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The electromagnetic and axial form factors of the nucleon and its lowest positive parity excitations, the
Ds1232d and theNs1440d, are calculated with constituent-quark models that are specified by simple algebraic
representations of the mass-operator eigenstates. Poincaré covariant current operators are generated by the
dynamics from single-quark currents that are covariant under a kinematic subgroup. The dependence of the
calculated form factors on the choice of kinematics and on the gross features of the wave functions is
illustrated for instant-form, point-form, and front-form kinematics. A simple algebraic form of the orbital
ground state wave function, which depends on two parameters, allows a fair description of all the form factors
over the empirically accessible range, although with widely different choices of the parameters, which deter-
mine the range and shape of the orbital wave function. The neutron electric form factor requires additional
features, for instance the presence of mixed-symmetryS-state component with 1–2% probability in the ground
state wave function. Instant- and front-form kinematics demand a spatially extended wave function, whereas in
point-form kinematics the form factors may be described with a quite compact wave function.
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I. INTRODUCTION

The baryon states of constituent-quark models are repre-
sented by functions of three quark coordinates, spin, flavor,
and color variables. The Hilbert space of states is the tensor
product of three irreducible Poincaré representations. The
bound state wave functions represent vectors in the represen-
tation space of the little group of the Poincaré transforma-
tions. A calculation of baryon form factors requires consis-
tent representations of the current-density operators and the
baryon states. While current-density operators are repre-
sented by functions of quark velocities and spinor indices,
the baryon states are represented by eigenfunctions of the

mass operator, which are functions of internal momentakW i

and spin variables. The relation between the two representa-
tions depends on the “form of kinematics,” which specifies a
kinematic subgroup of the Poincaré group.

Following Bakamjian and Thomas[1] the baryon states
may be represented by eigenfunctions of the mass operator
M, the spin operatorj2, jz, and three kinematic operators
which, together with the mass operator, specify the four-
momentum. The mass operator commutes with these opera-
tors and is independent of their eigenvalues, which therefore
may be treated as parameters. Relevant examples are the

velocity vW, the three-momentumPW , and the light-front mo-
mentumP: =hP+,P'j, with the four-momentum represented,
respectively, by

P = MhÎ1 + uvW u2,vWj, P = hÎuPW u2 + M2,PW j,

P = HM2 + P'
2

P+ ,PJ . s1d

The choice of these kinematic parameters implies the form of
kinematics, which is the choice of a kinematic subgroup of
the Poincaré group[2]. The Poincaré representations of the
kinematic subgroup are independent of the mass operator. In
particular, they are the same as the representations of free
quarks with mass operatorM0. The kinematic subgroups
which correspond to the momentum representations in Eq.
(1) are the Lorentz group SOs1,3d, the Euclidean group in
three dimensions Es3d (translations and rotations at a fixed
time), and the symmetry group of the null planen·x=0, n2

=0. Following Dirac’s seminal paper[3], the three forms of
kinematics are referred to as point form, instant form, and
front form.

The relations between the internal momenta and spin vari-
ables to the quark velocities and spinor variables depend on

boost parameters which arevW, PW , and P' /P+, with Lorentz
kinematics, instant kinematics, and light-front kinematics, re-
spectively. Poincaré covariant current-density operators can
be generated by the dynamics from current operators that are
covariant under the kinematic subgroup only. Employment of
free-quark currents for that purpose leads to different current
operators in the different forms of kinematics. The quark
masses enter as essential scale parameters of these current
operators.

While the mass operator of conventional quark models,
e.g., Ref. [4], also depends on the quark masses, baryon
spectra of confined quark may be represented by mass op-
erators that are independent of quark masses[5]. Eigenfunc-
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tions of such mass operators can be consistent with empirical
nucleon form factors[6]. Nucleon models constructed in this
manner depend only on one scale that can be varied by uni-
tary transformations. Form factors are dimensionless func-
tions of the invariant velocity differenceh : =1/4svout−vind2,
and the mass ratioMout/Min. With Lorentz kinematicsh is a
kinematic quantity and the form factors are relatively insen-
sitive to unitary scale transformations of the wave function.
Relations to momentum transfers involve the baryon masses.
With instant and light-front kinematics momentum transfers
are kinematic, since for these there is kinematic translation
covariance in three or two space dimensions, respectively.

Poincaré covariant state vectors of few-body systems are
represented by equivalence classes of functions[7] and there
is no relation of a particular representation to wave functions
defined by matrix elements of field operators[8,9].

The purpose of this paper is to explore the dependence of
the baryon elastic and transition form factors on the repre-
sentation of the baryon mass operator and on the form of
kinematics used in the construction of the current operators.
For that purpose we assume a Bakamjian-Thomas represen-
tation of the baryon states and generate current-density op-
erators from simple quark currents that are covariant under
the kinematic subgroup only. Non-Bakamjian-Thomas repre-
sentations of the baryon states are equivalent by unitary
transformations, which modify the representation of the
quark currents[7].

The mass operator is constructed in a simple spectral rep-
resentation, which is independent of quark masses:

ks1,s2,s3,kW18,k
W

28,k
W

38uMus38,s28,s18,k
W

38,k
W

28,k
W

18l

= o
n,j ,s

fn,j ,sss1,s2,s3,kW18,k
W

28,k
W

38dMn,jfn,j ,s

3ss18,s28,s38,k
W

18,k
W

28,k
W

38d
p, s2d

with the restriction to the nucleon, theDs1232d and the
Ns1440d. Generalization to other states is straightforward.
A two-parameter family of algebraic functions is em-
ployed, which allow variations of the range and the shape
of the function. Using hyperspherical coordinates, the spa-
tial wave function of theNs1440d baryon is constructed
with a single node to be orthogonal to the ground state.
For a satisfactory description of the electric form factor of
the neutron a small admixture of,1–2 % of a mixed-
symmetry S state is included in the ground state wave
function.

For the quark currents the same structureless spinor cur-
rents are employed throughout. Variations of this input are
beyond the scope of this paper. The quark velocities are re-
lated to the internal momenta by boost relations, which de-
pend on the choice of the kinematics with significant quali-
tative and quantitative consequences. With point-form and
light-front kinematics different quark velocities are related
by kinematic Lorentz transformations. With instant-form ki-
nematics there is no kinematic relation between different
quark velocities. With light-front and instant-form kinemat-
ics translation covariance emphasizes the spatial extentr0 of
the wave function.

When the spatial extent of the wave function is scaled
unitarily to zero, the calculated form factors become inde-
pendent of momentum transfer in both instant- and front-
form kinematics. In contrast point-form kinematics has a
nontrivial limit, when the spatial extent of the wave function
is scaled to zero. In this “point limit” the calculated form
factors depend on the functional form of the wave function,
and whenh@1 decrease with an inverse power of the mo-
mentum transfer. The falloff power is determined by the cur-
rent operator and is independent of the wave function[6].

The present paper is organized in the following way. In
Sec. II the model independent relations of covariant current
matrices to invariant form factors are summarized. Section
III contains the description of the baryon model specified by
a mass operator and kinematic quark currents. Section IV
contains a detailed description of the integrals which need to
be evaluated after summation over spin and flavor indices.
Numerical results are presented in Section V. A concluding
discussion is given in Sec. VI.

