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We investigate density-fluctuated states of nuclear matter as a result of clustering below the saturation
densityr0 by description in terms of the Bloch function. The Bloch description has the advantage of a unified
representation for a density-fluctuated state from an aggregate of uncorrelated clusters in extremely low-density
regions to the plane-wave state of uniform matter in relatively high-density regions. We treat the density-
fluctuated states due toa and 16O clustering in symmetric nuclear matter and due to10He clustering in
asymmetric nuclear matter. The density-fluctuated states develop as the density of matter decreases below each
critical density around 0.2–0.4r0 which depends on what kind of effective force we use.
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I. INTRODUCTION

In many cases, nucleons in a nucleus are considered as
independent particles moving in an average potential created
by all the nucleons. On the basis of this idea, the ground state
of nuclear matter is considered to be uniform near the
nuclear saturation density such as in the interior region of
nuclei. Therefore, the ground state of infinite nuclear matter
is described by the Slater determinant wave function of
plane-wave single-particle states. Overhauser[1] was the
first to consider the stability of the plane-wave solution of
nuclear matter. He found that if one assumes the existence of
density-fluctuated states(DFSs) instead of plane-wave states,
there could be a considerable gain in the binding energy.

If uniform nuclear matter is unstable and prefers to form
clusters below the saturation density, it is expected from the
importance ofa-clustering effects in light nuclei[2] that this
might be due to some periodic distribution ofa clusters simi-
lar to the structures of ideal crystals. Akaishi and Bandō
investigated a periodic DFS due toa clustering by using the
Bloch function in analogy with electrons in crystals[3].
Brink and Castro[4], and Tohsaki[5,6] also studied the ex-
istence of a lattice structure ofa clusters by the generator
coordinate method. Their results suggest thata-clustering
effects might be important in low-density regions such as the
surface region of heavy nuclei. Furthermore, recent theoret-
ical investigations suggest the possibility ofa-particle con-
densation in low-density nuclear matter[7,8]. Although the
above studies have led to some understanding of the
a-clustering effect in symmetric nuclear matter, nothing has
been said about DFSs due to clustering in asymmetric
nuclear matter and about DFSs due to the clustering of clus-
ters heavier thana clusters.

In extremely low-density regions like the inner crust of
neutron stars, crystalline structure of56Fe is expected be-
cause56Fe is the nucleus with the most binging energy per
nucleon. At subsaturation densities, liquid drop models pro-
posed several characteristic geometrical structures of dilute
nuclear matter, such as spherical, rodlike, and slablike nuclei
[9,10]. Inhomogeneous states of nuclear matter at subsatura-

tion densities are also studied by a quantum molecular-
dynamics (QMD) model, which is a rather quasiclassical
molecular-dynamics model[11–13]. Especially, Watanabeet
al. reproduced the geometrical structure of dilute nuclear
matter proposed by liquid drop models by treating the long-
range property of the Coulomb interaction[13]. QMD simu-
lations provided an insight into the properties of nonuniform
dilute nuclear matter in a microscopic point of view.

However, in the QMD method, the fermionic nature of
nucleons, the Fermi motion, and the exchange effects are
simulated by an effective potential. It is highly desirable to
represent DFSs by the antisymmetrized wave function. Poza-
mantir and Overhauser investigated a one-dimensional DFS
of symmetric nuclear matter in the quantum treatment using
the Bloch function[14]. They found that the binding energy
of the system increases compared with that for uniform
nuclear matter due to density fluctuation with a 15–27 fm
wavelength, which corresponds to the slablike nuclei in liq-
uid drop models.

The aim of our study is to understand the clustering prop-
erties of nuclear matter as the many-body quantum system.
As the first step, we treat here the DFS with the simple cubic
periodicity due to16O clustering as well asa-clustering in
symmetric nuclear matter and due to10He clustering in
asymmetric nuclear matter. We describe DFSs due to cluster-
ing by a Slater determinant wave function where single-
particle states of nucleons are represented by the Bloch func-
tion. For the purpose of treating DFSs due to the clustering
up to 0p-shell nuclei, we extended the Bloch description in
Ref. [3] using the tight-binding approximation to include the
0s and 0p orbits. The Bloch description has the advantage of
a unified representation for DFS from an aggregate of uncor-
related clusters in extremely low-density regions to the
plane-wave state of uniform matter in relatively high-density
regions. Section II explains the Bloch description. Section III
investigates energy behaviors of DFSs due to clustering of
doubly closed-shell nuclei4He, 16O, and10He. Section III A
shows the general energy profile of DFSs, and, in Sec III B,
we attempt to estimate the spurious energy of each constitu-
ent cluster, which originates in its center-of-mass motion.
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Section III C describes the transition from the simple cubic
lattice of 16O to the face-centered-cubic lattice ofa particles
with the density of matter within the classical treatment. Sec-
tion III D shows that critical densities at which DFSs start to
develop depends on what kind of effective force we use.
Finally, Sec. IV includes the summary and discussion.

