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Accurately calibrated(or “best fit”) relativistic mean-field models are used to compute the distribution of
isoscalar-monopole strength in90Zr and 208Pb, and the isovector-dipole strength in208Pb using a continuum
random-phase-approximation approach. It is shown that the distribution of isoscalar-monopole strength in
208Pb—but not in90Zr—is sensitive to the density dependence of the symmetry energy. This sensitivity hinders
the extraction of the compression modulus of symmetric nuclear matter from the isoscalar giant monopole
resonance(ISGMR) in 208Pb. Thus, one relies on90Zr, a nucleus with both a small neutron-proton asymmetry
and a well developed ISGMR peak, to constrain the compression modulus of symmetric nuclear matter to the
rangeK=s248±8d MeV. In turn, the sensitivity of the ISGMR in208Pb to the density dependence of the
symmetry energy is used to constrain its neutron skin to the rangeRn−Rp&0.22 fm. The impact of this result
on the enhanced cooling of neutron stars is briefly addressed.
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Constraining the equation of state(EOS) of neutron-rich
matter remains a fundamental problem in nuclear physics
and astrophysics. The stability of neutron-rich nuclei[1], the
dynamics of heavy-ion collisions[2,3], the structure of neu-
tron stars[4], and the simulation of core-collapse supernova
[5,6], all depend sensitively on the EOS. Unfortunately, our
window to the EOS is limited by terrestrial experiments that
have, until now, probed stable nucleonic matter at(or close
to) nuclear-matter saturation density. Fortunately, dramatic
improvements are unfolding on several fronts. First, the
commissioning of new radioactive-beam facilities all over
the world will probe the EOS at large neutron-proton asym-
metries. By defining the limits of nuclear existence, these
exotic nuclei will constrain the EOS of neutron-rich matter at
(and below) normal nuclear densities. Second, space-based
telescopes have started to place important constraints on the
high-density component of the EOS[7,8]. New telescopes
operating at a variety of wavelengths are turning neutron
stars from theoretical curiosities into powerful diagnostic
tools.

The nuclear matter equation of state is conveniently pa-
rametrized in terms of the energy of symmetric nuclear mat-
ter sB /Ad and the symmetry energysS /Ad in the following
form:

E/AskF,bd − M = B/AskFd + b2S/AskFd + Osb4d

= S«0 +
1

2
Kj2 + ¯D

+ b2SJ + Lj +
1

2
Ksymj2 + ¯D . s1d

Here the deviation from the equilibrium Fermi momentum is
denoted byj;skF−kF

0d /kF
0, the neutron-proton asymmetry

by b;sN−Zd /A, and the various coefficientssK ,J,L ,Ksymd
parametrize the density dependence of the EOS around
saturation density.

Seven decades of nuclear physics have placed important
constraints on the nuclear matter equation of state. Indeed,

the energy systematics of medium to heavy nuclei, when
combined with accurately calibrated models, place the satu-
ration point of symmetric nuclear matter at a density ofr0
.0.15 fm−3 skF

0 .1.3 fm−1d and a binding energy per
nucleon of«0.−16 MeV. It should be noted that one of the
main virtues of the above Taylor-series expansion around
saturation density[Eq. (1)] is that the linear term inj for
symmetric nuclear matter(i.e., the pressure) automatically
vanishes. Yet no suchspecialsaturation point exists in the
case of the symmetry energy. Indeed, the symmetry energy at
saturation density is not well known. Rather, it is the sym-

metry energy at the lower density ofr̃0.0.10 fm−3 sk̃F
0

.1.15 fm−1d that seems to be accurately constrained(to
within 1 MeV) by available ground-state observables[9,10].
It should be emphasized that present-day experiments can fix
only one isovectorquantity. If one insists—and one should
not—on constraining the parameters of the symmetry energy
at saturation density, then one would find a strong correlation
among its parameterssJ,L ,Ksym, . . .d [10]. For example, rela-
tivistic models consistently predict larger values for both the
symmetry-energy coefficientJ and the slopeL at saturation
density relative to nonrelativistic Skyrme models. This must
be so if all models are to reproduce the value of the symme-

