
Surface tension in a compressible liquid-drop model: Effects on nuclear density
and neutron skin thickness

Kei Iida1 and Kazuhiro Oyamatsu1,2,3

1The Institute of Physical and Chemical Research (RIKEN), Hirosawa, Wako, Saitama 351-0198, Japan
2Department of Media Theories and Production, Aichi Shukutoku University, Nagakute, Nagakute-cho, Aichi-gun,

Aichi 480-1197, Japan
3Department of Physics, Nagoya University, Furo-cho, Chigusa-ku, Nagoya, Aichi 464-8602, Japan

(Received 28 November 2003; published 3 March 2004)

We examine whether or not the surface tension acts to increase the nucleon density in the nuclear interior
within a compressible liquid-drop model. We find that it depends on the density dependence of the surface
tension, which may in turn be deduced from the neutron skin thickness of stable nuclei.
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The saturation property of bulk nuclear matter is usually
deduced from empirical data on the masses and radii of
stable nuclei[1]. If nuclear matter is incompressible, the bulk
saturation density is equal to the density in the nuclear inte-
rior. However, nuclear matter in nuclei is more or less com-
pressible. The question of how the finite compressibility of
nuclear matter makes the density in the nuclear interior de-
viate from the saturation density has yet to be clarified. In
this paper, by using a compressible liquid-drop model, we
show that a key feature in addressing this question is the
density dependence of the surface tension. We then derive its
relation with the neutron skin thickness.

The dependence of the surface energy on the density of
the nucleon liquid naturally occurs. In the Fermi-gas model,
the surface energy arises from a reduction of the available
density of states of nucleons due to the presence of the sur-
face, beyond which the nucleon flux vanishes. The total ki-
netic energy thus increases by an amount proportional to the
surface area, and this increase depends on the nucleon den-
sity through the nucleon Fermi momentum. In addition to
this kinetic contribution, the interaction between nucleons
contributes to the surface energy more importantly. This is
because a nucleon in the surface region does not perceive the
same amount of attraction from the surrounding nucleons as
that which it would if it were in the deeper region. This
contribution is determined by the property of the nuclear
medium, which is characterized by the nucleon density. We
remark that for the same reasons, the surface energy depends
also on the neutron excess of the liquid; this dependence has
to be invariant under exchange between neutrons and pro-
tons.

As discussed by Yamada[2], the dependence of the sur-
face energy on the inner liquid density controls the density
deviation from the bulk saturation density. Usually, this de-
pendence is not considered explicitly. This is because the
surface tension is normally calculated for a planar interface
between the saturated nucleon liquid and the vacuum, which
are in mechanical equilibrium. However, this is not equiva-
lent to mechanical equilibrium in a real nucleus, which is
generally associated with additional pressures arising from
the size and density dependence of the surface energy. These
pressures in turn affect the equilibrium density of the com-
pressible nucleon liquid.

In order to see this effect, we utilize a compressible
liquid-drop model, which gives rise to a semiempirical mass
formula in a way dependent on the density and neutron ex-
cess in the nuclear interior,nin and din. Generally, a liquid-
drop model is advantageous to the description of various
macroscopic properties of nuclei. During the past decade, it
has been used in describing, e.g., neutron skin[3], nuclear
fission[4], deformation of rapidly rotating nuclei[5], synthe-
sis of superheavy nuclei[5], and nuclei in neutron star crusts
[6].

Throughout this paper we consider nearly symmetric nu-
clei, for which we can setRn.Rp. We assume that the dis-
tribution of i nucleonssi =n,pd is spherically symmetric, uni-
form at a number densityni, and squared off at a radiusRi.
For a nucleus of mass numberA and charge numberZ (neu-
tron numberN=A−Z), we thus obtainnin=nn+np and

din = snn − npd/snn + npd.sN − Zd/A. s1d

We then write the binding energyEB of the nucleus as

− EB = Evol + Esurf + ECoul. s2d

Here

Evol = Awsnin,dind, s3d

with the bulk energy per nucleonw, is the volume energy,

Esurf = 4pssnin,dindRp
2, s4d

with the density-dependent surface tensions, is the surface
energy, and

ECoul =
3Z2e2

5Rp
s5d

is the Coulomb energy. Forw and s, we adopt a form ex-
panded with respect to the density and neutron excess around
nin=n0 and din=0:
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wsnin,dind = w0 +
K0

