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Quasiparticle description of hot QCD at finite quark chemical potential
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We study the extension of a phenomenologically successful quasiparticle model that describes lattice results
of the equation of state of the deconfined phase of QCO fst T=<4T,, to finite quark chemical potentia.
The phase boundary Iin€(u), the pressure differenc&p(T,w)=[p(T,u)—-p(T,©=0)]/T4 and the quark
number densit)nq(T,,u)/T3 are calculated and compared to recent lattice results. Good agreement is found up
to quark chemical potentials of ordgr~T..
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I. INTRODUCTION support from resummed perturbation thed@4] for tem-
peraturesl = 3T.. However, they have difficulties explaining
The phase structure of QCD at high temperature and northe dropping of the thermal gluon screening mass in the vi-
vanishing baryon chemical potential has been subject of ineinity of the phase transition. An improved quasiparticle
tense research in recent years. Heavy-ion collisions at higlmodel[22] shows the correct temperature dependence of the
energies have been and are being explored at SPS/CERN apébye mass and reproduces lattice thermodynamical quanti-
RHIC/BNL [1] in search for signals of the quark-gluon ties such as the pressure, the energy density, and the entropy
plasma(QGP). Large-scale lattice QCD computations at fi- density very well. The main new ingredient of this model is
nite temperature have been perfornjgd4], and first exten- a phenomenological parametrization(dgconfinement.
sions to nonzero baryon chemical potential appear now to be In the present work, this improved quasiparticle model is
feasible. It has proven possible to trace out the phase bounéxtended to finite quark chemical potentjal In Sec. Il, a
ary line T,(u) separating the hadronic phase from the QGPorief review of the quasiparticle model with confinement is
phase forN;=4 [5,6], Ny=2 [7], and N;=3 [8] flavors of  given. The extension of the model to finite quark chemical
quarks up to quark chemical potentiaisof order T.. First  potential u is discussed in detail in Sec. Ill. Numerical re-
numerical results for the QCD equation of staEOS), i.e.,  sults are presented in Sec. IV. The phase boundaryTli(e)
the pressurg@(T, u) and the quark number density(T,«),  that separates the hadronic from the QGP phase is discussed
are also available foN;=2+1[9] andN;=2 [10]. As wellas  and the quasiparticle model result is compared to recent lat-
being of intrinsic theoretical interest, such studies provideice simulations. Results for the pressure difference fgom
conceptual guidance for current heavy-ion collision experi=0 and the quark number density for various values of the
ments at SPS and RHIC, where the chemical freeze-out ochemical potentialw are also presented and compared to
curs at us,=100 MeV (baryon chemical potentialug recent lattice simulations. A summary is given in Sec. V.
=300 MeV) [11] and ui,=15 MeV (ug=45 MeV) [12],
respectively.
Systematic perturbative expansions of the QCD equation Il. QUASIPARTICLE MODEL WITH CONFINEMENT
of state within the framework of thermal field theory show
bad convergence even for very large temperatgseseral It is possible to describe the EOS of hot QCD at vanishing
timesT,) far beyond the region accessible to present experiquark chemical potentiak to good approximation by the
ments[13]. Various techniques, such as dimensional reducEOS of a gas of quasiparticles with thermally generated
tion, screened perturbation theory, or hard-thermal loognasses, incorporating confinement effectively by a
(HTL) perturbation theory show better convergence andemperature-dependent, reduced number of thermodynami-
good agreement with lattice results fbe 3T, [14]. Various  cally active degrees of freedom. This method is briefly out-
interpretations of the lattice data have been attempted ifined in this section. For a more detailed discussion the
terms of physical quantities, most prominently as the EOS ofeader is referred to Ref22].
a gas of massive quark and gluon quasiparticles. Their ther- At very high temperatures, spectral functions for gluons
mally generated masses are based on perturbative calculer quarks of the forms(E2-k?~m?(T)) with m(T) ~gT are
tions carried out in the HTL schenjé5-17. This approach found in HTL perturbative calculations. Herg,is the par-
has been extended to nonvanishing quark chemical potentiticle energyk the absolute value of its momentum(T) its
and good agreement with finije lattice calculations folN; thermally generated mass, agdhe QCD coupling constant.
=2+1 flavors has been found 8]. More recently, the QGP As long as the spectral function at lower temperatures re-
has also been described in terms of a condensafg Wfil- sembles qualitatively this asymptotic form, a quasiparticle
son lines[19] and by more refined quasiparticle models description is expected to be applicable. QCD dynamics is
based on the HTL-resummed entropy and next-to-leading oithen incorporated in the thermal masses of the quark and
der(NLO) extensions theredR0]. These models have found gluon quasiparticles. These thermal masses are obtained
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from the self-energies of the corresponding particles, evalustill dependent on the details of the simulatio@g, 6., and

