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We study the sensitivity of neutral-current neutrino-nucleus scattering to the strange-quark content of the
axial-vector form factor of the nucleon. A model-independent formalism for this reaction is developed in terms
of eight nuclear-structure functions. Taking advantage of the insensitivity of the ratio of protonsn ,pd to neutron
sn ,nd yields to distortion effects, we compute all structure functions in a relativistic plane-wave impulse
approximation approach. Further, by employing the notion of a bound-state nucleon propagator, closed-form,
analytic expressions for all nuclear-structure functions are developed in terms of an accurately calibrated
relativistic mean-field model. Using a strange-quark contribution to the axial-vector form factor ofgA

s =
−0.19, a significant enhancement in the proton-to-neutron yields is observed relative to one withgA

s =0.
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I. INTRODUCTION

Neutrino physics has established itself at the forefront of
current theoretical and experimental research in astro,
nuclear, and particle physics. While neutrino-oscillation ex-
periments, which are presently evolving from the discovery
to the precision phase, will remain at the center of most
investigations, a variety of other interesting(nonoscillation)
physics topics may be studied in parallel. A prime example
of such a paradigm is the recently commissioned Mini-
BooNE experiment at Fermilab. While MiniBooNE’s pri-
mary goal is to confirm the neutrino-oscillation experiment
at the Liquid Scintillator Neutrino Detector(LSND) at the
Los Alamos National Laboratory[1] this unique facility is
ideal for the study of supernova neutrinos, neutrino-nucleus
scattering, and hadronic structure. In this contribution we
focus on hadronic structure, in part as a response to the Fer-
milab Intense Neutrino Scattering Experiment(FINeSE) ini-
tiative that aims to measure the strange-quark contribution to
the spin of the proton via neutral-current elastic scattering
[2].

A measurement of the spin asymmetry in deep-inelastic
scattering of polarized muons on polarized protons by the
European Muon Collaboration[3] revealed a disagreement
with the Ellis-Jaffe sum rule[4] in an approach that assumed
that only up and down quarks(and antiquarks) contribute to
the proton spin. This was one of the first indications that
hidden flavor in the nucleon may play an important role in
the determination of the spin structure of the proton. Experi-
mentally, the spin structure of the proton is also accessible
via parity-violating electron scattering. Unfortunately, large
radiative corrections[5,6] as well as nuclear-structure effects
[7] hinder the extraction of strange-quark information. A
complementary experimental technique that may be used ef-
fectively to study the spin structure of the proton is elastic
neutrino-proton scattering. This reaction measuresDu−Dd

+Dc−Ds+Dt−Db in the proton. The heavier quark flavors(t,
b, andc) may be eliminated using a well-defined procedure
based on renormalization group techniques[8,9]. The advan-
tages of neutral-current neutrino-proton scattering over
parity-violating electron scattering and deep-inelastic scatter-
ing are well documented in the literature[2,10]. Two notable
examples are(i) the insensitivity of the extraction of the
strange-quark contribution to the use of(broken) SU(3)-
flavor symmetry[8] and(ii ) the absence of radiative correc-
tions in neutral-current neutrino scattering[2,6]. The quark
structure of the nucleon may be investigated in a particularly
clean fashion by evaluating matrix elements of suitable
quark-current operators between single-nucleon states
[6,11–13]. This is because quark-current operators may be
written in terms of the fundamental couplings of the quarks
to the Z0 boson, which are fully prescribed in the standard
model. Further, the weak neutral current of the nucleon may
be parametrized on completely general ground in terms of
two vector and one axial form factors(an additional induced
pseudoscalar form factor is present but its contribution van-
ishes in the limit of a zero neutrino mass). In particular, the
axial-vector form factor may be split into a nonstrange con-
tribution, which may be determined from nuclearb decay,
and a strange contribution proportional to the fraction of the
nucleon spin carried by the strange quarks[14]. Thus, the
axial-vector form factor is crucial to understanding the role
played by strange quarks in determining the properties of the
proton and represents the main focus of this contribution.

A measurement of neutrino-proton and antineutrino-
proton elastic scattering at the Brookhaven National Labora-
tory (BNL) reported a nonzero value for the strange form
factors of the nucleon[15]. However, these results must be
treated with caution as the value of the axial massMA andgA

s

are strongly correlated[14]. Another point of concern in the
BNL experiment was that 80% of the events involved the
scattering of a neutrino off carbon atoms and only 20% were
from free protons. Before any firm conclusion may be
reached, it is therefore necessary to understand nuclear-
structure effects. Unfortunately, scattering off a nucleus in-
troduces its own complications. These include(i) questions
concerning finite-density effects, such as possible modifica-
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tions to the nucleon properties in the nuclear medium and(ii )
conventional nuclear-structure effects, such as binding-
energy corrections and Fermi motion. The first relativistic
description of neutrino-nucleus scattering addressing these
complications was presented in Ref.[16], where the authors
employed a relativistic Fermi-gas model for the target
nucleus. Nuclear-structure effects were further investigated
in Ref. [17] by considering, in addition to a relativistic
Fermi-gas model, a description of the bound nucleon in
terms of harmonic oscillator wave functions. In general it
was found that nuclear-structure effects and final-state inter-
actions[18] can have a substantial effect on the individual
cross sections. However, as originally suggested in Ref.[19],
the ratioof proton-to-neutron yields is largely insensitive(at
the 5% level or less) to these effects[16,20].

