
Quasiparticle description of hot QCD at finite quark chemical potential

M. A. Thaler,1 R. A. Schneider,1,2 and W. Weise1,2

1Physik-Department, Technische Universität München, D-85747 Garching, Germany
2ECT*, I-38050 Villazzano (Trento), Italy

(Received 28 October 2003; published 25 March 2004)

We study the extension of a phenomenologically successful quasiparticle model that describes lattice results
of the equation of state of the deconfined phase of QCD forTcøT&4Tc, to finite quark chemical potentialm.
The phase boundary lineTcsmd, the pressure differenceDpsT,md=fpsT,md−psT,m=0dg /T4, and the quark
number densitynqsT,md /T3 are calculated and compared to recent lattice results. Good agreement is found up
to quark chemical potentials of orderm,Tc.

DOI: 10.1103/PhysRevC.69.035210 PACS number(s): 12.38.Mh

I. INTRODUCTION

The phase structure of QCD at high temperature and non-
vanishing baryon chemical potential has been subject of in-
tense research in recent years. Heavy-ion collisions at high
energies have been and are being explored at SPS/CERN and
RHIC/BNL [1] in search for signals of the quark-gluon
plasma(QGP). Large-scale lattice QCD computations at fi-
nite temperature have been performed[2–4], and first exten-
sions to nonzero baryon chemical potential appear now to be
feasible. It has proven possible to trace out the phase bound-
ary line Tcsmd separating the hadronic phase from the QGP
phase forNf =4 [5,6], Nf =2 [7], and Nf =3 [8] flavors of
quarks up to quark chemical potentialsm of order Tc. First
numerical results for the QCD equation of state(EOS), i.e.,
the pressurepsT,md and the quark number densitynqsT,md,
are also available forNf =2+1 [9] andNf =2 [10]. As well as
being of intrinsic theoretical interest, such studies provide
conceptual guidance for current heavy-ion collision experi-
ments at SPS and RHIC, where the chemical freeze-out oc-
curs at m fo.100 MeV (baryon chemical potentialmB
.300 MeV) [11] and m fo.15 MeV smB.45 MeVd [12],
respectively.

Systematic perturbative expansions of the QCD equation
of state within the framework of thermal field theory show
bad convergence even for very large temperatures(several
timesTc) far beyond the region accessible to present experi-
ments[13]. Various techniques, such as dimensional reduc-
tion, screened perturbation theory, or hard-thermal loop
(HTL) perturbation theory show better convergence and
good agreement with lattice results forT*3Tc [14]. Various
interpretations of the lattice data have been attempted in
terms of physical quantities, most prominently as the EOS of
a gas of massive quark and gluon quasiparticles. Their ther-
mally generated masses are based on perturbative calcula-
tions carried out in the HTL scheme[15–17]. This approach
has been extended to nonvanishing quark chemical potential
and good agreement with finitem lattice calculations forNf
=2+1 flavors has been found[18]. More recently, the QGP
has also been described in terms of a condensate ofZ3 Wil-
son lines [19] and by more refined quasiparticle models
based on the HTL-resummed entropy and next-to-leading or-
der (NLO) extensions thereof[20]. These models have found

support from resummed perturbation theory[21] for tem-
peraturesT*3Tc. However, they have difficulties explaining
the dropping of the thermal gluon screening mass in the vi-
cinity of the phase transition. An improved quasiparticle
model[22] shows the correct temperature dependence of the
Debye mass and reproduces lattice thermodynamical quanti-
ties such as the pressure, the energy density, and the entropy
density very well. The main new ingredient of this model is
a phenomenological parametrization of(de)confinement.