ated at thermal momente~T: B should be fine-tuned for different lattice calculations.
) 5 For homogeneous systems of large voluiehe Helm-
2= g, + Ng - 1<T2+ M—)GZ(T ) 1) holtz free energyF is related to the pressume by F(T,V)
My 9 8N, A e =-p(T)/V. In the present framework of a gas of quasiparti-
cles, its explicit expression reads
1 N 3 w
2_ 2 = M2, 2 22 Kk
mg‘mf)g*el(“” 2 )T * 2 Mqu (Tw. @ p(M==% |  dk ANfe(EY
N; is the number of flavorsiN; the number of colors. The oN. N K
effective coupling strengtl® is specified as +—<> dk QMfp(E)= -B(M). (5
375 Jo =
gO < TC>B . 5 .
G(T,u=0=——=—=\[1+6]-=—] . 3 is the gluon degeneracy factoES=+k?+mZ(T) is the
Tu=0=m 2o d-7 3 g g y_factoEg= \k+mj(T)

gluon energy,EE:\/k2+m§(T) the quark energyfg(EY)
Setting g,=9.4, 8=0.1, theeffective masses as given in =(exd(E})/T]-1)"" the Bose-Einstein distribution func-
Egs.(1) and(2) approach the HTL result at high tempera- tion of gluons, andfp(EJ)=(exd (E})/T]+1)™* the Fermi-
tures. (A small shift =107 helps fine-tuning aff=T,.) Dirac distribution function of quarks. The energy density
Because of the existence of a heat bath background, newand the entropy density take the form

partonic excitations, plasmor($ongitudinal gluong, and -

plasminos(quark-hole excitationsare also present in the e(T) = _”g_f dk IRC(T)fg(EYEY

plasma. However, their spectral strengths are exponen- 27,

tially suppressed for hard momenta and large temperatures

Nf 0
and consequently these states are essentially unpopulated + 2N dk IRC(T)f~(E)EL + B(T 6
[23]. The functional dependence of,(T) on T is based on 2 ,% 0 (MipEJE+BT  (6)

the conjecture that the phase transition is second order or
weakly first order which suggests an almost powerlikearld
behaviorm~ (T-T,)# with some critical exponeng>0. It

4
is assumed that the pseudocritical form of the effective " §k2+ mé(T)
coupling constant given in Eq3) also provides the cor- s(T) = —V‘LJ dk RC(T)fg(E) ————
rect approximate expression for the effective quark mass. 2T Jo X

This is supported by a nonperturbative dispersion relation
analysis for a thermal quark interacting with the gluon oM
condensat¢24]. c i
Close toT, the picture of a noninteracting gas is not ap- ¥ 772T§_ 0 dk kKC(M (Y EL
propriate because the driving force of the transition, the con- . o .
finement process, is not taken into account. Belfwthe The functlonB(T) is introduced toactasa backgroqnd fleld_.
relevant degrees of freedom are pions and other hadronl.is necessary in order to maintain thermodynamic consis-
ApproachingT, from below, deconfinement sets in and the tency:p, €, ands=dp/JT have to satisfy the Gibbs-Duhem
quarks and gluons are liberated, followed by a sudden intelation e+p=Ts=Tap/JT. B(T) basically compensates the
crease in entropy and energy density_ Converse|y, when a@dditional T derivatives from the temperature—dependent
proaching the phase transition from above, the decrease iasses irp and thus is not an independent quantity. Since
the thermodynamic quantities is not primarily caused by in-B(T) adds to the energy density of the quasiparticles, it can
creasing masses of the quasiparticles, but by the reduction &€ interpreted as the thermal vacuum energy density. The
the number of thermally active degrees of freedom due to thentropy density, as a measure of phase space, is unaffected
onset of confinement. For example, gluons begin to formy B(T).
heavy clustergglueballg, so that the gluon density gets re-
duced asT, is approached from above. This feature can be IIl. EINITE CHEMICAL POTENTIAL
incorporated in the quasiparticle picture by modifying the

