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We use chiral perturbation theory to compute the effective nucleon propagator in an expansion about low
density in the chiral limit. We neglect four-nucleon interactions and focus on pion exchange. Evaluating the
nucleon self-energy on its mass shell to leading order, we show that the effective nucleon mass increases by a
small amount. We discuss the relevance of our results to the structure of compact stars.
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As nuclear matter is compressed, eventually a transition
to quark-gluon matter occurs. By asymptotic freedom, at
very high densities the equation of state can be computed in
perturbation theory[1–3]. This can be extended to moderate
densities by various approximation schemes[2,3]. At low
densities, the conventional approach is to use phenomeno-
logical potentials to fit observed properties of nuclear matter
[4] and then extrapolate up in density.

How the nuclear equation of state matches onto that for
quark matter is of great significance for astrophysics[3,5].
The standard expectation, such as in quantum hadrody-
namics, for example[6], is that hadronic pressure rises
quickly to a value near that for an ideal Fermi gas of quarks
and even exceeds it at densities above normal nuclear den-
sity. In this case there is only one type of hadronic star which
might have a(small) quark core. If the hadronic pressure is
small relative to that of ideal quarks, though, then there can
be two classes of hadronic stars. There are “ordinary” neu-
tron stars, which are mainly composed of nucleons. In addi-
tion, there are stars with a large quark core; their mass and
radius are(approximately) half that of ordinary neutron stars.

Thus it is imperative to understand the equation of state
for nuclear matter. In Ref.[7], Savage and Wise compute
mass shifts for the baryon octet using chiral perturbation
theory, including all operators which contribute to leading
order in the density. Due to four-nucleon interactions, they
find that all masses decrease with increasing density; ex-
trapolating to nuclear matter densities, the shifts are consid-
erable. The self-energies were computed at zero momentum,
though, while the physical point is on the mass shell. In the
presence of a Fermi sea, the mass shell changes, in a way
which is easily computed. To leading order in the density, the
difference in mass shell only affects exchange, and not con-
tact, terms. In this paper we compute the nucleon self-energy
on its mass shell, from the diagram for pion exchange. In this
case, unlike Ref.[7], the usual logarithms of chiral perturba-
tion theory appear on the mass shell. We note that the shift in
the nucleon mass is dominated by contact terms, not single
pion exchange, so the following exercise is a minor point of
principle.

We assume that nucleons, of massm, are heavy, and that
pions, with massmp, are very light. The interaction of pions
and nucleons is determined by the spontaneous breaking of
chiral symmetry[6,8–12]. For light pions, to leading order in
chiral perturbation theory, the only parameter which enters is
the pion decay constant,fp<93 MeV.

The proceeding calculation is elementary, and, besides
those of Savage and Wise[7], it is similar to computations by
Horowitz and Serot[9], by Bernard, Kaiser, and Meißner
[10], and by Meißner, Oller, and Wirzba[11].

The parameters which enter can be understood without
explicit computation. A Fermi gas of nucleons is character-
ized by a Fermi momentumpf up to and including nuclear
matter densities,pf !m. In an expansion about low densities,
the natural parameter which enters into the nucleon propaga-
tor is just the density,nnucl,pf

3. We would like a dimension-
less parameter to characterize the expansion. At one loop
order, chiral perturbation theory brings in two powers of
1/ fp. The only other parameter in the problem is the nucleon
massm (at least for vanishing pion mass). Thus to leading
order, the corrections to the nucleon propagator are propor-
tional to

pf
3

mfp
2 , s1d

which we now compute.
To leading order in chiral perturbation theory, we take the

nucleon Lagrangian to be

L = c̄S]” − g0m + m− i
gA

fp

]”pg5Dc, s2d

wherem=Îpf
2+m2 is the chemical potential,gA<1.2 is the

axial vector coupling constant, andp=pasa/2, where the
sa’s are Pauli matrices in SUs2d flavor. Other interactions,
such as between two nucleons and more than two pions,
involve more powers of 1/fp, and so enter beyond leading
order in the density. There are tadpole contributions, with

PHYSICAL REVIEW C 69, 035211(2004)

0556-2813/2004/69(3)/035211(4)/$22.50 ©2004 The American Physical Society69 035211-1



a pion in the loop, but like the tadpoles from four-nucleon
interactions, these are independent of the external momen-
tum and so of the choice of mass shell.

Thus we consider single pion exchange, which contributes
to the nucleon self-energyS as

SsPd = −
3gA

2

4fp
2 E d4K

s2pd4

1

sP − Kd2 + mp
2

3g5sP” − K” d
1

− iK” − g0m + m
g5sP” − K” d, s3d

P=sp0,pWd is the four-momentum of the nucleon. The dia-
grams are evaluated using the imaginary time formalism.

In general, the nucleon self-energySsPd is a rather com-
plicated function ofp0 and pW [9,10]. Here we shall only
compute the nucleon self-energy at a special point, on its
mass shell:

p0 = pms
0 = ism − Epd < i

spf
2 − p2d
2m

, s4d

Ep is the energy of a nucleon with momentump, som=Epf
,

andEp<m+p2/ s2md+¯. We also assume that the momen-
tum p is on the order of the Fermi momentum, but it need not
be especially nearpf.