II. CURRENT-DENSITY OPERATORS
AND FORM FACTORS

The definition of form factors depends on the Poincaré
covariance of the current-density operatorsImsxd and the ba-
sis statesuM ,v , j , jzl. The current density

Imsxd = eiP·xIms0de−iP·x s3d

satisfies the Lorentz covariance relations

U†sLdImsxdUsLd = Lm
nI

nsL−1xd. s4d

By definition the spin operatorjW is related to the Lorentz
generatorsJmn by

h0,jWj: = B−1svdw with wt: =
1

2
vnJrsenrst, s5d

where the boost operatorBsvd is an operator valued Lorentz
transformation with the defining property:

Bsvdh1,0,0,0j = v. s6d

It follows from the definitions5d and the Lorentz covariance
of the velocity operator,U†sLd v UsLd=Lv, that the spin
operator transforms according to

U†sLd jWUsLd = RWsL,vd jW, s7d

with the Wigner rotationsRWsL ,vd defined by

RWsL,vd: = B−1sLvdLBsvd. s8d

The basis states transform according to

UsLduM,v, j ,sl = o
s8

uM,Lv, j ,s8lDs8,s
j fRWsL,vdg. s9d

With definite initial and final velocities and massesva,Ma
and v f ,Mf the form factors are determined by invariant re-
duced matrix elements of the currents. They are dimension-
less functions ofh:
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h: = 1
4sv f − vad2, − 1

4sv f + vad2 = 1 +h, s10d

and the baryon masses. The relation between the invariant
momentum transfer andh is

Q2: = sMfv f − Mavad2 = 4MfMah − sMf − Mad2. s11d

In practice the dynamics generates the current operators from
kinematic currents that are covariant under a subgroup only.
It is therefore important to define basis states such that the
Wigner rotations of kinematic transformations are kinematic.
For Lorentz and instant kinematics canonical boosts satisfy
this requirement. For any rotationR the corresponding
Wigner rotation satisfiesRWsR ,vd=R and for rotationless
Lorentz transformations in the direction ofvW the Wigner ro-
tations reduce to the identity. Light-front kinematic requires
null-plane boosts defined such that the Wigner rotations of
null-plane boosts are the identity.

A. Electromagnetic form factors

Lorentz and instant kinematics share the subgroup of ro-
tations about the direction of the velocities, which suggests
the use of canonical spins and the separation of the con-
served current densityIms0d into “electric” and “magnetic”
currents which are projections of the current into the plane
defined by the velocitiesva andv f and the projection perpen-
dicular to that plane.

Current conservationsMfv f −MavadIs0d=0, implies that
the electric current be a linear combination of the velocities
multiplied by a single invariant operatorIe. It is satisfied by
the expression

Ie
ms0d =HMf + Ma

Î4MfMa

v f
m + va

m

2Î1 + h
+

Mf − Ma

Î4MfMa

v f
m − va

m

2Îh
Î1 + h

h JIe,

s12d

which implies

Ie: = −
sMav f + Mfvad
2Î1 + hÎMaMf

Is0d. s13d

The choice of coordinate axes is a matter of convenience.
When thez axis is in the direction of the velocities, the
components of the magnetic current are

Ims0d = h0,Imxshd,Imyshd,0j. s14d

Electric and magnetic form factors are invariant matrix ele-

ments of the expressionss12d and s14d. Both Ie andIWm are
invariant under rotationless Lorentz transformations in thez
direction and, with canonical boosts, the corresponding
Wigner rotations are the identity. Form factors can thus be
defined by invariant canonical-spin matrix elements.

The elastic form factors of the nucleon are defined by

GEshd: = k 1
2uIeshdu 1

2lc = k− 1
2uIeshdu − 1

2lc,

GMshd: =
1

Îh
k 1

2uImxshdu − 1
2lc = −

1
Îh

k− 1
2uImxshdu 1

2lc.

s15d

The magnetic form factor for the transition between a spin
1/2 and a spin 3/2 state can be defined by

GM3/2shd: =
1

Îh
fk 1

2, 1
2uImxshdu 3

2,− 1
2cl

+ Î3k 1
2,− 1

2uImxshdu 3
2,− 3

2lcg . s16d

With Lorentz kinematics all Lorentz transformations are ki-
nematic and the choice of a “frame,” for the component of
the velocities, for instance

v f = hÎ1 + h,0,0,Îhj, va = hÎ1 + h,0,0,−Îhj, s17d

is a matter of convenience.
The light-front kinematic subgroup leaves the null plane

n·x=0, n2=0 invariant. For spacelike momentum transfer
Q2.0, the null vectorn can be chosen such thatPf

+=Pa
+.

Thus the operatorI+s0d /P+ and the null-plane spin are in-
variant under the kinematic subgroup. Form factors can be
defined by the dimensionless current matrix

I+: =
ÎMfMa

P+ I+s0d. s18d

For a given velocityv the light-front spin is related to the
canonical spin by the Melosh rotationRMsvd :
=BcsvdB−1svd. With the null vectorn=h−1,0,0,1j the con-
dition Q+=0 requires velocities at an anglea relative to the
z axis that depend onh and the ratioMf /Ma,

cosa: =
Ma − Mf

Mf + Ma

Î1 + h

h
. s19d

With instant kinematics the kinematic subgroup, which
leaves some timelike vectorn invariant, does not include
rotationless Lorentz transformations. The kinematic boost

parametersPW f andPW a are related kinematically only when the
vector n is chosen in the direction ofMava+Mfv f. Then,

PW f =−PW a= 1
2QW . A consistent calculation of the form factors

with instant-form kinematics requires the same frame,PW f =

−PW a, for both elastic and transition form factors. It follows

that the momentum transferQW 2 is a function ofQ2 and the
baryon masses,
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QW 2 = Q2 −
fsPf + Pad ·Qg2

sPf + Pad2 = Q2 +
sMf

2 − Ma
2d2

Q2 + 2sMf
2 + Ma

2d
.

s20d

The velocities are then

v f = hÎ1 + h coshx + Îh sinh x,0,0,Îh coshx

+ Î1 + h sinh xj,

va = hÎ1 + h coshx − Îh sinh x,0,0,−Îh coshx

+ Î1 + h sinh xj, s21d

where

sinh x

coshx
: =

Ma − Mf

Mf + Ma
Î h

1 + h
. s22d

The evaluation of the null-spin matrixI+ and the
canonical-spin matricesIe,Im necessarily requires different
orientations of the velocities. The relations of the canonical-
spin matricesIe,Im to the null-plane-spin matrixI+ can be
conveniently established by the relations of the spin repre-
sentations to spinor representations provided by the spinor
representations of light-front boostsufsvd and canonical
boostsucsvd, which for spin 1

2 are

ufsvd: =
a' ·v' + b + v+

Îv+

a+

2

1 + b

2
, s23d

ucsvd: =
aW ·vW + 1 +v0

Î2s1 + v0d
1 + b

2
. s24d

The light-front-spin matrix

I+ = ufsv fdSg+F1 −
1

2F Q · g

Î4MaMf

,g+GF2Dufsvad
1

Îv f
+va

+

= F1 − ısyÎ Q2

4MfMa
F2, s25d

with

v f
+ =

P+

Mf
, v f' =

P'

Mf
, va

+ =
P+

Ma
, va' =

− P'

Ma
, s26d

is related to the canonical-spin matricesIWe andIWm by

Ie = ūcsv fdSF− ve · g + sg ·Qd
ve ·Q

Q2 GF1

+
1

2F Q · g

Î4MaMf

,ve · gGF2Ducsvad,

Imx= ūcsv fdSgxF1 −
1

2F Q · g

Î4MaMf

,gxGF2Ducsvad. s27d

Here

ve: =
sMav f + Mfvad
Î1 + hÎ4MaMf

, s28d

and thez axis is in the direction of the velocities. It follows
that

GM = F1 +
Mf + Ma

2ÎMfMa

F2. s29d

The corresponding relations for1
2 → 3

2 transitions are derived
in Appendix A.

B. Axial form factors

Axial form factors of the nucleon are defined by the
spinor representation

Am = GAshdgmg5 + GP
1
2sv f − vadmg5. s30d

The form factors are thus related to canonical-spin matrices
with the velocitiess17d by

ūcsv fdAxucsvad = Î1 + h GAsx,

ūcsv fdAyucsvad = Î1 + h GAsy, s31d

ūcsv fdAzucsvad = sGA − hGPdsz. s32d

The symmetry relation betweenx andy components is kine-
matic for Lorentz and instant kinematics.

Null-plane spin matrices with Eq. (26) and n
=h−1,0,0,1j are related to the form factors by

ūfsv fdA+ufsvad
Îv f

+va
+

= GAsz, s33d

and

ıszūfsv fdAxufsvad + ūfsv fdAyufsvad = hGPsy. s34d

III. THE BARYON MODEL

A. Specification of the mass operator

For the constituent-quark models under consideration the
mass operatorM is defined by Eq.(2) with the empirical
baryon masses and eigenfunctions ofM represented by

functions of the formf j ,sskW1,kW2,kW3;s1,s2,s3d, for which an
inner product is defined as

sf j8,s8,f j ,sd

= o
s1,s2,s3

E d3k1E d3k2E d3k3dskW1 + kW2 + kW3d

3f j8,s8sk
W

1,kW2,kW3;s1,s2,s3dp

3f j ,sskW1,kW2,kW3;s1,s2,s3d = d j8,jds8,s. s35d
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These functions also depend on flavor and color variables,
which are not shown explicitly. They are independent of the

kinematic parametersvW ,PW or P+,P' of the three different
forms of kinematics.