number of effective degrees of freedom by a temperature- The quasiparticle model reviewed in the preceding section
dependent confinement fact6T): accurately reproduces lattice thermodynamical quantities

such as the pressure, the energy density, and the entropy
T, density in the temperature range<T=4T, at vanishing
C(T,u=0)=Co| [1+5] - T/ (4 chemical potentia[22]. However, many physical questions,
e.g., the structure of quark cores in massive neutron stars, the
The confinement factor is taken to be universal. The parambaryon contrast prior to cosmic confinement, or the evolution
etersCy, &, and B, are fixed by reproducing the entropy of the baryon number in the midrapidity region of central
density that results from lattice QCD thermodynamics. Sincéheavy-ion collisions, require a detailed understanding of the
the results of lattice calculations with dynamical quarks areEOS at nonvanishing quark chemical potential. In this sec-

2z mg(T)

()
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tion, a thermodynamically self-consistent extension of the
quasiparticle model to finite quark chemical potentials is pre-
sented. Results for various observables are then computed
and compared to finitg lattice results in the following sec-
tion.

At vanishing quark chemical potential, it is conjectured
from asymptotic freedom that QCD undergoes a phase tran-
sition from the hadronic phase to the QGP phase. At ex-
tremely high density, cold quark matter is necessarily in the
color-flavor-locked phase in which quarks of all three colors
and all three flavors form cooper pairs. It is expected that this
phase is separated from the hadronic phase by the color su-
perconducting 2SC phase. For a review of the QCD phase
diagram, the reader is referred to RgE5]. Our extension of
the quasiparticle model provides a straightforward way t0 k|G, 1. Characteristic curves of constant confinement factor
map the EOS at finite temperature and vanishing quark(T, 4)=const, obtained when solving E(L.2).
chemical potential into th&-ux plane without further as-
sumptions. However, since this continuous mapping relies o
quark and gluon quasiparticles, it cannot provide information
about other possible phases with a differémaasiparticle

Hons for the effective coupling consta@*(T,u) and the
"confinement factoC(T, w):

structure. It is therefore applicable in a limited range of not 5 )
too large chemical potentials. ar(T M'Gz)ﬁ +a,(T M'GZ)E = b(T, 1;G?)

The pressure of an ideal gas of quark and gluon quasipar- TTTT T T Yo R
ticles with effective masses depending on temperature and (11)
quark chemical potential is given by

gy aC aC
T =g %5 | Ak AT, To(ED = (TG T+ TuiG) T2 =0, (12
N¢ e
+ &E dk O(T, w)[f5(EY) + fB(EE)]E; The coefficientsar, a,, b, ¢, ¢, depend orT, u, G? bgt not
E on C. It can be solved by the method of characteristiese

Appendix B. The flow of the effective coupling and the

~B(Tw), (8) confinement factor is elliptic. In particular, one finds
with f5(ED)=(exd(E}+ n)/T]+1)"X. The effective cou-
pling strengthG(T,u«), the confinement factolC(T, u), ar(T,u=0)=0, a,(T=0,u)=0, c(T,u=0)=0,
and the mean field contributioB(T, «) now also depend C(T=0,4)=0. (13)

on the quark chemical potentigl. B(T, ) is calculated in
Appendix A. The quark number densitwhich is related
to the baryon number density; by n,=ng/3) retains the
ideal gas form

Therefore, the characteristics are perpendicular to botf the
and theu axis. This guarantees that specifying the coupling
constant and the confinement factor on thexis sets up a

NN e valid initial condition problem. Plots of the characteristic
nq(T,,u)=—CE dk C(T, w)[f5(ED - fo(EDIKZ, (9) cuzjvc;s and the confinement factor are shown in Figs. 1
and 2.

but with the confinement factd€(T, ) included.