II. DESCRIPTION OF A DENSITY-FLUCTUATED STATE
WITH PERIODICITY

We consider a DFS as a simple cubic lattice of nuclei with
mass numberA. The lattice is considered to be built fromN3

cubic unit cells with sidea. We consider a variational total
wave function of a system in analogy with electrons in a
lattice as follows:

F = Ap
i=1

AN3

coiki
sr id · xissi,tid, s1d

wherecoiki
andxi represent the spatial and spin-isospin parts

of the ith single-particle wave function of nucleons, respec-
tively. The nucleons are assumed to occupy Bloch functions
constructed from atomic orbits under the periodic boundary
condition. The subscriptsoi andki denote an atomic orbital
and a Bloch wave number vector,ki =s2p /Nadni with ni

being an integer vectorsnix ,niy ,nizd. The Bloch wave number
vectorshkij become continuous variablesk asN approaches
infinity.

In Ref. [3] the DFS due toa clustering was described by
using the 0s orbital Bloch function as follows:

csksrd = fskx
sxd · fsky

syd · fskz
szd, s2d

fsksxd =
1

Nsk
1/2S 1

N
D1/2

o
m=−N/2

N/2

eikmawssx − mad, s3d

and

wssxd = S 2

pb2D1/4

e−x2/b2
, s4d

wherem is an integer, andNsk is a normalization factor. The
0s orbital Bloch functionshfskj are orthonormal functions,
kfskufsk8l=dkk8.

For DFSs due to clustering of 0p-shell nuclei, we assume
that nucleons occupy 0p orbital Bloch states in addition to
the 0s orbital ones. The 0p orbital Bloch function orthogonal
to the 0s orbital one(2) are defined as follows:

copxk
srd = fopkx

sxd · fsky
syd · fskz

szd, s5ad

copyksrd = fskx
sxd · fopky

syd · fskz
szd, s5bd

copzk
srd = fskx

sxd · fsky
syd · fopkz

szd, s5cd

where

fopksxd =
1

Nopk
1/2 ffpksxd − kfskufpklfsksxdg, s6d

fpksxd =
1

Npk
1/2S 1

N
D1/2

o
m=−N/2

N/2

eikmawpsx − mad, s7d

wpsxd = S 2

pb2D1/42

b
xe−x2/b2

, s8d

andNopk andNpk are normalization factors. It is noted that
the 0p orbital Bloch functionss5ad–s5cd are orthogonal not
only to the 0s Bloch functions2d but also among themselves.
Accordingly, the Bloch functionshcnkj are orthonormal
functions,

kcokuco8k8l = doo8dkk8, s9d

whereo ando8 denotes,opx,opy, andopz.
There are two parameters in the Bloch description: one is

the lattice spacinga, which corresponds to the density of
matter, and the other is the width parameter of harmonic
oscillator wave functionsb, which corresponds to the size of
a cluster. The size parameterb is optimized by minimizing
the expectation value of Hamiltonian at the fixed lattice pa-
rametera. In this paper the Fermi surface is fixed to the
Fermi cubes−kFøkx,y,zøkF ,kF=p /ad.

Before proceeding to the main subject, we show the be-
haviors of the Bloch functions with respect toa/b. Figure 1
displays the real(left panels) and imaginary(right panels)
parts of thes-wave (upper panels), p-wave (middle panels),
and op-wave (lower panels) Bloch functions in the case of
a=1 andk=p /2. At a largea/b value (the dotted line for
a/b=10), s-wave andp-wave Bloch functions become local-
ized single-particle wave functions at lattice sites, and the
op-wave Bloch function is almost identical to thep-wave
Bloch function. As the ratioa/b approaches zero, thes-wave
andp-wave Bloch functions, Eqs.(3) and(7), become plane-
wave functions,

lim
a/b→0

fsksxd =
1
ÎL

eikx,

lim
a/b→0

fpksxd =
1
ÎL

e−i·sgnskd·p/2eikx,

whereL=Na. The limit of the p-wave function shifts from
the ordinary plane-wave function by the phase
−i ·sgnskd ·p /2. Due to the orthogonality to thes-wave
Bloch function, theop-wave Bloch functions6d becomes a
plane-wave function with the wave number vectork
−sgnskd ·2kF in the limit that a/b→0,

lim
a/b→0

fopksxd =
1
ÎL

ei·sgnskd·p/2ei·hk−sgnskd·2kFjx.