In the present work, this improved quasiparticle model is
extended to finite quark chemical potentialm. In Sec. II, a
brief review of the quasiparticle model with confinement is
given. The extension of the model to finite quark chemical
potentialm is discussed in detail in Sec. III. Numerical re-
sults are presented in Sec. IV. The phase boundary lineTcsmd
that separates the hadronic from the QGP phase is discussed
and the quasiparticle model result is compared to recent lat-
tice simulations. Results for the pressure difference fromm
=0 and the quark number density for various values of the
chemical potentialm are also presented and compared to
recent lattice simulations. A summary is given in Sec. V.

II. QUASIPARTICLE MODEL WITH CONFINEMENT

It is possible to describe the EOS of hot QCD at vanishing
quark chemical potentialm to good approximation by the
EOS of a gas of quasiparticles with thermally generated
masses, incorporating confinement effectively by a
temperature-dependent, reduced number of thermodynami-
cally active degrees of freedom. This method is briefly out-
lined in this section. For a more detailed discussion the
reader is referred to Ref.[22].

At very high temperatures, spectral functions for gluons
or quarks of the formd(E2−k2−m2sTd) with msTd,gT are
found in HTL perturbative calculations. Here,E is the par-
ticle energy,k the absolute value of its momentum,msTd its
thermally generated mass, andg the QCD coupling constant.
As long as the spectral function at lower temperatures re-
sembles qualitatively this asymptotic form, a quasiparticle
description is expected to be applicable. QCD dynamics is
then incorporated in the thermal masses of the quark and
gluon quasiparticles. These thermal masses are obtained
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from the self-energies of the corresponding particles, evalu-
ated at thermal momentak,T:

mq
2 = m0q

2 +
Nc

2 − 1

8Nc
ST2 +

m2

p2DG2sT,md, s1d

mg
2 = m0g

2 +
1

6FSNc +
Nf

2
DT2 +

3

2p2o
q

mq
2GG2sT,md. s2d

Nf is the number of flavors,Nc the number of colors. The
effective coupling strengthG is specified as

GsT,m = 0d =
g0

Î11Nc − 2Nf

Sf1 + dg −
Tc

T
Db

. s3d

Setting g0=9.4, b=0.1, theeffective masses as given in
Eqs.s1d and s2d approach the HTL result at high tempera-
tures. sA small shift d=10−6 helps fine-tuning atT.Tc.d
Because of the existence of a heat bath background, new
partonic excitations, plasmonsslongitudinal gluonsd, and
plasminossquark-hole excitationsd are also present in the
plasma. However, their spectral strengths are exponen-
tially suppressed for hard momenta and large temperatures
and consequently these states are essentially unpopulated
f23g. The functional dependence ofmgsTd on T is based on
the conjecture that the phase transition is second order or
weakly first order which suggests an almost powerlike
behaviorm,sT−Tcdb with some critical exponentb.0. It
is assumed that the pseudocritical form of the effective
coupling constant given in Eq.s3d also provides the cor-
rect approximate expression for the effective quark mass.
This is supported by a nonperturbative dispersion relation
analysis for a thermal quark interacting with the gluon
condensatef24g.

Close toTc the picture of a noninteracting gas is not ap-
propriate because the driving force of the transition, the con-
finement process, is not taken into account. BelowTc, the
relevant degrees of freedom are pions and other hadrons.
ApproachingTc from below, deconfinement sets in and the
quarks and gluons are liberated, followed by a sudden in-
crease in entropy and energy density. Conversely, when ap-
proaching the phase transition from above, the decrease in
the thermodynamic quantities is not primarily caused by in-
creasing masses of the quasiparticles, but by the reduction of
the number of thermally active degrees of freedom due to the
onset of confinement. For example, gluons begin to form
heavy clusters(glueballs), so that the gluon density gets re-
duced asTc is approached from above. This feature can be
incorporated in the quasiparticle picture by modifying the
number of effective degrees of freedom by a temperature-
dependent confinement factorCsTd:

CsT,m = 0d = C0Sf1 + dcg −
Tc

T
D . s4d

The confinement factor is taken to be universal. The param-
etersC0, dc, and bc are fixed by reproducing the entropy
density that results from lattice QCD thermodynamics. Since
the results of lattice calculations with dynamical quarks are

still dependent on the details of the simulations,C0, dc, and
bc should be fine-tuned for different lattice calculations.

