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The electromagnetic and axial form factors of the nucleon and its lowest positive parity excitations, the
A(1232 and theN(1440, are calculated with constituent-quark models that are specified by simple algebraic
representations of the mass-operator eigenstates. Poincaré covariant current operators are generated by the
dynamics from single-quark currents that are covariant under a kinematic subgroup. The dependence of the
calculated form factors on the choice of kinematics and on the gross features of the wave functions is
illustrated for instant-form, point-form, and front-form kinematics. A simple algebraic form of the orbital
ground state wave function, which depends on two parameters, allows a fair description of all the form factors
over the empirically accessible range, although with widely different choices of the parameters, which deter-
mine the range and shape of the orbital wave function. The neutron electric form factor requires additional
features, for instance the presence of mixed-symntestate component with 1—2% probability in the ground
state wave function. Instant- and front-form kinematics demand a spatially extended wave function, whereas in
point-form kinematics the form factors may be described with a quite compact wave function.
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I. INTRODUCTION T = =
P=M{1+[gf0}, P={V|P*+M?P},
The baryon states of constituent-quark models are repre- 5 2
; i i M=+P
sented by functions of three quark coordinates, spin, flavor, - Lp (1)
and color variables. The Hilbert space of states is the tensor Pt

roduct of three irreducible Poincaré representations. Th . . . N
P : pres ‘?’he choice of these kinematic parameters implies the form of
bound state wave functions represent vectors in the represef ematics. which is the choice of a kinematic subgroup of

tfa'uon space of _the little group of the Pomcare.transforma-the Poincaré group2]. The Poincaré representations of the
tions. A calculation of baryon form factors requires consis-

. g kinematic subgroup are independent of the mass operator. In
tent representations of the current-density operators and t%rticular, they are the same as the representations of free

baryon states. While current-density operators are reprejyarks with mass operatob,. The kinematic subgroups
sented by functions of quark velocities gnd spinor indicesyyhich correspond to the momentum representations in Eq.
the baryon states are represented by elgenfunctlonsaof the) are the Lorentz group S@,3), the Euclidean group in
mass operator, which are functions of internal momdqta three dimensions B) (translations and rotations at a fixed
and spin variables. The relation between the two representaéime), and the symmetry group of the null planex=0, n?
tions depends on the “form of kinematics,” which specifies a=0. Following Dirac’s seminal papgB], the three forms of
kinematic subgroup of the Poincaré group. kinematics are referred to as point form, instant form, and
Following Bakamjian and Thomad] the baryon states front form.
may be represented by eigenfunctions of the mass operator The relations between the internal momenta and spin vari-
M, the spin operatoj?,j, and three kinematic operators ables to the quark velocities zind spinor variables depend on
which, together with the mass operator, specify the fourboost parameters which ave P, and P /P*, with Lorentz
momentum. The mass operator commutes with these operkinematics, instant kinematics, and light-front kinematics, re-
tors and is independent of their eigenvalues, which thereforgpectively. Poincaré covariant current-density operators can
may be treated as parameters. Relevant examples are the generated by the dynamics from current operators that are
velocity , the three-momenturﬁ, and the light-front mo- covariant under the kinematic subgroup only. Employment of

mentumP: ={P*,P, }, with the four-momentum represented, free-quark currents for that purpose Ie_ads to _d|fferent current
respectively, by operators in the different forms of kinematics. The quark

masses enter as essential scale parameters of these current

operators.
While the mass operator of conventional quark models,
*Email address: Bruno.Julia@helsinki.fi e.g., Ref.[4], also depends on the quark masses, baryon
"Email address: riska@pcu.helsinki.fi spectra of confined quark may be represented by mass op-
*Email address: coester@theory.phy.anl.gov erators that are independent of quark magsSgsEigenfunc-
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tions of such mass operators can be consistent with empirical When the spatial extent of the wave function is scaled
nucleon form factor$6]. Nucleon models constructed in this unitarily to zero, the calculated form factors become inde-
manner depend only on one scale that can be varied by unpendent of momentum transfer in both instant- and front-
tary transformations. Form factors are dimensionless funcform kinematics. In contrast point-form kinematics has a
tions of the invariant velocity differencg: =1/4(vy—vin)?, nontrivial limit, when the spatial extent of the wave function
and the mass ratiM,/ M;,. With Lorentz kinematicsyis a  is scaled to zero. In this “point limit” the calculated form
kinematic quantity and the form factors are relatively insen<factors depend on the functional form of the wave function,
sitive to unitary scale transformations of the wave function.and when»>1 decrease with an inverse power of the mo-
Relations to momentum transfers involve the baryon massegentum transfer. The falloff power is determined by the cur-
With instant and light-front kinematics momentum transfersrent operator and is independent of the wave funcf&n
are kinematic, since for these there is kinematic translation The present paper is organized in the following way. In
covariance in three or two space dimensions, respectively. Sec. Il the model independent relations of covariant current
Poincaré covariant state vectors of few-body systems armatrices to invariant form factors are summarized. Section

represented by equivalence classes of functi@ghand there 1l contains the description of the baryon model specified by
is no relation of a particular representation to wave functionss mass operator and kinematic quark currents. Section IV
defined by matrix elements of field operat§8s9]. contains a detailed description of the integrals which need to

The purpose of this paper is to explore the dependence dife evaluated after summation over spin and flavor indices.
the baryon elastic and transition form factors on the repreNumerical results are presented in Section V. A concluding
sentation of the baryon mass operator and on the form aofliscussion is given in Sec. VI.
kinematics used in the construction of the current operators.

For that purpose we assume a Bakamjian-Thomas represen-

tation of the baryon states and generate current-density op- Il. CURRENT-DENSITY OPERATORS

erators from simple quark currents that are covariant under AND FORM FACTORS

the kinematic subgroup only. Non-Bakamjian-Thomas repre- L ) 3
sentations of the baryon states are equivalent by unitary The definition of form factors depends on the Poincaré

transformations, which modify the representation of thetovariance of the current-density operatbt) and the ba-

quark currents7]. sis statesM,v,j,j,). The current density
The mass operator is constructed in a simple spectral rep- 14(x) = ePX1#(0)e P (3)
resentation, which is independent of quark masses:
satisfies the Lorentz covariance relations

_)I —)/ —)I ! ! !’ —)/ _)I —)/
<0'1:(72:<731k11k2’k3|M|‘73,0'2!0'11k3’k21k1>

UT(A)I#()U(A) = A* 17(A1X). (4)
= ;{T Pnj.o(01,02: 03K, Ko, kg M b o By definition the spin operatoy is related to the Lorentz
- o generatorsi*” by
X(01,0,03,Kg,Kp,K3)", 2

> 1
1. = R-1 H P T
with the restriction to the nucleon, th&(1232 and the {0.j}: =B (0w with w zv I €vpor 5)

N(1440. Generalization to other states is straightforward.