In the representation(2) invariance under rotations is nec-
essary and sufficient for the Lorentz invariance of the mass
operator. In this representation the wave function is indepen-
dent of frames.

The single-baryon wave functions under consideration are
products of functions of the color variable that are antisym-
metric under permutations with permutation symmetric func-
tions of space, spin, and flavor variables. The color functions
play no role in the form factor calculations and will be sup-
pressed. For the nucleonsNd, its first radial excitation
fNs1440dg and the first spin-flip resonancefDs1232dg
simple representations without spin-orbit coupling are
products of permutation-symmetric spin-flavor functions
x j ,sss1,t1,s2,t2s3,t3d with invariant functions of the con-
stituent momentawisk2+q2d, where the Jacobi momenta are
defined as

kW : =Î2

3
SkW1 −

kW2 + kW3

2
D =Î3

2
kW1 = −Î3

2
skW2 + kW3d,

qW: =Î1

2
skW2 − kW3d. s36d

Under Lorentz transformations the momentakW i undergo
Wigner rotationss8d,

U†sLdkW iUsLd = RWsL,vdkW i . s37d

It follows that the quadratic sum

k2 + q2 = 2sk2
2 + k3

2 + kW2 ·kW3d s38d

is symmetric under permutations and Lorentz invariant.
The spin-flavor functions are given explicitly by sums

over the following products of Clebsch-Gordan coefficients:

x1/2,s,tss1,t1,s2,t2,s3,t3d:

= Î1
2hds,s1s 1

2, 1
2s2,s3u0,0ds 1

2, 1
2t2,t3u0,0d

+ s 1
2, 1

2s2,s3u1,s2 + s3ds1,1
2,s2 + s3,s1u 1

2,sd
3s 1

2, 1
2t2,t3u1,t2 + t3ds1,1

2,t2 + t3,tu 1
2,td , s39d

and

x3/2,s,tss1,t1,s2,t2,s3,t3d:

= s 1
2, 1

2s2,s3u1,s2 + s3ds1,1
2,s2 + s3,s1u 3

2,sd
3s 1

2, 1
2t2,t3u1,t2 + t3ds1,1

2,t2 + t3,t1u 3
2,td . s40d

The spatial part of the wave function is parametrized by
functions that depend only on the hypersherical momentum
variable, which is defined asP : =Î2skW2+qW2d:

w0sPd = NS1 +
P2

4b2D−a

, s41d

whereN is a normalization constant and the exponenta and
b are adjustable parameters.

It was noted in Ref.[4] that by introduction of a small
admixture of a mixed-symmetryS-state component in the
nucleon neutron electric form factors that agree with extant
data may be obtained. For that purpose a mixed-symmetry
S-wave component is also considered here. Its detailed con-
struction is described in Appendix B.

The radial wave function for theNs1440d is constructed
so that it is orthogonal to the ground state, and that its Fou-
rier transformw̃1sRd has a single node:

w̃1srW,rWd: =
1

s2pd3 E d3kE d3qe−ıskW ·rW+qW·rWdwskW ,qWd. s42d

These conditions imply the following general form in the
momentum representation:

w1sPd = Aw0sPd + b2BF20

P
w08sPd + 4w09sPdG , s43d

whereA andB are parameters, which are determined by the
orthonormality condition

E d3kd3q wiskW ,qWdw jskW ,qWd = di j . s44d

Given the ground state wave function model(41), the
explicit expression for the wave functionw1sPd is

w1sPd = w0sPd1Asad + Bsad

33− 12a
1

S1 +
P2

4b2D +
asa + 1d

b2

P2

S1 +
P2

4b2D242 .

s45d

The rms radius of the quark distribution of the nucleon is
given by the expression

r0
2 =

3

2
E d3rE d3rr2uw̃sRdu2, R: = Î2sr2 + r2d. s46d

It follows that r0,1/b.
In Fig. 1 w0 andw1 are shown for the parameter valueb

=640 MeV anda=9/4. In Table I the values of the two
parametersa and b used in the following sections for the
different forms of kinematics are listed along with the corre-
sponding values of the quark radiusr0.

B. Quark currents

For each form of kinematics the dynamics generates the
current-density operator from a kinematic current, which is
specified by the expression
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kvW f,vW28,vW38uI
ms0duvW3,vW2,vWal

= ds3dsv38 − v3dds3dsv28 − v2ds 1
6 + 1

2t3
s1ddūsvW18dg

s1dmusvW1d,

s47d

in the case of Lorentz kinematics, and

kP+,P'f,p28,p38uI
+sx−,x'dup3,p2,P'a,P

+l

= ds3dsp38 − p3dds3dsp28 − p2ds 1
6 + 1

2t3
s1ddūsp18dg

s1d+

3usp1deısP'f−P'ad·x' s48d

for light-front kinematics and finally by

k 1
2QW ,pW28,pW38uI

msxWdupW3,pW2,−
1
2QW l

= ds3dsp38 − p3dds3dsp28 − p2ds 1
6 + 1

2t3
s1dd

3ūspW18dgs1dmuspW1deısQW ·xWd s49d

for instant kinematics. In each case only covariance under
the kinematic subgroup is required.

For the corresponding expression for the axial vector cur-
rent the matrix is obtained by the replacement

S1

6
+

1

2
t3

s1dDgs1dm → Sgm
s1d + gP

sp18 − p1dm

2m
Dg5

s1d1

2
t3

s1d.

s50d

The value for the pseudoscalar coupling constant of the “par-
tially conserved” axial current is then

gP =
4m2

Q2 + mp
2 . s51d

C. Velocity representations of the quark structure

With Lorentz kinematics quark momentapi : =mvi are de-
fined by the boost relations

pi: = Bsvdh0,kW ij + vivK, vi: = ÎukW iu2 + m2, vK
2 = − 1.

s52d

The Lorentz covariance of the quark velocity operators fol-
lows from the Lorentz covariances6d ands37d of the opera-

tor v and the momentakW i. The quark velocities do not com-
mute with any component of the momentumP=Mv, and
the sum of the quark momenta does not equal the total mo-
mentum for any component.

Null-plane kinematics depends on a null vectorn or the
frame in whichn=h−1,0,0,1j. The quark momentapi de-
fined by

pi
+ = jiP

+, pi': = ki' + jiP', pi
−: =

m2 + pi'
2

pi
+

with ji: =
kiz + vi

o
i

vi

s53d

are covariant only under the subgroup which leaves the null
planen·x=0 invariant.

With instant-form kinematics the kinematic subgroup
does not include any boosts. The kinematic symmetry of the
quark momenta merely requires covariance under rotations

andoipW i =PW . That much allows considerable freedom in the
relation of the quark momentapW i to the internal momenta. In
Ref. [5] the momentapW i were defined as functions of the
boosted Jacobi momentaBcsvdh0,kW j, Bcsvdh0,qWj and the to-

tal momentumPW . That definition had the virtue of formal
simplicity. Here the velocitiespW i /m are taken to be free-
quark velocities, which implies

pi = vivK + BcsvKdh0,kW ij

= hvKzkiz + vivK
0,kix,kiy,vK

0kiz + vivKzj,

kW i = hpix,piy,vK
0piz − EivKzj, s54d

with vWK : =PW /oivi. Canonical boosts are used because then
the Wigner rotations of rotations are identical to the rota-
tions.

The quark momenta so defined by either Eq.(53) and(54)
are covariant under the kinematic subgroup, that is,

U†sLdpiUsLd = Lpi , s55d

with L restricted to the kinematic subgroup.
For the three forms of kinematics changes in the represen-

tation of the baryon states,

FIG. 1. Ground state and first radially excited states as a func-
tion of P=Î2sk2+q2d for b=640 MeV anda=9/4.