In this work we also present a relativistic description of
neutrino-nucleus scattering, but employing bound-state wave
functions obtained from an accurately calibrated mean-field
model [21]. Further, the impulse approximation is assumed,
that is, the neutrino-nucleon interaction is assumed un-
changed in the nuclear medium. Finally, as the ultimate aim
of this project is to computeratios of cross sections, distor-
tion effects on the ejectile nucleon will be neglected. As we
will show later, this leads to a great simplification in the
calculation of all relevant quantities. The paper has been or-
ganized as follows. The formalism is presented in Sec. II,
followed by results and conclusions in Sec. III and Sec. IV,
respectively.

II. FORMALISM

In this section the formalism for the relativistic descrip-
tion of (neutral-current) neutrino-nucleus scattering will be
presented. In particular, it will be shown in Sec. II A that the
cross section can be written as a contraction between lep-
tonic and hadronic tensors. In turn, by relying exclusively on
fundamental principles, the hadronic tensor will be decom-
posed in terms of a set of invariant structure functions(see
Sec II B). Thus, the formalism is model independent. Yet to
determine the structure function, and ultimately the cross
section, one must rely on a model. This will be discussed in
Sec. II C.

A. Cross section in terms of leptonic and hadronic tensors

Due to the short-range nature of the weak interaction, the
one-boson exchange approximation provides an excellent de-
scription of neutrino-nucleus scattering. This results in a
cross section that cleanly separates(or factorizes) into lep-
tonic and hadronic components. The kinematics of the pro-
cess is depicted in Fig. 1. Here the initial and final neutrino
four-momenta are denoted byk andk8, respectively. Further,
the reaction proceeds via the exchange of a virtualZ0 boson
with four-momentumq. The target and residual nucleus have
four-momenta denoted byP andP8, respectively. Finally, the
ejectile proton has four-momentump8 and spin component
s8.

The differential cross section can now be defined in terms
of these kinematic variables and the transition matrix ele-
mentM as follows:

ds =
s2pd4d4sk + P − k8 − p8 − P8d

uv1 − v2u
d3k8

s2pd3

d3p8

s2pd3

d3P8

s2pd3uMu2,

s1d

where v1−v2 denotes the initial relative velocity. The
transition-matrix element contains all the dynamical infor-
mation about the reaction and is given, in the conventions of
Ref. f6g, by

− iM = Sn̄sk8dF igMZ

4MW
sgm − gmg5dGnskdDiDmnsqd

3Skp8,s8;C fsP8dU igMZ

4MW
ĴnsqdUCisPdlD . s2d

Note that in Eq.(2) the initial and final nuclear states are
denoted byCisPd andC fsP8d, respectively. Further,g is the

weak coupling constant andĴmsqd is the weak nuclear current
operator, which contains both vector and axial-vector com-
ponents. Finally, as only low-momentum transfersuq2u
!MZ

2d scattering will be considered, the following replace-
ment is valid:

Dmnsqd =
− gmn + qmqn /MZ

2

q2 − MZ
2 → gmn

MZ
2 . s3d

This allows the transition-matrix element to be written as

M =
GF

2Î2
fn̄sk8dsgm − gmg5dnskdg

3fkp8,s8;C fsP8duĴmsqduCisPdlg. s4d

Note thatGF is the Fermi constant for muon decay which is
given by

GF =
g2

4Î2MW
2

. 1.1663 10−5 GeV−2. s5d

In Eq. (2) and throughout this work plane-wave Dirac
spinors are defined as follows:

FIG. 1. Lowest-order Feynman diagram for the knockout of a
bound nucleon via neutral-current neutrino-nucleus scattering.
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Usk,sd =ÎEk + M

2Ek 1 1

s ·k

Ek + M
2xs, sEk ; Îk2 + M2d.

s6d

Note that the above definition corresponds to the normaliza-
tion

U†sk,sdUsk,sd = dss8. s7d

This snoncovariantd normalization is motivated by the stan-
dard choice adopted for bound-state spinorsssee Sec. II C
and Ref.f22gd which is given by

E Ua
†sr dUasr ddr = 1. s8d

For smasslessd neutrinos in the laboratory frame the initial
flux factor in Eq. s1d is equal to one. Substitution of the
above relations into Eq.s1d leads to the following expression
for the differential cross section:

ds =
GF

2

8
s2pd4dsk + P − k8 − p8 − P8d

3
d3k8

s2pd3

d3p8

s2pd3

d3P8

s2pd3,mnW
mn, s9d

where the leptonic tensor is given by

,mn = fn̄sk8dsgm − gmg5dnskdgfn̄sk8dsgn − gng5dnskdg* ,

s10d

while the hadronic tensor by

Wmn = fkp8,s8;C fsP8duĴmsqduCisPdlg

3fkp8,s8;C fsP8duĴnsqduCisPdlg* . s11d

The integral overP8 may be performed using the spatial part
of the Diracd function. This fixes the three-momentum of
the residual nucleus to be

P8 = k − k8 − p8 + P→
lab

q − p8, s12d

where q;k −k8 is the three-momentum transfer to the
nucleus. The differential cross section can now be written as

ds =
GF

2

8s2pd5d3k8d3p8dsEk + MA − Ek8 − Ep8 − EP8d,mnW
mn,

s13d

whereMA is the mass of the target nucleus.

B. Differential cross section in terms of nuclear-structure
functions

In Sec. II A it has been shown that the differential cross
for nucleon knockout in neutrino-nucleus scattering involves
the contraction between the leptonic tensor,mn [Eq. (10)]
and the hadronic tensorWmn [Eq. (11)]. In this section both

of these quantities will be calculated in a model-independent
way by introducing a suitable set of nuclear-structure func-
tions.