18n0
2snin − n0d2+ FS0 +

L

3n0
snin − n0dGdin

2 ,

s6d

where n0 and w0 are the saturation density and energy of
symmetric nuclear matter,K0 is the incompressibility of
symmetric nuclear matter,S0 is the symmetry energy coeffi-
cient, andL is the density symmetry coefficient, and

ssnin,dind = s0F1 − Csymdin
2 + xSnin − n0

n0
DG , s7d

where s0=ssn0,0d, Csym is the surface symmetry energy
coefficient, andx=sn0/s0d]s /]ninunin=n0,din=0. In Eq. s2d we
have ignored the energy contribution of the neutron skin
thicknessRn−Rp, which will be considered later, and cur-
vature corrections. We have also ignored pairing and shell
corrections since we will confine ourselves to macro-
scopic properties of the nuclear ground state. We remark
that in equilibriumnin is related todin, as we shall see just
below.

Some of the coefficients characterizing the bulk energy
(6) can be deduced from empirical data for the masses and
root-mean-square charge radii of stable nuclei. The satura-
tion densityn0, the saturation energyw0, and the symmetry
energy coefficientS0 typically take on a value ranging
0.14–0.17 fm−3, −16±1 MeV, and 25–40 MeV, whereas
the incompressibilityK0 and the density symmetry coeffi-
cient L, which control the density dependence of bulk
nuclear matter, are not well constrained. Using a simplified
version of the Thomas-Fermi model[7] we found that vari-
ous sets of the values ofK0 and L ranging 180–360 MeV
and 0–200 MeV reasonably reproduce the empirical masses
and radii and that future systematic measurements of the
matter radii of unstable neutron-rich nuclei would give a
good constraint on the value ofL.

We turn to the coefficients in the surface tension(7). The
primary coefficients0 and the surface symmetry coefficient
Csym can be estimated from the empirical mass data ass0
.1 MeV fm−2 andCsym=1.5–2.5. The parameterx charac-
terizing the density dependence of the surface tension is
poorly known and hence the quantity of interest in this work.
Myers and Swiatecki[8] simply setx=0, while the Fermi-
gas model predictsx=4/3. Wewill see that a precise deter-
mination of n0 from the values ofnin deduced, e.g., from
electron-nucleus elastic scattering data requires reliable in-
formation aboutx.

Let us now estimate the equilibrium value ofnin from
pressure equilibrium and compare it to the bulk saturation
density ns at fixed din. Within the present compressible
liquid-drop model, the pressure equilibrium condition can be
obtained from optimization of the binding energy(2) with
respect to the size under fixedA andZ as

0 = Pvol + Psurf + PCoul. s8d

Here

Pvol =
K0

9
snin − n0d +

L

3
n0din

2 ;
K0

9
snin − nsd s9d

is the volume pressure,

Psurf = −
2s0

Rp
F1 −

3

2
x − Csymdin

2 + xSnin − n0

n0
DG s10d

is the surface pressure, and

PCoul =
3Z2e2

20pRp
4 s11d

is the Coulomb pressure. The bulk pressure vanishes at the
saturation density,

ns = n0 −
3Ln0

K0
din

2 , s12d

which generally decreases with increasingdin as has already
been discussed in Refs.f7,9g. The Coulomb pressure acts
to increase the nuclear size, whereas the surface pressure
tends to enlarge or reduce the nuclear size according to
whetherx is larger or smaller than,2/3.

The relation(8), if the Coulomb pressurePCoul is ignored,
can be reduced to Laplace’s formula. This can be done by
transforming Eq.(8) into

Pvol +
3s0x

Rp
=

2ssnin,dind
Rp

. s13d

Here the left side, arising from the energy derivative with
respect tonin, corresponds to the pressure of the nucleon
liquid, while the right side arises from the energy deriva-
tive with respect toRp.