In the preceding section expressions for the coupling
G(T,x=0) and the confinement fact@(T, «=0) are given.
These expressions can be generalized to finite chemical po-
tential in a thermodynamically self-consistent way using
Maxwell relations. Imposing the Maxwell relation between
the derivatives of the quark number density and the entropy,

E(ﬂﬁﬁ-ﬁﬁﬁ)
oM aT  amé dpu

Js
Iplt

Jn
aTl,

ondC dsdC

=0 and ( —_—-— ) 0, (10
dCaT odCou ) )
FIG. 2. The confinement factd€(T,u) as a function of the

yields a set of first-order quasilinear partial differential equa-temperaturel and the quark chemical potential
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IV. COMPARISON WITH LATTICE RESULTS 1

Simulations of QCD at finite chemical potential are ex- 0.98-

tremely difficult because the fermion determinant becomes i

complex. This prohibits Monte Carlo importance sampling, ,0.96

which interprets the measure as a probability factor and thus & i

requires it to be positive. While this problem remains un- 0.94F
solved, there are some approaches which circumvent the sign i 1
problem and allow lattice simulations for small chemical po- 092 — Lattice ]
tentialsu < T,. A review comparing these methods in detail - — QPM ]
can be found in Ref26]. 09t |
0 0.5 1 2 25 3

1.5
Hy/T,
A. The phase boundary line FIG. 3. The phase boundary liffg(u) calculated with the qua-

L. . . . siparticle model forN;=3. The shaded band shows therlerror
In the case of vanishing chemical potential, universal ary,;q4 obtained in lattice calculations in RES].

guments and lattice simulations suggest a phase transition
from the hadronic phase to the QGP phase at a critical tem- c s 5
peratureT.. For QCD with three light flavorsn,~ my~ m 0 ¢ ¢

~5 MeV this transition is expected to be first order. For twoThree flavors 1.03 0.02 0.2
light flavors my~my~5 MeV and an infinitely largemg

there is no phase transition, only a smooth cross¢2&.  We have checked that the form of the phase boundary line in
This suggests there is a critical strange mmaSat which one  the quasiparticle model depends only weakly on the exact
finds a second-order phase transition. Lattice calculations irehoice of parameters and a small difference only shows up
dicate tham is about half of the physical mass. At finite  for values much larger than the range @fcovered by the
quark chemical potentiak and vanishingT a first-order lattice simulations. The lattice phase boundary line and our
phase transition is predicted. For the physitathis implies  result are shown in Fig. 3.

that there is a first-order phase transition for smialand The quasiparticle result is within the lattice estimate for
large u which ends at a critical poirfT”, «"). At this point  ug=<2.5T. and deviates only slightly from the lattice result
the phase transition is of second order. For lafgend small  for larger chemical potentials.

u the two phases are separated by a cross@8r We refer

to the lineTy(u) that separates the hadronic phase from the

QGP phase as the “phase boundary line.” In the literature B. Thermodynamical quantities

[6-8] this line is also frequently called the “pseudocritical  There have been lattice calculations of thermodynamical
line.” To(u) has been calculated on the lattice ky=4[5,6],  quantities at finite chemical potential fod;=2+1 [9] and
N¢=2 [7], andN;=3 [8] flavors of quarks up to quark chemi- N,=2 [10] flavors of quarks. In the following we focus on
cal potentialsu of orderTe. In the following we focus on the  resuits from Ref[10] where a p4-improved staggered action
three-flavor results where the critical line has been calculategpn a 16 x 4 lattice was used. There, thé. dependence is
with an accuracy up to terms of ordgu/T)°. There, a Wil-  known to be small, in contrast to standard staggered fermion
son gauge action and three degenerate flavors of staggergetions which show substantially larger cutoff effects. Esti-
quarks have been employed, with bare masses in the ranggates of the pressure, the quark number density, and associ-
0.025<am<0.04, wherea denotes the lattice spacing. The ated susceptibilities as functions of the quark chemical po-
finite volume scaling behavior was monitored by using threaential were made via a Taylor series expansion of the
lattice sizes, 8x 4, 1< 4, and 12x 4. thermodynamic grand canonical potentlup to fourth or-

