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the complete inelastic spectrum—resonant, nonresonant, and deep inelastic scattering—is elaborated and com-
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introduced. Within both models, cross sections and response functions are evaluated and binding energy effects
are analyzed. Finally, an investigation of the second-kind scaling behavior is also presented.
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I. INTRODUCTION

In this work we consider highly inelastic electron scatter-
ing and compare its analysis with the case of quasielastic
(QE) electron scattering. The latter is dominated by the pro-
cess where the exchanged virtual photon interacts with a
nucleon in the nuclear ground state and ejects that nucleon,
thereby forming a nuclear particle-hole excitation. Correc-
tions to this dominant process involve going beyond the im-
pulse approximation to account for two-body currents, final-
state interactions, and nuclear correlations. Although these
contributions are known not to be entirely negligible[1–7]
this simple process accounts for the basic feature seen in the
vicinity of elastic scattering from a nucleon at rest, namely,
the QE peak. Models such as those discussed below take into
account the fact that the nucleons in the nucleus are moving
and are bound and thereby produce a broad peak in the in-
elastic spectrum. In the present work our goal is to extend
the analysis, still maintaining the same basic features of the
relativistic modeling used for the QE region, and now focus
on what we call highly inelastic scattering, or for brevity,
simply the inelastic region. This includes everything that
goes beyond the QE process: that is, whereas the QE process
assumeselastic scattering from the nucleons, the inelastic
process will assumeinelastic e-N scattering. For relatively
low final-state invariant masses one lies in the region of reso-
nance excitation and two cases of this sort have been ex-
plored in recent work[8,9]. In the present study these ideas
are generalized to include the complete inelastic spectrum,
both resonant and nonresonant, including deep inelastic scat-
tering (DIS), within the context of the unified relativistic
approach used in our previous work.

Thus, in the present work our goal is to begin by explor-
ing extensions of the relativistic Fermi gas(RFG) model
[6,10,11] to an inelastic version of this approach. While this
bears some connection with traditional convolution models
for the high-energy response of nuclei(see, for example,
Refs. [12–15]) it is not the same in that, albeit within a
model, it correctly incorporates a specificrelativistic nuclear
spectral function into the problem, whereas some other ap-

proaches make additional assumptions and use only the inte-
gral of the spectral function, namely, the nuclear momentum
distribution or make nonrelativistic approximations when
dealing with the spectral function.

This distinction can be seen quite clearly in studies of
first- and second-kind scaling[11,16–20] and will not be
elaborated here. Once the inelastic RFG modeling is in hand,
it becomes clear that it might be useful to explore a phenom-
enological extension of this model, namely, what we call the
extended relativistic Fermi gas(ERFG). In this approach we
take the result of doing the correct integral over the nuclear
spectral function(i.e., not the full integral, which is the mo-
mentum distribution, as alluded to above) directly from fits
made previously to the data[21]. We shall see that this has a
significant impact on the nuclear responses at high inelastic-
ity.

An issue which will also become clear later is that the
story is not yet complete: in addition to the modeling done in
the present work, where the focus is placed on incorporating
inelastic effects at high energies, there are still other contri-
butions that must be added. Specifically, in recent work[22]
on 2p-2h meson-exchange current effects it is seen that a
significant incoherent contribution must be added to those
explored here. Given that the work on 2p-2h effects is, as
yet, incomplete—correlation contributions are presently be-
ing included—it is premature to make too much of compari-
sons with experimental data, and, as we remark later in the
appropriate places, the final understanding of how all of the
various reaction mechanisms enter, while becoming clearer
is not yet achieved.

The paper is organized as follows: in Sec. II we recall the
general formalism for inelastic electron-nucleus scattering;
in Sec. III we derive the expressions for the inelastic had-
ronic tensor in three different models: the pure RFG model
[Sec. III A], the RFG including the effects of binding energy
[Sec. III B] and the ERFG[Sec. III C]; in Sec. IV we present
numerical results for cross sections[Sec. IV A], response
functions[Sec. IV B], and scaling functions[Sec. IV C] and
finally, in Sec. V we draw our conclusions.
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II. INELASTIC ELECTRON-NUCLEUS SCATTERING:
GENERAL FORMALISM

With the goal outlined above in mind, we start by rewrit-
ing the general expressions that apply in both elastic and
inelastic regimes. The general formalism describing inclu-
sive electron-nucleus scattering processes is widely available
[23–25]; here we simply focus on those aspects that are of
special relevance for the discussion that follows. We follow
the conventions and metric of Ref.[26] and use capital let-
ters to refer to four-vectors. The incident and scattered elec-
tron four-momenta are denoted byKi

m=s«i ,k id and Kf
m

=s« f ,k fd. The hadronic variables,PA
m=sMA,0d and PB

m

=sEB,pBd represent the four momenta of the target and re-
sidual nucleus, respectively. The four-momentum transfer is
given by Qm=sv ,qd (we assume the Born approximation,
i.e., only one virtual photon exchanged in the process).

Following standard procedures the differential cross sec-
tion may be written

ds

dV fd« f
=

2a2

Q4

« f

«i
hmnW

mn, s1d

where a is the fine structure constant,hmn is the leptonic
tensor that can be evaluated directly using trace techniques
f27g, and Wmn is the hadronic tensor containing all of the
nuclear structure and dynamics information. Assuming that
the final state can be described in terms of a recoiling nuclear
stateucBl plus ashighlyd inelastic stateuFXl, its general ex-
pression is given by

Wmn = o
A

o
B

o
X

kcB,FXuĴmsqducAl*kcB,FXuĴnsqducAl

3 rsEBddEBrsEXddEXds«i − « f + EA − EB − EXd,

s2d

where ōAsoBoXd indicates the appropriate averagessumd
over initial sfinald states. HereĴmsqd is the Fourier transform
of the nuclear current operator evaluated,ucAl and ucB,FXl
represent the initial and final states, respectively, and the
distribution functionsrsEBd andrsEXd are introduced to ac-
count for the energy-momentum dispersion relation of the
final nuclearsBd and hadronicsXd systems. In this work we
assume that the inelasticity of the process is totally ac-
counted for by the final stateFX; hence for the energy dis-
tribution function of the residual nuclear system we use

rsEBd=dsEB−ĒBd, whereĒB=ÎpB
2 +sMB

* d2. Note thatWmn in
Eq. s2d is meant to be evaluated atpB+pX=q=k i −k f.

The nuclear tensor can equivalently be expressed as an
integral in thesE ,pd plane, with −p=pB the three-momentum
of the recoiling daughter nucleus andE;Îp2+sMB

* d2

−Îp2+sMB
0d2 the excitation energy of the residual nucleus

(see Ref.[19]). The domain of integration is the kinemati-
cally allowed region

maxfEs0d,0g ø E ø Espd, s3d

where

Esud = MA
0 + v − ÎsMB

0d2 + p2 − ÎWX
2 + q2 + p2 + 2pq cosu

s4d

with u the angle betweenp and q, and whereWX is the
invariant mass of the final state. In theMB

0 →` limit the
above expression becomes

E`sud = mN + ṽ − ÎWX
2 + q2 + p2 + 2pq cosu, s5d

wheremN is the nucleon mass,ṽ;v−ES andES=MB
0 +mN

−MA
0 is the separation energy.