Working on the mass shell allows us to greatly simplify
the calculation. As we are working at nonzero fermion den-
sity, it is convenient to do the integral overk0 first and then

integrate overkW. In the imaginary time formalism, we first
compute the diagram for realp0 and then analytically con-
tinue to imaginary values ofp0, as in Eq.(4).

In the integrand, there are four poles: two from the pion

propagator, atk0=p0± iÎskW −pWd2+mp
2, and two from the

nucleon propagator, atk0= ism±Ekd. Closing the contour in
imaginaryp0 plane, only those poles in the upper half-plane
contribute.

All we are interested in, though, are the density dependent
effects. Of the four poles in the one loop diagram for the
nucleon propagator, clearly one is special. The pole at which
k0= ism−Ekd is in the upper half-plane whenk,pf and
moves into the lower half-plane whenk.pf. For the other
three poles, the sign of their imaginary part does not change
with k.

All of the density dependent effects in the one loop dia-
gram for the nucleon propagator are due to the shift in this
one pole. To see this, note that the chemical potentialm only
enters by changingip0→ ip0+m. If we work on the mass
shell, however, thenip0+m= +Ep; while p0 changes withm,
ip0+m does not. Thus if no poles switched the sign of their
imaginary part, then we would find that there were no den-
sity dependent effects in the propagator at one loop order.
For example, there is wave-function renormalization for the
nucleon field, but given thatm enters just as a shift inp0, this
is standard; there is no new wave-function renormalization
associated withmg0, separate fromp” .

The contribution of the pole atk0= ism−Ekd is simple to
include: one only integrates over momentum below the
Fermi surface. A similar result is found, rather more imme-

diately, using the real time formalism. There, the nucleon
propagator is the sum of two terms, one is the same as in the
vacuum plus a density dependent term.

To pick up the contribution of just this one pole, we take

E dk0

2p

1

− iK” − g0m + m
= −

1

2Ek
siK” + g0m + md. s5d

On the right-hand side,k0= ism−Ekd, and only uku,pf con-

tribute to the integral overkW.
Now we need to sandwich the inverse nucleon propagator

in this expression between theg5sP” −K” d’s from the pion ver-
tices. There are three types of terms which contribute. One is
from the term,m in the nucleon propagator,

cm = g5sP” − K” dmg5sP” − K” d = − msP − Kd2, s6d

one from the term,mg0,

cm = g5sP” − K” dmg0g5sP” − K” d

=g0mfsp0 − k0d2 − spW − kWd2g + 2msp0 − k0dsp”W − k”
Wd, s7d

and one from the term,K” ,

cp = g5sP” − K” diK” g5sP” − K” d=if2sP − Kd ·KP” − sP2 − K2dK” g.

s8d

To compute the leading terms about small density, we can
greatly simplify these expressions. For example, for the
nucleon energy, we can replaceEk<m, since corrections are
down byspf /md2. Further, as we are computing on the mass
shell, the energyp0 is small relative to the spatial momen-
tum; in magnitude, asp0,p2/m, p0 is down bypf /m relative
to p. This means that in the pion propagator, and incm, Eq.

(6), we can replacesP−Kd2<spW −kWd2.
For the other contributions, one must be careful to keep

track of relatively small terms,,p”W , and also,p0g0. For cm,
Eq. (7), for the pieceg0 we can dropsp0−k0d2 relative to

spW −kWd2 and takem<m. However, for the piece,msp0−k0d,
we have to keep track of the subdominant term, so

cm < − mg0spW − kWd2 + isp2 − k2dsp”W − k”
Wd. s9d

For the last term,cp in Eq. (8), we can approximate

cp < if2spW − kWd ·kWP” − sp2 − k2dK” g. s10d

We keep the terms,g0, which are nominally down bypf /m,
in order to extract the term,p0g0.

Adding all of these terms together, we find a remarkable
simplification

Sspms
0 ,pd < − fsipms

0 + mdg0 + ip”W + mgS0spd, s11d

where
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S0spd =
3gA

2

8mfp
2E

køpf

d3k

s2pd3S spW − kWd2

spW − kWd2 + mp
2D . s12d

We also checked that the same result is found using the real
time formalism.

This form is illuminating, because it is obvious that in the
chiral limit, whenmp=0, the functionS0 is independent of
momentum:

S0spd = +
gA

2

16p2

pf
3

mfp
2 = +

3gA
2

32

nnucl

mfp
2 , s13d

wherennucl=2pf
3/ s3p2d is the density of nucleons.

Away from the chiral limit,mpÞ0, S0 is momentum de-
pendent:

S0spd =
gA

2

16p2

pf
3

mfp
2 S1 +

3mp
2

2pf
2 dS0spdD , s14d

dS0spd = Spf
2 − p2 + mp

2

4ppf
DlnS spf − pd2 + mp

2

spf + pd2 + mp
2 D

+
mp

pf
FarctanSpf + p

mp
D + arctanSpf − p

mp
DG − 1.

s15d

At zero momentum,p=0, this agrees with Savage and Wise
f7g. We see that chiral logarithms appear whenpÞ0, al-
though there is an arctanspf /md at p=0. These chiral loga-
rithms are standardf8g, and relatively innocuous. Even at
the Fermi surface,p=pf, they vanish likemp

2 lnsmpd as
mp→0.