In our quasiparticle model, the sudden decrease of thger.
pressure, the energy density, the quark number density, and To calculate thermodynamical quantities within the quasi-
the entropy density caused by gluons and quarks gettingarticle model, we need to fix the parameters of the effective
trapped in glueballs and hadrons whEfris approached from  coupling constant and the confinement factor. Our calcula-
above is parametrized by the confinement fad®T,u).  tions have shown that the results are not sensitive to the
Consequently, it is natural to relate the critical line to thedetailed choice of parameters for the effective coupl@g
characteristic curve of the confinement factor throligle),  We have therefore used the parameters from R&j.in our
as long asu is small and the nature of the quasiparticles doesalculations. In principle, the parameters of the confinement
not change qualitatively. factor can be fixed by comparing our calculations to lattice

In order to calculate the confinement factor at finiteresults at vanishing chemical potential. However, in RES)
chemical potential, we need to specify a valid initial condi-no u=0 lattice data are given. Since lattice calculations in-
tion, e.g.,C(T,x=0). The functional form ofC(T,x=0) is  cluding quarks give slightly different results depending on
set by Eq.(4). We have employed the following set of pa- which action has been used, fitting the parameters in
rameters, as found in Ref22]: C(T,u=0) by comparing quasiparticle results to lattice data
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0.2

0.15

FIG. 4. The normalized pres-
sure differenceAp(T,u)/T* as a
function of temperature compared
to lattice results from Ref[10]
(symbols.

0.1

0.05

<

T,

from a different simulation is not feasible and would lead tober density is in very good agreement with the lattice data for
large differences. Consequently, we directly used the fijpite «/T.=0.2 and 0.4. Folarger values ofu our calculations
lattice results for fitting. Good agreement with the latticeunderestimate the magnitude of the lattice results close to
thermodynamical observables was found for the followingT,, but show the same qualitative features.

sets of parameters:

V. SUMMARY
Co 8 Be N -
We have presented a quasiparticle description of the QCD
SetA 1.05 -0.016 0.15 EOS at finite temperature and quark chemical potential. Our
SetB 1.12 0.02 0.2 main modification as compared to previous work is the in-

clusion of finite quark chemical potential in a thermodynami-

While setA reproduces the lattice thermodynamical resultscally consistent way. We have first reviewed our improved
slightly better, seB is in better agreement with the param- quasiparticle model which schematically includes confine-
eters found in Ref[22] for ©=0 lattice simulations. ment. We have shoyvn how Maxwell relations can _be used to
The temperature dependence of the normalized pressuf@nstruct the effective coupling(T, ») and the confinement
difference Ap(T, 1) =[p(T, &) -p(T, x=0)]/T* is shown in factor C(T, u) at finite chemical potential. We then used this
Fig. 4 and that of the normalized quark number densityModel to calculate the phase boundary liRgw) and the
nq(T.M)/T3 in Fig. 5. normalized pressure differenc®p(T, w)=[p(T,w)—p(T, u
Whereas the computation of the quark number densitF01/T* and the normalized quark number density
from Eq. (9) is straightforward, a numerical evaluation of Ng(T,)/T°. We compared our results to recent lattice calcu-
Eqg. (8) is difficult because of the derivatives of the effective lations and found remarkably good agreement even for large
masses and the confinement factorBi(T, ) (see expres- quark chemical potentialg ~T..
sions in Appendix A. It turns out that it is simpler to calcu-
late the pressure difference using the following relation: ACKNOWLEDGMENTS

1[(* This work was supported in part by BMBF and GSI.
Ap(T, ) = T f du'ng(T, u'). (14)
0 APPENDIX A: CALCULATION OF B(T,w)
The lattice pressure difference is well reproduced even for The “background field” quantit3(T, ») appearing in Eq.
the largest values of the chemical potential. The quark num¢8) can be obtained from the Gibbs-Duhem relation