Deviation of the equilibrium value ofnin from the bulk
saturation densityns at fixeddin can be estimated from con-
dition (8) as

nin − ns . 0.016S230 MeV

K0
DS s0

1 MeV fm−2DS5 fm

Rp
D

3S1 −
3

2
x −

3Z2e2

40pRp
3s0

D fm−3. s14d

In this estimate we have usedPsurf.−2s0s1−3x /2d /Rp. The
ratio of the Coulomb pressure to the surface pressure,
3Z2e2/40pRp

3s0, is typically 0.2–0.6. We find from this
estimate that forx=0 and 4/3, the surface pressure can
induce about 10 % change innin in different directions.
We thus see the role played byx in determiningns from
empirical information aboutnin.

We now proceed to show that the neutron skin thickness,
which has been neglected so far, is a quantity that may be
useful for deduction of the value ofx. In doing so, as con-
sidered by Pethick and Ravenhall[10], it is convenient to
describe the nuclear surface in a thermodynamically consis-
tent manner. In this description, the nuclear surface is in
thermodynamic equilibrium with the bulk system composed
of A nucleons, and the neutron skin arises from adsorption of
Ns neutrons onto the nuclear surface. The interior region
composed ofA−Ns nucleons acts as a reservoir of neutron
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chemical potentialmn, and neutrons can go back and forth
between the skin and interior regions. Consequently, the rel-
evant thermodynamic quantity is the thermodynamic poten-
tial, V=Vvol+Vsurf+VCoul, divided in a similar way to the
binding energy(2). In equilibrium, Vsurf=sA, whereA is
the surface area. A small quasistatic change in the neutron
excess in the interior region withA andN fixed gives rise to
a change in the thermodynamic potential of the surface,
DVsurf, and a change in the neutron chemical potential,Dmn,
which are related as

DVsurf = − NsDmn. s15d

This relation indicates that the neutron skin can be described
in terms of the bulk and surface properties. We remark that at
N=Z, a balance between the induced changesDVvol and
DVCoul in the volume and Coulomb energies allows the
neutron excess in the interior region to deviate from zero
and hence a proton skin to occur, as we shall see.

It is straightforward to combine the above thermodynamic
description of the nuclear surface with the compressible
liquid-drop model adopted here. In this model,din, Ns, A,
andmn read

din =
N − Ns − Z

A − Ns
.

N − Z

A
−

3sRn − Rpd
2Rp

, s16d

Ns . 4pRp
2nnsRn − Rpd, A . 4pRp

2, s17d

and

mn = w0 + S0dins2 − dind + Osdin
3 d. s18d

Here we have calculatedmn at the bulk saturation density
s12d; the dependence ofmn on the parametersL andK0 char-
acterizing the density dependence of the bulk energy does
not appear up to second order indin.

We can now obtain the expression for the neutron skin
thickness in the absence of Coulomb energy. In this case the
system is symmetric under exchange between neutrons and
protons. Substitution of Eqs.(7) and(16)–(18) into Eq. (15)
leads to

Rn − Rp = CdS1 +
3C

2Rp
D−1

+ Osd2d, s19d

where

C ;
2s0

S0n0
SCsym+

3Lx

K0
D s20d

andd;sN−Zd /A. The parameterC originates mainly from a
change in the surface tension due to the small quasistatic
change indin. This change is characterized not only by the
surface symmetry energy coefficientCsym, but also by the
parameterx through the dependence of the saturation den-
sity ns given by Eq.s12d on din. The term 3Lx /K0 on the
right side of Eq.s20d is associated with the finite com-
pressibility and thus vanishes in the incompressible limit
in which Eq.s19d reduces to the result forRn−Rp obtained
by Pethick and Ravenhallf10g. Note that this term does
not exist in the result of Myers and Swiateckif11g who

presumedx=0 in a compressible liquid-drop picture, al-
though it can be comparable withCsym. The fact that
3Lx /K0 is poorly known suggests that one could not de-
duce the equation of statesEOSd parametersL and K0
from experimental data for the neutron skin thickness
without knowingx. Consequently, it turns out that previ-
ous investigations that attempted to relate the neutron skin
thickness with the EOS of nuclear matterf3,9,12g do not
take full account of uncertainties in the parametersx, L,
and K0. We can see from Eq.s19d that the neutron skin
vanishes atN=Z, as it should in the absence of Coulomb
energy.