Figure 2 displays the kinetic energies of thes-wave(solid
lines) and op-wave (dotted lines) Bloch functions. At large
a/b values(the top panel indicates the case thata/b=5), the
kinetic energies of thes-wave andop-wave Bloch functions
with any wave number vector ares"2/2Mds1/b2d and
s"2/2Mds3/b2d, respectively, which correspond to the kinetic
energies of harmonic oscillator wave functions with quantum
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numbers 0 and 1, respectively. As the value ofa/b decreases
(from the top panel to the bottom panel), the kinetic energies
of the s-wave andop-wave Bloch functions with the wave
number vectork gradually approach those of plane wave:
s"2/2Mdk2 and s"2/2Mdhk−sgnskd ·2kFj2, respectively.

Accordingly, in the limit thata/b→0, the DFS due to
a-clustering described by thes-wave Bloch function with the
Fermi cube goes to uniform matter described by the plane
wave with the Fermi cube: −kFøkx,y,zøkF, while the DFS
due to 16O clustering described by thes-wave and the
op-wave Bloch functions with the Fermi cube becomes uni-
form matter described by the plane wave with the protruding
Fermi surface,

− 2kF ø kx ø 2kF, − kF ø ky,z ø kF,

− 2kF ø ky ø 2kF, − kF ø kz,x ø kF,

− 2kF ø kz ø 2kF, − kF ø kx,y ø kF.

s10d

III. ENERGY BEHAVIOR OF DENSITY-FLUCTUATED
STATES DUE TO CLUSTERING

First, we show the energy profiles of constituent clusters,
4He, 16O, and10He nuclei. The total energy per nucleon of
the system is divided into four parts:

E = T + Unucl + UCoul − Tc.m.. s11d

The first term represents the kinetic energy, and the second
and third terms represent the nuclear and Coulomb parts of
the interaction energy, respectively. The fourth term repre-
sents the spurious energy arising from the center-of-mass
sc.m.d motion of a constituent cluster. We adopt the modified
Volkov force sMV1 case 3d f15g, as an effective nuclear
force. The MV1 force consists of the two-range Gaussian-
type two-body part and thed-type three-body part. The
three-body part is indispensable to reproduce the saturation
property of uniform nuclear matter. The parameters in the
MV1 force are determined in order to reproduce the binding
energies of doubly closed4He, 16O, and40Ca nuclei. Table
I lists the calculated energies per nucleon of4He, 16O, and
10He nuclei by using the simplest harmonic oscillator
wave functions, which are compared with the experimen-
tal data. The calculated value of the saturation energy of
uniform symmetric matter with the Fermi sphere is
23.51 MeV at 0.261 fm−3, while the empirical value is
15.6 MeV at 0.17 fm−3.

When we attempt to evaluate the expectation value of
Hamiltonian(11) for DFSs, we face two problems. The first
one deals with the spurious energy from the c.m. motion of
each constituent cluster. It is not possible to obtain the exact
value of the spurious energy for a correlated cluster in an

FIG. 1. Behaviors of the Bloch functions with respect toa/b in the case wherea=1 andk=p /2. The left and right panels display real
and imaginary parts of thes-wave (top panels), p-wave (middle panels), andop-wave (bottom panels) Bloch functions, respectively. The
dotted, dashed, dotted-sashed, and two-dotted-dashed curves indicate the cases wherea/b=10,4,2, and 1.
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aggregate though it definitely can be evaluated for an iso-
lated nucleus(cluster). The second one deals with the Cou-
lomb energy of an infinite nuclear system. The Coulomb en-
ergy of nuclear matter diverges logarithmically unless a
neutralizing background of electrons is considered. In uni-
form nuclear matter, the Coulomb energy becomes zero due
to complete cancellation of positive and negative charge dis-
tributions. However, if a DFS arises, the Coulomb energy
obtains a certain value due to the difference between positive
and negative charge distributions[16].