Starting from Eq.(10) it follows that the leptonic tensor
may be written as

,mn = Trfsgm − gmg5dhnskdn̄skdjsgn − gng5dhnsk8dn̄sk8djg

=
2

kk8
fkmk8n + k8mkn − gmnk ·k8 + ihemnabkakb8g, s14d

where we made use of Eq.s6d to write

nskdn̄skd =
k”

2k
F1

2
s1 − hg5dG sk ; uk ud. s15d

Note that in the above expressionsh=−1 andh= +1 refer to
left-handed neutrinos and right-handed antineutrinos, respec-
tively. For later convenience, the leptonic tensor can now be
separated into a symmetric and an antisymmetric part. That
is,

,mn ; ,S
mn + ,A

mn, s16d

where

,S
mn =

2

kk8
skmk8n + k8mkn − gmnk ·k8d, s17ad

,A
mn =

2

kk8
ihemnabkakb8 . s17bd

Note that all remnants of the neutrino helicity resides in the
term containing the antisymmetric Levi-Civita tensor. It is
only this antisymmetric component of the leptonic tensor
that is sensitive to the difference between an incident neu-
trino or antineutrino beam. It then follows from Eq.(17), as
the weak neutral currents are conserved for massless neutri-
nos, that

qm,mn = ,mnqn = 0, s18d

whereqm;sv ,qd=skm−k8md is the four-momentum transfer
to the nucleus.

The hadronic tensor is an extremely complicated object as
in principle exact many-body wave functions and operators
must be used. Yet it follows from Eq.(11) that for unpolar-
ized nucleon emission the hadronic tensor is only a function
of three independent four-momenta:qm, Pm, andp8m, as the
four-momentum of the recoiling nucleusP8m is fixed by
four-momentum conservation. The hadronic tensor can there-
fore be parametrized in terms of a basis constructed from the
following five tensors: hqm ,Pm ,p8m ,gmn ,emnabj. This is
analogous to the case of electron scattering but now we are
no longer allowed to invoke either parity invariance or cur-
rent conservation, as the weak interaction violates parity and
the axial-vector current is not conserved. We start by sepa-
rating the hadronic tensor into symmetric and antisymmetric
components. That is,
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Wmn ; WS
mn + WA

mn. s19d

Using the above-mentioned basis the individual components
may be written as follows:

WS
mn = W1g

mn + W2q
mqn + W3P

mPn + W4p8mp8n + W5sqmPn

+ Pmqnd + W6sqmp8n + p8mqnd + W7sPmp8n + p8mPnd,

s20ad

WA
mn = W8sqmPn − Pmqnd + W9sqmp8n − p8mqnd + W10sPmp8n

− p8mPnd + W11e
mnabqaPb + W12e

mnabqapb8

+ W13e
mnabPapb8 . s20bd

Note that all structure functions are functions of the four
Lorentz-invariant quantities,qmqm;−Q2, q·P, q·p8, and
P·p8. The hadronic tensor for thesn ,n8pd [or sn ,n8nd] reac-
tion contains 13 independent structure functions. Contrast
this, for example, to the hadronic tensor forse,e8pd which is
fully written in terms of only five structure functions[23].

We now proceed to evaluate the contraction of the lep-
tonic tensor with the hadronic tensor. First, we introduce the
following definition:

Fsk,k8;P,p8d ; S 4

kk8
D−1

,mnW
mn = FSsk,k8;P,p8d

+ FAsk,k8;P,p8d, s21d

whereFS andFA are defined in terms of the symmetric and
antisymmetric components of the leptonic and hadronic ten-
sors, respectively. That is,

FSsk,k8;P,p8d ; S 4

kk8
D−1

,mn
S WS

mn = S− W1sk ·k8d

+ W3Fsk · Pdsk8 · Pd +
MA

2
2sk ·k8dG

+ W4Fsk · p8dsk8 · p8d +
MN

2

2
sk ·k8dG

+ W7fsk · Pdsk8 · p8d + sk · p8dsk8 · Pd

− sk ·k8dsP · p8dgD , s22ad

FAsk,k8;P,p8d ; S 4

kk8
D−1

,mn
A WA

mn = ihsW10e
mnabkmkn8Papb8

+ W11sk ·k8dsk · P + k8 · Pd + W12sk ·k8d

3sk · p8 + k8 · p8d + W13fsk · p8dsk8 · Pd

− sk · Pdsk8 · p8dgd. s22bd

Note that as a result of current conservation, only eight of the
original 13 structure functions survived the contraction[see
Eq. (18)]. Further, an interesting difference between neutrino
and electron scattering can be seen from Eq.(22b). While for
electron scattering one must prepare a polarized beam to
sample the antisymmetric part of the hadronic tensor[23],

for neutrinos the polarization happens by default. Equations
(13), (22a), and(22b) comprise the principal results for this
section. It is the most general structure possible for nucleon
knockout in neutral-current neutrino-nucleus scattering. It
shows that the differential cross section is completely deter-
mined by a set of eight structure functions multiplied by
kinematical factors.

C. Model-dependent calculation of the cross section

In the preceding section it was shown that the differential
cross section is completely determined by a set of eight
structure functions. These structure functions parametrize
our ignorance about strong-interaction physics. In principle,
these structure functions could be measured through a “su-
per” Rosenbluth separation. In practice, however, this is be-
yond realistic expectations. Thus, it is not possible to pro-
ceed further without an explicit model of the hadronic
vertex.