try energy at the lower Fermi momentum ofk̃F
0. Thus, in the

present contribution we adopt the following convention: the

symmetry energy is expanded aroundk̃F
0 .1.15 fm−1 and the

value of the symmetry energy atk̃F
0 is fixed at J̃

=25.67 MeV. That is,

S/AskFd = J̃ + L̃ j̃ + ½ K̃symj̃ 2 + ¯ , s2d

wherej̃=skF− k̃F
0d / k̃F

0. Note that henceforth “tilde” quantities

refer to parameters of the symmetry energy atk̃F
0

.1.15 fm−1.
Having established that existing ground-state observables

accurately determine the binding energy per nucleon«0 at kF
0

and the symmetry-energy coefficientJ̃ at k̃F
0, how can one
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constrain any further the density dependence of the equation
of state? In the case of symmetric nuclear matter, the dynam-
ics of small density fluctuations around the saturation point is
controlled by the compression modulusK. The isoscalar gi-
ant monopole resonance(ISGMR) in heavy nuclei has long
been regarded as the optimal observable from which to de-
termine the compression modulus[11]. This is especially
true now that thebreathing modehas been measured on a
variety of nuclei with unprecedented accuracy[12]. In con-
trast, the density dependence of the symmetry energy is
poorly constrained. Indeed, one may fit a variety of ground-
state observables(such as charge densities, binding energies,
and single-particle spectra) using accurately calibrated mod-
els that, nevertheless, predict a wide range of values for the
neutron skin of208Pb [13]. As the neutron skin of a heavy
nucleus is strongly correlated to the slope of the symmetry
energy[9,10], measuring the skin thickness of a single heavy
nucleus will constrain the density dependence of the symme-
try energy. The Parity Radius Experiment at the Jefferson
Laboratory aims to measure the neutron radius of208Pb ac-
curately (to within 0.05 fm) and model independently via
parity-violating electron scattering[14,15]. This experiment
should provide a unique observational constraint on the den-
sity dependence of the symmetry energy.

While the above arguments suggest a clear path toward
constraining the density dependence of the EOS, theoretical
uncertainties have clouded these issues. First and foremost is
the apparent discrepancy between nonrelativistic and relativ-
istic predictions for the value of the compressional modulus
of symmetric nuclear matter required to reproduce the
ISGMR in 208Pb. While nonrelativistic models predictK
.220–235 MeV [16–18], relativistic models argue for a
significantly larger valueK.250–270 MeV[19–21]. Fur-
ther, relativistic models systematically predict larger values
for the neutron skin of208Pb relative to nonrelativistic
Skyrme models. One of the goals of this contribution is to
show that these two points are related. Indeed, the aim of this
contribution is twofold. First, to vindicate—through the ex-
clusive use of accurately calibrated models—our previous
assertion that the distribution of ISGMR in heavy nuclei, and
therefore the inferred value ofK, is sensitive to the density
dependence of the symmetry energy[22]. Second, to rely on
existing data on the isoscalar giant-monopole resonance in
90Zr and 208Pb [12], and on the isovector giant-dipole reso-
nance in208Pb [23], to set limits—simultaneously—on the
compression modulus of symmetric nuclear matter and on
the neutron skin of208Pb. Note that since first proposed[22],
other groups have addressed the possible impact of the den-
sity dependence of the symmetry energy on the ISGMR in
208Pb [21,24,25].