The upper curveEspd crosses thep axis atp−=−yX and
p+=YX, where

yX =
1

2W2fsMA
0 + vdÎsW− MB

0d2 − WX
2

3ÎsW+ MB
0d2 − WX

2 − 2qLXg s6d

and

YX =
1

2W2fsMA
0 + vdÎsW− MB

0d2 − WX
2

3ÎsW+ MB
0d2 − WX

2 + 2qLXg, s7d

and where

W= ÎsMA
0 + vd2 − q2 and LX = 1

2fW2 + sMB
0d2 − WX

2g.

s8d

The variableyX is the generalization of the usualy-scaling
variable to the inelastic process where a resonanceX is pro-
duced. In the limitMB

0 →` it reads

yX,` = Îsṽ + mNd2 − WX
2 − q. s9d

Note that the allowed region decreases withWX and col-
lapses to a point when −yX=YX, which impliesW=MB

0 +WX
or, in the MB

0 →` limit, syX,`dmin=−q, corresponding to
sWXdmax=ṽ+mN. Summarizing, for fixed four-momentum
transfer, the resonant mass is limited to the range

mN + mp ø WX ø mN + v − ES. s10d

III. THE RELATIVISTIC FERMI GAS MODEL

In this section we proceed by evaluating the hadronic
nuclear tensor assuming the impulse approximation and by
working within the framework of the RFG model. In this
case, the virtual photon is absorbed by an on-shell nucleon

described by a Dirac spinorush ,shd, with energy Ēh

=Îh2+mN
2. Integrating over the momenta in the Fermi sea,

the following expression for the inelastic hadronic tensor re-
sults:
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Wmnsq,vd =
3N

4ppF
3E

F
dh

mN

Ēh

E dEXdsv + Ēh − EXd

3
1

2o
sh

o
Xi

rsEXi
dfF̄Xi

Ĵmush,shdg*fF̄Xi
Ĵnush,shdg,

s11d

whereN is the number of nucleonssprotons or neutronsd and
eFdh;edhuspF−hd, pF being the Fermi momentum. The
symbol edEX stands for the integral over the energy of the
inelastic final state, whileoXi

indicates in general the sum/
integral over all the internal quantum numbers of all possible
inelastic final statesFXi

, having total energyEX and total
momentumpX, fixed by momentum conservation to bepX
=h+q.

The hadronic tensor in Eq.(11) for inelastic processes can
be also written in the form

Winel
mn sq,vd =

3N
4ppF

3 E dEXE
F

dh
mN

Ēh

winel
mn sH,Q,EXd

3dsv + Ēh − EXd, s12d

where Hm=sĒh ,hd and we have introduced the inelastic
single-nucleon tensor

winel
mn sH,Q,EXd =

1

2o
sh

o
Xi

rsEXi
dfF̄Xi

Ĵmush,shdg*

3fF̄Xi
Ĵnush,shdg. s13d

Note that the above single-nucleon tensor has dimensions of
E−1. As will be shown later, this is in contrast with our past
work on QE andN→D scattering where the single-nucleon
tensors were defined to be dimensionless.

Next we choose to express the inelastic hadronic tensor in
Eq. (12) in terms of the invariant massWX,

Winel
mn sq,vd =

3N
4ppF

3 E dWXE
F

dh
mNWX

ĒhEX

winel
mn sH,Q,EXd

3dsv + Ēh − EXd s14d

with EX=ÎpX
2 +WX

2. The energy integral can be performed
by exploiting thed function, yielding

Winel
mn sq,vd =

3N
4ppF

3E
F

dh
mN

Ēh

winel
mn sH,Q,v + Ēhd. s15d

In the case of DIS on a single nucleon, the inelastic tensor
simply reduces to the single-nucleon tensorwinel

mn .
Before entering into a detailed analysis of the inelastic

nuclear tensor, it is interesting to notice how the usual ex-
pressions for the QE andN→D hadronic tensors are recov-
ered from the general result given in Eq.(11). First, in the
case of QE scattering, the nuclear final state is simply a
particle-hole excitation, hence, in the RFG model,FX de-

scribes an on-shell nucleon, namely,FX=ÎmN/ Ēpusp ,spd.
The energy distribution function is simplyrsEXd=dsEX

−Ēpd and the sum over the final states reduces to a sum over
spin projections,oXi

=osp
. The QE hadronic tensor then

reads

WQE
mn sq,vd =

3N
4ppF

3E
F

dh
mN

2

ĒhĒp

wQE
mn sH,Qddsv + Ēh − Ēpd,

s16d

wherewQE
mn is the usual dimensionless QE single-nucleon ten-

sor

wQE
mn =

1

2o
sh

o
sp

fūsp,spdĴmush,shdg*fūsp,spdĴnush,shdg.

s17d

In the case of the transitionN→D, the final stateFX, within
the context of the RFG model, is an on-shellD, namely,

FX=ÎmD / ĒDuDsp ,sDd, with on-shell energyĒD=Îp2+mD
2.

The energy distribution function in this case isrsEXd
=dsEX−ĒDd and oXi

=osD
. The N→D hadronic tensor that

results is

WD
mnsq,vd =

3N
4ppF

3E
F

dh
mN

2

ĒhĒD

wD
mnsH,Qddsv + Ēh − ĒDd

s18d

with wD
mn the dimensionless nucleon-D tensor

wD
mn =

mD

2mN
o
sh

o
sD

fūDsp,spdĴmush,shdg*fūDsp,spdĴnush,shdg.

s19d

As expected, these expressions for the dimensionless single-
nucleon tensors coincide with the ones introduced in Ref.
f8,28g. Likewise for the Roper resonance the expressions ob-
tained in Ref.f9g are recovered.

A. The RFG inelastic nuclear tensor and response functions

In this section we evaluate the inelastic nuclear tensor in
the RFG framework. For convenience, as usual we first de-
fine the dimensionless variables

km = sl,kd = S v

2mN
,

q

2mN
D, t = k2 − l2,

hF =
pF

mN
, eF = Î1 + hF

2 ,

s20d

hm = sē,hd = S Ēh

mN
,

h

mN
D, mX =

WX

mN
,

eX = ÎmX
2 + sh + 2kd2,

in terms of which the hadronic tensor in Eq.(14) reads
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Winel
mn sk,ld =

3N
4phF

3 E dmXE dh
mX

ēeX

winel
mn sh,mX;k,ld

3ds2l + ē − eXdushF − hd. s21d

Before presenting the explicit results for the RFG re-
sponse functions, let us discuss an important ingredient of
the calculation, the single-nucleon inelastic hadronic tensor
winel

mn . For unpolarized scattering, the latter can be param-
etrized in terms of two structure functions,w1 and w2, ac-
cording to

winel
mn = − w1Sgmn +

kmkn

t
D + w2shm + kmrdshn + knrd.

s22d

For on-shell nucleons, the structure functionsw1 andw2 de-
pend on two variables, the four-momentum transferQ2 and
the invariant massWX of the final state reached by the
nucleon, or, equivalently, the single-nucleon Bjorken vari-
able

x =
uQ2u

2H ·Q
=

uQ2u
WX

2 − mN
2 − Q2 =

t

h · k
. s23d

In our formalism it is convenient to introduce the inelas-
ticity parameter[8,29]

r ; 1 +
1

4t
smX

2 − 1d, s24d

the value unity corresponding to elastic scattering. Note that
r is simply linked to the Bjorken scaling variable of the
on-shell nucleon moving inside the target nucleus by the
relationr=1/x, thus in the following we will user as argu-
ment of the structure functionsw1,w2.