First, we focus on some “kinematical” approximations
that are made in order to simplify the argument of the energy
conservingd function in Eq.(13). In the laboratory frame the
total energy of the residual nucleus is given by

EP8 = ÎP2 + MA−1
2 = Îsq − p8d2 + MA−1

2 < MA−1, s23d

where the last approximation follows in the limit of no recoil
corrections. Further, it is assumed that the energy transfer to
the nucleus satisfies

v = k − k8 = Ep8 − EB, s24d

whereEB is the energy of the struck nucleon. This implies
that

EP8 = MA − EB, s25d

and justifies the following replacement in Eq.s13d:

dsEk + MA − Ek8 − Ep8 − EP8d → dsk − k8 − Ep8 + EBd.

s26d

Note that we have definedEk= uk u;k andEk8= uk8u;k8.
Consider now the coordinate system shown in Fig. 2

FIG. 2. Coordinate axes used to define the anglesa, u, andf.
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where the incoming neutrino defines theẑ axis. The outgoing
nucleon is detected at a scattering anglea relative to theẑ
axis, while the outgoing neutrino, assumed undetected, has
polar and azimuthal anglesu and f, respectively. The fol-
lowing relations are therefore valid:

d3k8 = k82sin udk8dudf and

d3p8 = 2pp8Ep8dEp8dscosad. s27d

As the outgoing neutrino will remain undetected, one must
integrate overk8, u, and f. Using Eqs.s26d and s27d the
following expression for the differential cross sectionfEq.
s13dg is obtained:

d2s

dEp8dscosad
= S GF

2

32p4DS uk8uup8uEp8

uk u
DE

0

p

sin u du

3E
0

2p

dfFsk,k8;P,p8d, s28d

where the energy conservingd function constrains the en-
ergy of the outgoing neutrino touk8u= uk u+EB−Ep8.

What remains now is to provide an explicit form for the
eight independent structure functions introduced in the pre-
ceding section. It follows from Eq.(4) that the dynamical
information on the hadronic vertex is contained in the fol-
lowing matrix element(and its complex conjugate):

Jm = kp8,s8;C fsP8duĴmsqduCisPdl. s29d

To obtain a tractable form for this extremely complicated
object we rely on the approximations depicted in Fig. 3,
which we now address in detail.

First, it is assumed that theZ0 boson couples to a single
bound nucleon. This neglects two- and many-body compo-
nents of the current operator. Second, it is assumed that the
detected nucleon is the one to which the virtual boson
couples to. This neglects two- and many-body rescattering
processes. Finally, we neglect final-state interactions(distor-
tions) of the ejected nucleon. While many similar treatments
incorporate distortion effects on the ejectile(see, for ex-
ample, Ref.[23] in the case of electron scattering) concen-
trating on ratios of cross sections makes the formalism
largely insensitive to distortion effects[14]. This will render

the hadronic tensor analytic. Incorporating the above simpli-
fications yields a hadronic matrix element of the following
simple form:

Jm = Ūsp8,s8dĴmsqdUaspmd, s30d

where a represents a collection of quantum numbers and
pm;p8−q is the missing momentum. Note that the bound-
state wave function is given by

Uaspd ; UEkmspd =
4p

p
s− idl S gEkspd

fEkspdss · p̂d
DYkmsp̂d.

s31d

HereE is the bound-state energy,k the sgeneralizedd angular
momentum, andm the spin projection. Further,gEkspd and
fEkspd are Fourier transforms of the upper and lower compo-
nents of the bound-state wave function, respectivelyf24g.

The impulse approximation is now invoked by assuming
that the weak neutral current for a nucleon in the nuclear
medium retains its free-space form. That is,

Ĵm ; Ĵm
NC − Ĵm5

NC = F̃1sQ2dgm + iF̃2sQ2dsmn

qn

2M
− G̃AsQ2dgmg5.

s32d

Here F̃1 and F̃2 are Dirac and Pauli vector form factors,

respectively, andG̃A is the axial form factor. The additional
induced pseudoscalar form factorsproportional toqmd does
not contribute tosmasslessd neutrino scattering and will be
neglected henceforth. The two vector form factors may be
decomposed in terms of the usual electromagnetic Dirac and
Pauli form factors, plus a yet undetermined strange-quark
contribution. Similarly, the axial-vector form factor consists
of a purely isovector contribution, which may be determined
from Gamow-Tellerb-decay rates, and a purely isoscalar
strange-quark contribution. It is the aim of this contribution
to explore the sensitivity of neutral-current neutrino-nucleus
scattering to the strange-quark contribution to the axial form
factor. A detailed discussion of the weak neutral currentfEq.
s32dg is given in Appendix A.

It is now possible, using Eq.(30), to explicitly calculate
the hadronic tensor defined in Eq.(11). Assuming that the
spin of the outgoing nucleon is not detected, the hadronic
tensor may be written as

Wmn = o
s8

o
m

fŪsp8,s8dJ̄
ˆmsqdUa,mspmdg

3fŪsp8,s8dĴnsqdUa,mspmdg*

= TrfĴmsqdSaspmdJ̄ˆnsqdSsp8dg, s33d

where J̄
ˆn=g0sĴnd†g0. The normalization used in Eq.s7d im-

plies that the standardson-shelld Feynman propagator is
given by

FIG. 3. Graphical representation of the approximation employed
at the hadronic vertex to obtain a tractable form for the matrix
element given in Eq.(29).
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Ssp8d = o
s8