Section III A describes the energy behaviors of DFSs as a

function of the average density, ignoring the spurious and
Coulomb energies. In Table I, the energy values obtained by
excluding the Coulomb energy and/or spurious energies have
also been listed. Especially, ana cluster has considerable
spurious energy coming from the zero-point oscillation in its
c.m. motion, as indicated in Table I. We estimate this in
terms of the single-particle kinetic energy of the 0s orbital
Bloch state withk=0 in Sec. III B. In Sec. III C, the crystal-
line structure ofa particles in the uniform background of
electrons has been discussed within the classical treatment.
Finally, the dependence of energy behaviors of DFSs on ef-
fective forces has been analyzed in Sec. III D.

A. Development of density fluctuation due to clustering
with the decrease of density

We first show that the energies of DFSs described by the
Bloch function smoothly change from an aggregate of iso-
lated clusters fixed at lattice sites to uniform matter(plane-
wave states) with the increase of density. Figure 3 shows the
energy curves of the DFS due to4He (left panel) and 16O
(right panel) clustering as a function of the width parameter
b at the fixed lattice spacinga. Here, the Coulomb and spu-
rious energies are ignored. In the region of the small width
parameters, energy curves at various fixed lattice sidesa are
almost similar to those of the isolated cluster limit(solid
lines). As the width parameterb increases, the energy curves
deviate from the isolated cluster limit and approach the ex-
pectation value of plane-wave states(uniform matter), which
are indicated by the arrows on the right. The deviation from
the isolated cluster limit increases with a decrease in lattice
spacinga (density increasing).

It should be noted that the energy curve has a minimum
point (crosses), and its energy is lower than that of the plane-
wave state. This means that the DFS is energetically favor-
able compared to the plane-wave state. This minimum point
shifts to the larger width parameter when the lattice spacing
a decreases. In other words, the density fluctuation gradually
decreases as the density of matter increases, and an aggregate
of clusters finally melts into uniform matter.

Figure 4 summarizes the minimum energy points of DFSs
shown in Fig. 3. The left panel displays energy curves of
DFSs due to4He (two-dotted-dashed line) and 16O (dotted-
dashed line) clustering in symmetric nuclear matter as a
function of the density of matter. The right panel depicts the
case of10He (dotted line) clustering in asymmetric nuclear
matter with the proton ratioYp=0.2. In the left panel, the
dashed curve indicates the uniform limit of the DFS due to
4He clustering, and the solid curve indicates the uniform
limit of the DFS due to16O clustering. The solid curve in the
right panel indicates the uniform limit of the DFS due to
10He clustering. It should be noted that the energy of the
uniform limit of the DFS due to16O clustering is slightly
lower than that due to4He clustering. Such a difference is
caused by the difference between the Fermi surfaces of the
two uniform limits, namely, the uniform limit of the DFS due
to 4He clustering has the cubic Fermi surface, while that due
to 16O clustering has the protruding Fermi surface given by
Eq. (10). In both panels, arrows on the left indicate the en-
ergies of isolated clusters(nuclei), ignoring the Coulomb and
spurious energies listed in Table I.

FIG. 2. Kinetic energies of thes-wave(solid line) andop-wave
(dotted line) Bloch functions withb=1. The cases ofa=5,4,3,2,
and 1 are displayed from top to bottom.
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As clearly seen, we are able to recognize that the Bloch
description smoothly describes the disappearance of density
fluctuation with the density of matter from an aggregate of
isolated clusters to uniform matter. Furthermore, we imme-
diately find that the DFS due to16O clustering is always
energetically favorable as compared with that due to4He
clustering. However, we must not arrive at a conclusion hast-
ily because the spurious and Coulomb energies are ignored
in the present calculations. Especially, as was shown in Table
I, a 4He cluster has considerable spurious energy. In the fol-
lowing section, we attempt to remove the spurious energy of
each constituent cluster correlating among them.

B. Spurious energy of the c.m. motion of each constituent
cluster with correlation

The energies of DFSs shown in Fig. 4 include the spuri-
ous energy originating from the c.m. motion of each con-
stituent cluster. In extremely low-density regions(very large
values of the ratioa/b), clusters placed at different lattice
sites does not correlate; therefore, we should subtract the
zero-point oscillation energy from the energy of DFSs in the
c.m. motion of each cluster,

T0 =
3"2

2M A

1

b2 , s12d

whereM is the mass of a nucleon andA is the mass number
of the cluster. In relatively high-density regionssvery small
values of the ratioa/bd, constituent clusters melt into uni-
form matter and in principle, the spurious energy becomes
zero. In intermediate-density regions, it is not possible to
evaluate the spurious energy precisely, but it must satisfy the
following condition:

0 % Tc.m.% T0. s13d

Tohsaki evaluated the spurious energy fora-cluster matter
by solving the dynamical equation where one of thea clus-
ters is allowed to move in its cavity formed by all the other
a clusters at lattice sites in the framework of the generator
coordinate methodf6g.