TABLE I. Values of the parameters of the ground state wave
function used for the three different forms of kinematics. The cor-
responding matter radiir0 are listed in the last column.

mq sMeVd b sMeVd a r0 sfmd

Point form 350 640 9/4 0.19

Front form 250 500 4 0.55

Instant form 140 600 6 0.63
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hkW ,qW,vWj → hpW2,pW3,vWj with pW1 = pW1spW2,pW3,vWd,

hkW ,qW,Pj → hp2,p3,Pj with p1 = P − p2 − p3,

hkW ,qW,PW j → hpW2,pW3,PW j with pW1 = PW − pW2 − pW3, s56d

together with the corresponding spin to spinor transforma-
tions [10]

ucsvid =
aW ·vW i + b + vi

0

Î2vi
0s1 + vi

0d

1 + b

2
, s57d

ufspid =
aW ' · pW' + bm+ p+

Î2mp+

1 + a3

2

1 + b

2
, s58d

ucspW id =
aW · pW i + mb + Ei

Î2Eism+ Eid
1 + b

2
, Ei: = Îm2 + upW iu2,

s59d

provide kinematically covariant representations of the
baryon states, which are convenient for the construction of
conserved current-density operators which satisfy Poincaré
covariance.

In each case the wave function must be multiplied by the
square root of the appropriate Jacobian. For Lorentz kine-
matics this is

JsvW ;pW2,pW3d: = S ] skW ,qWd
] spW2,pW3d

D
vW

=
Î27v2v3

E2E3

=
Î27sE2v

0 − p2zvzdsE3v
0 − p3zvzd

E2E3
. s60d

With null-plane kinematics the Jacobian is

JsP;p2,p3d: = S ] skW ,qWd
] sp1,p3d

D
P

=
] skW ,qWd

] sj2,k2',j3,k3'dS ] sj2,k2',j3,k3'd
] sp2,p3d D

P

=
Î27v1v2v3sP+d3

p1
+p2

+p3
+sv1 + v2 + v3d

, s61d

with

vi =
1

2
SjiM0 +

m2 + ki'
2

jiM0
D, M0

2 = o
i

m2 + ki'
2

ji
= So

i

viD2
.

s62d

With instant kinematics the definitions54d implies the Jaco-
bian

JsPW ,pW2,pW3d = S ] skW ,qWd
] spW2,pW3d

D
PW

=
Î27v2v3

E2E3
XH1 −

vz

v0

E2

M0
Fvz − v0Sp1z

E1
+

p2z

E2
DGJ

3H1 −
vz

v0

E3

M0
Fvz − v0Sp1z

E1
+

p3z

E3
DGJ

−
vz

2

v02

E2E3

M0
2 Hvz − v0Sp1z

E1
+

p2z

E2
DJ

3Hvz − v0Sp1z

E1
+

p3z

E3
DJC , s63d

where

Px = Py = 0, M0
2 = So

i

EiD2
− uPW u2, vW: =

PW

M0
. s64d

With canonical boosts the spin variables must be trans-
formed by the required momentum dependent rotation matri-
ces

Dli,si

1/2
„RWfBsvKd,kig… with

RWfBsvKd,kig: = B−1spidBsvKdBskid. s65d

With canonical boosts explicit representations of these
Wigner rotations are

D1/2
„RWfBsvKd,kig… = cos

ui

2
− ı sin

ui

2

spW i 3 sW idz

upi'u
, i = 1,2,3,

s66d

where the anglesui are defined by

sin
ui

2
= −

vKzupi'u
Î2s1 + vK

0dsm+ Eidsm+ vid
. s67d

With null-plane kinematics the corresponding required
spin rotations are Melosh rotations, which are represented by
[10]

D1/2fRMskW idg =
m+ jiM0 − ısW · snW 3 kW i'd

fsm+ jiM0d2 + kW i'
2 g1/2

. s68d

IV. NUCLEON FORM FACTORS

A. Canonical-spin representations

The matrix elements(16) may be evaluated with the an-
tisymmetric nucleon wave function(41) and the quark cur-
rent (47) multiplied by 3(the number of constituent quarks).
Evaluation of the sum over spin and isospin indices leads to
the explicit expressions of the form factors
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GEshd =E d3p2d
3p3wSk82 + q82

2b2 DwSk2 + q2

2b2 D
3ÎJ faspW2,pW3dC23sh,pW2,pW3dSesh,pW2,pW3d,

GMshd =E d3p2d
3p3wSk82 + q82

2b2 DwSk2 + q2

2b2 D
3ÎJ faspW2,pW3dC23sh,pW2,pW3dSmsh,pW2,pW3d. s69d

The Jacobian factorJ fa,

J fa: = Jsv f,pW2,pW3dJsva,pW2,pW3d, s70d

is defined by Eq.s60d or s63d for Lorentz or instant kinemat-
ics, respectively.

The coefficientC23sh ,pW2,pW3d is determined by the specta-
tor Wigner rotations:

C23sh,pW2,pW3d =
1

2 o
s8,s

Fo
s9

Ds8s9
1/2 †

3„RWfBsvKfd,k28g…Ds9,s
1/2

„RWfBsvKad,k2g…G
3 Fo

s9

D−s8s9
1/2 †

„RWfBsvKfd,k38g…

3Ds9,−s
1/2

„RWfBsvKad,k3g…G . s71d

The velocitiesvWKa, vWKf are vWa, vW f with Lorentz kinematics

and 1
2QW /M08, −1

2QW /M0 with instant kinematics.
The factorsSe andSm arise from the Dirac spinor struc-

ture of the current and associated Wigner rotations. The ex-
plicit expressions are

Se = k 1
2uD1/2†fRWsvKf,k18dgūcsv18dg

0ucsv1dD1/2

3fRWsvKa,k1dgu 1
2l

=ÎsE18 + mdsE1 + mds1 + hd
4E18E1

HF1 +
pW18 · pW1

sE18 + mdsE1 + mdG
3cosSu1 − u18

2
D+

up1'usp1z8 − p1zd
sE18 + mdsE1 + md

sinSu1 − u18

2
DJ , s72d

and

Sm =
1

Îh
k 1

2uD1/2†fRWsvKf,k18dgūcsv18dgxucsv1dD1/2

3fRWsvKa,k1dgu− 1
2l

=Î 1 + h

4hE18sE18 + mdE1sE1 + md

3Hfp1z8 sE1 + md − p1zsE18 + mdgcos
u18

2
cos

u1

2

+
1

2
up1'usE18 + E1 + 2mdsin

u18 − u1

2

+
1

2
up1'usE1 − E18dsin

u1 + u1

2
J , s73d

respectively. The boost dependent angles of rotation of the

FIG. 2. Electric form factor of the proton. Solid, dotted, and
dashed lines correspond to the instant, point, and front forms, re-
spectively. Squares are from the compilation of Ref.[12] while
black triangles are obtained from the recent JLAB data of Ref.[14]
usingGEp=smpGEp/GMpd / s1+Q2/0.71d2.

FIG. 3. Magnetic form factor of the proton. Solid, dotted, and
dashed lines correspond to the instant, point, and front forms, re-
spectively. The experimental data are from the compilation of Ref.
[12].

FIG. 4. QuotientmpGEp/GMp compared to the recent experi-
mental data measured in TJNAF, Refs.[14,16]. Solid, dotted, and
dashed lines correspond to the instant, point, and front forms re-
spectively.
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initial and final spins of the struck constituent are defined in
Eq. s67d.

In Appendixes C and D the corresponding expressions for
the matrix elements relevant for the calculation of the axial
andN→D transition form factors are given.