Usp8,s8dŪsp8,s8d =
p”8 + M

2Ep8
. s34d

Moreover, it has been shown in Ref.f24g that the following
simple identity is valid even in the case of a bound-state
spinor:

Saspd ; o
m

Ua,mspdŪa,mspd = s2j + 1dsp”a + Mad. s35d

Note that in the above equation for the “bound-state” propa-
gator mass-, energy-, and momentum-like quantities have
been introduced. These are given by

Ma = S p

p2Dfga
2spd − fa

2spdg, s36ad

Ea = S p

p2Dfga
2spd + fa

2spdg, s36bd

pa = S p

p2Df2gaspdfaspdp̂g, s36cd

and satisfy the “on-shell relation”

pa
2 = Ea

2 − pa
2 = Ma

2 . s37d

It now follows from Eqs.s34d and s35d that the hadronic
tensor may be written in the following simple form:

Wmn = S2j + 1

2Ep8
DTrfĴmsqdsp”a + MadJ̄ˆnsqdsp”8 + Mdg.

s38d

The fact that the hadronic tensor may be expressed as a trace
over Dirac matrices, despite the presence of the bound-state
wave function, greatly simplifies the calculation. It is impor-
tant to note, however, that this enormous simplification
would have been lost if distortion effects would have been
incorporated in the propagation of the emitted nucleon. The
emphasis on computing ratios of cross sections is the main
justification behind this simplification. We now obtain

Wmn = S2j + 1

2Ep8
DfW̃1g

mn + W̃2sp8mpa
n + pa

mp8nd + W̃3sqmpa
n

+ pa
mqnd + W̃4sqmp8n + p8mqnd + W̃5q

mqn

+ W̃6emnslpa,spl8 + W̃7emnslpa,sql + W̃8emnslps8qlg.

s39d

All components of the hadronic tensor are given in terms of
relatively simple expressions that have been collected in Ap-
pendix B. These model-dependent structure functions may
be related to the model-independent onesfsee Eqs.s20ad and
s20bdg as has been shown in Appendix B. This concludes the
formalism for neutral-current neutrino-nucleus scattering.
The explicit forms of the structure functions given in Appen-
dix B can now be used to evaluate the differential cross
section defined in Eq.s28d.

III. RESULTS

In Ref. [16] the strange-quark content of the nucleon was
studied via neutrino-nucleus scattering by using a relativistic
Fermi-gas model of the target nucleus. This amounts to av-
eraging the free neutrino-nucleon cross section over a sharp
momentum distribution for the struck nucleon. In this work
we improve on the above description by employing bound-
nucleon wave functions obtained from a relativistic mean-
field approximation to the accurately calibrated NL3 model
of Ref. [21]. This choice is motivated by the enormous suc-
cess of the NL3 parametrization in reproducing ground-state
properties(such as binding energies, charge radii, energy
separations, etc.) of a variety of nuclei all throughout the
periodic table. To quantify the impact of this improvement
we display in Figs. 4–6 the double-differential cross section
d2s /dEp8dscosad as a function of the ejectile nucleon ki-
netic energyTp and its scattering anglea in the laboratory
frame. The incident neutrino energy has been fixed in these
plots at 150, 500, and 1000 MeV, respectively. For illustra-
tion purposes the strange-quark contribution to the axial-

FIG. 4. Double differential cross sectiond2s /dEdscosad as a
function of the outgoing proton laboratory kinetic energyTp and
laboratory scattering anglea. The calculation shown is for proton
knockout from the 1p3/2 orbital of 12C at an incident neutrino en-
ergy of 150 MeV.

FIG. 5. Double differential cross sectiond2s /dEdscosad as a
function of the outgoing proton laboratory kinetic energyTp and
laboratory scattering anglea. The calculation shown is for proton
knockout from the 1p3/2 orbital of 12C at an incident neutrino en-
ergy of 500 MeV.
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vector form factorgA
s has been neglected and only proton

knockout from the 1p3/2 orbital of 12C is considered.
For the lowest energy neutrinos the cross section displays

a single well developed peak at lowTp that monotonically
decreases with increasing scattering anglea. For En

=500 MeV, our Fig. 5 may be compared directly to Fig. 1 of
Horowitz and collaborators[16]. In particular, for a scatter-
ing angle ofa=20°, our calculation(third curve along thea
direction) also exhibits the characteristic double-humped
structure. For larger values ofa the peaks merge into one
and the cross section develops a shape similar to that ofEn

=150 MeV. Yet, an important difference between the two
sets of calculations is that our cross section does not develop
the sharp features displayed at small angles in Ref.[14]. This
is due to the more realistic momentum distributions used in
our calculations.

Next, we produce angle-integrated cross sections as a
function ofTp. Figures 7 and 8 display cross sections for the
knockout of protons and neutrons, respectively. The long-
dash–short-dashed line represents knockout from the 1s1/2

orbital while the dashed line from the 1p3/2 orbital of 12C; the
solid line displays their sum. As before, calculations are
shown for incident neutrino energies of 150, 500, and
1000 MeV, respectively. For these two figures,gA

s =0. The
cross sections at 150 MeV correspond to those shown in
Figs. 4 and 5 of Ref.[16]. It has been shown in Ref.[16] that
binding-energy corrections(at 150 MeV) reduce the cross
sections relative to their free Fermi-gas values by about 40%.
Our cross sections(already summed over both occupied or-
bitals) are reduced even further. Note that while an average
binding energy of 27 MeV has been used in Ref.[16], our
calculations include binding energies computed exactly
within a mean-field approach. At the higher energies of 500
and 1000 MeV the cross sections display the same general
trend as the one for 150 MeV, namely, a peak at a low value
of Tp and a “smooth” falloff with increasingTp.