The starting point for the calculations is an interacting
Lagrangian density of the following form[13,26]:

Lint = c̄Fgsf − SgvVm +
gr

2
t ·bm +

e

2
s1 + t3dAmDgmGc

−
k

3!
F3 −

l

4!
F4 + LvsWmWmdsBm ·Bmd, s3d

where F=gsf, Wm=gvVm, and Bm=grbm. The Lagrangian
density includes Yukawa couplings of the nucleon field to a
scalar sfd and to three vectorsVm, bm, and Amd fields. In
addition to the Yukawa couplings, the Lagrangian is supple-
mented by three nonlinear meson interactions. The inclusion
of scalar-meson interactionssvia k and ld is used to soften
the equation of state of symmetric nuclear matter, while the
mixed isoscalar-isovector couplingsLvd modifies the density
dependence of the symmetry energy—without affecting
well-known ground-state properties. Note that this last term
was absent from Ref.f22g, so the softening of the symmetry
energy had to be done artificially. This drawback has now
been corrected.

The relativistic mean-field models employed here are mo-
tivated by the enormous success of the NL3 parametrization
[19]. For a detailed description of the fitting procedure used
to calibrate the NL3 interaction and for its many successful
predictions, we refer the reader to Ref.[27]. The NL3000 set
used here(havingLv=0) is practically identical to the origi-
nal NL3 model. The other sets are obtained by adding an
isoscalar-isovector couplingLvÞ0, while at the same time
readjusting the strength of theNNr coupling constantsgrd to

maintain the symmetry-energy coefficient fixed atJ̃
=25.67 MeV(see discussion above). The values adopted for
the isoscalar-isovector coupling range fromLv=0 to Lv
=0.04. Introducing this extra model parameter enables one to
adjust the poorly known density dependence of the symme-
try energy and, in turn, the neutron skin of heavy nuclei. For
example, the neutron-skin of208Pb ranges fromRn−Rp
=0.28 fm, for the set with the stiffest symmetry energy
(NL3000), all the way down toRn−Rp=0.17 fm, for the soft-
est parameter set(NL3040). Note that the label attached to
the various parameter setssNL3000, . . . ,NL3040d reflects
the value of the isoscalar-isovector couplingLv. For ex-
ample, the parameter set NL3020 indicates that the Lagrang-
ian density in Eq.(3) includes an isoscalar-isovector cou-
pling constant equal toLv=0.020. The aim of this added
coupling is to change the neutron density of heavy nuclei,
while leaving intact ground-state observables that are well
constrained experimentally. One should stress that the addi-
tion of Lv has no impact on the properties of symmetric
nuclear matter, so the saturation properties remain un-
changed. In summary, all the models used in this contribu-
tion share the following properties with the original NL3
model of Ref.[19]: for symmetric nuclear matter, a Fermi
momentum at saturation ofkF

0 =1.30 fm−1 with a binding en-
ergy per nucleon of«0=−16.24 MeV, and a compression
modulus of K=271 MeV. For the symmetry energy, a

symmetry-energy coefficient ofJ̃=25.67 MeV at a Fermi

momentum ofk̃F
0 =1.15 fm−1.

While the success of the NL3 interaction in reproducing
ground-state properties(such as binding energies, charge ra-
dii, energy separations, etc.) for a variety of nuclei all
throughout the periodic table is well documented, we display
in Table I ground-state properties for only the two nuclei of
relevance to this contribution, namely,90Zr and 208Pb. Note
that a center-of-mass correction equal tovc.m.
=s3/4d41A−4/3 has been applied to the binding energy per
nucleon. However, even these accurately calibrated models
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predict a wide range of values for the neutron skin of208Pb,
confirming that the neutron skin of a heavy nucleus is not
tightly constrained by known nuclear observables. The fifth
column in the table displays the compression modulus of
asymmetricnuclear matter with a neutron-proton asymmetry
corresponding to90Zr sb=0.111d and 208Pb sb=0.212d. It is
this quantity—not the compression modulus of symmetric
nuclear matter—that is constrained by the breathing mode of
nuclei. This simple fact makes the connection between the
measured ISGMR and the compression modulus ofsymmet-
ric nuclear matter sensitive to the density dependence of the
symmetry energy. Recall that the compression modulus of
symmetric nuclear matter was fixed in all models atK
=271 MeV, yet forsb=0.212d asymmetric nuclear matter the
compression modulus ranges from 243 MeV(for the stiffest
symmetry energy) all the way up to 260 MeV(for the softest
symmetry energy). Finally, the last column in the table
shows peak and centroid energies for the ISGMR in90Zr and
208Pb computed in a relativistic random-phase approximation
(RPA). The distribution of isoscalar-longitudinal strength
SLsq,vd from which the centroid energies have been ex-
tracted is displayed in Figs. 1 and 2, respectively. As ex-
pected, there is a strong correlation between the centroid
energies and the compression modulus ofasymmetric
nuclear matter. One should note in passing that the con-
tinuum RPA formalism employed here, but reported else-
where[28,29], respects important symmetries of nature, such
as translational invariance(in the form of Thouless’ theorem
[30,31]) and the conservation of the vector current.