B. Light-front-spin representations

The form factors of the protont= 1
2 and the neutront

=−1
2,

F1,tsQ2d: = k 1
2,tuI+s0dut, 1

2l ,

F2,tsQ2d: =
1

Îh
k− 1

2,tuI+s0dut, 1
2l , s74d

can be written in a compact form as

Fa,tsQ2d =E
0

1

dj1 dj2 dj3
dsj1 + j2 + j3 − 1d

j1j2j3

3E dkW1' dkW2' dkW3' dskW1' + kW2' + kW3'd

3Îv1v2v3

M0

v18v28v38

M08
wpsj1,kW1'8 ,j2,kW2'8 ,j3,kW3'8 d

3Fa,tsQ2dwsj1,kW1',j2,kW2',j3,kW3'd, s75d

where

k1'8 = k1' + s1 − j1dQ', ki'8 = ki' − j1Q', i = 2,3.

s76d

The factorsFa,tsQ2d involve the spin-isospin amplitudes
(39) and the effects of the Melosh rotations on both specta-
tors and the quark currentIq1,

F1,tsQ2d = x1/2,t
† D1/2†sRM18dIq1

+ D1/2sRM1d

3 D1/2†sRM28dD
1/2sRM2dD1/2†sRM38d

3D1/2sRM3dx−1/2,t,

F2,tsQ2d =
1

Îh
x−1/2,t

† D1/2†sRM18dIq1

+ D1/2sRM1d

3 D1/2†sRM28dD
1/2sRM2dD1/2†sRM38d

3D1/2sRM3dx1/2,t. s77d

The representations of the Melosh rotations are defined in
Eq. s68d.

In the explicit evaluation of the integrals the choicep2'

=p2x is made without loss of generality. This leads to the
following expressions forFisQ2d:

F1p =
1

D1D2D3
f1ff2f3 + V2yV3yg,

F2p =
2mp

Q

1

D1D2D3
s− V1ydff2f3 + V2yV3yg,

F1n =
− 1

3

1

D1D2D3
f2f1V2yV3y − f2V1zV3z − f2V1xV3x

− f2V1yV3y − f3V1yV2yg,

TABLE II. Values of the form factors atQ2→0 together with
the proton charge radius.

Instant Point Front Expt.

GMps0d 2.7 2.5 2.8 2.793[13]

GMns0d −1.8 −1.6 −1.7 −1.913[13]

GAs0d 1.1 1.1 1.2 1.2670[13]

rcpsfmd 0.89 0.84 0.85 0.87[13]

FIG. 5. Magnetic form factors of the neutron. Solid, dotted, and
dashed lines correspond to the instant, point, and front forms, re-
spectively. The experimental data are from the compilation of Ref.
[12].

FIG. 6. Axial and induced pseudoscalar form factors of the nucleon. Solid, dotted, and dashed lines correspond to the instant, point, and
front forms, respectively. The experimental data are from Refs.[20,21].

BARYON FORM FACTORS OF RELATIVISTIC… PHYSICAL REVIEW C 69, 035212(2004)

035212-9



F2n =
2

3

mp

Q

1

D1D2D3
f2V1y f2f3 − V1xV2yV3x − f1f2V3y

− f1f3V2y − V1zV3zV2yg. s78d

Here the following notation has been employed:

ai = m+ jiM0, ai8 = m+ jiM08, nW = s0,0,1d,

Di = Îak8
2 + kW i'8

2Îak
2 + kW i'

2 ,

f i = ai8ai + kW i'8 ·kW i',

VW k = − aksnW 3 kW i'8 d + ak8snW 3 kW i'd + snW 3 kW i'8 d 3 snW 3 kW i'd.

s79d

In Appendix E the corresponding expressions for the ma-
trix elements relevant for the computation of the axial form
factors are given.

V. NUMERICAL RESULTS

A. Nucleons

1. Finite values of the constituent mass

In order to explore qualitative differences of the three
forms of kinematics nucleon form factors were calculated
with the mass and current operators specified in Sec. III with
the parameter values listed in Table I.

The calculated form factors are shown in Figs. 2, 3, 5, and
6 along with data taken from the compilation[12]. In Table
II the corresponding values ofGMps0d, GMns0d, GAs0d to-
gether with the proton charge radii are listed. The rms radius
r0 of the wave function is always smaller than the charge
radius with the largest value for instant kinematics and the
smallest for Lorentz kinematics.

The results reveal that it is possible to reach agreement
with the empirical data for all these form factors. The electric
form factor of the proton is found to be more sensitive to the
form of kinematics than the magnetic form factors. That may
be related to the implementation of current conservation,
which involves the form of dynamics.

The instant-form result forGEp in Fig. 2 follows the em-
pirical values obtained by a Rosenbluth separation up to
6 GeV2. The point-form calculation, with a very compact
wave function, follows the data that have been obtained by
means of polarization transfer somewhat more closely. The
front-form calculation of the form factorsF1 and F2 pro-
duces cancellations ofF1 and hF2 at about 6 GeV2 [9,15].
Such behavior is in fact suggested by the recent experimental
data for the quotientmpGEp/GMp [14]. In Fig. 4 this ratio is
shown as calculated with the three forms of kinematics. This
figure emphasizes the differences between the three forms of
kinematics as well as the discrepancies in the form factors of
the proton at medium energies. This discrepancy between the
recent TJNAF data, measured using the polarization transfer
technique, and the previous data, obtained through the
Rosenbluth separation[16], could be partly due to two pho-
ton exchanges as recently explored in Ref.[17]. There is

FIG. 7. Electric form factor of the neutron. Solid, dotted, and dashed, lines correspond to the instant, point, and front forms, respectively.
(a) No mixed-symmetryS state is included.(b) Some percentage of mixed-symmetryS state is included in the neutron wave function as
described in the text. Experimental data are from Ref.[12].

FIG. 8. Electric(left) and magnetic(right) form factors of the proton calculated with front-form kinematics with some mixed-symmetry
S-state component as explained in the text. Solid, dotted, and dashed lines correspond to 0%, 1%, and 2% of mixed-symmetryS state.
Squares are from the compilation of Ref.[12] while black triangles are obtained from the recent JLAB data of Ref.[14] using GEp

=smpGEp/GMpd / s1+Q2/0.71d2.
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therefore a qualitative difference between models based on
canonical-spin representations of the currents(instant and
Lorentz kinematics) and models based on null-plane-spin
representations of the currents(front-form kinematics).

Similar results for the elastic form factors have been de-
scribed in the literature making use of point[4,6] and front
[18] forms of kinematics on the basis of different dynamical
models.

The calculated values of the magnetic form factors shown
in Figs. 3 and 5 are in qualitative agreement with each other
and the data. The calculated magnetic moments show signifi-
cant differences. With instant-form kinematics reasonable
agreement with the empirical values of the nucleon magnetic
moments requires a very small quark mass of 140 MeV.
With larger quark mass values the magnitude of the calcu-
lated magnetic moments is too small. This feature also ap-
pears in the nonrelativistic quark model with “relativistic
corrections”[19]. The missing strength is in that model at-
tributed to exchange current contributions.

The magnetic moment values that are obtained in point-
form kinematics are about 10% too small. This feature was
already noted in Ref.[4]. In this case the calculated values of
the magnetic moments are fairly insensitive to the quark
mass value.

The magnetic moment of the proton as calculated in front-
form kinematics with a wave function of intermediate range
also falls within 1% of the empirical value. In front-form
kinematics the calculated neutron magnetic moment falls
some 12% below the corresponding empirical value.

The calculated value of the axial vector coupling constant
GAs0d is closest to the empirical value(within 6%) when
front-form kinematics is used. In instant- and point-form ki-
nematics the calculated value is about 14% smaller than the
empirical value. These values differ significantly from the
static quark model value 5/3, which is too large by 31%.

The calculated values of the axial form factor are close to
the empirical values[20] in all forms of kinematics as shown
in Fig. 6. The pseudoscalar form factor follows the empirical
values, except at very small values of momentum transfer,
where only the front-form one actually goes through the
muon point.

2. The electric form factor of the neutron

Without the momentum dependent spin rotations(66) or
(68) the symmetric spin-isospin amplitude(39) would imply

a vanishing electric form factor of the neutron. Because of
Wigner rotations or Melosh rotations of the constituent spins
the electric form factor of the neutron does not vanish. This
is shown in Fig. 7(a). The magnitude is however negligible
with instant and point form kinematics and too small with
front form kinematics in agreement with the results of Refs.
[11,22].

In Ref. [4], using point-form kinematics, it was noted that
a small admixture of a mixed-symmetrySstate in the ground
state may produce a satisfactory form factor. The effects of a
2% admixture of a mixed-symmetryS state wave function
are also shown in Fig. 7(b) for all three forms of kinematics.
The results are in good agreement with the empirical data.
The agreement is not quite as good with a 1% admixture of
the mixed-symmetryS state and would deteriorate with a
larger admixture.