Here, we estimate the spurious energy from the feature of
the kinetic energy of the 0s orbital Bloch function withk
=0. As shown in Fig. 2, the kinetic energy of the 0s orbital
Bloch function withk=0 changes fromAT0 to 0 as the ratio
a/b decreases. We first define the development of the cluster,

FIG. 3. Energy curves of DFSs due to4He (left panel) and16O (right panel) clustering as a function of the width parameterb at various
fixed lattice spacinga. In the left panel, the long-dashed, short-dashed dotted, dotted-dashed, and two-dotted-dashed curves show energy
curves ata=6.0,5.5,5.0,4.5, and 4.1 fm, respectively. In the right panel, the long-dashed, short-dashed dotted, dotted-dashed, and two-
dotted-dashed curves show energy curves ata=8.0,7.0,6.5,6.0, and 5.8 fm, respectively. The solid curve shows the energy curve of the
isolated cluster limitsa=`d in each panel. The arrows on the right denote the energies of plane-wave states(uniform matter). The crosses
display the minimum energy points of DFSs at each lattice spacinga.

TABLE I. Binding energies per nucleon of4He, 16O, and10He nuclei using MV1 force and the wave
functions of the simplest harmonic oscillator shell model. In each nucleus, the first row represents the
minimized total energy, the second represents the minimized energy excludingUCoul, and the third one
represents the minimized energy excludingUCoul andTc.m..

bsfmd TsMeVd UnuclsMeVd UCoulsMeVd Tc.m.sMeVd Theor.EsMeVd Expt. EsMeVd

4He 2.14 13.58 −17.57 0.19 3.40 −7.19 −7.07

2.14 13.58 −17.57 3.40 −7.38

2.31 11.66 −15.88 −4.22
16O 2.45 15.54 −23.65 0.86 0.65 −7.90 −7.98

2.44 15.67 −23.90 0.65 −8.76

2.46 15.43 −23.53 −8.11
10He 2.59 12.98 −14.80 0.06 0.93 −2.68 −3.02

2.59 12.98 −14.80 0.93 −2.74

2.70 11.95 −13.80 −1.85
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Nc, as the ratio of the kinetic energy of the 0s orbital Bloch
function (3) to that of the 0s harmonic oscillator wave func-
tion (4),

Nc = kfs0ut̂xufs0l/kwsut̂xuwsl. s14d

Figure 5 displays the behavior ofNc with respect toa/b. It
changes from unity at the isolated cluster limitsa/b→`d to
zero at the uniform limitsa/b→0d. Accordingly, it is rea-
sonable to assume thatNc is regarded as the development of
cluster. We estimate the spurious energy of each constituent
cluster correlating among them on the basis of the develop-
ment of clusterNc as follows:

Tc.m.= T0Nc. s15d

It fulfills the inequality s13d.
We reoptimize the width parameterb to minimize the ex-

pectation value of Hamiltonian from which the spurious en-
ergy of each constituent cluster is subtracted according to Eq.
(15). Figure 6 shows the dependence of energies of the DFSs
due to4He, 16O, and10He clustering on the density of matter.
In the zero-density limit, the energy per nucleon of each DFS
becomes the corresponding energy of the isolated cluster
without the Coulomb energy(arrows at the left), which are
given in Table I. After subtracting the spurious energy, the
energy of each DFS also approaches that of the correspond-
ing uniform limit with the increase of density.

Compared with the results in Fig. 4 before subtracting the
spurious energy, the energy difference between DFSs due to
4He and16O clustering becomes small, but there is no inver-
sion between them. Furthermore, critical densities are not
affected by whether or not the spurious energy is subtracted.
This is because the single-particle state represented by the
Bloch function is almost identical to the plane-wave state
near critical densities and DFSs scarcely possess any spuri-
ous energy. The critical densities of the DFSs due to4He,
16O, and 10He clustering are listed in Table II. Here, we
define the critical density from the DFS to the uniform state,

as the density in which the optimized width parameterb is
equal to the lattice spacinga where the development of clus-
ter Nc is zero.