In presenting our results we will also use the “laboratory”
Bjorken variable

xL =
uQ2u

2mNv
=

t

l
, s25d

corresponding to a single nucleon at rest in the laboratory
frame.

Let us now return to the inelastic nuclear tensor of Eq.
(21): after performing the polar angular integration by means
of the energy-conservingd function one gets

Winel
mn sk,ld =

3Nt

2hF
3k
E

0

2p dF

2p
E

r1sk,ld

r2sk,ld

drE
e0srd

eF

dē

3winel
mn sē,u0,r;k,ld, s26d

where

cosu0 =
1

kh
slē − trd. s27d

The conditionucosu0uø1 fixes the integration limits over
ē:

ē ù e0srd ; kÎ1

t
+ r2 − lr. s28d

Moreover, by requiring thate0srdøeF and that the reso-
nance mass is above the pion-production threshold(i.e., mX
ùmthresh;1+mp) the following region is obtained for the
integration overr:

fr1sk,ld,r2sk,ldg = FmaxHleF − khF

t
,rthreshJ,

leF + khF

t
G

s29d

with

rthresh= 1 +
mpsmp + 2d

4t
. s30d

Note that the upper integration limitr2sk ,ld always lies be-
low the cutoff corresponding to Eq.s10d. Indeed using Eqs.
s10d and s24d and keeping in mind that thesnegatived sepa-
ration energy of the RFG isES

RFG=−TF;mNs1−eFd, the
maximumr allowed by Eq.s10d reads

rmax
RFG= 1 +

1

4t
fs2l + eFd2 − 1g = r2sk,ld +

1

4t
s2k − hFd2,

s31d

r2 therefore resulting in the more stringent integration limit.
Now by writing the single-nucleon inelastic tensor in

terms of structure functionsw1 and w2 as in Eq.(22) and
choosing thez direction alongq, the integration overF and
ē can be performed analytically(see Appendix A) and the
hadronic inelastic tensor can be expressed in the general
form

Winel
mn sk,ld =

3Nt

2hF
3k

jFE
r1sk,ld

r2sk,ld

drs1 − cX
2dus1 − cX

2d

3Umnsk,t,rd, s32d

wherejF=eF−1 is the Fermi kinetic energy and the inelastic
scaling variable

cX ; sgnsl − trdÎe0srd − 1

eF − 1
s33d

has been defined. For each value ofr sand hencemXd a
“peak” can thus be identified, corresponding to the region
−1øcXø1, centered at

cX = 0, lP = tPr =
1

2r
sÎ1 + 4kP

2r2 − 1d,

kP = ÎtPs1 + tPr2d, s34d

whose width

Dl = 1
2fÎs2k + hFd2 + mX

2 − Îs2k − hFd2 + mX
2g .

2khF

Î4k2 + mX
2

s35d

is a function that grows withk and decreases withmX.

BARBARO, CABALLERO, DONNELLY, AND MAIERON PHYSICAL REVIEW C69, 035502(2004)

035502-4



The general expression for the tensorUmn is derived in
Appendix A. Here we only report the longitudinal and trans-
verse components

UL = U00 =
k2

t
fs1 + tr2dw2st,rd − w1st,rd

+ w2st,rdDsk,t,rdg, s36d

UT = U11 + U22 = 2w1st,rd + w2st,rdDsk,t,rd, s37d

which are linked to the longitudinal and transverse response
functions by the following relations:

Rinel
L,Tsk,td =

3Nt

2hF
3k

jFE
−1

cX
maxsk,ld

dcXU ] r

] cX
Us1 − cX

2d

3UL,T
„k,t,rscXd…, s38d

with

cX
maxsk,ld = min 51,1kÎ1

t
+ rthresh

2 − lrthresh− 1

jF
2

1/2

6
s39d

and

] r

] cX
= − Î2jF

ks1 + jFcX
2d − lcXÎ2jFS1 +

1

2
jFcX

2D
tÎ1 +

1

2
jFcX

2

.

s40d

In Eqs.s36d and s37d the function

Dsk,t,rd =
1

eF − e0srd
E

e0srd

eF

dēE
0

2p dF

2p
sh 3 k̂d2

=
t

k2H1

3
feF

2 + eFe0srd + e0srd2g

+ lfeF + e0srdg + l2J − s1 + td + sr − 1d

3
t

k2hlfeF + e0srdg − tsr + 1dj

=jFs1 − cX
2dF1 + jFcX

2 −
l

k
cX

ÎjFs2 + jFcX
2d

+
t

3k2jFs1 − cX
2dG s41d

arises from the Fermi motion and goes to zero asjF→0;
being proportional tojF>hF

2 /2!1, this provides relatively
moderate corrections to the rest of the contributions in Eqs.
s36d and s37d.

The valuer=1 corresponds to QE kinematics: in this case
the well-known expressions for the QE responses are recov-

ered. The “total” observables are then obtained by adding the
usual RFG QE response to the inelastic results:

Rtot
L,T = RQE

L,T + Rinel
L,T . s42d

In the deep inelastic regime it is customary to deal with
nuclear structure functionsW1,2

A and/or F1,2
A . These can be

expressed in terms of the longitudinal and transverse re-
sponse functions through the following relations:

W1
A = 1

2RT, s43d

W2
A = S t

k2D2

RL +
1

2

t

k2RT s44d

and

F1
A = mNW1

A, s45d

F2
A = 2mNlW2

A. s46d

B. Effects of binding energy

In the study of superscaling for inclusive QE electron
scattering from nuclei, an appropriate scaling variablec8
was introduced by including a small energy shift to have the
QE peak occur at the place where the scaling variable is zero.
A detailed study of the sensitivity of the scaling function to
variations of the Fermi momentum and energy shift was pre-
sented in Refs.[16,18,20]. Here we extend this analysis to
the inelastic region. In principle, the introduction of an en-
ergy shift vshift in the formalism is straightforward and the
calculation of the inelastic responses proceeds as in the
vshift=0 case. However, as will be made clear in the follow-
ing, some complications arise. First, due to the general form
assumed for the single-nucleon inelastic hadronic tensor, a
certain asymmetry appears between the energy shift effects
in the longitudinal and transverse responses. These shift ef-
fects are larger in the longitudinal response. Notice that this
asymmetry already enters at the level of the QE nuclear re-
sponses. Second, there exists an ambiguity in the definition
of the variable which should be used as the Bjorkenx-scaling
variable corresponding to the moving nucleon.