In Figs. 9 and 10 we examine the impact of a strange-
quark contributiongA

s to the axial form factor on the cross
section. Following the discussions in Refs.[3,15,16] a value
of gA

s =−0.19 is adopted henceforth. Further, in all cases pre-
sented here strange-quark contributions to the weak vector
form factors are ignored. The solid and dashed lines corre-
spond to a zero and a nonzero value ofgA

s , respectively. In
both figures we have summed over the 1s1/2 and the 1p3/2

orbitals of12C. Because of the dominance of the axial-vector
form factor (see discussion below) a nonzero value ofgA

s

increases the cross section for proton knockout, whereas for
neutron knockout the cross section is decreased. These find-
ings are consistent with those of Refs.[16,19].

Next we investigate the role of the various single-nucleon
form factors in the calculation of the differential cross sec-
tion. For this case we restrict ourselves to proton knockout
from the 1p3/2 orbital of 12C. As before, we consider incident
neutrino energies of 150, 500, and 1000 MeV. The results
are shown in Fig. 11.

In this figure the solid line corresponds to the case(G̃A

Þ0,F̃1Þ0, and F̃2Þ0), the dashed line to(G̃AÞ0,F̃1=0,

and F̃2=0), the long-dash–short-dashed line to(G̃AÞ0,F̃1

FIG. 6. Double differential cross sectiond2s /dEdscosad as a
function of the outgoing proton laboratory kinetic energyTp and
laboratory scattering anglea. The calculation shown is for proton
knockout from the 1p3/2 orbital of 12C at an incident neutrino en-
ergy of 1000 MeV.

FIG. 7. Differential cross sectionds /dE as a
function of the outgoing proton laboratory kinetic
energy Tp. The dashed and long-dashed–short-
dashed lines are for proton knockout from the
1p3/2 and 1s1/2 orbitals of 12C, respectively; the
solid line represents their sum. The incident neu-
trino energy is taken to beEk=150, 500, and
1000 MeV. The contribution of the strange-quark
to the axial-vector form factorsgA

sd has been ne-
glected.
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=0, andF̃2Þ0), and the dash-dotted line to(G̃A=0,F̃1Þ0,

andF̃2Þ0). It is observed for all energies that the calculation
taking into account only the axial-vector form factor(dashed
line) is larger than when all three form factors are included

(solid line). The inclusion of onlyG̃A and F̃2 (long-dash–
short-dashed line) give results virtually identical to the full
calculation(solid line). This illustrates that the effect of the

Dirac form factorF̃1 is very small. This statement was veri-

fied by comparingsG̃AÞ0,F̃1=0, and F̃2=0d to sG̃A

Þ0,F̃1Þ0, and F̃2=0d where it was found that the re-
sults coincide almost entirely. The same is true when com-

paring (G̃A=0,F̃1=0, andF̃2Þ0) to (G̃A=0,F̃1Þ0, andF̃2
Þ0). For all energies we observe the dominant role played

by the axial-vector form factorG̃A. The dominance of the
axial-vector form factor is further illustrated by the fact that

when it is set to zero, the cross section becomes vanishingly
small (dash-dotted line). This behavior is important as it in-
creases the sensitivity of the reaction to the strange-quark

contribution to the axial form factor. Indeed, forF̃1=F̃2;0,
the differential cross section becomes proportional to the
square of the axial-vector form factor which, atQ2=0, is
given by (see Appendix A)

G̃A
2sQ2 = 0d = sgA − gA

sd2 = fgA
2 + sgA

sd2 − 2gAgA
sg. s40d

The sensitivity to the strange form factor comes about
through the interference term.

An important problem encountered in the previous(and
most of the earlier) analysis is the dependence of the cross
section on distortion effects, that is, on the final-state inter-
actions between the ejectile nucleon and the residual nucleus
[17,19]. In an effort to circumvent this problem, the authors

FIG. 8. Differential cross sectionds /dE as a
function of the outgoing neutron laboratory ki-
netic energyTp. The dashed and long-dashed–
short-dashed lines are for neutron knockout from
the 1p3/2 and 1s1/2 orbitals of 12C, respectively;
the solid line represents their sum. The incident
neutrino energy is taken to beEk=150, 500, and
1000 MeV. The contribution of the strange-quark
to the axial-vector form factorsgA

sd has been ne-
glected.

FIG. 9. Effect of a strange-quark contribution
(of gA

s =−0.19) to the axial-vector form factor on
the differential cross sectionds /dE as a function
of the laboratory kinetic energyTp of the outgo-
ing proton. The solid and dashed lines correspond
to a zero and a nonzero value ofgA

s , respectively.
In this figure we have summed over the 1s1/2 and
1p3/2 orbitals of 12C.
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of Ref. [19] proposed to measure the ratio of quasielastic
proton yield to quasielastic neutron yield, rather than the
absolute cross section. Focusing on the ratio of cross sections
proves to be advantageous for a number of reasons. For ex-
ample, the calculation of the angle-integrated cross section in
Ref. [16] is particularly sensitive to binding-energy correc-
tions: both proton and neutron knockout cross sections are
quenched by almost 40% relative to the free Fermi-gas esti-
mate. Unfortunately, a strange-quark contribution to the
axial-vector form factor of the neutron also reduces the cross
section by nearly 40%. Hence, it might be difficult to sepa-
rate nuclear-binding effects from a genuine strange-quark
contribution. (We reiterate that, while it remains advanta-
geous to reduce the sensitivity of the reaction to nuclear-
structure effects, the merit of our calculation is that it incor-
porates realistic binding energies and momentum
distributions.) Further, while distortion effects modify the
cross section, they often do so without a significant redistri-
bution of strength. Thus the ratio of cross sections, rather