A two-parameter family of algebraic functions is em-

ployed, which allow variations of the range and the shap

of the function. Using hyperspherical coordinates, the spa- B(v){1,0,0,3 =v. (6)

tial wave function of theN(1440 baryon is constructed

W|th a Sing'e node to be Orthogona| to the ground State!t fO”OWS from the deflnltlon(5) and the Lorentz COVariance

For a satisfactory description of the electric form factor of0f the velocity operatorU™(A) v U(A)=Av, that the spin

the neutron a small admixture of1-2% of a mixed- Operator transforms according to

symmetry S state is included in the ground state wave o -

function. u (A)J U(A) = Rw(A,U)J ) (7)
For the quark currents the same _stryctureles; spinor CUFith the Wigner rotationsRy(A ,v) defined by

rents are employed throughout. Variations of this input are

beyond the scope of this paper. The quark velocities are re- Rw(A,v): =B HAv)AB(v). (8)

lated to the internal momenta by boost relations, which de- , )

pend on the choice of the kinematics with significant quali-1 "€ Pasis states transform according to

tative and quantitative consequences. With point-form and

light-front kinematics different quark velocities are related

by kinematic Lorentz transformations. With instant-form ki-

nematics there is no kinematic relation between different With definite initial and final velocities and massgsM,

quark velocities. With light-front and instant-form kinemat- and v, M; the form factors are determined by invariant re-

ics translation covariance emphasizes the spatial ergenft  duced matrix elements of the currents. They are dimension-

the wave function. less functions ofy:

where the boost operat&(v) is an operator valued Lorentz
dransformation with the defining property:

U(A)|M,v,j,0) = 2 [M,Av,j,0")D!, [Ru(A,0)]. (9)
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-1 2 1 2
=5i-va)%  —3itvl)P=1+7, (10 1 1
7Aoot 7 Gm(n)-=\,—77<5|Imx(77)|ﬁ)f‘@(‘%ﬁm@)l%)c-

and the baryon masses. The relation between the invariant (15

momentum transfer ang is

2. — 2 - 2
Q= (Mg = Mavg)” = 4AMiMa7 = (M = Mo)”. - (11) The magnetic form factor for the transition between a spin
In practice the dynamics generates the current operators froff 2 @nd a spin 3/2 state can be defined by
kinematic currents that are covariant under a subgroup only.
It is therefore important to define basis states such that the
Wigner rotations of kinematic transformations are kinematic.
For Lorentz and instant kinematics canonical boosts satisfy
this requirement. For any rotatio® the corresponding —
Wigner rotation satisfieRR\(R,v)=R and for rotationless + \“'3< 2|Imx(77)|‘ - '> ] (16)
Lorentz transformations in the direction ofthe Wigner ro-
tations reduce to the identity. Light-front kinematic requires

null-plane boosts defined such that the Wigner rotations ofVith Lorentz kinematics all Lorentz transformations are ki-
null-plane boosts are the identity. nematic and the choice of a “frame,” for the component of

the velocities, for instance

Zm)é(ﬂ)|gv_%c>

1
Gmam): = ——[@%
\Wi

A. Electromagnetic form factors

Lorentz and instant kinematics share the subgroup of ro- vi={V1+ n,O,O,V’Ty}, va={V1+2,0,0,—\7}, (17
tations about the direction of the velocities, which suggests
the use of canonical spins and the separation of the con-
served current densitl*(0) into “electric” and “magnetic” is a matter of convenience.
currents which are projections of the current into the plane The light-front kinematic subgroup leaves the null plane
defined by the velocities, andv; and the projection perpen- n-x=0, n=0 invariant. For spacelike momentum transfer
dicular to that plane. Q?>0, the null vectorn can be chosen such thgf=P;.
Current conservatioriMv;—M_v,)1(0)=0, implies that Thus the operatol*(0)/P* and the null-plane spin are in-
the electric current be a linear combination of the velocitiesvariant under the kinematic subgroup. Form factors can be
multiplied by a single invariant operat@. It is satisfied by  defined by the dimensionless current matrix
the expression

M+ M, vl + M= Myl -vk [1+ MM,
50y = | Mi*Ma Uf’ Ua = Ma Ut ~Ua 7 7., 7= 10 17(0). (18)
VAMM. 21+ 7 NAMM. 247 7 P

(12)

For a given velocityv the light-front spin is related to the
canonical spin by the Melosh rotationRy(v):
=B.(v)BY(v). With the null vectom={-1,0,0,3 the con-
(Mavf+MfUa) L. b . " .
I =- —7—=——=1(0). (13 dition Q=0 requires velocities at an anglerelative to the
21+ MMy z axis that depend om and the ratioM/M,,

The choice of coordinate axes is a matter of convenience.
When thez axis is in the direction of the velocities, the

components of the magnetic current are _Ma-M¢ J1+7p (19
7

CoSa: =
M+ M,
In(0) ={0,Znd ﬂ),Im)K"?),O}- (14)

which implies

With instant kinematics the kinematic subgroup, which
leaves some timelike vectar invariant, does not include
rotationless Lorentz transformations. The kinematic boost

invariant under rotationless Lorentz transformations inzhe Parameter® andP, are related kinematically only when the

direction and, with canonical boosts, the correspondmd’eCtorn is chosen in the direction oi,va+Myuy. Then,
Wigner rotations are the identity. Form factors can thus bé’r=" P,=3Q. A consistent calculation of the form factors

Electric and magnetic form factors are invariant matrix ele-
ments of the expressiori42) and(14). Both Z, andZ,,, are

defined by invariant canonical-spin matrix elements. with instant-form kinematics requires the same frarlﬁe:
The elastic form factors of the nucleon are defined by _p_ for poth elastic and transition form factors. It follows
that the momentum transfé? is a function ofQ? and the
.=/1 1\ _ 1 1
Ge(7): = <§|Ie( ’7)|§>c = <‘ 2| Ze(m)] = E>c baryon masses,
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(M7= M3)?
Q*+2(MZ+M3)’
(20)

[(Pi+Pa) -QF _

2 _ A2 _ 2
L= e T

The velocities are then
vi={V1+ncoshy+ \s"77 sinh X,0,0,V’Ty coshy

+ 1+ 7 sinhx},

PHYSICAL REVIEW (9, 035212(2004)

L (Man + vaa)

Ve —_— (28)
R YR YR

and thez axis is in the direction of the velocities. It follows
that

M+ M
———2F, (29)

Gy=F,+
M oMM,

The corresponding relations fgr— 3 transitions are derived

va={V1+7 coshy -7 sinh x,0,0,-\ coshy in Appendix A.

+V1+ 7 sinhy}, (21)

S'”T]X::m::jf\/lf . (22)
coshx rre 7 A" = Ga(m) ¥ ys + Gp (1 = V)" 7. (30)
The evaluation of the null-spin matrixZ* and the
canonical-spin matrice%,,Z,, necessarily requires different The form factors are thus related to canonical-spin matrices
orientations of the velocities. The relations of the canonicalwith the velocities(17) by
spin matricesZ,,Z,, to the null-plane-spin matriZ* can be

conveniently established by the relations of the spin repre-
sentations to spinor representations provided by the spinor

B. Axial form factors
where ] ]
Axial form factors of the nucleon are defined by the

spinor representation

Uc(vf)Axuc(va) =\V1+ 7 Gaoy,

representations of light-front boosis(v) and canonical — I e
boostsu(v), which for spin3 are Ue(v1) AyUe(va) = V1 + 7 Gaoy, (31
ui(v): = L vi,;ﬂ . U+a?+ : ;8’ (23) Uc(vp) Alc(va) = (Ga = 7Gp) 0. (32
Vo

a-v+1+0%1+8

The symmetry relation betweenandy components is kine-
matic for Lorentz and instant kinematics.