The great advantage of a nucleus such as90Zr is that it has
both a well developed isoscalar-monopole peak and a small
neutron-proton asymmetrysb=0.111d. The latter manifests

itself into the near collapse of all curves in Fig. 1 into a
single one, so that the former may directly constrain the
compression modulus of symmetric nuclear matter. In con-
trast to90Zr, the distribution of ISGMR strength in208Pb is
sensitive to the density dependence of the symmetry energy.
While this sensitivity should be sufficient to constrain the
density dependence of the symmetry energy, one could do
even better. Indeed, one may constrain the density depen-
dence of the symmetry energy by demanding that both the
ISGMR and the isovector giant-dipole resonance(IVGDR)
in 208Pb be simultaneously reproduced. The distribution of
isovector-dipole strength in208Pb is displayed in Fig. 3. We
note that the isovector-dipole response gets hardened as the

TABLE I. Binding energy per nucleon, root-mean-square charge radius, neutron-minus-proton root-mean-
square radius, compression modulus for asymmetric(b=0.111 and) nuclear matter, and peak and centroid
ISGMR energies for90Zr in the various models discussed in the text. The binding energy includes a center-
of-mass correction of −0.08 MeV/nucleon, while the centroid energym1/m0 (enclosed in square brackets)
was computed by generating the distribution of strength in the range 10øvø26 MeV. The second set of
numbers in the table are for208Pb sb=0.212d with a center-of-mass correction of −0.02 MeV/nucleon and a
centroid energy extracted from a distribution of strength generated in the range 8øvø23 MeV. Experimen-
tal centroid energies extracted from Ref.[12].

Model B/A (MeV) rch (fm) Rn−Rp (fm) Kb (MeV) EISGMRfm1/m0g (MeV)

NL3000 8.69 4.26 0.11 263.13 18.10[18.62]

NL3010 8.69 4.26 0.10 263.76 18.14[18.67]

NL3020 8.70 4.26 0.09 265.23 18.15[18.69]

NL3030 8.70 4.27 0.08 266.84 18.20[18.75]

NL3040 8.70 4.27 0.07 268.32 18.25[18.77]

Experiment 8.71±0.01 4.26±0.01 Unknown Unknown f17.89±0.20g

NL3000 7.87 5.51 0.28 242.93 14.35[14.32]

NL3010 7.89 5.51 0.25 244.22 14.45[14.43]

NL3020 7.91 5.51 0.22 248.88 14.62[14.57]

NL3030 7.91 5.52 0.20 254.46 14.82[14.74]

NL3040 7.92 5.53 0.17 259.87 15.03[14.91]

Experiment 7.87±0.01 5.50±0.01 Unknown Unknown f14.24±0.11g

FIG. 1. Distribution of isoscalar-monopole strength in90Zr at a
reference momentum transfer ofq=45.5 MeV. The response in-
cludes a small artificial width of 0.5 MeV.
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symmetry energy is softened. As all models share the same

value of the symmetry-energy coefficient atk̃F
0 =1.15 fm−1,

the hardening of the response follows as a result of the sym-
metry energy being higher at the(low) densities relevant to
the isovector-dipole mode[21].