Coulomb effects ignored in Eq.(19) induce a thin proton
skin at N=Z through a deviation ofdin from zero and a
polarization of the nuclear interior, as discussed by Myers
and Swiatecki[11]. First, in order to calculate the deviation
of din at N=Z, one has only to consider the balance between
DVvol and DVCoul. In this case an increment in the proton
radiusRp tends to reduce the Coulomb energy, while it leads
to a cost of the symmetry energy in the nuclear interior. We
may thus obtain

din .
Ze2

20RpS0
at N = Z, s21d

which typically amounts to a small value of,0.02. For the
neutron skin thicknesss19d, this deviation effectively re-
placesd by d−Ze2/20RpS0 f11g. In the liquid-drop picture,
the b stability condition that the neutron and proton
chemical potentials are almost equal is given by

din .
3Ze2

10RpS0
. s22d

This din is much larger thanZe2/20RpS0, which implies
that generally stable nuclei, lying around theb stability
line, have a neutron skin. Second, the polarization of the
nuclear interior tends to reduce a difference between the
root-mean-square radii of the neutron and proton density
distributions, Drnp, by redistributing nucleons in such a
way as to deplete protons in the central region. This re-
duction amounts toÎ3/5Ze2/70S0 f11g, which typically
takes on a small value of0.01–0.04 fm.

By incorporating these Coulomb effects into Eq.(19), we
finally obtain

Drnp .Î3

5
FCSd −

Ze2

20RpS0
DS1 +

3C

2Rp
D−1

−
Ze2

70S0
G ,

s23d

where a factorÎ3/5 arises from a difference between the
root-mean-square and the half-density radius for the rect-
angular distribution. Here we have ignored corrections
due to the difference in the surface diffuseness between
protons and neutrons. These corrections are lower order in
A than the terms in Eq.s23d f3g and hence expected to be
negligibly small for heavy stable nuclei of interest here.

We now ask how one can obtain information aboutx from
empirically deduced values ofDrnp for stable nuclei such as
Ni and Sn isotopes. Such values can be deduced, e.g., from
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measurements of proton- and electron-nucleus elastic differ-
ential cross sections[13]. It is instructive to compare the
deduced values with the prediction by the present liquid-drop
model, which is given by Eq.(23). Figure 1 exhibits the

deduced and predicted values as a function ofd. When x
=0, the predicted values by setting the other parameters at
typical values are appreciably smaller than the deduced ones.
This suggests thatx is likely to be positive. However, the
magnitude ofx remains to be clarified sincex is coupled
with the uncertain parametersL andK0 in Eq. (23). We re-
mark that a staggering of the deduced values is far larger
than that of the predicted values. This may be partly because
the former values were deduced by various groups using dif-
ferent models for proton elastic scattering and nucleon den-
sity distribution, and partly because pairing and shell effects
are ignored in the present prediction.

In summary we have found from a compressible liquid-
drop model that whether or not the nucleon density in the
nuclear interior is larger than the bulk saturation density de-
pends on the density dependence of the surface tension,
which in turn controls the neutron excess dependence of the
neutron skin thickness. In order to deduce the density depen-
dence of the surface tension and the bulk saturation density
from the neutron skin thickness and the interior density, it
would be useful to systematically analyze differential cross
sections measured for proton and electron elastic scattering
off stable nuclei. In such analysis of proton elastic scattering
data obtained for incident energies above 500 MeV, one
could relate the angle of diffraction maxima measured in the
small momentum transfer region to the root-mean-square
matter radius by using the Glauber theory in the optical limit
approximation[15]. The research in this direction is under
way.
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FIG. 1. Difference in the root-mean-square radius between neu-
trons and protons for six stable nuclei ofA.50. The squares and
crosses denote the results calculated from Eq.(23) for x=0 and
4/3; the other parameters are set to ben0=0.16 fm−3, S0

=30 MeV, K0=230 MeV, L=100 MeV, s0=1 MeV fm−2, Csym

=1.8, andRp=1.2A1/3 fm. The empirical data(dots) are taken from
Refs.[13,14].
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