U(v): = — (24) Null-plane spin matrices with EQ.(26) and n
V2(1+0%) 2 ={-1,0,0, 1 are related to the form factors by
The light-front-spin matrix Ur(vp) A ug(v,)
1 Q 1 T s -G (33)
Y VUtUq
T:U(U )<7+F _—|:’,=,'y+:||: )U (va)—
no 12 VAM M 2 \vivg and
| @ — —
=Fi-1oy\ = F (25) 1o Ui (v) A (va) + Us(v) Ayus(va) = 7Gpoy.  (34)
AM:M
with
ll. THE BARYON MODEL
P* P pP* -P S
+ 1 + L
=—, =—, =—, = , (26 A. Specification of the mass operator
Ut M, Vgl M, Ua M, Val M, (26)

is related to the canonical-spin matric:e'esandfm by

Ie:Uc(Uf)<|:_Ue' y+ (V-Q)UG'Q}H

For the constituent-quark models under consideration the
mass operatoM is defined by Eq(2) with the empirical
baryon masses and eigenfunctions .ot represented by

functions of the formj)j’,,(lzl, IZZ, IZS; o1,05,03), for which an

Q? inner product is defined as
1| Q-y )
+ - yUe Fs Jus(v y (¢j’,(r’l¢j,u-)
2|: \;”4MaMf e ’Y:| 2 C( a) ) ) )
= > J ok, J dk, J kg (kg + ky + k)
. 1 Q -y 01,02,03
Tox=Ucvp)| mF1— 3 T Falucva). (27) . - o
2 \"4MaMf ><d’j’,a'(kl!k21k3;0-110-210-3)*

Here

X ¢j,u’(l21! EZ! lzg, 01,02, 0-3) = (sj’,j 50",0" (35)
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These functions also depend on flavor and color variables, pz\—a
which are not shown explicitly. They are independent of the @o(P) = M(1 +E> :
kinematic parameters,P or P*,P, of the three different
forms of kinematics. whereN is a normalization constant and the expongaind

In the representatiof?) invariance under rotations is nec- b are adjustable parameters.
essary and sufficient for the Lorentz invariance of the mass It was noted in Ref[4] that by introduction of a small
operator. In this representation the wave function is indeperadmixture of a mixed-symmetr§-state component in the
dent of frames. nucleon neutron electric form factors that agree with extant

The single-baryon wave functions under consideration ar€ata may be obtained. For that purpose a mixed-symmetry
products of functions of the color variable that are antisym-Swave component is also considered here. Its detailed con-
metric under permutations with permutation symmetric func-struction is described in Appendix B.
tions of space, spin, and flavor variables. The color functions The radial wave function for th&l(1440 is constructed
play no role in the form factor calculations and will be sup-so that it is orthogonal to the ground state, and that its Fou-
pressed. For the nucleofN), its first radial excitation rier transforme;(R) has a single node:
[N(1440] and the first spin-flip resonanc¢A(1232]
simple representations without spin-orbit coupling are (5. =
products of permutation-symmetric spin-flavor functions ' (2m)®
X001, 1,02, 7,03, 73) With invariant functions of the con-
stituent momentap;(«>+9?), where the Jacobi momenta are
defined as

20
2( - k2+k3 <p1(P)=A<po(P)+b28{3<p6(P)+4<p6(P)] (43)
E::\E ky - \/7k1— \/7(k2+k3)

whereA andB are parameters, which are determined by the
- 1- - orthonormality condition
G:= \/;(kz‘ k). (36 d

| e ez = 4. (44)

(41)

f Bk f dBe"® NGz 6).  (42)

These conditions imply the following general form in the
momentum representation:

Under Lorentz transformations the momerﬁa undergo
Wigner rotationg(8), Given the ground state wave function modéll), the
. R explicit expression for the wave functign (P) is
UT(A)KU(A) = Ry(A,v)ki. (37

It follows that the quadratic sum 1(P) = ¢o(P)| A(a) + B(a)

K2+ 2= 2(k5+ K5+ Ky - kg) (39) 1 aa+1) P2
. . . L X|-12a 2 2 2\2
is symmetric under permutations and Lorentz invariant. 1+ P b 14 P~
The spin-flavor functions are given explicitly by sums 4p? 4p?
over the following products of Clebsch-Gordan coefficients: (45)
X1/20,01, 71,02, 72,03, T3). The rms radius of the quark distribution of the nucleon is

given by the expression

= \’E{50"0'1<%1%021 ] )(%1%7-217-3|070)
3 - s
+ (%,%02,03|l,0'2+ 03)(1,%,0'2+ 0'3,0'1|%,0) rS: > J dspj d*rp?[@(R)2, R:=v2(p?+r?). (46)
11 1 1
>< _1_ L 17 + 11_1 + L _7 1 39
(Gemmlmtn)(lantmra), @ 0 thatro~ 1/b.

In Fig. 1 ¢g and ¢, are shown for the parameter valbe
=640 MeV anda=9/4. In Table | the values of the two
( ) parametersa and b used in the following sections for the
X312\ 01 T1: 02,72, 03, 73)- different forms of kinematics are listed along with the corre-

= (%,%02,03|1,02+ 03)(1,%,(,2+ 03,01@,0) sponding values of the quark radigg

X(3.537 1o+ 73) (L3, 72+ 73,m1[3,7). (40)

and

B. Quark currents

The spatial part of the wave function is parametrized by For each form of kinematics the dynamics generates the
functions that depend only on the hypersherical momenturgurrent-density operator from a kinematic current, which is
variable, which is defined aB: =2(k*+@?): specified by the expression
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10! . : . . C. Velocity representations of the quark structure
() . . .

10° =@ 3 With Lorentz kinematics quark momenpa =mv; are de-
T 10" i fined by the boost relations
=10 3
= - .
_1()‘3 ] P =B)I{0k}+ ok, o= Vlk[Z+m? vi=-1.

§ (52
-4 L e
109 g8 10

16

P (GeV) . .
The Lorentz covariance of the quark velocity operators fol-

FIG. 1. Ground state and first radially excited states as a funclows from the Lorentz covariand®) and(37) of the opera-

tion of P=2(x*+q?) for b=640 MeV anda=9/4. tor v and the moments. The quark velocities do not com-
mute with any component of the momentuP+ Mo, and
(01,05, 04|1#(0) |03, 02, 0 the sum of the quark momenta does not equal the total mo-
o mentum for any component.
= 89(v} - va) 8V ()~ v) (5 + 375 Julo) YV u(vy), Null-plane kinematics depends on a null vectoor the
(47)  frame in whichn={-1,0,0,%. The quark moment@; de-
fined by
in the case of Lorentz kinematics, and
+p?
(PP 1,3 P31 OC X, )[PauP2s P L P Wzéwypu:hi+ﬂﬂypi:ﬂ%£ﬁ
|
= 89(p5 - pa) 8%y - o) (5 + 375 Julpy) ¥* o
Xu(pyePLrPuax (48) with  &:="5 (53)
|

for light-front kinematics and finally by i

are covariant only under the subgroup which leaves the null

13 & & s o2 14
<2Q,p2,p3|l”“(>?)|p3,p2, 2Q> planen-x=0 invariant.