In a similar manner, the Coulomb energy may not affect
the critical densities of the DFSs. We usually assume that a
uniform background of electrons neutralizes nuclear matter.
Near critical densities DFSs are almost uniform; therefore,
the Coulomb energy is expected to be zero because of the
complete cancellation between positive and negative charge
distributions. Accordingly, in a uniform background of elec-
trons, the Coulomb energy causes no inversion between en-
ergies of DFSs due to4He and16O clustering. Below critical
densities, the difference becomes small because the internal
Coulomb energy of a constituent cluster raises the energy of
the DFS due to16O clustering compared with that due to4He
clustering.

Before concluding that the DFS due to16O clustering is
always energetically favorable compared with the DFS due
to 4He clustering, we must inspect the lattice structure of
clusters because so far we have only considered DFSs with
the simple cubic lattice(SCL) of clusters. In the following
section, we investigate the transition of the lattice structure
of a particles within the classical treatment and point out the
possibility that the16O cluster is further divided intoa clus-
ters near a critical density in the nuclear matter medium.

FIG. 4. Energy curves of DFSs in the symmetric(left panel) and asymmetric nuclear matter with the proton rationYp=0.2 (right panel)
as a function of the density of matter. The density is normalized by the theoretical saturation density of the symmetric matter with the Fermi
sphere,r0=0.261 fm−3, using the Modified Volkov force. The two-dotted-dashed, dotted-dashed, and dotted curves show the density
dependence of the energies of DFSs due to4He 16O, and10He clustering ignoring the Coulomb and spurious energies, respectively. In the
left panel, the dashed curve indicates the plane-wave state with the Fermi surface of the proton and neutron cubes(the uniform limit of the
DFS due to4He clustering), and the solid curve indicates the plane-wave state with the Fermi surface of proton and neutron Eq.(10) (the
uniform limit of the DFS due to10He clustering). The arrows on the left in each panel indicate the energies of isolated clusters(nuclei)
ignoring the Coulomb and spurious energies listed in Table I.

FIG. 5. Behavior of the development of clusterNc defined by
Eq. (14) with respect toa/b.
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C. Transition of lattice structure of a particles

We regard ana cluster as a classical point charge with 2e
and consider an aggregate ofa particles in a uniform back-
ground of electrons. As an effectivea-a potential, we adopt
the Lennard-Joness6,12d potential,

ua−a = u0hsr0/rd12 − 2sr0/rd6j,

where r is the interparticle distance,u0 is the depth of the
potential wellsu0.0d, andr0 is the pair bonding length. The
parametersu0 and r0 are set asu0=4.14 MeV and r0
=3.30 fm to reproduce the binding energy of the16O
nucleus and the saturation property of nuclear matter. The
binding energy of16O that has a regular tetrahedron ofa
particles whose sides are3.32 fm is 14.40 MeVbelow the
threshold of 4a decay, which is coincident with the ex-
perimental data.

The Coulomb and Lennard-Jones potential energies of an
aggregate of point charges are evaluated by the expressions
derived in Ref.[16]. In a classical description like QMD in
which the width of Gaussians is fixed, uniformity implies the
uniform distribution of point particles. If we recognize the
face-centered-cubic lattice(FCCL), which is the close-
packed lattice, ofa particles as the uniform nuclear matter,
the saturation energy is −16.0 MeV at 0.172 fm−3 taking into
account the internal energy of ana particle s−28.3 MeVd.

We describe the transition between the SCL of16O clus-
ters and the FCCL ofa particles in the following manner.
The FCCL consists of four SCLs. When the relative dis-
tances among the SCLs ofa particles is small, it can be
regarded as the SCL of16O with a regular tetrahedron ofa
particles. On the other hand, when four SCLs are at the cen-
ter of face of one another, it is regarded as the FCCL ofa
particles. Figure 7 shows the density dependence of energies
per nucleon of the SCL(dashed curve) and the FCCL(solid
curve) of a particles, and the SCL of16O (dotted curve). As
clearly evident, the SCL of16O is the most stable among the
three lattice structures in the low-density region. As the den-

sity of matter increases, the sides of a regular tetragonal also
increase, and the SCL of16O changes to the FCCL ofa
particles. Accordingly, it remains a possibility that the tran-
sition of the lattice structure may occur between the SCL of
16O cluster and the FCCL of4He cluster, especially, near the
critical density.