The effects of the inclusion of an energy shift on the in-
elastic nuclear hadronic tensor have been studied in the lit-
erature, with particular emphasis on the structure functionF2
and the European Muon Collaboration(EMC) effect at large
values ofx, in the context of so called “binding models”(see,
for example, Refs.[30,31] and the general reviews[12,13]).
The approach we follow here is the self-consistent generali-
zation of previous works on the RFG. It is formally similar
to the binding model approach, where in general the on-shell
energy of the initial nucleon is modified by subtracting a
constant term which effectively accounts for the nucleon
separation energy and for the possibility that the residual
nuclear system is left in an(highly) excited state. However,
since the existing models either focus only on EMC ratios
and/or use more realistic, although generally nonrelativistic
wave functions, a precise quantitative comparison with those
models is not possible. As we will discuss in the Results
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section, our calculations still miss some ingredients, coming
from meson-exchange currents, and this makes a detailed
quantitative comparison with experimental data premature; it
is clear that, when this comparison will be made in the fu-
ture, a more in-depth study of binding effects will also be
needed.

In the RFG the energy shift is usually introduced by
modifying the argument of thed function appearing in the
general expression of the inelastic hadronic tensor in Eq.

(12), according tov+Ēh−EX→v8+Ēh−EX, where v8=v
−vshift. Then, introducing the invariant massWX8

2;EX
2 −pX

2

=sv8+Ēhd2−pX
2, we can write the inelastic hadronic tensor in

the form

Winel
mn sk,ld =

3N
4phF

3 E dmX8 E dh
mX8

ēeX

winel
mn sh,mX8 ;k,ld

3ds2l8 + ē − eXdushF − hd, s47d

where mX8 =WX8 /mN and l8=v8 / s2mNd. As in the unshifted
analysis, thed function can be used to perform the polar
angular integration, leading to the result

Winel
mn sk,ld =

3Nt8

2hF
3k
E

r18sk,l8d

r28sk,l8d
dr8E

0

2p

3
dF

2p
E

e08sr8d

eF

dēwinel
mn sē,r8;k,ld, s48d

where the variabler8 is defined as

r8 ;
2H ·Q8

uQ82u
= F1 +

1

4t8
smX8

2 − 1dG s49d

andt8;k2−l82.
The inclusion of the energy shift modifies the integration

limits over ē in the following way:

ē ù e08sr8d ; kÎ 1

t8
+ r82 − l8r8. s50d

Correspondingly, the region for the integration overr8 is
given by

fr18sk,l8d,r28sk,l8dg = FmaxHl8eF − khF

t8
,

1 +
mp

4t8
s2 + mpdJ,

l8eF + khF

t8
G .

s51d

The definition of the inelastic scaling variable becomes
now

cX8
2 ;

e08sr8d − 1

eF − 1
s52d

and the inelastic longitudinal and transverse response func-
tions, calculated asRinel

L =Winel
00 and Rinel

T =Winel
11 +Winel

22 , have
the following general forms:

Rinel
L,Tsk,td =

3Nt8

2hF
3k

jFE
r18sk,l8d

r28sk,l8d
dr8s1 − cX8

2dUL,Tsk,t,r8d.

s53d

In order to evaluate the longitudinal and transverse nuclear
functionsUL,Tsk ,t ,r8d one needs to assume a specific form
for the inelastic single-nucleon tensorwinel

mn sē ,r8 ;k ,ld. It is
important to remark that there exists some ambiguity in the
choice made here: for instance, several alternatives involving
different expressions containing the four-momentaQm and/or
Q8m are possible, and these can lead to different results. For
example, in Ref.f30g, the modified four momentum transfer
Q8m is used, although then a prescription must be used in
order to recover the gauge invariance of the nuclear hadronic
tensor, which is lost by making this choice. In Appendix B
we present the specific expressions of the inelastic and QE
responses obtained for a given selection of the single-
nucleon tensors accounting for the energy shift. Apart from
the specific form of the tensorwmn, the choice of the argu-
ments of the single-nucleon inelastic structure functions,
w1,w2, also presents some ambiguities. In fact, the available
parametrizations forw1,w2 that we employ in our calcula-
tions are given for free, on-shell, nucleons, while the inclu-
sion of the energy shift effectively introduces some “off-
shellness” of the initial nucleon, by altering the energy
balance at the vertex where it couples to the exchanged vir-
tual photon. In this case the bound-nucleon Bjorken variable
is not uniquely determined by the final-state invariant mass
and, since no theoretically derived prescriptions exist, one
has to make some assumptions. As shown in Appendix B,
the inelasticity parameter selected in this work,r̃, corre-
sponds to the one given ass2mNṽd / uQ2u=r8st8 /td, whereṽ
is the energy transferred to the nucleon in the system in
which the nucleon is at rest. This means that in our numeri-
cal calculations, for a given set of values ofv, Q2, andr8 we
employ free-nucleon structure functions taken at four-
momentumQ2 and Bjorken variable 1/r̃.

C. Extended relativistic fermi gas

As discussed in previous works[8,16,18,20], for a fixed
value of the invariant massmX, the RFG yields a scaling
function

fscX8d = fLscX8d = fTscX8d = 3
4s1 − cX8

2dus1 − cX8
2d s54d

which, as a function of the appropriate scaling variablecX8, is
the same for all values ofmX.1

In Ref. [18] the behavior of the longitudinal scaling func-
tion was studied for the existing world data in the QE region.
This study showed that to a good approximationfLsc8d su-
perscales, that is, it does not show any significant depen-
dence on the momentum transferk (scaling of the first kind)
and is approximately the same for all nuclear species(scal-

1The function in Eq.(54) differs from the one used in previous
work [20] by a multiplicative function 2jF /hF

2f1+ 1
2jFs1+cX8

2dg. We
have checked that this is numerically unimportant for all of the
kinematical conditions considered here.
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ing of the second kind). An expression for a phenomenologi-
cal longitudinal scaling function,funivsc8d, was obtained by
fitting the data[21]. Based on these results, we now make the
following hypothesis: we assume that thisfunivsc8d, derived
from the data, provides a good description offscX8d= fLscX8d
= fTscX8d, (“scaling of the zeroth kind”) as it implicitly con-
tains the initial-state physics, and thus we make, for anymX,
the following substitution:

3
4s1 − cX8

2dus1 − cX8
2d → fERFGscX8d = funivscX8d. s55d

To be more specific, we calculate the response functions as

RQE
L,T =

N
hF

3kmN

jFfmodelsc8dUQE
L,T, s56d

Rinel
L,Tsk,td =

N
hF

3k
jFE

mthresh

1+2l−eS

dmXmXfmodelscX8dUL,T, s57d

whereeS=ES/mN is the dimensionless separation energy and

fmodelscX8d =H 3
4s1 − cX8

2dus1 − cX8
2d model = RFG

funivscX8d model = ERFG.

s58d

The functionsfRFG and fERFG are shown in Fig. 1 as func-
tions of cX8, while the functionsUQE

L,T andUL,T in Eqs.s56d
and s57d are given in Appendix B.