=59’ = p)5(p! - 1,14 With instant-form kinematics the kinematic subgroup
(P~ P9 5P ?2)(6 273 ) does not include any boosts. The kinematic symmetry of the
XU(P,") Y u(py)el@® (49)  quark momenta merely requires covariance under rotations

. ) . ) and Eiﬁizﬁ. That much allows considerable freedom in the
for instant kinematics. In each case only covariance undefelation of the quark momenta to the internal momenta. In
the kinematic subgroup is required. _ Ref. [5] the momentap; were defined as functions of the

For the corresponding expression for the axial vector curhoosted Jacobi momenB(v){0, &}, B.(v){0,d} and the to-

rent the matrix is obtained by the replacement tal momentumP. That definition had the virtue of formal
simplicity. Here the velocitieg;/m are taken to be free-

11 (S 1 o L
(é + 57.9)) Y D8 (ﬂl) + QPT 7,551)57131)_ quark velocities, which implies

50 >
50 P = 0ok + B [0K)

'I_'he value for the ps_eudoscalar_ coupling constant of the “par- ={viki, + wiv%kax,kiy,vﬁkaz + WK,

tially conserved” axial current is then R o

ki = {Pix: Piy» vk Piz — Eivks (54
an?
= el (51 - i
Q +m; with vk =P/Zw;. Canonical boosts are used because then

the Wigner rotations of rotations are identical to the rota-

TABLE I. Values of the parameters of the ground state waveliOns. _ _
function used for the three different forms of kinematics. The cor-  The quark momenta so defined by either Exg) and(54)

responding matter radii, are listed in the last column. are covariant under the kinematic subgroup, that is,
my (MeV) b (MeV) a ro (fm) UT(A)piU(A) =Ap;, (55)
Point form 350 640 9/4 0.19
Front form 250 500 4 0.55 with A restricted to the kinematic subgroup.
Instant form 140 600 6 0.63 For the three forms of kinematics changes in the represen-

tation of the baryon states,

035212-6



BARYON FORM FACTORS OF RELATIVISTIC..
{,q,v} — {P2P3,0} with Py =py(P2P3.0),
{«,q,P} = {p2,ps,P} with p;=P—-p,-ps,

{%,G,P} = {Po,Ps,P} with P,=P-p,-ps, (56)

together with the corresponding spin to spinor transforma-

tions [10]
a-vi+tB+ull+p
u (U) = ’ (57)
o \/ZUiO(l +v?) 2
a, P tAmM+p l+azl+p

(o) = , 58
f(pl) \’/Zmer 2 2 ( )

L _a p+rmB+EL+p R

Ue(p)) = — = : . Er=\m?+ |,

V2E(m+E) 2

(59

PHYSICAL REVIEW C 69, 035212(2004)

J(,4) )
9(P2:P3)/ p

—
— \/’27(1)2(1)3( 1- UZ E2 |: _ (plZ p_ZZ):|
E2E3 v M El E2
l_&é[v _U0<p_12+p_32>:|
v M, E, E,
_ s By o vo<p_12 + p_22>
RGNV Fa E, E

P1z | Psz
{”Z v <E1 E)})'

‘](F-;v ﬁZ! 63) = (

(63)

where

>

N

P
= 4
U (64)

Py=Py=0, MZZ(Z Ei)2_||521
I

With canonical boosts the spin variables must be trans-
formed by the required momentum dependent rotation matri-
ces

provide kinematically covariant representations of the 1o _
baryon states, which are convenient for the construction of Diiio: (RulB(vi), ki]) with

conserved current-density operators which satisfy Poincaré _

Covariance_ RV\I[B(UK)rki]: =B l(pl)B(vK)B(kl) (65)

In each case the wave function must be multiplied by the with canonical boosts explicit representations of these
square root of the appropriate Jacobian. For Lorentz kinewjigner rotations are

matics this is
I &([_(),(j) \"’2_7(1)20)3
\](Uy 2! 3) = > > =

J (P2, P3) EoEs
o~ 0_ 0_

_ V27(Exv® = pov,) (Esv” — Payvy)

- . (60

E,E;

With null-plane kinematics the Jacobian is

9 (,9) )
d(pP1,P3)/p
_ 3 (x,q) (5(§2vk2¢:§3:k3¢))
9 (&xKo 1 ,63,K31) 9 (p2,P3) P

V270,00 P*)?

‘](P;p21p3): = (

Tttt ' (61)
P1PoP3(w1 + Wy + w3)
with
1 e + kizl) e+ K2 2
2<§iMo+ YA ; : (EI‘, wi> .

(62)

With instant kinematics the definitiofb4) implies the Jaco-
bian

6
DYARWB(vk),k]) = cos— —1 sin— 6 (P X 0')1, i=1,2,3,
2 2 |piLl
(66)
where the angleg, are defined by
si 6 - kP (67)

2 2(1+0d)(m+E)(m+ )

With null-plane kinematics the corresponding required
spin rotations are Melosh rotations, which are represented by
[10]

DY R (K :m+§iMO_|5"(ﬁ;XIZiL). 68
ARm(k)] [+ EMg2+ R, 12 (68)

IV. NUCLEON FORM FACTORS

A. Canonical-spin representations

The matrix elementgl6) may be evaluated with the an-
tisymmetric nucleon wave functiof#1) and the quark cur-
rent(47) multiplied by 3(the number of constituent quapks
Evaluation of the sum over spin and isospin indices leads to
the explicit expressions of the form factors
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0,

10 ' ' ' ;

107k v 1

Ewa— * et 3

107 N 3

e S S S e B s s (!
Q*(GeV?) Q’(GeV)

FIG. 2. Electric form factor of the proton. Solid, dotted, and  F|G. 3. Magnetic form factor of the proton. Solid, dotted, and
dashed lines correspond to the instant, point, and front forms, redashed lines correspond to the instant, point, and front forms, re-
spectively. Squares are from the compilation of Réf2] while  spectively. The experimental data are from the compilation of Ref.
black triangles are obtained from the recent JLAB data of Ref. [12].
uSing Gep=(11,Gep! Gyp) /(1 +Q2/0.7D2,

Se= (3D T Ry(vks, k) TUe(v ) Yuo(vy) D2

K!2+ q!2 K2+ q2
Ge(n) = f d3p2d3p3(P( 22 )QD( b2 X[Rw(vkas k1)]|%>
X\ TraB2r59) ool 7,B2,B3) Sl 7,52, _ \/ E+mE+rmd+n)), Bk
4E(E, (E1 + m)(E; +m)
XCOS( 0, - 91>+ |pln|(plz‘ P12 Sin< 01— 6’1) (72
2 (E;+m)(E;+m) 2

124 12 2. 2
Gu(n) fd p.d p3<P< op? ¢ b2
and

X\ Tta(P2:P3)Co3(7, P2, Pa) S 7, P2, P3) . (69) L
Sm==(3DY2T R vk, ki) Tue(vy) yUe(v1) D2
V7

The Jacobian factaf;,, [ R k)]| 1>
Ukar KD 1| 2

BB B 70 \/ 1+y
. =Jv¢, P2, Va: P2, ! -
ta £,P2,P3) (4, P2, P3 4nEL(E; + mE(E; + m)
’ ! 91 61
is defined by Eq(60) or (63) for Lorentz or instant kinemat- X P(Ea+ m) = pyy(Ey + m)]COSECOSE

ics, respectively.
The coefficientC,4(7, P, Ps) is determined by the specta-
tor Wigner rotations:

05__ 01

1
+ §|P1LI(E1 +E, + 2m)sin

1 .. 61+ 06
L + S lpu|(Es - E1>sm171}, (73
Co3(7,P2,P3) = > > {E D(lTI,ZOJ,T

ool o respectively. The boost dependent angles of rotation of the

x(RMB(vKo,k;])pﬂ,%g(RMB(vKa),kz])]
x {E DM2 HRWBugr) k)
=

XDY2_(Ru[B(vka), kﬂ)] . (71

The velocitiesvk,, Uk are v,, vy With Lorentz kinematics

and 3Q/ M, —5Q/ M with instant kinematics. FIG. 4. Quotientu,Ggy/ Gy, compared to the recent experi-

The factorsS, and S, arise from the Dirac spinor struc- mental data measured in TINAF, Reffs4,16. Solid, dotted, and
ture of the current and associated Wigner rotations. The exdashed lines correspond to the instant, point, and front forms re-
plicit expressions are spectively.
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TABLE 1. Values of the form factors aQ?>— 0 together with
the proton charge radius.

Instant Point Front Expt.
Gwmp(0) 2.7 25 2.8 2.79313]
Gwmn(0) -1.8 -1.6 -1.7 -1.91313]
Ga(0) 11 11 1.2 1.267013]
rep(fm) 0.89 0.84 0.85 0.8713]

initial and final spins of the struck constituent are defined in

Eq. (67).