1 T T T T T T T 2QF T T T T T T " -
08Fn /T . 3
nq/T | nq/T
0.6 L3r
- = I FIG. 5. The normalized quark
04l [ WT =04 1= number densityny(T,x)/T? as a
) L function of temperature compared
r I I to lattice results from Ref[10]
o2 1 05- i (symbols.
[ ] ] I
I l e
ol=r L \ 1 L ob—L 1 \ L [
0.8 1 1.2 1.4 1.6 1.8 2 0.8 1 1.2 1.4 1.6 1.8 2
T/T, T/T,
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ap  ap
+p=Ts+un=T-——=+u—. Al
e+p M 0T MaM (A1)
The left-hand side reads
N [~ 41 + 3]
etp=_5 dk[f5+f5]c:(T,mk2< )
37 J,
(A2)

To evaluate the right-hand side, derivativesfgfEy) with
respect tol andu are rewritten as derivatives with respect to
k. After an integration by parts, the first term on the right-
hand side reads

j_'rl)' :T% OOO dk %(‘;—SF’E% - C(T’M):_EIZ(O;T +C(T,u)
X(Ex+ ) +C(T,,U~)%)
+T§i\|2ff: dk fg(%g - C(T,M)Z’—;(Zﬂ:
- CT, ) (B0 + cmm%) 2B (ag)
and the second term is given by
- C(T, M)%E:—é +C(T, ,u)3k2> - M%L’“).
(Ad)

Substituting Eqs(A2)—(A4) in the Gibbs-Duhem relation
yields a partial differential equation of the type

af(xy)  af(xy)
=7 . A5
x— . Y (xy) (A5)
It has the general solution
X
f(x,y)f dtI(t,%t)H’-{(z). (A6)

Here, H(y/x) is a solution of the homogeneous equation.
Returning to our casek(u/T) becomes an arbitrary func-
tion of the ratiou/T to be fixed by boundary conditions. For
u— 0, H(u/T) does not depend oh anymore and therefore
has to be identified with an integration const&gt Provided
that H(u/T) is a continuous function it must be closeBg
for small w/T. The first term in a Taylor expansion of
H(u/T) vanishes and the series starts only at ofgefT)2.

PHYSICAL REVIEW (9, 035210(2004)

Therefore we identifyH(w/T) with the constanB, for all u
under consideration. Assembling all pieces, the final result
reads

B(T,/.L) = Bl(Twu') + BZ(T1 Iu') + BOy
N.N; [~ T
BT = | | atrecen + oy
o

JC aC |k
_+_

or T EY’
7 5<ET) K
T

NcNf
27

2 2 2
| 9Ma  m_9Mg k_q
gt T&(ET) Eq
T
where the explicit = dependence in C(7,u/T 7),

my(7, u/T 7), andEX(7, /T 7) has been suppressed for the
sake of lucidity.

i T
By(T,) = - fo koT dr CLFA(ED + fp(ED)]

(A7)

APPENDIX B: METHOD OF CHARACTERISTICS

Equations(11) and (12) are a set of coupled quasilinear
first-order partial differential equations for the effective cou-
pling constaniGX(T,«) and the confinement fact@(T, u).
Equation(11) does not depend o8(T, w). Thus we can first
solve this equation fo6%(T,u«) and insert the result in Eq.
(12).

The usual method found in textbooks is to reduce a qua-
silinear partial differential equation of the form

X X
ar(T,u; X)—=+a,(T,u;X)— =c(T,u; X Bl
(T, )aT (T, )LM (T,u;X)  (BY)

to a system of coupled ordinary differential equations,

aT(s) _ dX(s) _
ds ds -¢

du(s) _

ds ™ (B2)

T
This determines the characteristic curviés), u(s), and the
evolution of X along such a curve, given an initial value.
However, this method is not well suited for numerical use
which is necessary for nontrivial, a,,, andc. Rewriting Eq.
(B1) as

dX aXd,,L) X ax<a )
afl——-——=|+a,—=c0 —| *dT-d
T(dT dpudT o du\ar H
Cc
=—dT-dX, (B3)
ar

we find the equatiora,dT-ardu=0 for the characteristics
and cdT-a;dX=0 for the evolution ofX. These equations
can easily be solved numerically.
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