Furthermore, considering the uniform limit of the Bloch
description, it is necessary to discuss the lattice structure. As
previously mentioned, the uniform limit of the DFS based on
the SCL of4He cluster has a cubic Fermi surface while that
of the DFS based on the SCL of16O cluster has an uneven
Fermi surface given by Eq.(10). The energy of the uniform
limit of the 16O-cluster-like DFS is slightly lower than that of
4He-cluster-like one. Since the lattice structure is reflected in
the Fermi surface, we need to systematically investigate
DFSs due to4He and16O clustering in the Bloch description
including the transition of lattice structure.

D. Dependence of DFSs on effective forces

Finally, we state the dependence of DFSs on effective
nuclear forces. Various kinds of effective nuclear forces have
been proposed to satisfy the saturation property of nuclear
matter [15,17–21]; furthermore, the shell-model-like and
clusterlike aspects in finite nuclei are extensively studied us-
ing those forces[21–24]. In the Bloch description for nuclear

FIG. 6. Energy curves of DFSs due to4He and16O clustering in the symmetric nuclear matter(the left panel) and10He clustering in the
asymmetric nuclear matter withYp=0.2 (the right panel), which are calculated by taking into account the correction of the spurious c.m.
energies of individual clusters. The presentation of the curves in similar to that in Fig. 4.

TABLE II. Critical densities of DFSs due to4He, 16O, and10He
clustering.

4He:0.22r0

16O:0.32r0
10He:0.22r0

FIG. 7. Density dependence of energies per nucleon of the SCL
(dashed line) and the FCCL(solid line) of a particles and the SCL
of 16O (dotted line). The density of matter is normalized by the
saturation density of FCCL ofa particles,r0=0.172 fm−3.
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matter, the uniform limit of DFSs,a/bø1, corresponds to a
shell-model-like state in finite nuclei, while a DFS with
a/b.1 corresponds to a clustering excited state.

We calculated the energies of DFSs due to4He and16O
clustering by using the Brink-Boeker(BB) force [17] instead
of the MV1 force. Figure 8 displays the energy behaviors of
DFSs due to4He and16O clustering with respect to the den-
sity of matter in the case ofB4 parametrization of the BB
force. Energy behaviors of DFSs are qualitatively similar
both in the cases of MV1 and BB forces. However, the criti-
cal densities calculated by using the BB force are higher than
those calculated by using the MV1 force. Using several pa-
rametrizations of MV1 and BB forces, the critical densities
of the DFS due to4He clustering are listed in Table III in
which the characteristics of the4He nucleus and the uniform
symmetric nuclear matter with the Fermi sphere are also
listed.

As clearly shown in Table III, the BB force tends to cause
DFSs due to clustering more easily in low-density regions
compared with the MV1 force at all parametrizations. This
tendency is originated in the character of an effective force.
To reproduce the saturation property of nuclear matter, the
BB force possesses the anomalous Majorana parameter while
the MV force possesses thed-type three-body interaction. It

is suggested that it may be easy for clustering aspects to
appear as excited states in finite nuclei by the use of the BB
force. Furthermore, by comparing the four kinds of param-
etrizations in the BB force, we can find that the tendency to
form a cluster in medium is supposedly related to nuclear
incompressibility. Thus, the Bloch description serves as a
guide to study finite nuclei, and the manner in which clus-
tering degrees of freedom respond in medium depending on
what kind of an effective force is used.

IV. SUMMARY AND DISCUSSIONS

We have discussed DFSs of nuclear matter due to cluster-
ing below the saturation density. We assumed that clusters
are formed in nuclear matter below the saturation density and
that they make up a SCL. We described DFSs due to clus-
tering by the Slater determinant where single-particle states
of nucleons are represented by the Bloch function. The Bloch
description has the advantage of smoothly representing DFSs
from an aggregate of isolated clusters in extremely low-
density regions in one limit and the uniform matter in rela-
tively high-density regions in the other limit.

We treated DFSs due to4He and 16O clustering in the
symmetric nuclear matter and10He clustering in asymmetric
nuclear matter withYp=0.2 by the tight-binding approxima-
tion including 0s and 0p orbits. We found that all DFSs have
critical densities below which they are energetically favor-
able compared with the uniform state. In symmetric nuclear
matter, the16O clustering gains energy for the system com-
pared with4He clustering in any density region.