PHYSICAL REVIEW C 69, 035212(2004)

&

Q’(GeV)

FIG. 5. Magnetic form factors of the neutron. Solid, dotted, and
dashed lines correspond to the instant, point, and front forms, re-
spectively. The experimental data are from the compilation of Ref.

In Appendixes C and D the corresponding expressions f°f12 _
the matrix elements relevant for the calculation of the axial

andN— A transition form factors are given.

B. Light-front-spin representations

The form factors of the protorT:% and the neutronr

_1
21
F1(Q7):=(5.41"0)|7.3),
1
F2AQ%):= \,—77(— 3 4170)73), (74)
can be written in a compact form as
A&+&H+E6-D

1
F 2 :J dé; dé, d
a,T(Q ) 0 gl 52 53 §1 §2 53

XJ C“zu d'zu dleJ_ 5(|21¢ + lZZJ_ + IZ3¢)

W1Wow3 W1/ W W3r » » »
X \/ <P*(§1,kh,§2,kéiv§31kéi)

MO MO/
X Foud Q@ @(E1,Ke 1,60 Ko 1 E3,Ks ), (75)
where
ki, =k +(1-€)Q,, K, =k, -&Q,, 1=23.
(76)

The factorsZ, (Q?) involve the spin-isospin amplitudes
(39) and the effects of the Melosh rotations on both specta-

tors and the quark curreiy;,

Q’(GeV?)

FIG. 6. Axial and induced pseudoscalar form factors of the nucleon. Solid, dotted, and dashed lines correspond to the instant, point, and

F1 Q%) = Xi/z,fDllzT(Rerﬂ;lDllz(RMﬁ
X DY2 (R 12 ) DYAR\12) DY2(R 31
XDYAR M) X-1/2

1
Fod( Q)= ’_/7])(11/2,7' DY 1 (Rw1)1q, DRy
\’

X DY2(R 12 ) DY R o) DYZ(Ry31)
XDYARua) X120 (77)

The representations of the Melosh rotations are defined in
Eq. (69).

In the explicit evaluation of the integrals the choigg
=p,y IS made without loss of generality. This leads to the
following expressions forF(Q?):

1
Fip= mfl[foii +Vo Vg |,
_2m, 1

Fop= o D]_DZDS(_ Vi)l fafs+ Vo Vs,

-1 1
Fin= ?W[Zf 1VayVay = F2V1, Vg, = F2V1, Vg
1D2Ds

- f2V1yv3y - f3VlyV2y:|a

10 20'.1 . 02
Q%GeVH)

front forms, respectively. The experimental data are from Refx21.
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0.1 0.1
0.08 0.08
0.06 0.06
oF 0.04 oF 0.04
0.02 0.02
R 0
-0.02 -0.02
107 w0l 10° 10° w0 10°
Q(GeV? Q(GeVH

FIG. 7. Electric form factor of the neutron. Solid, dotted, and dashed, lines correspond to the instant, point, and front forms, respectively.
(@) No mixed-symmetnyS state is included(b) Some percentage of mixed-symme8ystate is included in the neutron wave function as
described in the text. Experimental data are from REZ].

2m
Fon= ~—P
3 Q D1D,D5
- f1]‘3\/2y - VlZVBZVZy] .
Here the following notation has been employed:

n=(0,0,1,

1 The calculated form factors are shown in Figs. 2, 3, 5, and
[2Vay fof 3= Vi, Vo Vi = F1f5Va, 6 along with data taken from the compilati¢h2]. In Table

Il the corresponding values @&y(0), Gyn(0), Ga(0) to-
gether with the proton charge radii are listed. The rms radius
ro of the wave function is always smaller than the charge
radius with the largest value for instant kinematics and the
smallest for Lorentz kinematics.

The results reveal that it is possible to reach agreement
with the empirical data for all these form factors. The electric
form factor of the proton is found to be more sensitive to the
form of kinematics than the magnetic form factors. That may
be related to the implementation of current conservation,
which involves the form of dynamics.

The instant-form result foGg, in Fig. 2 follows the em-
pirical values obtained by a Rosenbluth separation up to
6 Ge\2. The point-form calculation, with a very compact
wave function, follows the data that have been obtained by
means of polarization transfer somewhat more closely. The
front-form calculation of the form factorf, and F, pro-
duces cancellations d¥, and »F, at about 6 Ge¥ [9,15).
Such behavior is in fact suggested by the recent experimental
data for the quotient,Ggp/ Gy [14]. In Fig. 4 this ratio is
shown as calculated with the three forms of kinematics. This
figure emphasizes the differences between the three forms of
kinematics as well as the discrepancies in the form factors of
the proton at medium energies. This discrepancy between the

In order to explore qualitative differences of the threerecent TINAF data, measured using the polarization transfer
forms of kinematics nucleon form factors were calculatedtechnique, and the previous data, obtained through the
with the mass and current operators specified in Sec. Il witlRosenbluth separatidi 6], could be partly due to two pho-
the parameter values listed in Table I. ton exchanges as recently explored in Rdf7]. There is

(78)

a=m+§Mo,  a =m+ &M,

Dy= Va2 + K 2Va2 + K2, ,

- -

a+k ko,

fi=af
Vie=—adix K, ) +ag(ix k) + (A X K,) X (A X k).
(79)

In Appendix E the corresponding expressions for the ma
trix elements relevant for the computation of the axial form
factors are given.

V. NUMERICAL RESULTS
A. Nucleons

1. Finite values of the constituent mass

10° .

107
a
o 107F

10—3,

4
109 2 a6
Q(GeVH)

FIG. 8. Electric(left) and magnetigright) form factors of the proton calculated with front-form kinematics with some mixed-symmetry
S-state component as explained in the text. Solid, dotted, and dashed lines correspond to 0%, 1%, and 2% of mixed-Systatetry
Squares are from the compilation of R¢L2] while black triangles are obtained from the recent JLAB data of Ref] using Gg,
=(upGep/ Guip) / (1+Q%/0.71)2.
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therefore a qualitative difference between models based on TABLE llI. Values of the form factors aQ?—0 for zero con-
canonical-spin representations of the currefitstant and  stituent mass.
Lorentz kinematics and models based on null-plane-spin
representations of the currerfsont-form kinematics Instant Point Front Expt.
_S|m|Ia_1r resul_ts for the ela_stlc form factors have been de-GM 0) 26 5 3.0 2.79313]
scribed in the literature making use of pojdt6] and front P
[18] forms of kinematics on the basis of different dynamicaIGMn(o) -7 -13 —2.0 —1.91813]
models. Ga(0) 0.6 0.6 0.0 1.267013]
The calculated values of the magnetic form factors shown
in Figs. 3 and 5 are in qualitative agreement with each other o )
and the data. The calculated magnetic moments show S|gn|m Van|Sh|ng electrIC fOI’m faCtOI’ Of the neutron. Because Of
cant differences. With instant-form kinematics reasonablé/Vigner rotations or Melosh rotations of the constituent spins
agreement with the empirical values of the nucleon magnetihe electric form factor of the neutron does not vanish. This
moments requires a very small quark mass of 140 MeVis shown in Fig. 7a). The magnitude is however negligible
With larger quark mass values the magnitude of the calcuWith instant and point form kinematics and too small with
lated magnetic moments is too small. This feature also apf.ront form k|nemat|CS N agreement W|th the resu|tS Of RefS.
pears in the nonrelativistic quark model with “relativistic [11.29.

corrections”[19]. The missing strength is in that model at-  In Ref.[4], using point-form kinematics, it was noted that
tributed to exchange current contributions. a small admixture of a mixed-symmetBstate in the ground