IV. RESULTS

In this section we present our results for cross sections
and response and structure functions. In computing the in-
elastic hadronic tensor of Eq.(47), we employ phenomeno-
logical fits of the single-nucleon inelastic structure functions.
The latter are measured in DIS experiments and a variety of
parametrizations forw1 andw2 can be found in the literature
[15,32–36], including some variations arising from the dif-
ferent assumptions made for how to extract the neutron
structure functions from deuteron data. Unless stated other-
wise, in the following we adopt the Bodeket al. fit of Refs.
[15,32,33], which describes both the deep inelastic and reso-

nance regions. For the QE contributions, we employ the form
factor parametrization of Ref.[37]. The sensitivity of the
results to the different parametrization choices will be dis-
cussed later.

Additionally, for the Fermi momentum and the energy
shift we will employ the values obtained in Ref.[20],
namely, kF=220 MeV/c, vshift=20 MeV for carbon, kF
=236 MeV/c, vshift=18 MeV for aluminum, kF
=241 MeV/c, vshift=23 MeV for iron, andkF=245 MeV/c,
vshift=25 MeV for gold.

A. Cross sections

In this section we present our results for the cross sections
in the RFG and ERFG models and compare them with the
available experimental data[38–41].

FIG. 2. Inclusive cross section for electron scattering from car-
bon atEinc=500 MeV andue=60° vs the energy transfer. The cal-
culation includes an energy shiftvshift=20 MeV and the separate
QE and inelastic contributions to the cross section are shown. Data
are from Ref.[41].

FIG. 3. As for Fig. 2, but atEinc=2.020 GeV and scattering
angleue=15° (a) andue=20° (b). Data are from Ref.[39].

FIG. 1. Scaling functionfmodelscX8d of Eq. (58) for the RFG and
ERFG models.
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In Fig. 2 we show the inclusive cross section for a12C
target atEe=500 MeV andue=60°. We separate the QE
from the inelastic contribution. We notice that the shifted
RFG model(solid line) yields roughly the right position and
height of the QE peak, but fails to reproduce the tails of the
peak, giving in particular an unobserved dip atv
.200 MeV. On the other hand the ERFG model(dotted
line), while reproducing the data in the tails better, signifi-
cantly underestimates the cross section at the peak. This is
related to the fact that, as shown in Fig. 1, the peak of the
ERFG universal functionfERFG is lower than the correspond-
ing RFG value. Due to the larger extension offERFG overcX8

the normalization of the two functions is the same, namely,
efRFGdcX8 =efERFGdcX8 =1. One might then naively expect the
integral in Eq.(57) which yields the inelastic response func-
tions to be the same in the two models. However, a closer
inspection shows that this is not the case because the inte-
gration limits and/or the weighting provided byUL,T are such
that the ERFG integral does not “saturate” as does the RFG
one.

Figures 3–5 correspond to different kinematical condi-
tions, namely,Ee=2.020 and 3.595 GeV(SLAC) and Ee
=4.045 GeV(JLab) and various scattering angles. Concern-
ing Figs. 3(a) and 3(b), a similar trend persists, with the

FIG. 4. As for Fig. 2, but at
Ee=3.595 GeV and scattering
angleue=16° (a), 20° (b), 25° (c),
and 30° (d). Data are from Ref.
[39].

FIG. 5. As for Fig. 2, but at
Einc=4.045 GeV and scattering
angleue=15° (a), 30° (b), 45° (c),
and 74° (d). Data are from Ref.
[38].
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ERFG model significantly underestimating the data in the
region of the QE peak, whereas the RFG is closer to the data
(particularly for ue=20°), although it leaves no room for
other contributions to be added. Note also that for this scat-
tering angle the inelastic channel starts to be sizable.

Examining Figs. 4 we remark that the QE peak, which is
more clearly separated from the inelastic region in Fig. 4(a),
is again well reproduced in the low-v tail by the ERFG,
while its maximum agrees better with the RFG. On the other
hand the inelastic cross section is in all cases underestimated
by the ERFG, while the RFG alone would roughly account
for what is observed.

Similar comments apply to Fig. 5(a), corresponding to
higher energy and low scattering angle. For higher angles
[Figs. 5(b)–5(d)] the data lie roughly in between the predic-
tions of the ERFG(smaller) and RFG(larger) models, the
former again reproducing the low-v behavior better. As a
general result we observe that as the scattering angle in-
creases the range of validity of the ERFG also increases.

Finally, in Figs. 6 and 7 we consider slightly different
kinematical conditions, corresponding to fixed values ofuQ2u
in the range 2–10sGeV/cd2, and various electron energies
(in the range 8–25 GeV) and angless12° –22°d. Theoretical
results for56Fe are shown as functions of the “laboratory”
Bjorken variablexL. The data corresponding to a fixedQ2 are
taken at different values ofEe and ue. For uQ2u=2 and
10 sGeV/cd2 (Fig. 6) the various data fit reasonably well on

one plot, whereas foruQ2u=5 sGeV/cd2 (Fig. 7), for clarity
we have separated the data into three sets as indicated in the
figure caption. We notice that at largexL sù0.6d the data are
closer to the ERFG predictions, at lowxL s0.1–0.3d they are
closer to the RFG calculation and for 0.3øxLø0.6 they lie
in between the two models. This general trend seems to be
respected for all values ofQ2 (at least where data are avail-
able).

We have also analyzed the effect introduced by different
electromagnetic form factor parametrizations([42–44]) and
verified that it can produce a ±3 % uncertainty at the QE
peak, but does not change the general agreement/
disagreement of the models with the data. Moreover, it
should be remarked that, at the energies considered in this
section, the contribution from the resonance region to the
inelastic part of the cross section is quite important and thus
a comparison with results obtained by using purely DIS pa-
rametrizations[34,36] of the single-nucleon structure func-
tions is not appropriate. At the highestuQ2u values considered
here[Figs. 6(b) and 7], the use of different parametrizations
[34,36] does not produce significant variations in the results.

An important comment, already anticipated in the intro-
duction, is in order. The RFG and ERFG models considered

FIG. 6. Differential cross sectionds /dvdVe for electron scat-
tering on iron, shown as a function ofxL at fixed uQ2u. Panel(a):
uQ2u=2sGeV/cd2, the experimental points, from right to left, are
taken at fEesGeVd ,uesdegdg=s8,11.8d ,s8,12.4d ,s8,13.6d ,s9.7,
11.8d ,s12,11.8d ,s15,11.8d. Panel(b): uQ2u=10 sGeV/cd2, the ex-
perimental points, from right to left, are taken
at fEesGeVd ,uesdegdg5(15,16.0),(15,17.1),(17,15.0),(17,16.9),(21,
14.1),(24,14.1). Data are from Ref.[40].