than the cross sections themselves, should be less sensitive to
distortion effects. Indeed, in the model of Ref.[16] it was
shown that the ratio of cross sections was insensitive to dis-
tortion effects. Hence, we conclude this section by displaying
in Fig. 12 the ratio of cross sections for protons over that for
neutrons. While for the lowest value of the neutrino energy
s150 MeVd the ratio remains fairly constant, a significant
dependence on the outgoing nucleon kinetic energyTp is
observed for the other two cases. How sensitive this depen-
dence is to the high-momentum components in the nuclear
wave function(induced, for example, by short-range corre-
lations) remains an important open question.

IV. SUMMARY AND CONCLUSIONS

Neutral-current neutrino-nucleus cross sections have been
computed in a relativistic plane-wave impulse approxima-
tion. The aim of this contribution was to examine the sensi-
tivity of the reaction to the strange-quark contribution to the

FIG. 10. Effect of a strange-quark contribu-
tion (of gA

s =−0.19) to the axial-vector form factor
on the differential cross sectionds /dE as a func-
tion of the laboratory kinetic energyTp of the
outgoing neutron. The solid and dashed lines cor-
respond to a zero and a nonzero value ofgA

s , re-
spectively. In this figure we have summed over
the 1s1/2 and 1p3/2 orbitals of 12C.

FIG. 11. Effect of the single-nucleon form
factors on the differential cross sectionds /dE as
a function of the laboratory kinetic energyTp of
the outgoing proton. The calculation shown is for
proton knockout from only the 1p3/2 orbital of
12C at incident neutrino energies of 150, 500, and
1000 MeV. Explanation for the various lines is
given in the text.
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axial-vector form factor of the nucleon. This was done, in
part, in response to the FINeSE initiative. In this work we
have followed closely the seminal contributions made to this
subject by various groups[16,19,20]. In addition, nuclear-
structure effects are incorporated through an accurately cali-
brated relativistic mean-field model. Thus, accurate binding
energies and nucleon momentum distributions were em-
ployed.

Our results indicate significant quantitative, although mi-
nor qualitative, changes with respect to the relativistic Fermi-
gas model of Horowitz and collaborators[16]. First, double
differential cross sections displaying sharp features due to a
discontinuous(Fermi-gas) momentum distribution get soften
by our choice of mean-field wave functions. However, most
of the sharp features of the Fermi-gas cross section disappear
as soon as one integrates over the scattering angle of the
ejected nucleon. At this point the shape of the cross section
becomes largely insensitive to the choice of momentum dis-
tribution. Not so its magnitude. Low energy cross sections
with binding-energy corrections included in an average way
were shown to be reduced by 40% relative to the correspond-
ing free Fermi-gas estimates[16]. The cross sections re-
ported here, computed with binding energies obtained from a
relativistic mean-field model, yield even smaller cross sec-
tions.

In order to reduce the sensitivity of the strange-quark con-
tent of the nucleon to nuclear-structure effects, while at the
same time eliminating the need for an absolute normalization
of the cross section, the authors of Ref.[19] have proposed
to use the ratio of proton-to-neutron yields. Indeed, these
authors demonstrated that the ratio of cross sections is
largely insensitive to distortion effects[18]. Further, binding-
energy corrections, which were responsible for the large
s40%d reduction of the absolute cross section, become barely
visible in the cross-section ratio[16]. In our case the insen-
sitivity to final-state interactions entailed an enormous sim-
plification: by introducing the notion of a bound-nucleon
propagator we have exploited Feynman’s trace techniques to
develop closed-form, analytic expressions for the cross sec-
tion.

In summary, the sensitivity of neutral-current neutrino-
nucleus scattering to the strange-quark content of the axial-
vector form factor of the nucleon was examined. A model-
independent formalism based on a set of eight nuclear-
structure functions was developed. On account of both, the
notion of a bound-state nucleon propagator and the insensi-
tivity of the ratio of proton-to-neutron yields to distortion
effects, we computed all nuclear-structure functions in closed
form. Adopting a value for strange-quark contribution to the
axial-vector form factor of the nucleon ofgA

s =−0.19, led to a
significant enhancement in the proton-to-neutron yields rela-
tive to one in which the strange-quark contribution was ne-
glected. As the axial massMA and gA

s are known to be
strongly correlated, constraining furtherMA may help vali-
date this result. Finally, an observable slightly less sensitive
to gA

s than the one presented, yet more readily accessible
experimentally, is the ratio of neutralsn ,n8pd to charged
sn ,mpd neutrino-nucleus scattering. Work along these lines is
now in progress.
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APPENDIX A: HADRONIC WEAK-NEUTRAL CURRENT
Neutral-current vector and axial-vector matrix elements

between on-shell nucleon states can be parametrized on gen-
eral grounds in terms of four form factors in the following
form:

FIG. 12. Ratio of cross sections for protons
over that for neutrons as a function of the labora-
tory kinetic energyTp of the outgoing nucleon.
Cross sections include contributions from the
1s1/2 and 1p3/2 orbitals of 12C.
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kNsp8,s8duĴm
NCs0duNsp,sdl = ūsp8,s8dFF̃1sQ2dgm