To constrain simultaneously the compression modulus of
symmetric nuclear matter and the neutron radius of208Pb,
one starts by noticing that the theoretical centroid energy of
the ISGMR in90Zr overestimates the experimental value by
about 1 MeV . Although a proper adjustment ofK should be
done through a recalibration of parameters, a simple, yet ac-
curate estimate may be obtained via the following scaling
relation: EISGMR~ÎK [17]. Using this relation and account-
ing for experimental uncertainties, an adjustment of about
20 MeV in K is required to reproduce the ISGMR in90Zr.
That is, K=271 MeV→K=s248±8d MeV. This adjustment
in K induces a corresponding correction in the calculated
values of the ISGMR in208Pb. The centroid energies after
correction, together with the peak energies of the IVGDR in

208Pb, are displayed in Fig. 4, alongside the experimental
values[12,23]. The numbers in parentheses indicate the pre-
dicted values for the neutron skin in208Pb. The figure sug-
gests that models with neutron skins in208Pb larger than
Rn−Rp.0.22 fm may have an unrealistically stiff symmetry
energy.

In summary, relativistic mean-field models have been
used to compute the distribution of isoscalar-monopole
strength in90Zr and208Pb, and of isovector-dipole strength in
208Pb using a continuum RPA approach. It was
demonstrated—using exclusively accurately calibrated
models—that the distribution of isoscalar-monopole strength
in 208Pb is sensitive to the density dependence of the sym-
metry energy. Further, existing experimental data were used
to set limits on both the compression modulus of symmetric
nuclear matter and on the neutron skin of208Pb. It appears
that medium-mass nuclei having a well-developed ISGMR
peak and a small neutron-proton asymmetry(such as90Zr but
not 208Pb) allow for the best determination of the compres-
sion modulus of symmetric nuclear matter. In turn, the sen-
sitivity of the ISGMR and the IVGDR in208Pb to the density
dependence of the symmetry energy may be used to impose
constraints on the neutron skin of208Pb. From the present
analysis, a compression modulus ofK=s248±8d MeV and a
neutron skin in208Pb of Rn−Rp&0.22 fm were obtained.
These values appear closer to those predicted in nonrelativ-
istic studies. Further, it is also gratifying to see that the gap
narrows among seemingly distinct relativistic models. In-
deed, having adjusted the compression modulus toK
=s248±8d MeV, the NL3040 parameter set suggests the fol-
lowing values for three essential observables in208Pb: a neu-
tron skin of Rn−Rp=0.17 fm, a centroid ISGMR energy of
EISGMR=14.2±0.2 MeV, and a peak IVGDR energy of
EIVGDR=13.1 MeV. These values should be compared to the
recent predictions by Vretenar, Niksić, and Ring using an
accurately calibrated model containing density-dependent
coupling constants[21]. Using a compression modulus of
K=250 MeV, they obtain a neutron skin ofRn−Rp

FIG. 2. Distribution of isoscalar-monopole strength in208Pb at a
reference momentum transfer ofq=45.5 MeV. The response in-
cludes a small artificial width of 0.5 MeV.

FIG. 3. Distribution of isovector-dipole strength in208Pb at a
reference momentum transfer ofq=45.5 MeV. The response in-
cludes a small artificial width of 0.5 MeV.

FIG. 4. Comparison between theoretical and experimental
ISGMR centroid and IVGDR peak energies for208Pb. Quantities in
parentheses represent the predictions for the neutron skin of208Pb
in the various models discussed in the text.
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.0.175 fm, a centroid ISGMR energy ofEISGMR

.13.9 MeV, and a centroid—not peak—IVGDR energy of
EIVGDR.13.6 MeV.

We conclude with a comment on the impact of these re-
sults on the cooling of neutron stars. In earlier publications
we have demonstrated how improved values for neutron ra-
dii could have a widespread impact on the structure and dy-
namics of neutron stars[13,26,32,33]. In particular, we sug-
gested that the enhanced cooling of the neutron star in 3C58
[34] may be due to the conventional URCA process—
provided the symmetry energy is stiff enough to generate a

neutron skin in208Pb larger thanRn−Rp*0.24 fm. In view
of our present findings, this now seems unlikely. Thus, the
possibility that 3C58 harbors an exotic star, such as a quark
star, looms large.
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ditions” in Trento and to the ECT* for their support and
hospitality. This work was supported in part by the U.S. De-
partment of Energy under Contract No. DE-FG05-
92ER40750.