For homogeneous systems of large volumeV, the Helm-
holtz free energyF is related to the pressurep by FsT,Vd
=−psTd /V. In the present framework of a gas of quasiparti-
cles, its explicit expression reads

psTd =
ng

6p2E
0

`

dk CsTdfBsEk
gd

k4

Ek
g

+
2Nc

3p2o
i=1

Nf E
0

`

dk CsTdfDsEk
i d

k4

Ek
i − BsTd. s5d

ng is the gluon degeneracy factor,Ek
g=Îk2+mg

2sTd is the
gluon energy,Ek

q=Îk2+mq
2sTd the quark energy,fBsEk

gd
=(expfsEk

gd /Tg−1)−1 the Bose-Einstein distribution func-
tion of gluons, andfDsEk

qd=(expfsEk
qd /Tg+1)−1 the Fermi-

Dirac distribution function of quarks. The energy density
e and the entropy densitys take the form
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0

`
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i dEk
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and
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The functionBsTd is introduced to act as a background field.
It is necessary in order to maintain thermodynamic consis-
tency: p, e, ands=]p/]T have to satisfy the Gibbs-Duhem
relation e+p=Ts=T]p/]T. BsTd basically compensates the
additional T derivatives from the temperature-dependent
masses inp and thus is not an independent quantity. Since
BsTd adds to the energy density of the quasiparticles, it can
be interpreted as the thermal vacuum energy density. The
entropy density, as a measure of phase space, is unaffected
by BsTd.

III. FINITE CHEMICAL POTENTIAL

The quasiparticle model reviewed in the preceding section
accurately reproduces lattice thermodynamical quantities
such as the pressure, the energy density, and the entropy
density in the temperature rangeTc,T&4Tc at vanishing
chemical potential[22]. However, many physical questions,
e.g., the structure of quark cores in massive neutron stars, the
baryon contrast prior to cosmic confinement, or the evolution
of the baryon number in the midrapidity region of central
heavy-ion collisions, require a detailed understanding of the
EOS at nonvanishing quark chemical potential. In this sec-
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tion, a thermodynamically self-consistent extension of the
quasiparticle model to finite quark chemical potentials is pre-
sented. Results for various observables are then computed
and compared to finitem lattice results in the following sec-
tion.

At vanishing quark chemical potential, it is conjectured
from asymptotic freedom that QCD undergoes a phase tran-
sition from the hadronic phase to the QGP phase. At ex-
tremely high density, cold quark matter is necessarily in the
color-flavor-locked phase in which quarks of all three colors
and all three flavors form cooper pairs. It is expected that this
phase is separated from the hadronic phase by the color su-
perconducting 2SC phase. For a review of the QCD phase
diagram, the reader is referred to Ref.[25]. Our extension of
the quasiparticle model provides a straightforward way to
map the EOS at finite temperature and vanishing quark
chemical potential into theT-m plane without further as-
sumptions. However, since this continuous mapping relies on
quark and gluon quasiparticles, it cannot provide information
about other possible phases with a different(quasiparticle)
structure. It is therefore applicable in a limited range of not
too large chemical potentials.

The pressure of an ideal gas of quark and gluon quasipar-
ticles with effective masses depending on temperature and
quark chemical potential is given by

psT,md =
ng

6p2E
0

`

dk CsT,mdfBsEk
gd

k4

Ek
g

+
Nc

3p2o
q=1

Nf E
0

`

dk CsT,mdffD
+ sEk

qd + fD
− sEk

qdg
k4

Ek
q

− BsT,md, s8d

with fD
± sEk

qd=(expfsEk
q7md /Tg+1)−1. The effective cou-

pling strengthGsT,md, the confinement factorCsT,md,
and the mean field contributionBsT,md now also depend
on the quark chemical potentialm. BsT,md is calculated in
Appendix A. The quark number densityswhich is related
to the baryon number densitynB by nq=nB/3d retains the
ideal gas form

nqsT,md =
Nc

p2o
q=1

Nf E
0

`

dk CsT,mdffD
+ sEk

qd − fD
− sEk

qdgk2, s9d

but with the confinement factorCsT,md included.
In the preceding section expressions for the coupling