+ iF̃2sQ2dsmn

qn

2M
Gusp,sd,

sA1ad

kNsp8,s8duĴm5
NCs0duNsp,sdl = ūsp8,s8dFG̃AsQ2dgm

+ G̃PsQ2d
qm

M
Gg5usp,sd.

sA1bd

The vector current may be decomposed in terms of isoscalar
and isovector electromagnetic contributions plus an explicit
strange-quark contribution, which is assumed isoscalar.
Similarly, the axial-vector current may be related to the iso-
vector current measured in neutronb decay plus an isoscalar
strange-quark contribution. That is,

Ĵm
NC = s2 − 4sin2uWdĴm

EMsT = 1d − 4sin2uWĴm
EMsT = 0d − s̄gms,

sA2ad

Ĵm5
NC = − 2ÂmsT = 1d + s̄gmg5s. sA2bd

This decomposition enables one to express the two vector
and the one axial-vector form factors in the following form:

F̃isQ2d = s1 − 4sin2uWdFi
spdsQ2d − Fi

sndsQ2d − Fi
ssdsQ2d

for protons, sA3ad

F̃isQ2d = s1 − 4sin2uWdFi
sndsQ2d − Fi

spdsQ2d − Fi
ssdsQ2d

for neutrons sA3bd

and

G̃AsQ2d = + GA
s3dsQ2d − GA

ssdsQ2d for protons, sA4ad

G̃AsQ2d = − GA
s3dsQ2d − GA

ssdsQ2d for neutrons.

sA4bd

Note that because(massless) neutrino scattering is insensi-

tive to the induced pseudoscalar form factorG̃P, it has been
ignored throughout this work. In what follows, standard pa-
rametrizations of the electromagnetic and axial-vector
nucleon form factors are employed. In particular, we follow
the conventions adopted in Ref.[6]. These are given by

F1
spdsQ2d = S1 + ts1 + lpd

1 + t
DGD

VsQ2d,

sA5ad

F2
spdsQ2d = S lp

1 + t
DGD

VsQ2d,

F1
sndsQ2d = Slnts1 − hd

1 + t
DGD

VsQ2d,

sA5bd

F2
sndsQ2d = Slns1 + thd

1 + t
DGD

VsQ2d,

GA
s3dsQ2d = gAGD

AsQ2d, GA
ssdsQ2d = gA

sGD
AsQ2d, sA5cd

where a dipole form factor of the following form is assumed:

GD
VsQ2d = s1 + Q2/MV

2d−2 = s1 + 4.97td−2, sA6ad

GD
AsQ2d = s1 + Q2/MA

2d−2 = s1 + 3.31td−2, sA6bd

h = s1 + 5.6td−1, t = Q2/s4M2d. sA6cd

Finally, for reference we display the value of the various
nucleon form factors atQ2=0,

F1
spds0d = 1, F1

snds0d = 0, F1
ssds0d = 0, sA7ad

F2
spds0d = lp = + 1.79, F2

snds0d = ln = − 1.91, F2
ssds0d = ms,

sA7bd

GA
s3ds0d = gA = + 1.26, GA

ssds0d = gA
s . sA7cd

APPENDIX B: HADRONIC TENSOR IN A RPWIA
The hadronic tensor computed in a relativistic plane-wave

impulse approximation(RPWIA) has been written in Eq.
(39) in terms of eight structure functions. These are given by
the following simple forms:

W̃1 = 4F̃1
2sMMa − pa · p8d +

F̃2
2

M2fsMMa + pa · p8dq2

− 2spa ·qdsp8 ·qdg − 4G̃A
2sMMa + pa · p8d

+
4F̃1F̃2

M
fsp8 ·qdMa − spa ·qdMg, sB1ad

W̃2 = 4sF̃1
2 + G̃A

2d − F̃2
2S q2

M2D , sB1bd

W̃3 = F̃2
2Sp8 ·q

M2 D + 2F̃1F̃2, sB1cd

W̃4 = F̃2
2Spa ·q

M2 D − 2F̃1F̃2SMa

M
D , sB1dd

W̃5 = −
F̃2

2

M2sMMa + pa · p8d, sB1ed

W̃6 = 8iF̃1G̃A, sB1fd
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W̃7 = 4iF̃2G̃A, sB1gd

W̃8 = 4iSMa

M
DF̃2G̃A. sB1hd

Our final task consists in relating the structure functions
in the general model-independent expansion ofWmn given in
Eqs. (20a) and (20b), to the model-dependent ones given
above. This is done by noting that in the laboratory frame
one can write

pa
m = aPm + bsp8m − qmd, sB2d

where thea andb coefficients are defined as follows:

a ;
1

MA
SEa −

upau
upmu

EmD, b ;
upau
upmu

. sB3d

Substitution of Eq.sB3d into Eq. s39d allows us to identify

the contribution ofW̃i to each of the structure functions.
These are given by

W1 = S2j + 1

2Ep8
DW̃1, sB4ad

W4 = S2j + 1

2Ep8
Ds2bW̃2d, sB4bd

W7 = S2j + 1

2Ep8
DsaW̃2d, sB4cd

W11 = S2j + 1

2Ep8
Ds− aW̃7d, sB4dd

W12 = S2j + 1

2Ep8
Ds− bW̃6 − bW̃7 − W̃8d, sB4ed

W13 = S2j + 1

2Ep8
Ds− aW̃6d. sB4fd

Note that the model predictsW3=W10;0. Moreover, as was
mentioned previously,(massless) neutrino scattering is in-
sensitive to the following five structure functions:W2, W5,
W6, W8, andW9.
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