The magnetic moment values that are obtained in pointState may produce a satisfactory form factor. The effects of a
form kinematics are about 10% too small. This feature wag% admixture of a mixed-symmet§ state wave function
already noted in Ref4]. In this case the calculated values of @re also shown in Fig.(B) for all three forms of kinematics.
the magnetic moments are fairly insensitive to the quarklhe results are in good agreement with the empirical data.
mass value. The agreement is not quite as good with a 1% admixture of

The magnetic moment of the proton as calculated in frontihe mixed-symmetryS state and would deteriorate with a
form kinematics with a wave function of intermediate rangelarger adm|xture. ' .
also falls within 1% of the empirical value. In front-form  The mixed-symmetristate is represented by appropriate
kinematics the calculated neutron magnetic moment fall§ombination of mixed-symmetry spin-isospin wave functions

some 12% below the corresponding empirical value. with two radial wave functions of mixed symmetry of the
The calculated value of the axial vector coupling constanform
Ga(0) is closest to the empirical valu@vithin 6%) when 2 2 .

front-form kinematics is used. In instant- and point-form ki- ¢4(x,d) :,/\/SKz—qz(po(K,q), 0a(%,0) :,/\/a’;—qZ(po(K,q),
nematics the calculated value is about 14% smaller than the +q K°+q
empirical value. These values differ significantly from the (80)
static quark model value 5/3, which is too large by 31%.
The calculated values of the axial form factor are close t
the empirical value§2Q] in all forms of kinematics as shown

in Fig. 6. The pseudoscalar form factor follows the empirical .
values, except at very small values of momentum transfer>-state component on the other nucleon form factors is small.
' This is illustrated in Fig. 8, where the modification of the

where only the front-form one actually goes through the ; ,
muon point. calculated fro_nt—form electric and magnetic proton form fac-
tors by the mixed-symmetr§ state is shown. The values of
the slope(dGey/dQ?) 2= that are obtained are 0.60 G&Y
0.56 GeV?, and 0.39 GeV? for instant, point, and front
Without the momentum dependent spin rotatigb6) or ~ forms, respectively, while the experimental value is
(68) the symmetric spin-isospin amplitudg@9) would imply ~ 0.511+0.008 GeV [23].

c}/vhere eo(x,Q) is the symmetricS-state wave functiort41).
The explicit construction is given in Appendix B.
The effect of the introduction of the mixed-symmetry

2. The electric form factor of the neutron

1 1

10 . . 10
10° 10°R
S 10" qﬁ 10
107 10?
00 3 4 6 & 10 100

FIG. 9. Magnetic form factor of the protdieft), of the neutror(right). Solid, dotted, and dashed lines correspond to the instant, point,
and front forms, respectively. Thick lines correspond to the zero-quark-mass case. Experimental data are frb2h Ref.
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2 ' 10 the zero-mass limits of nucleon magnetic and axial form
factors are compared to the finite-mass values. The magnetic
moments of both the protons and the neutrons do not show
large changes with vanishing mass in the case of instant-
form kinematics. The results for the nucleon magnetic form
factors, see Fig. 9, in the zero-mass limit show that the form
factors are insensitive to the quark mass only with Lorentz
kinematics.
Figure 11 shows magnetic form factors computed with
Q' (GeVH) zero quark mass and wave functions with different rms radii
obtained varying the exponeatwith fixed b. Thus both the
FIG. 10. Axial form factor. Solid, dotted, and dashed lines cor-range and the shape of the wave function are changed. The
respond to the instant, point, and front forms, respectively. Thickpoint-form results show the expected scale independence and
lines correspond to the zero-quark-mass case. Experimental data dredicate that the change in shape is relatively unimportant
from Ref.[20]. with instant- and front-form kinematics. Figure 11 shows the
expected drastic changes in 1@ dependence. In particular,
3. The zero-quark-mass limit instant-form calculations do not reproduce the experimental
behavior at highQ? for any of the exponents, while front-
It has been notefb] that in the case of point-form kine- form ones do give the correct behavior for the appropriate
matics and spectator currents the form factors were insensiglue ofa.
tive to unitary scale transformations of the wave functions The zero-mass limit does not yield satisfactory values for
when the extent of the wave function was small compared téhe axial coupling constant and the axial form factor, as seen
the scale defined by the quark mags?)<1/mi. This is  in Table Il and in Fig. 10. These results suggest that realistic
equivalent tob?> mﬁ In the “point” limit mﬁ/bZ:O the cal-  axial current phenomenology in the constituent quark model
culated form factors are invariant under unitary scale transedemands that the constituent mass at least be of the order of
formations. This opens the possibility for quark model phe-200 MeV. Overall, the zero-quark-mass limit is not a good
nomenology with a very small constituent mass. candidate for quark-model phenomenology if both axial and
For the class of quark models considered here, where thelectromagnetic properties are to be understood simulta-
representation of the baryon mass operator is independent ngously.
the quark mass, a zero-quark-mass limit of the form factors N
exists for all three forms of kinematics. The spinor represen- B. The A(1232—N transition form factors
tations of the quark currents and the boost transformations to The magnetic transition form factdsy, that is associ-
spin representations are also independent of the quark masdged with theA(1232-N transition as calculated with the
Only the Jacobians and the Wigner or Melosh rotations dewave function(41) and the parameter values in Table | in the
pend on the quark mass. three forms of kinematics is shown in Fig. 12. The corre-
Zero-quark-mass values of the magnetic moments and theponding values for the transition magnetic moments are
axial coupling constant are listed in Table Ill. In Figs. 9 andlisted in Table IV.

100 T 100 T

Gy, Q" (GeV")
Gy, Q" (GeV")

Gy, Q' (GeV)

Q’ (GeV?)

FIG. 11. Magnetic form factor of the proton fam,=0 in instant(above lefj, point (above righ), and front(below) forms, respectively.
The different lines correspond to different values of the expoaentEq. (41). Experimental data are from R€fL2].
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FIG. 12. MagneticA — N transition form factor. Solid, dotted,

FIG. 14. Helicity amplitude forN*(1440 electroexcitation.

and dashed lines correspond to the instant, point, and front formsolid, dotted, and dashed lines correspond to the instant, point, and
respectively. Experimental data are from Re4].

front forms, respectively. The experimental data are from R&.
The full solid point also corresponds to a preliminary analysis from

In the case of instant-form kinematics the impulse ap-CLAS [26].
proximation describes the empirical form factor and the tran-
sition magnetic moment well. This is a notable improvementhelicity amplitude shown in Fig. 125,26 are manifestly
compared to nonrelativistic quark models. The magnetic moinadequate. The calculated transition form factors do in
ment is too small by about 30% in both point and frontthis case depend significantly on the form of kinematics.

kinematics.

In Fig. 15 the helicity amplitude obtained with zero quark

In front-form kinematics there appears a node in the tranmass is shown. These results are qualitatively similar to

sition form factor between 9 and 10 G&VThis feature is
similar to that noted in the calculated value f8g, in front-

form kinematics.

those that are obtained with finite values of the constituent
mass above.

In Table IV the transition magnetic moments are also

listed as obtained in the zero-quark-mass case. The corre-
sponding form factors are plotted in Fig. 13. These results
are fairly similar to those obtained with finite values of the

constituent mass.