The mixed-symmetrySstate is represented by appropriate
combination of mixed-symmetry spin-isospin wave functions
with two radial wave functions of mixed symmetry of the
form

wsskW ,qWd = Ns
k2 − q2

k2 + q2w0sk,qd, waskW ,qWd = Na
kW ·qW

k2 + q2w0sk,qd,

s80d

wherew0skW ,qd is the symmetricS-state wave functions41d.
The explicit construction is given in Appendix B.

The effect of the introduction of the mixed-symmetry
S-state component on the other nucleon form factors is small.
This is illustrated in Fig. 8, where the modification of the
calculated front-form electric and magnetic proton form fac-
tors by the mixed-symmetryS state is shown. The values of
the slopesdGen/dQ2dQ2=0 that are obtained are 0.60 GeV−2,
0.56 GeV−2, and 0.39 GeV−2 for instant, point, and front
forms, respectively, while the experimental value is
0.511±0.008 GeV−2 [23].

TABLE III. Values of the form factors atQ2→0 for zero con-
stituent mass.

Instant Point Front Expt.

GMps0d 2.6 2. 3.2 2.793[13]

GMns0d −1.7 −1.3 −2.0 −1.913[13]

GAs0d 0.6 0.6 0.0 1.2670[13]

FIG. 9. Magnetic form factor of the proton(left), of the neutron(right). Solid, dotted, and dashed lines correspond to the instant, point,
and front forms, respectively. Thick lines correspond to the zero-quark-mass case. Experimental data are from Ref.[12].
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3. The zero-quark-mass limit

It has been noted[6] that in the case of point-form kine-
matics and spectator currents the form factors were insensi-
tive to unitary scale transformations of the wave functions
when the extent of the wave function was small compared to
the scale defined by the quark mass,kr2l!1/mq

2. This is
equivalent tob2@mq

2. In the “point” limit mq
2/b2=0 the cal-

culated form factors are invariant under unitary scale trans-
formations. This opens the possibility for quark model phe-
nomenology with a very small constituent mass.

For the class of quark models considered here, where the
representation of the baryon mass operator is independent of
the quark mass, a zero-quark-mass limit of the form factors
exists for all three forms of kinematics. The spinor represen-
tations of the quark currents and the boost transformations to
spin representations are also independent of the quark mass.
Only the Jacobians and the Wigner or Melosh rotations de-
pend on the quark mass.

Zero-quark-mass values of the magnetic moments and the
axial coupling constant are listed in Table III. In Figs. 9 and

10 the zero-mass limits of nucleon magnetic and axial form
factors are compared to the finite-mass values. The magnetic
moments of both the protons and the neutrons do not show
large changes with vanishing mass in the case of instant-
form kinematics. The results for the nucleon magnetic form
factors, see Fig. 9, in the zero-mass limit show that the form
factors are insensitive to the quark mass only with Lorentz
kinematics.

Figure 11 shows magnetic form factors computed with
zero quark mass and wave functions with different rms radii
obtained varying the exponenta with fixed b. Thus both the
range and the shape of the wave function are changed. The
point-form results show the expected scale independence and
indicate that the change in shape is relatively unimportant
with instant- and front-form kinematics. Figure 11 shows the
expected drastic changes in theQ2 dependence. In particular,
instant-form calculations do not reproduce the experimental
behavior at highQ2 for any of the exponents, while front-
form ones do give the correct behavior for the appropriate
value ofa.

The zero-mass limit does not yield satisfactory values for
the axial coupling constant and the axial form factor, as seen
in Table III and in Fig. 10. These results suggest that realistic
axial current phenomenology in the constituent quark model
demands that the constituent mass at least be of the order of
200 MeV. Overall, the zero-quark-mass limit is not a good
candidate for quark-model phenomenology if both axial and
electromagnetic properties are to be understood simulta-
neously.

B. The D„1232…\N transition form factors

The magnetic transition form factorGMD that is associ-
ated with theDs1232d-N transition as calculated with the
wave function(41) and the parameter values in Table I in the
three forms of kinematics is shown in Fig. 12. The corre-
sponding values for the transition magnetic moments are
listed in Table IV.

FIG. 10. Axial form factor. Solid, dotted, and dashed lines cor-
respond to the instant, point, and front forms, respectively. Thick
lines correspond to the zero-quark-mass case. Experimental data are
from Ref. [20].

FIG. 11. Magnetic form factor of the proton formq=0 in instant(above left), point (above right), and front(below) forms, respectively.
The different lines correspond to different values of the exponenta in Eq. (41). Experimental data are from Ref.[12].
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In the case of instant-form kinematics the impulse ap-
proximation describes the empirical form factor and the tran-
sition magnetic moment well. This is a notable improvement
compared to nonrelativistic quark models. The magnetic mo-
ment is too small by about 30% in both point and front
kinematics.

In front-form kinematics there appears a node in the tran-
sition form factor between 9 and 10 GeV2. This feature is
similar to that noted in the calculated value forGEp in front-
form kinematics.

In Table IV the transition magnetic moments are also
listed as obtained in the zero-quark-mass case. The corre-
sponding form factors are plotted in Fig. 13. These results
are fairly similar to those obtained with finite values of the
constituent mass.

C. The N„1440…\N form factors

In Fig. 14 we show the calculated helicity amplitudeA1/2,
defined as

A1/2 =Î4pa

2Eg

ÎhGM, Eg: =
Mp2 − M2

2Mp
, a , 1/137,

s81d

for the Ns1440d-N transition as obtained with the wave
function modelss41d and s45d in all forms of kinematics
with the parameter values in Table I. It is, of course, ques-
tionable whether a treatment of theNs1440d as a stable
three-quark bound state is realistic. The extant data of this

helicity amplitude shown in Fig. 14f25,26g are manifestly
inadequate. The calculated transition form factors do in
this case depend significantly on the form of kinematics.

In Fig. 15 the helicity amplitude obtained with zero quark
mass is shown. These results are qualitatively similar to
those that are obtained with finite values of the constituent
mass above.

VI. CONCLUSIONS

The present comparative study of how baryon form fac-
tors calculated with free-quark currents depend on the choice
of the kinematic subgroup revealed a number of features,
which might be of phenomenological utility in description of
the baryons by constituent-quark models. This exploration is
based on mass operators of confined quark, which are param-
etrized by a confinement scale, and which implement basic
symmetries without free-quark features or dependence on
quark masses. Poincaré covariant current-density operators
are generated by the dynamics from free-quark current den-
sities covariant under different kinematic subgroups.

The interpretation of baryon wave functions of
constituent-quark models as a description of a physical struc-
ture that is observed by electroweak processes depends on
the choice of a form of kinematics. To assess the effective-
ness of a choice of kinematics it is important to consider the

FIG. 13. MagneticD→N transition form factor in the zero-
quark-mass case. Solid, dotted, and dashed lines correspond to the
instant, point, and front forms, respectively. Experimental data are
from Ref. [24].

FIG. 14. Helicity amplitude forNps1440d electroexcitation.
Solid, dotted, and dashed lines correspond to the instant, point, and
front forms, respectively. The experimental data are from Ref.[25].
The full solid point also corresponds to a preliminary analysis from
CLAS [26].

FIG. 15. Helicity amplitude forNps1440d electroexcitation in
the zero-quark-mass case. Solid, dotted, and dashed lines corre-
spond to the instant, point, and front forms, respectively. The ex-
perimental data are from Ref.[25]. The full solid point also corre-
sponds to a preliminary analysis from CLAS[26].

FIG. 12. MagneticD→N transition form factor. Solid, dotted,
and dashed lines correspond to the instant, point, and front forms,
respectively. Experimental data are from Ref.[24].