This feature remains after subtracting the spurious energy
of each constituent cluster originating in its c.m. motion,
which is approximately estimated on the basis of the kinetic
energy of thes-wave Bloch function withk=0. The subtrac-
tion does not affect the critical density because thes-wave
Bloch function is almost identical to the plane-wave function
near the critical density. In a similar manner, the Coulomb
energy is also not expected to affect the critical density under
the assumption of a uniform background of electrons. This is
because the uniform distribution of electrons cancels out the
distribution of protons, which becomes almost uniform near
the critical density.

FIG. 8. Energy curves of DFSs due toa and 16O clustering in
the symmetric nuclear matter by the use of the BBsB4d force. The
density of matter is normalized by the saturation density of the
uniform matter with the Fermi sphere,r0=0.206 fm−3. The presen-
tation of the curves is similar to that in Fig. 4.

TABLE III. The critical densities of the DFS due to4He clustering, which are normalized by the theo-
retical saturation densityr0, and characteristics of the4He nucleus, and uniform symmetric nuclear matter
with the Fermi sphere by using several versions of MV1 and BB forces.

DFS of 4He 4He Uniform symmetric nuclear matter

rcr/r0 EsMeVd Rrmssfmd KsMeVd EsMeVd r0 sfm−3d KsMeVd

BB caseB1 0.41 −7.05 1.49 79 −15.69 0.205 183

BB caseB2 0.35 −7.06 1.49 90 −15.75 0.206 203

BB caseB3 0.33 −7.07 1.49 102 −15.80 0.206 225

BB caseB4 0.33 −7.06 1.49 113 −15.75 0.206 249

MV1 case 1 0.25 −7.23 1.64 99 −21.01 0.218 296

MV1 case 2 0.26 −7.43 1.63 101 −21.61 0.222 307

MV1 case 3 0.22 −7.19 1.61 97 −23.51 0.261 324
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We have not discussed the DFS due to10He clustering in
asymmetric nuclear matter, because the introduction of only
the orthogonalp-wave Bloch function is not sufficient to
describe10He clustering. The phenomena of halo and skin
have been observed in the neutron-rich region. In order to
treat the core and valence neutrons independently, we have to
introduce thes- and p-wave Bloch functions with different
width parameters or higher nodal orbital Bloch functions.
This is one of the future subjects to broaden our study of the
clustering phenomena in neutron-rich nuclear matter.

We also investigated the dependence of energy profiles of
DFSs due to clustering on effective nuclear forces using two
kinds of effective forces, namely, the MV1 and BB forces.
We recognized that the critical densities depended on the
kind of effective nuclear force used, although the qualitative
behavior did not. The BB force tends to cause density fluc-
tuation more easily in low-density regions compared with the
MV1 force. It is suggested that it may be easy for clustering
aspects to appear as excited states in finite nuclei using the
BB force. The uniform limit,a/b.1, of the Bloch descrip-
tion corresponds to the shell-model-like ground state in finite
nuclei, while a DFS witha/b.1 corresponds to a clustering
excited state. Thus, the Bloch description provides beneficial
information for studies on finite nuclei on the basis of how
clustering degrees of freedom respond in medium depending
on what kind of effective force is used.

However, the present study cannot conclude that the DFS
due to 16O clustering is always energetically favorable as
compared with the DFS due to4He clustering because we
only considered DFSs with a SCL of clusters. Within the

classical treatment, we pointed out that there exists the pos-
sibility that the SCL of16O clusters transits to the FCCL ofa
clusters near the critical density. In a similar manner, the
crystalline structure of56Fe is certainly realized in extremely
low-density regions such as the inner crust of neutron stars;
however, it is also obscure near the critical density at which
a DFS starts to develop. Besides the crystalline structure of
nuclei, there have been recent theoretical investigations on
the possibility of a cluster condensation in low-density
nuclear matter[7,8]. If phase transition between the crystal-
line structures of nuclei anda condensation occur, constitu-
ent nuclei need to be excited to ana-gas state near the
a-breakup threshold[24–26] owing to interference among
nuclei at different lattice sites.

Therefore, our future task will aim to investigate the tran-
sition between DFSs due toa and 16O clustering using the
Bloch description in order to understand the clustering phe-
nomena in nuclear matter. In the transition region between
the SCL of16O nuclei and the FCCL ofa clusters, constitu-
ent 16O nuclei are excited toa-clustering states, which is
capable of being a door-way state between the normal phase
and a condensation in nuclear matter. Such an extension,
where clusters are distributed within a unit cell, will lead to a
microscopic study on the structure of the inner crust of neu-
tron stars with zero temperature and supernova matter with
finite temperature.
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