C. The N(1440 — N form factors

In Fig. 14 we show the calculated helicity amplitudlg,,

=, a~1/137,

v 2M*

VI. CONCLUSIONS

The present comparative study of how baryon form fac-
tors calculated with free-quark currents depend on the choice
of the kinematic subgroup revealed a number of features,
which might be of phenomenological utility in description of
the baryons by constituent-quark models. This exploration is
based on mass operators of confined quark, which are param-
etrized by a confinement scale, and which implement basic
symmetries without free-quark features or dependence on
quark masses. Poincaré covariant current-density operators
are generated by the dynamics from free-quark current den-

defined as
dra —
Ayz= 1\ EVWGMa E
7 (81) sities covariant under different kinematic subgroups.

The interpretation of baryon wave functions of
for the N(1440-N transition as obtained with the wave constituent-quark models as a description of a physical struc-
function models(41) and (45) in all forms of kinematics ture that is observed by electroweak processes depends on
with the parameter values in Table I. It is, of course, questhe choice of a form of kinematics. To assess the effective-
tionable whether a treatment of th¢(1440 as a stable ness of a choice of kinematics it is important to consider the
three-quark bound state is realistic. The extant data of this

100 T T T T T T
=
3 5 ]
S o .
Al_‘ ° o]
S |
: =3
107 T <
. 0TS T 15, 2 25 3
002 4 6 8 10 Q(GeV)

Q' (Gev)
FIG. 15. Helicity amplitude forN*(1440 electroexcitation in
FIG. 13. MagneticA— N transition form factor in the zero- the zero-quark-mass case. Solid, dotted, and dashed lines corre-
quark-mass case. Solid, dotted, and dashed lines correspond to theond to the instant, point, and front forms, respectively. The ex-
instant, point, and front forms, respectively. Experimental data argerimental data are from RegR5]. The full solid point also corre-
from Ref.[24]. sponds to a preliminary analysis from CLAS6].
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TABLE IV. The A(1232-N transition magnetic moment in the through the following set of invariant form factors, similar to
different forms of kinematics with finite and zero constituent massthose used in Ref27],

Instant Point Front Expt. 3
Gua(0m#0 2.8 2.0 2.1 3.1 I'(P,Q) = E Ki#(P,Q)G(Q?), (A1)
Gua(0)m=0 3.0 1.7 2.5 3.1 '
with

full range of elastic and inelastic transitions at low and me-
dium energies. Examination of a broad range of features with
a crude model structure revealed no drastic failure that would

) _ Q- (y- Qg™ ——
rule out any of the forms of kinematics considered. For most KH#(P.Q) = l? VM Mys,
form factors permutation symmetri&wave functions were
adequate. The electric form factor of the neutron required a
small mixed-symmetry admixture. The baryon wave func- Q'P“ - (P - Q)g™
tions used for this exploration are independent of the quark K?"™(P,Q) = — Y5,
mass and dependent on a range parameter and a shape pa- VQ?

rameter. Significantly different values of these parameters are
required for adequate wave functions with different forms of
kinematics. A quantitative phenomenology for all available 3 Q"Q* - Q°g™
form factor data would require different refinements with K>(P,Q) = T
different forms of kinematics.

The calculated form factors are functions of kinematic
quantities, which differ with form of kinematics and the where M and M* are the nucleon and resonance masses,
baryon masses. Since at least one component of the foufespectively. The Sachs-like magnetic dipole, electric quad-
momentum is dynamic, current conservation will always im-rupole, and Coulomb form factors are defined as in R&f],
ply some dependence on the baryon masses.

The features emphasized by instant-form kinematics are i 2\ M, % ~2\ 1-E,
closest to those of n%nrelativistiyc guark models with a physi- I (P.Q) = Gu(@)K,(P.Q) + Ge(QIK,*(P.Q)
cal interpretation of the wave function that emphasizes cova- + G;‘;(QZ) ’CS’”(P'Q)- (A3)
riance under three-dimensional rotations and translations.

Lorentz boosts are not in the kinematic subgroup. There is no ) L
kinematic Lorentz symmetry of quark velocities. The kine- 1he relation between the two sets of form factors is given by

matic variable of the form factors i®> which equals the
four-momentum transfer only for elastic transitions. . M

With light-front kinematics both relevant Lorentz boosts Ge= 3(M* + M)
and translations are kinematic. The corresponding subgroup
is Galilean symmetry in 1+2 dimensions witki in the role M*2- M2+ Q% \M*M M*2 - M2
of the masses. In that case rotations about the direction of the M* Q Git Q G,
momentum transfer are not kinematic. In this the kinematic
pazlrameter of the form factors is the four-momentum transfer

M*ys, (A2)

‘ + ZM*G3:| )
With point-form kinematics there are no kinematic trans-

lations and there is no kinematic interpretation of the wave

function as a representation of spatial structure. The kine-

matic parameter of the form factors is the invariant velocity Gy = -
transfer. 3(M*+ M)

M {(3M* FM)M*+M) - QMM

M* Q 1
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APPENDIX A: INVARIANT FORM FACTORS Q
FOR N—A TRANSITION The relation between matrix elements in the different
The best way to relate calculations made in the thredorms of kinematics and the form facto@; is provided be-
forms of kinematics to the standard invariant form factors islow.

(A4)
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1. Canonical representation (n,9n,9 =(n,Mdn,Mg =1,

(3Pl 0Py, 3)
(n,Sn,Mg =(n,Mdn,9=0, |A2+|B?=1. (B2

M*+M M*2 — M2
= /_2 l+ / 2 *G2 . ..
VQ 2YQ°MM The two components are in more explicit form,
[M* Qs
_ G, | ——=—, n,S =[3],[3 ,
M 3] 2\]% | > [ ]X[ ]FS,S
(,PAl11(0)|Py,— 3) _1
2 AlN N2 |nvMS>_TE([Zl]x,S[Zl]FSS+[21]x,A[21]FSA)v (B3)
B MM M- M2 M* '
== I~ 1 + I~ *GZ - G3 . PST A
6 VQ 2YQ°“MM M where the spatial part has been indicated by,ahe explicit
0 \3 0 M+E expression of which is
===+~ =G,
VEM+E) 3 VQ*VEM+E) [3]x= @c(P) = ¢(P),
(3,Pallo(0)[Py,3) L
V3| Qs Q0 Eem [21)s= ¢s(P) = N5 TP
TSRS T 2
K-q
QS?O \ —63} [21]x A= @a(P) :J\/AKgquw(P), (B4)
L—S, (A5)  WhereP=2(x*+q?) with N's and V4 obtained normaliz-
VE(M +E) ing the spatial wave functions as
where
= d3qd® = 6. (B5)
P*Q M*Z_MZ_QZ ’ K(Pl QDI
Q={Q0,0Q¢ Q=-— =" 7
The flavor-spin wave functions can be written as
Q= VQ*+Q%. (AB)

[Blrss= \,—15([21]F,s[21]ss+ (21 2115,

2. Light-front representation

B o) =-+ 6+ i—tc [21lrss= “([21r 42155~ [21¢ 211
2 2 V2 1 NAYIVE 2| FSS— \JE F, SS F.Al SA)s
[ M M* =M Q?
1 1
11*(0 ——=\/j<——*G +—0 +\/—*G>, 1
GrOI-2= Vgl - we* e Vi [28)esn= (20 J2sn (2021059 (B6)
Qo)) = +\/1< VQ° Z—M*_MG3>. in terms of spin and flavor wave functions of three quarks.
2 2 6 \’/4MM* \"/M*M

(A7) General matrix element

A general matrix element between two neutron states can
be written as
APPENDIX B: NEUTRON MIXED-SYMMETRY