BARYON FORM FACTORS OF RELATIVISTIC… PHYSICAL REVIEW C 69, 035212(2004)

035212-13



full range of elastic and inelastic transitions at low and me-
dium energies. Examination of a broad range of features with
a crude model structure revealed no drastic failure that would
rule out any of the forms of kinematics considered. For most
form factors permutation symmetricS-wave functions were
adequate. The electric form factor of the neutron required a
small mixed-symmetry admixture. The baryon wave func-
tions used for this exploration are independent of the quark
mass and dependent on a range parameter and a shape pa-
rameter. Significantly different values of these parameters are
required for adequate wave functions with different forms of
kinematics. A quantitative phenomenology for all available
form factor data would require different refinements with
different forms of kinematics.

The calculated form factors are functions of kinematic
quantities, which differ with form of kinematics and the
baryon masses. Since at least one component of the four-
momentum is dynamic, current conservation will always im-
ply some dependence on the baryon masses.

The features emphasized by instant-form kinematics are
closest to those of nonrelativistic quark models with a physi-
cal interpretation of the wave function that emphasizes cova-
riance under three-dimensional rotations and translations.
Lorentz boosts are not in the kinematic subgroup. There is no
kinematic Lorentz symmetry of quark velocities. The kine-
matic variable of the form factors isQW 2 which equals the
four-momentum transfer only for elastic transitions.

With light-front kinematics both relevant Lorentz boosts
and translations are kinematic. The corresponding subgroup
is Galilean symmetry in 1+2 dimensions withpi

+ in the role
of the masses. In that case rotations about the direction of the
momentum transfer are not kinematic. In this the kinematic
parameter of the form factors is the four-momentum transfer
Q2.

With point-form kinematics there are no kinematic trans-
lations and there is no kinematic interpretation of the wave
function as a representation of spatial structure. The kine-
matic parameter of the form factors is the invariant velocity
transferh.
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APPENDIX A: INVARIANT FORM FACTORS
FOR N\D TRANSITION

The best way to relate calculations made in the three
forms of kinematics to the standard invariant form factors is

through the following set of invariant form factors, similar to
those used in Ref.[27],

Gn
msP,Qd = o

i

3

Kn
i,msP,QdGisQ2d, sA1d

with

K1,nmsP,Qd =
Qngm − sg ·Qdgnm

ÎQ2
ÎMpMg5,

K2,nmsP,Qd =
QnPm − sP ·Qdgnm

ÎQ2
g5,

K3,nmsP,Qd =
QnQm − Q2gnm

Q2 Mpg5, sA2d

where M and Mp are the nucleon and resonance masses,
respectively. The Sachs-like magnetic dipole, electric quad-
rupole, and Coulomb form factors are defined as in Ref.f27g,

Gn
msP,Qd = GM

p sQ2dKn
M,msP,Qd + GE

psQ2dKn
E,msP,Qd

+ GC
p sQ2dKn

C,msP,Qd. sA3d

The relation between the two sets of form factors is given by

GE
p =

M

3sMp + Md

3FMp2 − M2 + Q2

Mp

ÎMpM

Q
G1 +

Mp2 − M2

Q
G2

+ 2MpG3G ,

GM
p =

M

3sMp + Md
F s3Mp + MdsMp + Md − Q2

Mp

ÎMpM

Q
G1

+
Mp2 − M2

Q
G2 + 2MpG3G ,

GC
p =

2M

3sMp + Md
F2MpÎMpM

Q
G1 +

3Mp2 + M2 − Q2

2Q
G2

+
Mp2 − M2 + Q2

Q2 MpG3G . sA4d

The relation between matrix elements in the different
forms of kinematics and the form factorsGi is provided be-
low.

TABLE IV. The Ds1232d-N transition magnetic moment in the
different forms of kinematics with finite and zero constituent mass.

Instant Point Front Expt.

GMDs0dmÞ0 2.8 2.0 2.1 3.1

GMDs0dm=0 3.0 1.7 2.5 3.1
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1. Canonical representation

k 3
2,PDuI1s0duPN, 1

2l

= FMp + M
ÎQ2

G1 +
Mp2 − M2

2ÎQ2MMp
G2

−ÎMp

M
G3G Q3

2ÎEsM + Ed
,

k 1
2,PDuI1s0duPN,− 1

2l

= −
Î3

6 FMp + M
ÎQ2

G1 +
Mp2 − M2

2ÎQ2MMp
G2 −ÎMp

M
G3G

3
Q3

ÎEsM + Ed
, +

Î3

3

Q3

ÎQ2

M + E
ÎEsM + Ed

G1,

k 1
2,PDuI0s0duPN, 1

2l

= −
Î3

3 F Q3

ÎQ2
G1 +

Q3

ÎQ2MMp

E + M*

2
G2

+
Q3Q0

Q2 ÎM*

M
G3G

3
Q3

ÎEsM + Ed
, sA5d

where

Q = hQ0,0,0,Q3j Q0 = −
Pp ·Q

Mp
=

Mp2 − M2 − Q2

2Mp
;

Q3 = ÎQ2 + Q02. sA6d

2. Light-front representation

k 3
2uI+s0du 1

2l = −
1
Î2
FG1 +

Mp − M
Î4MMp

G2G ,

k 1
2uI+s0du − 1

2l =Î1

6
S−

M

Mp
G1 +

Mp − M
Î4MMp

G2 +Î Q2

MMp
G3D ,

k 1
2uI+s0du 1

2l = +Î1

6
S ÎQ2

Î4MMp
G2 −

Mp − M
ÎMpM

G3D .

sA7d

APPENDIX B: NEUTRON MIXED-SYMMETRY
S STATE

Consider the following two components in the neutron
wave function:

unl = Aun,Sl + Bun,MSl, sB1d

where

kn,Sun,Sl = kn,MSun,MSl = 1,

kn,Sun,MSl = kn,MSun,Sl = 0, uAu2 + uBu2 = 1. sB2d

The two components are in more explicit form,

un,Sl = f3gxf3gFS,S,

un,MSl =
1
Î2

sf21gx,Sf21gFS,S+ f21gx,Af21gFS,Ad, sB3d

where the spatial part has been indicated by anx, the explicit
expression of which is

f3gx = wGsPd = wsPd,

f21gx,S= wSsPd = NS
k2 − q2

k2 + q2wsPd,

f21gx,A = wAsPd = NA
kW ·qW

k2 + q2wsPd, sB4d

where P=Î2sk2+q2d with NS and NA obtained normaliz-
ing the spatial wave functions as

1
Î27

E d3qd3kwi
pw j = di j . sB5d

The flavor-spin wave functions can be written as

f3gFS,S=
1
Î2

sf21gF,Sf21gS,S+ f21gF,Af21gS,Ad,

f21gFS,S=
1
Î2

sf21gF,Sf21gS,S− f21gF,Af21gS,Ad,

f21gFS,A =
1
Î2

sf21gF,Sf21gS,A + f21gF,Af21gS,Sd sB6d

in terms of spin and flavor wave functions of three quarks.

General matrix element

A general matrix element between two neutron states can
be written as

knuX Q S,unl sB7d

whereX is an spatial operator,Q is a flavor operator, the
charge in this case, andS is a spin operator. This expression
can be worked out to arrive to the following general expres-
sion:
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knuX Q S unl

= fApkn,Su + Bpkn,MSugX Q SfAun,Sl + Bun,MSlg

= uAu2kn,SuX Q Sun,Sl + ApBkn,SuX Q Sun,MSl

+ BpAkn,MSuX Q Sun,Sl + uBu2kn,MSuX Q Sun,MSl,

sB8d

with

kn,SuX Q Sun,Sl =
1

6
f3gxXf3gxsf21gS,SSf21gS,S

− f21gS,ASf21gS,Ad, sB9d

kn,MSuX Q Sun,MSl = 1
12shf21gS,SSf21gS,S− f21gS,ASf21gS,Aj

3 hf21gx,SXf21gx,S− f21gx,AXf21gx,Aj

+ hf21gS,ASf21gS,S+ f21gS,SSf21gS,Aj

3hf21gx,AXf21gx,S+ f21gx,SXf21gx,Ajd,

sB10d

kn,SuXQSun,MSl =
1

6Î2
sf3gxXf21gx,S

3hf21gS,SSf21gS,S+ f21gS,ASf21gS,Aj

+ f3gxXf21gx,A

3hf21gS,SSf21gS,A − f21gS,ASf21gS,Sjd,

sB11d

and

kn,MSuX Q Sun,Sl

=
1

6Î2
sf21gx,SXf3gxhf21gS,SSf21gS,S+ f21gS,ASf21gS,Aj

+ 21x,AXf3gxhf21gS,ASf21gS,S− f21gS,SSf21gS,Ajd.