GsT,m=0d and the confinement factorCsT,m=0d are given.
These expressions can be generalized to finite chemical po-
tential in a thermodynamically self-consistent way using
Maxwell relations. Imposing the Maxwell relation between
the derivatives of the quark number density and the entropy,

U ] s
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U

T

= U ] n

] T
U

m

⇒ o
i
S ] n

] mi
2

] mi
2

] T
−

] s

] mi
2

] mi
2

] m
D

= 0 and S ] n

] C

] C

] T
−

] s

] C

] C

] m
D = 0, s10d

yields a set of first-order quasilinear partial differential equa-

tions for the effective coupling constantG2sT,md and the
confinement factorCsT,md:

aTsT,m;G2d
] G2

] T
+ amsT,m;G2d

] G2

] m
= bsT,m;G2d,

s11d

cTsT,m;G2d
] C

] T
+ cmsT,m;G2d

] C

] m
= 0. s12d

The coefficientsaT, am, b, cT, cm depend onT, m, G2 but not
on C. It can be solved by the method of characteristicsssee
Appendix Bd. The flow of the effective coupling and the
confinement factor is elliptic. In particular, one finds

aTsT,m = 0d = 0, amsT = 0,md = 0, cTsT,m = 0d = 0,

cmsT = 0,md = 0. s13d

Therefore, the characteristics are perpendicular to both theT
and them axis. This guarantees that specifying the coupling
constant and the confinement factor on theT axis sets up a
valid initial condition problem. Plots of the characteristic
curves and the confinement factor are shown in Figs. 1
and 2.

FIG. 1. Characteristic curves of constant confinement factor
CsT,md=const, obtained when solving Eq.(12).

FIG. 2. The confinement factorCsT,md as a function of the
temperatureT and the quark chemical potentialm.
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IV. COMPARISON WITH LATTICE RESULTS

Simulations of QCD at finite chemical potential are ex-
tremely difficult because the fermion determinant becomes
complex. This prohibits Monte Carlo importance sampling,
which interprets the measure as a probability factor and thus
requires it to be positive. While this problem remains un-
solved, there are some approaches which circumvent the sign
problem and allow lattice simulations for small chemical po-
tentialsm&Tc. A review comparing these methods in detail
can be found in Ref.[26].

A. The phase boundary line

In the case of vanishing chemical potential, universal ar-
guments and lattice simulations suggest a phase transition
from the hadronic phase to the QGP phase at a critical tem-
peratureTc. For QCD with three light flavorsmu,md,ms

,5 MeV this transition is expected to be first order. For two
light flavors mu,md,5 MeV and an infinitely largems

there is no phase transition, only a smooth crossover[27].
This suggests there is a critical strange massms

c at which one
finds a second-order phase transition. Lattice calculations in-
dicate thatms

c is about half of the physical massms. At finite
quark chemical potentialm and vanishingT a first-order
phase transition is predicted. For the physicalms this implies
that there is a first-order phase transition for smallT and
largem which ends at a critical pointsT* ,m*d. At this point
the phase transition is of second order. For largeT and small
m the two phases are separated by a crossover[28]. We refer
to the lineTcsmd that separates the hadronic phase from the
QGP phase as the “phase boundary line.” In the literature
[6–8] this line is also frequently called the “pseudocritical
line.” Tcsmd has been calculated on the lattice forNf =4 [5,6],
Nf =2 [7], andNf =3 [8] flavors of quarks up to quark chemi-
cal potentialsm of orderTc. In the following we focus on the
three-flavor results where the critical line has been calculated
with an accuracy up to terms of ordersm /Td6. There, a Wil-
son gauge action and three degenerate flavors of staggered
quarks have been employed, with bare masses in the range
0.025,am,0.04, wherea denotes the lattice spacing. The
finite volume scaling behavior was monitored by using three
lattice sizes, 8334, 10334, and 12334.