S STATE (nx Q S,|n) (B7)
Consider the following two components in the neutron
wave function: where X is an spatial operatorQ is a flavor operator, the
Iny=An,S +B|n,Mg), (B1) charge in this case, alﬁh; a spin operator. This expression
can be worked out to arrive to the following general expres-
where sion:
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(v @ S (n,SXOSIN Mg = —= (3,21, ¢
=[A*(n,§ +B*(n,Md]X Q S[An,S + B|n,Mg)] 6\2
=|AXn,SX QO S|n,S +A'B(n,SX Q S|n,Mg X{[21]ssS[21]s s+ [21]saS[21]s A}
+B*A(N,MdX Q 8,9 + [BXn,MJX Q Sin,Mg, +[3A 2Lk
(B8) X{[21]gsS[21]ga — [21]5aS[21]s8})
(B11)
with 1 and
(nSx Q Sin.S = {3A{3}([21ss21ss (MdX O SIS
_ 1
[21]sAS123sn). (B9) = 5.5 232155512155+ [21]5aST21sn)
<n, MS|X 9 S|n, MS> — %2({[21]339[21]38_ [Zl]S,AS[Z:L]S,A} + 2]%,AX[3]X{[21]SAS[21]S.S_ [21]5.38[21]S.A}) o1
X {[Zl]x,s)f[zﬂx,s_ [Zl]x,AX[21]x,A} ( )
+{[21]S.AS[21]S.S+ [21]SS‘S[21]SA} APPENDIX C: A—N MATRIX ELEMENTS IN
CANONICAL REPRESENTATION
X{[21x A 21y s+ [21]y sAT21]x A}, The relevant combination entering in the calculation of
(B10) the magnetic form factor takes the explicit form
|
(G35 -2+ 3335 - 3)
_8 1 _SS. . B’ (B +p (B =B
"~ 3\22\E{E,(E} + m)(E, + m){[CZC3 4 P2t psi] {A codycod +8 S'”( 2 ) e S'”( 2 )}
+ 33233|513|512|:A sin%sing -B sin(L;B) +C sin( '8/2_ B)] +[C5P13+ Ca5P1]
X {— Alcosﬂ—,siné - A§sinﬂ—,cos§ + B§COS< Bt B) + }C co{’[g,—_'[g)} } , (Cy
8 2 2 8 2 2 4 2 2 2
with
A=[p(E1+m) —p(E;+m)], B=|p.[(E;-Ep), C=|[p.[(Ex+E;+2m),
5 (plx + iply) (pZZ_ ipZy) ﬁla: (plx + iply) (p3x - ip3y) . (CZ)

12—

Ip.| P2, | [ [

035212-16



BARYON FORM FACTORS OF RELATIVISTIC.. PHYSICAL REVIEW C 69, 035212(2004)

APPENDIX D: AXIAL MATRIX ELEMENTS IN CANONICAL REPRESENTATION

1. Evaluation of {3|A,],-2)

(33lAl3.-3)=- gﬂg/\/m{[(ﬁ +m)(E,+m) - plzplg{cosécoséfl - —sm[; sm’g pl|N+F|12N+B
+ }in(%) |F:)11,\i+| ] - A{|pu|2[ sin%sing] - %[piﬁ [ sin(’B;’B, >|pl|}
- nglNJ,plN{— cos’%cosg + %[piz+ plﬂsin(’g +2’8’ ) |p1l| } ;C(COS’BZI smg - SIH%COSB)D1N+||31J_|
+ %(pé - pz)[gcos@/z_ﬁ)pm& sin(ﬁlz_ B) |pi|[lpn|2¢4— %pmmmﬁ]”- (D1)

where pi. =pixtipjy,

[Ej+m [E;+m 2 A Pan-Pan- i i
= -4 - A=-=[5 + 4 . , B= R +ibs) + +ib,)], D2
N 2F] 2F, 9[ CoC3+ 4Pz *P3i] 5253|p2l||pai| [Cy(ag +ibg) + c3(a +iby)],  (D2)

and
o -6 '~ g, - -
B=6, c=cos ', s=sin_ o, Bz, a=-ts b=-lvg (D3)
2 2 pi pi |

The anglesy; have already been defined in E&.7).

. 11 11
2. Evaluation of 22|AZ|22

S 12— ’ r_ ’
<%%|AZ|%%>:_9X /E;Em E;::_-m<m|3 {(1_ |PL| P1zP1, )_ :n(pi 2p1)z ( Iplz _ P )]
1 (Ey+m)(E;+m)/  (p;- P2+ mi\Ej+m E;+m

foup PiztP,  m(pi- Py, Ei-E
PPV E M +m) (B - B2+ (Ef +m)(E; +m)
P+ piz m(pi - pl)z Ei -E;
+0q_ - D4
o pl“*[<E1+m>(E1+m> By - p+ . B+ mE e || P! (09
One may defineD so that it becomes
<%%|A2(Q2)|%%> 9N(P1137{07D, + 1. pin-D | + o1-panD  }pT). (D5)
The final result can be expressed as
3 1 B B Pan+Pan- Pan+Pan- B B Pan-Pin+ Pon-Pan+
(Ay,==di-N'D —{cos—cos—{c S +C3S— —— | +Sin—sinZ| ¢Sy +C3Sp
S ] R R B S R TS 27207 payl 7 [pa
‘B A BB B+p
- COS%SInEmlJ_'[CZCS_ 108,83, * 3]+ 2 5|”ECOSE|p1L|0203} QA_ND _{COS( )
A (BB 1 Pan-Pan+ Pan-Pan+ Pan+Pin- Pon+Pin-
X[CyC3+ 108,530, - P ]+sm< )—( ——+ - -C3S) )}
2 2h e 2 Jlp,| P3| ° [ ? P3| ° [

Pan-Pin+ Pon-Pin+ B . B Pan+P1in- Pon+P1in-
) J\/D { COSECOS_|:CS?, +C3S) }—sm—sm—[c Sy i e sz—]
"2 . 2 P3| ° P2, | 2727 P3| ° [0

"B B . A
+2 CO%S'nE|pn|Czcs - S'”?COS§|D1L|[0203 = 105,83P7, - pu]}-
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APPENDIX E: AXIAL MATRIX ELEMENTS IN LIGHT FRONT REPRESENTATION

1. Matrix element <%|A+|%>

3 1 1

1 1 P > > >
HINER - -4 ala, + X f f +V V. <—_a’a+ Xaq)-d -
<2| |2> 29 {DlDZDS[ 191 |(qi qJ_)z qJ_ QJ_][ 213 2° 3] D1D2D33[ 191 |(Ch_ q )z q ql]

1 2 . -, ., - . .
X[fof3 = Vo Vay = Vo Vg + Vo, Vg, | + Sl-aa+i(q, X q)),+q) - q [ fofg+ifVa, +if3Vo, — Vo, Vg,
D,D,D,3
1, . ., . . . . 1 1, .
- D2D3§[al(qx - Iqy) + al(qx - qu)][(fZ + |V22)(|V3x - VSy) + (f3 + IV3Z)(IV2X - V2y)] - D1D2D3§[al(qx + qu)
+ay (G +idy) [(F2 + Vo) ((Vay + Vay) + (3 + V3 (Vo + sz)]) } (ED)

with the definitions of Eq(79).
2. Matrix element (—%l(AX+iAy)|%>
An approximate expressiauwith V., =V5=0, for the sake of clarityis

1 . 1 Q2 ’ ' 2 - ! !
- <§|(Ax + |Ay)| > gADlDzDg(f2f3) QZTmi [ajag + O1yQ1y ~ ApxQix ~ |(C|1xQ1y + Oy ]

Pix+iP1y + Pyt Py |, : N , , , , Q
+< L Iy 1 ly)[al(Q1x+|Q1y)+a1(qlx+'qu)]‘(ala1‘quQ1y+ql><Q1x)—(|V1x‘V1y)En}

2m
(E2)
with the definitions of Eq(79).
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