[1] B. Todd and J. Piekarewicz, Phys. Rev. C67, 044317(2003).
[2] P. Danielewicz, R. Lacey, and W. G. Lynch, Science298,

1592 (2002).
[3] B.-A. Li, Phys. Rev. Lett.88, 192701(2002), and references

therein.
[4] J. M. Lattimer and M. Prakash, Astrophys. J.550, 426(2001),

and references therein.
[5] K. Sumiyoshi, H. Suzuki, and H. Toki, Astron. Astrophys.

303, 475 (1995).
[6] R. Buras, M. Rampp, H. T. Janka, and K. Kifonidis, Phys. Rev.

Lett. 90, 241101(2003), and references therein.
[7] J. A. Pons, F. M. Walter, J. M. Lattimer, R. Prakash, M. Neu-

hauser, and P.-H. An, Astrophys. J.564, 981 (2002), and ref-
erences therein.

[8] F. M. Walter and J. M. Lattimer, Astrophys. J. Lett.576, L145
(2002).

[9] B. A. Brown, Phys. Rev. Lett.85, 5296(2000).
[10] R. J. Furnstahl, Nucl. Phys.A706, 85 (2002).
[11] J. P. Blaizot, Phys. Rep.64, 171 (1980).
[12] D. H. Youngblood, H. L. Clark, and Y. W. Lui, Phys. Rev. Lett.

82, 691 (1999).
[13] C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett.86, 5647

(2001).
[14] C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels,

Phys. Rev. C63, 025501(2001).
[15] R. Michaels, P. A. Souder, and G. M. Urciuoli, spokespersons,

Jefferson Laboratory Experiment E00–003.
[16] G. Colò, P. F. Bortignon, N. Van Gai, A. Bracco, and R. A.

Broglia, Phys. Lett. B276, 279 (1992).
[17] J. P. Blaizot, J. F. Berger, J. Dechargé, and M. Girod, Nucl.

Phys. A591, 435 (1995).
[18] I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C56,

3121 (1997).
[19] G. A. Lalazissis, J. Konig, and P. Ring, Phys. Rev. C55, 540

(1997).
[20] D. Vretenar, A. Wandelt, and P. Ring, Phys. Lett. B487, 334

(2000).
[21] D. Vretenar, T. Niksić, and P. Ring, Phys. Rev. C68, 024310

(2003).
[22] J. Piekarewicz, Phys. Rev. C66, 034305(2002).
[23] J. Ritmanet al., Phys. Rev. Lett.70, 533 (1993).
[24] B. K. Agrawal, S. Shlomo, and V. Kim Au, Phys. Rev. C68,

031304(2003).
[25] G. Colò and N. Van Gai, nucl-th/0309002
[26] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C64,

062802(R) (2001).
[27] G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data

Tables 71, 1 (1999).
[28] J. Piekarewicz, Phys. Rev. C62, 051304(R) (2000).
[29] J. Piekarewicz, Phys. Rev. C64, 024307(2001).
[30] D. J. Thouless, Nucl. Phys.22, 78 (1961).
[31] J. F. Dawson and R. J. Furnstahl, Phys. Rev. C42, 2009

(1990).
[32] C. J. Horowitz and J. Piekarewicz, Phys. Rev. C66, 055803

(2002).
[33] J. Carriere, C. J. Horowitz, and J. Piekarewicz, Astrophys. J.

593, 463 (2003).
[34] P. Slane, D. J. Helfand, and S. S. Murray, Astrophys. J. Lett.

571, L45 (2002).

UNMASKING THE NUCLEAR MATTER EQUATION OF STATE PHYSICAL REVIEW C69, 041301(R) (2004)

RAPID COMMUNICATIONS

041301-5