In our quasiparticle model, the sudden decrease of the
pressure, the energy density, the quark number density, and
the entropy density caused by gluons and quarks getting
trapped in glueballs and hadrons whenTc is approached from
above is parametrized by the confinement factorCsT,md.
Consequently, it is natural to relate the critical line to the
characteristic curve of the confinement factor throughTcsmd,
as long asm is small and the nature of the quasiparticles does
not change qualitatively.

In order to calculate the confinement factor at finite
chemical potential, we need to specify a valid initial condi-
tion, e.g.,CsT,m=0d. The functional form ofCsT,m=0d is
set by Eq.(4). We have employed the following set of pa-
rameters, as found in Ref.[22]:

C0 dc bc

Three flavors 1.03 0.02 0.2

We have checked that the form of the phase boundary line in
the quasiparticle model depends only weakly on the exact
choice of parameters and a small difference only shows up
for values much larger than the range ofm covered by the
lattice simulations. The lattice phase boundary line and our
result are shown in Fig. 3.

The quasiparticle result is within the lattice estimate for
mB&2.5Tc and deviates only slightly from the lattice result
for larger chemical potentials.

B. Thermodynamical quantities

There have been lattice calculations of thermodynamical
quantities at finite chemical potential forNf =2+1 [9] and
Nf =2 [10] flavors of quarks. In the following we focus on
results from Ref.[10] where a p4-improved staggered action
on a 16334 lattice was used. There, theNt dependence is
known to be small, in contrast to standard staggered fermion
actions which show substantially larger cutoff effects. Esti-
mates of the pressure, the quark number density, and associ-
ated susceptibilities as functions of the quark chemical po-
tential were made via a Taylor series expansion of the
thermodynamic grand canonical potentialV up to fourth or-
der.

To calculate thermodynamical quantities within the quasi-
particle model, we need to fix the parameters of the effective
coupling constant and the confinement factor. Our calcula-
tions have shown that the results are not sensitive to the
detailed choice of parameters for the effective couplingG.
We have therefore used the parameters from Ref.[22] in our
calculations. In principle, the parameters of the confinement
factor can be fixed by comparing our calculations to lattice
results at vanishing chemical potential. However, in Ref.[10]
no m=0 lattice data are given. Since lattice calculations in-
cluding quarks give slightly different results depending on
which action has been used, fitting the parameters in
CsT,m=0d by comparing quasiparticle results to lattice data

FIG. 3. The phase boundary lineTcsmd calculated with the qua-
siparticle model forNf =3. The shaded band shows the 1-s error
band obtained in lattice calculations in Ref.[8].
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from a different simulation is not feasible and would lead to
large differences. Consequently, we directly used the finitem
lattice results for fitting. Good agreement with the lattice
thermodynamical observables was found for the following
sets of parameters:

C0 dc bc

SetA 1.05 −0.016 0.15

SetB 1.12 0.02 0.2

While setA reproduces the lattice thermodynamical results
slightly better, setB is in better agreement with the param-
eters found in Ref.[22] for m=0 lattice simulations.

The temperature dependence of the normalized pressure
difference DpsT,md=fpsT,md−psT,m=0dg /T4 is shown in
Fig. 4 and that of the normalized quark number density
nqsT,md /T3 in Fig. 5.