One can computeo0 as a function ofmp. For illustration,
consider its value at the Fermi surface. Then one can show
that increasing the pion mass tends to decrease the value of
S0; asmp→`, S0 vanishes like<pf

3/ smfp
2dspf

2/mp
2d. ThatS0

vanishes like<1/mp
2 at largemp is evident from the integral

representation, Eq.(12).
We can use these results to compute the nature of nucleon

quasiparticles. Adding the self-energy, the effective nucleon
inverse propagator is

Def f
−1spms

0 ,pWd = Dbare
−1 − S

=− fsipms
0 + mdg0 + ip”Wgs1 − S0d + ms1 + S0d.

s16d

The change in the position of the pole in the nucleon
propagator is easy to compute. In particular, the mass of the
nucleon is shiftedup:

mef f = mS1 + S0

1 − S0
D < ms1 + 2S0d. s17d

This expression holds in the chiral limit. Half of the mass
shift arises from the shift in the term,m and half from what
can be viewed as wave-function renormalization.

Away from the chiral limit, whereS0 is a function of
momentum, the change in the mass cannot be read off so

immediately. In that case, one has to define the effective
mass by other means, as in Eq.(11.66) of Ref. [13].

This increase in the effective nucleon mass is in contrast
to what happens at zero density, but nonzero temperature. To
leading order in an expansion about zero temperature, in the
chiral limit the nucleon mass does not shift to,T2 [14].

At normal nuclear matter density,pf <270 MeV. The cor-
rection which we computed, from single pion exchange, is
tiny, 2S0<0.04. This suggests that chiral perturbation theory
might be a reasonable guide to the properties of nucleons,
even at nuclear matter densities.

This conclusion is premature. While the corrections to the
nucleon propagator are very small, corrections to the pion
propagator are large. For most momentum, such as near the
pion mass shell, the corrections to the pion propagator are
like those of the nucleon, proportional to the density,
,pf

3/ smfp
2d, Eq. (1). If the pion is far off its mass shell,

though, with an energyv,pf
2/m, it can scatter into a

nucleon particle-hole pair. For such nearly static pions, the
pion self-energy is enhanced by a factor ofm/v,m2/pf

2.
The correct expansion parameter for the pion propagator is
then notpf

3/ smfp
2d, but

pf
3

mfp
2

m2

pf
2 , S gA

2

2p2Dmpf

fp
2 . s18d

Numerically, this parameter ismuch larger thanS0 in Eq.
s13d. In fact, as we are dealing with a nonrelativistic system,
this enhancement of the pion propagator is well known from
condensed matter physics, and represents the need to resum
the nearly static pion propagator through the random phase
approximationsRPAd f13g. Indeed, the factor ofgA

2 / s2p2d
arises from an explicit calculation in the RPA limit, from Eq.
s4.21d of Meißner, Oller, and Wirzbaf11g. For normal
nuclear matter density, the parameter of the RPA pion propa-
gator in Eq.s18d is <2 at nuclear matter densities. Since this
parameter is only linear in the Fermi momentum, if we re-
quire that this parameter be less than, say, 1/2, this means
that we can use chiral perturbation theory to compute the
nuclear equation of state only up topf ,70 MeV. This cor-
responds to densities which ares1/4d3=1/64those of nor-
mal nuclear matter.

This restriction on the use of chiral perturbation theory is
not that surprising. In computing the free energy, the typical
pion momentum is of order,pf, with energies,pf

2/m. To
use a chiral Lagrangian, the pion momentum should be small
relative to fp, which is similar to the condition derived from
Eq. (18). What is not evident is while there is a factor of
1/s2p2d from chiral perturbation theory in Eq.(18), this is
compensated by the factor of the nucleon mass in the nu-
merator.

Nevertheless, such computations[10,11] are manifestly of
interest, so as to gain a more general understanding of the
nuclear equation of state. Carrying out such calculations be-
yond leading order is technically very challenging. Using a
RPA corrected propagator for the nearly static pion is
straightforward. What is difficult is knowing how to separate
diagrams with two pion exchange from other effects. In
quantum hadrodynamics[6], one must separate two pion ex-
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change from that of heavier mesons, such as thes and thev.
In “pionless” effective theories[15], two pion exchange con-
tributes to pointlike interactions between four or more nucle-
ons.

We can draw some tentative conclusions about the had-
ronic pressure, which motivated this study. To leading order,
the nonideal terms in the pressure are proportional toS0,
which is very small[10]. At higher order, even if corrections
to the pion propagator are large, their effect on the nucleon
propagator, and the free energy, can still be small, as a large

correction to a small number. Thus the possibility of a had-
ronic phase with a small pressure, required for a new class of
quark stars, remains viable.
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