon potentials.
The structure of deeply bound orbits such as those for«m=
−10 MeV is similar to what is expected[3] from the
asymptotic quantum numbers in the deformed harmonic-
oscillator model. The level energies withmp=1/2+, which
are expressed by solid curves with solid circles, are seen to
show smaller slope especially as«m→0, though in this ex-
ample the order of levels does not happen to change in the
limit.

In Fig. 2 the calculated probabilities of thes1/2, d3/2, d5/2,
and g9/2 components in thef220 1/2g level are shown as a
function of «m. It is observed that thes1/2 component be-
comes dominant as«m→0. Thes1/2 wave function for small

FIG. 1. Neutron energy levels in axially symmetric quadrupole-
deformed Woods-Saxon potential as a function of the potential
strength. The radius of the Woods-Saxon potential is expressed by
R, while r0=1.27 fm is used. The asymptotic quantum numbers
fNnzLVg assigned traditionally to these levels aref101 1/2g,
f220 1/2g, f211 3/2g, f211 1/2g, f202 5/2g, f330 1/2g, f200 1/2g,
f321 3/2g, andf202 3/2g, from the left[smallersR/ r0d3 values] to
the right [larger sR/ r0d3 values] at «m<0. The neutron numbers 6
and 24, which are obtained by filling in all lower-lying levels, are
indicated with circles. We noteV;m.
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values ofu«mu shows halo structure, and the major part of the
large s1/2 probability comes from the outside of the nuclear
potential. Since weakly bounds1/2 neutrons are insensitive to
the decreasing strength of the potential, the boundmp

=1/2+ orbits can survive by increasing thes1/2 component.
This fact also implies that the major component of any
weakly boundVp=1/2+ neutrons in deformed nuclei must
be s1/2 and thereby show halo phenomena.

In Fig. 3 the probabilities of thes1/2 component in three
Vp=1/2+ Nilsson levels of the s-d shell, f220 1/2g,
f211 1/2g andf200 1/2g, are plotted as a function of«m. It is
seen that in allVp=1/2+ orbits thes1/2 component becomes
dominant as«m→0. This feature appears for any realistic
values ofb in deformed nuclei.

What is observed in Figs. 2 and 3 means that in deformed
nuclei all Nilsson orbits withVp=1/2+ are dominated by the
s1/2 component as«m→0, which exhibits halo structure,
though the actual value of«m at which thes1/2 component
becomes dominant depends on Nilsson orbits. Consequently,
those orbits become unavailable for constructing deforma-

tion. In Ref. [5] we have found thats1/2 orbits become un-
available for the many-body pair correlation as the energies
approach continuum. Combining these findings, we may say
that all Nilsson orbits withVp=1/2+ become unavailable for
both pair correlation and deformation when those orbits ap-
proach continuum or lie in the continuum.

What is described above on theVp=1/2+ orbits works
also, but to a slightly lesser extent, for theVp=1/2− or 3/2−

orbits where the role of the,=0 orbit is replaced by that of
the ,=1 orbit. For reference, in Fig. 4 the calculated prob-
abilities of p1/2, p3/2, f5/2, and f7/2 components in the
f330 1/2g level are shown as a function of«m. It is observed
that thep3/2 component becomes dominant while the prob-
ability of the f7/2 component decreases drastically as«m
→0. Since a part of the,=1 one-particle wave functions
remains inside the potential in the limit of«m→0, in contrast
to the case of,=0 [10], we obtain a milder dominance in the
limit. However, since the width of,=1 neutron resonant
states becomes quickly large as the energies increase in the
continuum, due to the low centrifugal barrier[5], all Nilsson
orbits with Vp=1/2− and 3/2− become unavailable for both
pair correlation and deformation soon after the one-particle
energies increase to positive values.

In conclusion, we have shown that the lowest-, compo-
nent becomes dominant in the neutron orbits of the realistic
deformed potential as the binding energies approach zero,
irrespective of the size of deformation and the kind of orbits.
Thus, the structure of the wave functions of weakly bound
neutrons is very different from the one expressed by
asymptotic quantum numbers in textbooks. AllVp=1/2+

levels become unavailable for both deformation and many-
body pair correlation, as the levels approach continuum or lie
in the continuum. Weakly boundVp=1/2+ neutrons in
deformed nuclei become almosts1/2 neutrons and thereby
exhibit halo phenomena. In such a case possible rotational
spectra of the deformed halo nuclei must come from that
of the deformed core. The properties of weakly bound
(or continuum) low-, neutrons unique to finite-well
potentials should be carefully taken into account when the
nuclear structure information is extracted from measured

FIG. 2. Calculated probabilities ofs1/2, d3/2, d5/2, andg9/2 com-
ponents in thef220 1/2g level as a function of energy eigenvalue
«m.

FIG. 3. Calculated probabilities of thes1/2 component in three
Vp=1/2+ Nilsson levels in thes-d shell, f220 1/2g, f211 1/2g, and
f200 1/2g, as a function of respective energy eigenvalue«m.

FIG. 4. Calculated probabilities ofp1/2, p3/2, f5/2, and f7/2 com-
ponents in thef330 1/2g level as a function of energy eigenvalue
«m.
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quantities such as observed neutron emission widths.
The ground-state structure and excitation spectra of the

one-neutron halo nucleus11Be, which are being studied ex-
perimentally at the moment, may be an example directly re-
lated to the present result. In the theoretical study of such
light halo nuclei various models, which are specific to indi-
vidual nuclei with adjusted parameters(for example, see Ref.
[11]), are often used rather than a mean-field approximation.

However, the mean-field approximation is the simplest gen-
eral approach to deformed nuclei. Therefore, the physics
found in the present work should be useful not only for
medium-heavy neutron-rich nuclei but also for gaining a
simple intuitive understanding of light halo nuclei.

The author expresses her sincere thanks to Professor Ben
Mottelson for fruitful discussions.
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