sB12d

APPENDIX C: D\N MATRIX ELEMENTS IN
CANONICAL REPRESENTATION

The relevant combination entering in the calculation of
the magnetic form factor takes the explicit form

k 1
2, 1

2uI+u 3
2,− 1

2l + Î3k 1
2,− 1

2uI+u 3
2,− 3

2l

=
8

3Î2

1

2ÎE18E1sE18 + mdsE1 + md
HFc2c3 −

s2s3

4
p̂2' · p̂3'GFA cos

b8

2
cos

b

2
+ B sinSb8 + b

2
D + C sinSb8 − b

2
DG

+
1

4
s2s3P̂13P̂12FA sin

b8

2
sin

b

2
− B sinSb8 + b

2
D + C sinSb8 − b

2
DG + fc2s3P̂13 + c3s2P̂12g

3F− A
1

8
cos

b8

2
sin

b

2
− A

5

8
sin

b8

2
cos

b

2
+ B

3

4
cosSb8 + b

2
D +

1

2
C cosSb8 − b

2
DGJ , sC1d

with

A = fp1z8 sE1 + md − p1zsE18 + mdg, B = up'usE1 − E18d, C = up'usE1 + E18 + 2md,

P̂12 =
sp1x + ip1yd

up'u
sp2z − ip2yd

up2'u
, P̂13 =

sp1x + ip1yd
up'u

sp3x − ip3yd
up3'u

. sC2d
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APPENDIX D: AXIAL MATRIX ELEMENTS IN CANONICAL REPRESENTATION

1. Evaluation of Š 1
2

1
2zA+z 1

2 ,−1
2
‹

k 1
2

1
2uA+u 1

2,− 1
2l = − gA

q 3

2
N 1

sE18 + mdsE1 + md
HfsE18 + mdsE1 + md − p1z8 p1zgFcos

b8

2
cos

b

2
A −

2

9
sin

b8

2
sin

b

2

p1N+p1N+

up'u2
B

+
1

9
sinSb − b8

2
D p1N+

up1'u
CG + AHup1'u2F− sin

b8

2
sin

b

2
G −

1

2
fp1z8 + p1zg sinSb + b8

2
Dup'uJ

−
2

9
Bp1N+p1N+F− cos

b8

2
cos

b

2
+

1

2
fp1z8 + p1zgsinSb + b8

2
D 1

up'uG −
1

9
CScos

b8

2
sin

b

2
− sin

b8

2
cos

b

2
Dp1N+up1'u

+
1

2
spz8 − pzdF2

9
cosSb8 − b

2
Dp1N+C+ sinSb8 − b

2
D 1

up1'u
fup1'u2A − 2

9p1N+p1N+BgGJ , sD1d

wherepiN±=pix± ipiy,

N =ÎE18 + m

2E18
ÎE1 + m

2E1
, A =

2

9
f5c2c3 + 4p̂2' · p̂3'g, B = s2s3

p2N−p3N−

up2'uup3'u
, C = fc2sa3 + ib3d + c3sa2 + ib2dg, sD2d

and

b: = u1, ci = cos
ui8 − ui

2
, si = sin

ui8 − ui

2
, b8: = u18, ai =

pix

upi'u
si, bi = −

piy

upi'u
si . sD3d

The anglesui have already been defined in Eq.s67d.

2. Evaluation of Š 1
2

1
2zAzz 1

2
1
2
‹

k 1
2

1
2uAzu

1
2

1
2l = − gA

qÎE18 + m

2E18
ÎE1 + m

2E1
kp↑u3tz

1Hsz
1FS1 −

upW'u2 − p1zp1z8

sE18 + mdsE1 + md
D −

msp18 − p1dz

spW18 − pW1d2 + mp
2 S p1z8

E18 + m
−

p1z

E1 + m
DG

+ s1+p1N−F p1z + p1z8

sE18 + mdsE1 + md
−

msp18 − p1dz

spW18 − pW1d2 + mp
2

E18 − E1

sE18 + mdsE1 + mdG
+ s1−p1N+F p1z + p1z8

sE18 + mdsE1 + md
−

msp18 − p1dz

spW18 − pW1d2 + mp
2

E18 − E1

sE18 + mdsE1 + mdGJup↑. sD4d

One may defineD so that it becomes

k 1
2

1
2uAzsQ2du 1

2
1
2l = − gA

qNkp↑u3tz
1hsz

1Dz + s1+p1N−D' + s1−p1N+D'jup↑l. sD5d

The final result can be expressed as

kAlz = − gA
q 3

2
N D'

1

9Hcos
b8

2
cos

b

2
Fc2s3

p3N+p1N−

up3'u
+ c3s2

p2N+p1N−

up2'u G + sin
b8

2
sin

b

2
Fc2s3

p3N−p1N+

up3'u
+ c3s2

p2N−p1N+

up2'u G
− cos

b8

2
sin

b

2
up1'ufc2c3 − 10s2s3p̂2' · p̂3'g + 2 sin

b8

2
cos

b

2
up1'uc2c3J − gA

q 3

2
N Dz

1

9HcosSb + b8

2
D

3fc2c3 + 10s2s3p̂2' · p̂3'g + sinSb + b8

2
D 1

up'uSc2s3
p3N−p1N+

up3'u
+ c3s2

p2N−p1N+

up2'u
− c2s3

p3N+p1N−

up3'u
− c3s2

p2N+p1N−

up2'u DJ
− gA

q 3

2
N D'

1

9H− cos
b8

2
cos

b

2
Fc2s3

p3N−p1N+

up3'u
+ c3s2

p2N−p1N+

up2'u G − sin
b8

2
sin

b

2
Fc2s3

p3N+p1N−

up3'u
+ c3s2

p2N+p1N−

up2'u G
+ 2 cos

b8

2
sin

b

2
up1'uc2c3 − sin

b8

2
cos

b

2
up1'ufc2c3 − 10s2s3p̂2' · p̂3'gJ .
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APPENDIX E: AXIAL MATRIX ELEMENTS IN LIGHT FRONT REPRESENTATION

1. Matrix element Š 1
2zA+z 1

2
‹

k 1
2uA+u 1

2l =
3

2
gA

qH 1

D1D2D3
fa18a1 + isqW' 3 qW'8 dz − qW'8 ·qW'gff2f3 + VW 2 ·VW 3g

1

3
S 1

D1D2D3

1

3
fa18a1 + isqW' 3 qW'8 dz − qW'8 ·qW'g

3ff2f3 − V2xV3x − V2yV3y + V2zV3zg +
1

D1D2D3

2

3
f− a18a1 + isqW' 3 qW'8 dz + qW'8 ·qW'gff2f3 + i f 2V3z + i f 3V2z − V2zV3zg

−
1

D2D3

1

3
fa18sqx − iqyd + a1sqx8 − iqy8dgfsf2 + iV2zdsiV3x − V3yd + sf3 + iV3zdsiV2x − V2ydg −

1

D1D2D3

1

3
fa18sqx + iqyd

+ a1sqx8 + iqy8dgfsf2 + iV2zdsiV3x + V3yd + sf3 + iV3zdsiV2x + V2ydgDJ sE1d

with the definitions of Eq.s79d.

2. Matrix element Š−1
2z„Ax+ iAy…z 1

2
‹

An approximate expression(with V2i =V3i =0, for the sake of clarity) is

− k 1
2usAx + iAydu

1
2l .

3

2
gA

q 1

D1D2D3
sf2f3d

10

9 HS1 −
Q2

Q2 + mp
2 Dfa18a1 + q1y8 q1y − q1x8 q1x − isq1xq1y8 + q1yq1x8 dg

+ Sp1x + ip1y + p1x8 + ip1y8

2m
Dfa18sq1x + iq1yd + a1sq1x8 + iq1y8 dg − sa18a1 − q1y8 q1y + q1x8 q1xd − siV1x − V1yd

Q

2m
J

sE2d

with the definitions of Eq.s79d.
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