FIG. 7. As for Fig. 6, but atuQ2u=5sGeV/cd2. The two data in
the upper panel, from right to left, correspond toEe=8 GeV and
ue=22° and toEe=9.7 GeV andue=19.7°; the data in the middle
panel have fixed Ee=12 GeV and, from right to left, ue

=12.8,13.3,14.2,15.8,20.6°; the data in the lower panel, from right
to left, are taken atsEe=15 GeV,ue=13.2°d, sEe=17 GeV,ue

=13.5°d, sEe=24.5 GeVue=11.1°d. Data are from Ref.[40].
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in this study include the 1p-1h one-body contributions both
for elastic scattering from a nucleon in the nucleus and for
representations of the single-nucleon inelastic spectrum,
thereby incorporating effects from meson production, excita-
tion of baryon resonances(notably theD) and, at high exci-
tation energies, DIS. However, this is not the entire story: in
this region and beyond effects arising from reaction mecha-
nisms not included here, namely, those coming from corre-
lations and both 1p-1h and 2p-2h meson-exchange currents
(MEC) are also important[3–8,20,22]. In particular, in a
recent study[22] effects from 2p-2h meson-exchange cur-
rents were explored for high-energy conditions where rela-
tivistic modeling is important. The resulting cross sections
are significant in the region above the QE peak and therefore
tend to bring the total(the present ERFG contributions plus
these additional MEC contributions) into better agreement
with the data. While this is encouraging, it is still not the full
story, since the 2p-2h MEC contributions have correspond-
ing correlation contributions, as required by gauge invari-
ance(and as was studied in detail in our previous work on
1p-1h MEC plus correlation effects[7]). The 2p-2h correla-
tions have not yet been incorporated and thus detailed com-
parisons with data are somewhat premature.

In summary, the RFG model clearly overestimates the
low-v data, which are better reproduced by the ERFG model
(dotted line), and the fact that the latter yields a cross section
that is below the data is encouraging, since this leaves room
for the above-mentioned effects to provide the balance.

B. Response and structure functions

In the RFG framework the only effect of the nuclear me-
dium arises from the Fermi motion of the nucleons inside the
nucleus. To quantify the impact of the Fermi smearing on the

observables we have compared the inelastic RFG response
functions with the corresponding “unsmeared” ones

Runsm.
L,T ; ZRproton

L,T + NRneutron
L,T , s59d

where Rprotonsneutrond
L,T are the response functions for a free

proton sneutrond at rest in the laboratory frame.2

A similar comparison has been done for the nuclear struc-
ture functionsW1,2

A and/orF1,2
A of Eqs.(43)–(46).

In presenting the results we choose the following kine-
matical conditions: we select a relatively low(but typical)
four-momentum transfert=0.284 [corresponding touQ2u
=1 sGeV/cd2], in order to illustrate the differences between
smeared and unsmeared quantities better. The calculations
are performed for the case of56Fe with kF=241 MeV/c and
they include the energy shift discussed in Sec. III B, with
vshift=23 MeV.

In Fig. 8(a) and 8(b) the inelastic response functionsRinel
L,T

per nucleon are plotted as functions of the energy transferv,
while in Figs. 8(c) and 8(d) the structure functions 2xLF1 and
F2 are shown as functions ofxL. It is seen that in the reso-
nance region[small panels in Fig. 8(a) and 8(b)] the Fermi
smearing effects are rather large and completely smooth out

2The Bodeket al. fit we employ to describe the single-nucleon
structure functions was obtained from data on cross sections assum-
ing a constant ratiosL /sT=0.18. When the fit is used to evaluate
the separate responses at relatively lowuQ2u, this may lead to some
“spurious” effects, such as the bump observed in the unsmearedRL

at v=0.86 GeV, corresponding to theD resonance. This indicates
that new and more precise fits of the nucleon structure functions in
the resonance region are needed.

FIG. 8. Panels(a) and (b): in-
elastic and unsmeared response
functions Rinel

L,T per nucleon as
functions of the energy transferv
for 56Fe, calculated within the
RFG, with kF=241 MeV/c and
vshift=23 MeV. Panels (c) and
(d): inelastic and unsmeared struc-
ture functions 2xLF1

A and F2
A per

nucleon as functions ofxL=t /l.
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the resonance structure of the single-nucleon responses,
while in the DIS region(largev or smallxL) almost no effect
of the nuclear medium is observed.

To illustrate the kind of effects introduced by the energy
shift accounted for following the procedure presented in Ap-
pendix B, we show in Figs. 9(a) and 9(b) the hadronic re-
sponses,RL,T, as functions ofv. The energy shift has been
taken to bevshift=23 MeV. We present separately the QE
and inelastic channel contributions as well as the global re-
sult. A similar analysis for the structure functions 2xLF1

A and
F2

A, as given in Eqs.(45) and (46), is presented in Fig. 9(c)
and 9(d). Note that the effects introduced by the energy shift
are observable in the QE peak and tend to disappear increas-
ingly rapidly when moving to the inelastic region. In particu-
lar, it is interesting to remark that the longitudinal response
seems to be more sensitive to inclusion of the energy shift.
This is connected with the large terms entering inDL8 (see
Appendix B). In this case the energy shift effects remain
evident even at very largev.

C. Scaling functions

In this section we investigate more closely the second-
kind scaling behavior within the context of the inelastic RFG
model. Since the second-kind scaling analysis involves com-
parisons of different nuclear species at the same kinematics
and since a large “reach” in density(or equivalently in Fermi
momentum) is advantageous, we add the case of gold to the
discussions above.

In Fig. 10 we plot the inclusive cross sections on gold for
the kinematical conditionsEinc=3.6 GeV,ue=16°, and com-
pare them with available experimental data, taken at SLAC
[39].

Since it has been found to be desirable to have separate
information on longitudinal and transverse responses when

discussing second-kind scaling, we proceed as in past work
[20] where these data(for carbon, aluminum, iron, and gold)
were used to obtain “L-subtracted” transverse response func-
tions and then transverse superscaling functions. TheL sub-
traction was performed by assuming a universal longitudinal
superscaling function fL

universalsc8d= fERFGsc8d (see Sec.
III C ) and reconstructing from it the longitudinal cross sec-
tion:

SL =
fL
universal

kF
vlGLsM . s60d

SL was then subtracted from the total inclusive cross section
in order to obtain

FIG. 9. Panels(a) and (b): re-
sponse functionsRL and RT per
nucleon, respectively, as functions
of v for 56Fe. The separate contri-
butions of the QE peak(visible at
low v) and of the inelastic re-
sponse functions are shown, to-
gether with the sum of the two
contributions. Panels(c) and (d):
structure functions 2xLF1 and, re-
spectively,F2 per nucleon vsxL.
In this case the contribution of the
QE peak is the one on the right
(large xL) and, correspondingly,
the inelastic contribution is the
structure appearing at smallxL.

FIG. 10. Inclusive cross section for electron scattering from
gold, atEinc=3.6 GeV andue=16° vs the energy transfer. Data are
from Ref. [39].
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ST = ds − SL s61d

and then

RT =
ST

sMvT
, s62d

fT =
kFRT

GT
. s63d

In the above equations, according to Ref.f20g,

GL =
sk2/tdfG̃E

2 + W̃2DT8g
2kf1 + jFs1 + c82d/2g

, s64d

GT =
2tG̃M

2 + W̃2DT8

2kf1 + jFs1 + c82d/2g
s65d

with DT8 defined in Eq.sB11d.

In Fig. 11 we show for the case of gold the “L-subtracted”
(according to the procedure described above) data forRT and
compare them with the theoretically calculatedRT, including
both QE and inelastic contributions. Note that the transverse
results obtained via this subtraction procedure display a
shortfall at high inelasticity of “data” versus inelastic RFG
modeling, which is not apparent in the total cross section
shown in the previous figure. This can be due to the fact that
in subtracting the longitudinal part, when elaborating the
data, we may be using a longitudinal cross section that is too
small, or, when assuming a certain parametrization for the
single-nucleon ratiow2/w1 (related toR) to obtain the theo-
retical curves, we may be indirectly assuming aSL that is too
large. Moreover, as discussed above, there is still a
2p-2h MEC plus correlation contribution to be taken into
account(note that the 2p-2h MEC contribution is predomi-
nantly transverse and so this result is not unexpected).

Similar results are obtained for the superscaling functions
fsc8d and fTsc8d. In Fig. 12 the total scaling functionf is
shown as a function of the QE variablec8 for the four
nuclear species under discussion, within the RFG(left panel)
and ERFG(right panel) models, at the same kinematics of
Figs. 10 and 11; experimental data are obtained from the
measured inclusive cross sections divided by

sMsvLGL + vTGTd s66d

and the curves are obtained by dividing the theoretical inclu-
sive cross section by the same quantity as in Eq.s66d.

Finally, Fig. 13 (corresponding to Fig. 5 of Ref.[20])
shows the transverse superscaling functionfTsc8d, at the
same kinematics, again in the RFG and ERFG models. The
“data” are obtained from the experimental inclusive cross
sections according to Eqs.(60)–(63), while the curves are
obtained by dividing the theoreticalRT of Eqs. (42), (B8),
and (53) by GT. Again we observe that, the discrepancy be-
tween data and “theory” is larger for the transverse case than
for the total scaling functions at this scattering anglesu
=160d. This indicates that extra contributions should be

FIG. 11. Transverse response function for electron scattering
from gold, atEinc=3.6 GeV andue=16° vs the energy transfer. The
“data” are obtained from measured inclusive cross sections by
means of theL-subtraction procedure described in the text.

FIG. 12. Total superscaling
functions fsc8d, as described in
Sec. IV C, for the kinematical con-
ditions Ee=3.595 GeV and ue

=16°. Theoretical results obtained
within the RFG are shown in panel
(a), while the ERFG case is pre-
sented in panel(b).
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added to the nuclear model, going beyond the present one-
body description, and that these must act mainly in the trans-
verse channel. We have also checked that, in agreement with
what previously observed, whenu increases the difference
between total and transverse superscaling functions is more
and more reduced and thus the disagreement between data
and theory becomes the same forf and fT.

When examining the last two figures we see that the basic
trend in the second-kind scaling behavior is present in the
inelastic RFG modeling: for fixed kinematics the heavier nu-
clei with the larger values ofkF have the higher responses at
high inelasticity, and by roughly the right amount.

V. CONCLUSIONS

We have studied highly inelastic electron-nucleus scatter-
ing, from the resonance to the DIS region, in a unified rela-
tivistic framework. In particular we have calculated inclusive
cross sections, response functions and scaling functions in
the relativistic Fermi gas and in a phenomenological exten-
sion of it, named the ERFG, based on a fit of the scaling
function in the quasielastic region. We have explored all
high-quality experimental data available in the relevant high-
energy domain, involving energy transfers from zero up to
,3 GeV.

As discussed in detail in the results section the compari-
son between the data and the theoretical models is strongly
dependent upon the kinematics. However, a few general fea-
tures emerge from our analysis.

(1) In the quasielastic regime the RFG model approxi-
mately accounts for the experimental strength of the peak,
but fails to reproduce the low-v tail of the cross sections and
predicts a pronounced unobserved “dip” to the right of the
QEP. On the contrary, the ERFG model, while correctly re-
producing cross sections at low-energy transfer, always un-
derestimates the data around the peak.

(2) In the highly inelastic part of the spectrum the RFG
roughly yields the experimental cross section for not too

high-energy transfer(corresponding to smaller scattering
angles) and overestimates the data when the inelasticity be-
comes very high(large scattering angles). In parallel, the
ERFG underestimates the inelastic cross sections by,20%
at smallu, approaching the data asusvd increases.

(3) By analyzing the results in terms of the laboratory
Bjorken scaling variablexL it is seen that the RFG works
rather well at lowxL s0.1–0.3d, whereas the ERFG is more
appropriate to describe the high-xL sù0.6d data.

(4) A phenomenological energy shift is needed in both
models to reproduce the QEP position, but it is irrelevant in
the highly inelastic region. Moreover, concerning the sepa-
rate responses, the longitudinal one appears to be more sen-
sitive to the energy shift.

(5) The main impact of the nuclear medium on the re-
sponses and cross sections consists in washing out the reso-
nance structure present in the single-nucleon responses as a
consequence of the Fermi motion of nucleons inside the
nucleus. In contrast, such an effect is negligible in the DIS
regime.

The above findings point to the importance, in an inter-
mediate region of energy transfers, of ingredients which are
not included in the present approach, such as meson-
exchange currents and correlations, in both 1p-1h and
2p-2h sectors. Preliminary results[22] seem to indicate that
the 2p-2h MEC may play a crucial role in improving the
agreement with the data, although a complete and consistent
calculation of correlations and currents is still to be realized.
A separate analysis of the longitudinal and transverse re-
sponse functions(or, equivalently, of theF1 andF2 structure
functions) based on the scaling approach shows that these
missing contributions should be mostly active in theT chan-
nel, thus supporting the relevance of meson-exchange cur-
rents.

Finally, it is interesting to note that the disagreement be-
tween ERFG predictions and the experimental results is not
peculiar to the specific functional form of the phenomeno-
logical QE scaling function we have employed, but is essen-
tially linked to its asymmetric shape. In fact, we checked that

FIG. 13. As for Fig. 12, but
showing the transverse superscal-
ing functions fTsc8d (see discus-
sion in Sec. IV C).
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a simple “toy model” asymmetric scaling function(respect-
ing of course the correct normalization) qualitatively yields
similar results. We believe that the physical origin of this
asymmetry is certainly worth further investigation.
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APPENDIX A: INELASTIC TENSOR IN RFG
In this appendix we derive the general expression forUmn

that enters in the hadronic inelastic tensor in Eq.(32). By
using Eqs.(26) and(22) we can write the hadronic tensor as
follows:

Winel
mn sk,ld =

3Nt

2hF
3k
E

r1sk,ld

r2sk,ld

drE
0

2p dF

2p
E

e0srd

eF

dēF− w1st,rd

3Sgmn +
kmkn

t
D + w2st,rdkmknr2

+ w2st,rdXmnG , sA1d

having defined

Xmn = hmhn + rshmkn + hnkmd. sA2d

To evaluate the above integral it is convenient to expand the
four-vectorhm swhich is normalized tohmhm=1d in the basis
am=sk ,0 ,0 ,ld, km=sl ,0 ,0 ,kd, tx

m=s0,1,0,0d, ty
m

=s0,0,1,0d, namely,

hm = hkk
m + haa

m + hxtx
m + hyty

m sA3d

with

hk = h cosu0 = − r, sA4d

ha =
1

k
se + lrd, sA5d

hx = h sin u0cosF, sA6d

hy = h sin u0sin F. sA7d

The integral of the tensor in Eq.sA2d then becomes

E
0

2p dF

2p
E

e0srd

eF

dēXmn =E
0

2p dF

2p
E

e0srd

eF

dēfhk
2kmkn + ha

2aman

+ hx
2tx

mtx
n + hy

2ty
mty

n + hkhaskman + amknd

+ shkkm + haa
mdknr

+ kmrshkkn + haa
ndg

=E
0

2p dF

2p
E

e0srd

eF

dēf− r2kmkn + ha
2aman

+ hx
2tx

mtx
n + hy

2ty
mty

ng, sA8d

since

E
0

2p

dFhx =E
0

2p

dFhy =E
0

2p

dFhxhy = 0. sA9d

We now use the following integrals

E
0

2p dF

2p
E

e0srd

eF

dēhx
2 =E

0

2p dF

2p
E

e0srd

eF

dēhy
2

= 1
2seF − e0duseF − e0dDsk,t,rd,

sA10d

whereDsk ,t ,rd is given by Eq.s41d, and

E
0

2p dF

2p
E

e0srd

eF

dēha
2 =E

0

2p dF

2p
E

e0srd

eF

dē
1

t
s1 + thk

2 + hx
2 + hy

2d

= seF − e0duseF − e0df1 + tr2

+ 3
2Dsk,t,rdg , sA11d

and observe that

tx
mtx

n + ty
mty

n = − gmn +
aman

t
−

kmkn

t
. sA12d

By inserting the above relations into Eq.sA1d we get

Winel
mn sk,ld =

3Nt

2hF
3k
E

r1sk,ld

r2sk,ld

drseF − e0duseF − e0dUmnsk,t,rd

sA13d

with

Umnsk,t,rd = − Fw1st,rd +
1

2
w2st,rdDsk,t,rdG

3Sgmn +
kmkn

t
D + w2st,rdF1 + tr2

+
3

2
Dsk,t,rdGaman

t
. sA14d

From the above expression the longitudinal and transverse
components in Eqs.s36d and s37d immediately follow.

The tensor in Eq.(A13) coincides with that in Eq.(32) if
the scaling variablec is introduced through the relation

eF − e0 = jFs1 − cXd2. sA15d
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APPENDIX B: INCLUSION OF THE ENERGY SHIFT
In this appendix we derive explicit expressions for the QE

and inelastic hadronic responses for the case in which a small
energy shift is included in the analysis. As mentioned in Sec.
IV, to proceed one needs to assume a specific form for the
single-nucleon tensors and the variable dependence of the
single-nucleon structure functions. This choice is not unique
and hence, some ambiguities enter in the analysis of the re-
sults. Here we adopted a specific strategy(see below); how-
ever, the cautionary statement should be made that other
choices are possible and that these can lead to different re-
sults for the observables.

The specific form of the single-nucleon tensor we have
selected is

winel
mn = − w1st,r̃dSgmn +

kmkn

t
D + w2st,r̃dShm +

h · k

t
kmD

3Shn +
h · k

t
knD . sB1d

The longitudinal and transverse hadronic functionsUL,T that
result are

UL =
k2

t
fs1 + tr82dw2st,r̃d − w1st,r̃d

+ w2st,r̃dDL8sk,t,lshift,r8dg, sB2d

UT = 2w1st,r̃d + w2st,r̃dDT8sk,t,lshift,r8d, sB3d

where

DT8sk,t,lshift,r8d = jFs1 − cX8
2dF1

k
Ît8s1 + t8r82d

+
1

3
jF

t8

k2s1 + cX8
2dG , sB4d

DL8sk,t,lshift,r8d =
t

k2FSlt8r8

t
+ 1 +

l

t
lshiftD2

+ Slt8r8

t
+ 1 +

l

t
lshiftDS1 +

l

t
lshiftD

3jFs1 + cX8
2d + S1 +

l

t
lshiftD2

3
1

3
jF

2s1 + cX8
2 + cX8

4dG − s1 + tr82d.

sB5d

Notice that terms likesl /tdlshift and t8 /t=1−slshift
2 /td

+2sl /tdlshift, appearing inDL8, can become large when
xL;l /t is small, even iflshift is small. We repeat that the
above choice for the single-nucleon tensor is not unique,
and that other choices involving the four-momentumQ8m

instead ofQm are possible. Moreover, the arguments of the
single-nucleon inelastic structure functionsw1,2, should be
also considered carefully. As discussed in Sec. IV, here
the inelasticity parameter, denoted asr̃, is given by

r̃ ;
2H ·Q8

uQ2u
=

WX8
2 − mN

2 + uQ82u
uQ2u

= r8
t8

t
sB6d

which coincides with the expression given ass2mNṽd / uQ2u,
with ṽ being the energy transferred to the nucleon in the
system in which the nucleon is at rest. One should be aware
that other alternatives exist, in particular, one can consider
the inelasticityr corresponding to a free nucleon at rest with
final-state invariant mass equal toWX8.

The ambiguity introduced in the inelastic responses due to
the energy shift is also present at the level of the hadronic
QE response functions. Again, the problem is directly con-
nected with the form assumed for the single-nucleon tensor.
For consistency with the formalism used in the inelastic
channel, in the QE process the single-nucleon tensorwQE

mn is
taken to be

wQE
mn = − w1,QEstdSgmn +

kmkn

t
D + w2,QEstdShm +

h · k

t
kmD

3Shn +
h · k

t
knD . sB7d

The hadronic QE response functions within the RFG model
are given by

RQE
L,T =

3N
4hF

3kmN

jFs1 − c82dus1 − c82dUQE
L,T sB8d

with the structure functions

UQE
L =

k2

t
fs1 + tdw2,elstd − w1,elstd + w2,elstdDL8st,k,lshiftdg,

sB9d

UQE
T = 2w1,elstd + w2,elstdDT8st,k,lshiftd. sB10d

The nuclear structure dependence is contained in the terms
DL,T8 in the form

DT8sk,t,lshiftd = jFs1 − c82dF1

k
Ît8s1 + t8d +

1

3
jF

t8

k2s1 + c82dG
sB11d

DL8sk,t,lshiftd =
t

k2FSl
t8

t
+ 1 +

l

t
lshiftD2

+ Sl
t8

t
+ 1 +

l

t
lshiftDS1 +

l

t
lshiftD

3jFs1 + c82d + S1 +
l

t
lshiftD21

3
jF

2s1 + c82

+ c84dG − s1 + td. sB12d

The scaling variablec8 is given by
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c82 =
1

jF
SkÎ 1

t8
+ 1 −l8 − 1D sB13d

and the electromagnetic structure functions by

w1,QEstd = tGM
2 std,

w2,QEstd =
GE

2std + tGM
2 std

1 + t

with GE,M the proton or neutron Sachs electromagnetic form
factors.

Finally, the “total” response functions are evaluated by
adding the above QE responses to the inelastic ones, i.e.,
Rtot

L,T=RQE
L,T+Rinel

L,T.
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