Whereas the computation of the quark number density
from Eq. (9) is straightforward, a numerical evaluation of
Eq. (8) is difficult because of the derivatives of the effective
masses and the confinement factor inBsT,md (see expres-
sions in Appendix A). It turns out that it is simpler to calcu-
late the pressure difference using the following relation:

DpsT,md =
1

T4E
0

m

dm8nqsT,m8d. s14d

The lattice pressure difference is well reproduced even for
the largest values of the chemical potential. The quark num-

ber density is in very good agreement with the lattice data for
m /Tc=0.2 and 0.4. Forlarger values ofm our calculations
underestimate the magnitude of the lattice results close to
Tc, but show the same qualitative features.

V. SUMMARY

We have presented a quasiparticle description of the QCD
EOS at finite temperature and quark chemical potential. Our
main modification as compared to previous work is the in-
clusion of finite quark chemical potential in a thermodynami-
cally consistent way. We have first reviewed our improved
quasiparticle model which schematically includes confine-
ment. We have shown how Maxwell relations can be used to
construct the effective couplingGsT,md and the confinement
factorCsT,md at finite chemical potential. We then used this
model to calculate the phase boundary lineTcsmd and the
normalized pressure differenceDpsT,md=fpsT,md−psT,m
=0dg /T4 and the normalized quark number density
nqsT,md /T3. We compared our results to recent lattice calcu-
lations and found remarkably good agreement even for large
quark chemical potentialsm,Tc.
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APPENDIX A: CALCULATION OF B„T ,m…

The “background field” quantityBsT,md appearing in Eq.
(8) can be obtained from the Gibbs-Duhem relation

FIG. 4. The normalized pres-
sure differenceDpsT,md /T4 as a
function of temperature compared
to lattice results from Ref.[10]
(symbols).

FIG. 5. The normalized quark
number densitynqsT,md /T3 as a
function of temperature compared
to lattice results from Ref.[10]
(symbols).
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e + p = Ts+ mn = T
] p

] T
+ m

] p

] m
. sA1d

The left-hand side reads

e + p =
NcNf

3p2 E
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dkffD
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− gCsT,mdk2S4k2 + 3mq
2

Ek
D .

sA2d

To evaluate the right-hand side, derivatives offD
± sEk

qd with
respect toT andm are rewritten as derivatives with respect to
k. After an integration by parts, the first term on the right-
hand side reads

T
] p

] T
= T

NcNf

3p2 E
0

`

dk fD
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2Ek

] mq
2

] T
+ CsT,md
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TEk
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and the second term is given by

m
] p

] m
= m

NcNf

3p2 E
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dk fD
+S ] CsT,md

] m

k4

Ek
− CsT,md
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2Ek
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Substituting Eqs.sA2d–sA4d in the Gibbs-Duhem relation
yields a partial differential equation of the type

x
] fsx,yd

] x
+ y

] fsx,yd
] y

= Isx,yd. sA5d

It has the general solution

fsx,ydEx

dt ISt,
y

x
tD + HSy

x
D . sA6d

Here, Hsy/xd is a solution of the homogeneous equation.
Returning to our case,Hsm /Td becomes an arbitrary func-
tion of the ratiom /T to be fixed by boundary conditions. For
m→0, Hsm /Td does not depend onT anymore and therefore
has to be identified with an integration constantB0. Provided
that Hsm /Td is a continuous function it must be close toB0

for small m /T. The first term in a Taylor expansion of
Hsm /Td vanishes and the series starts only at ordersm /Td2.

Therefore we identifyHsm /Td with the constantB0 for all m
under consideration. Assembling all pieces, the final result
reads

BsT,md = B1sT,md + B2sT,md + B0,

B1sT,md =
NcNf

3p2 E
0

`

dkE
Tc

T

dtffD
+ sEk

qd + fD
− sEk

qdg

31 ] C

] t
+

m

T

] C

] Sm

T
tD2 k4

Ek
q ,

B2sT,md = −
NcNf

2p2 E
0

`

dkE
Tc

T

dt CffD
+ sEk

qd + fD
− sEk

qdg

31 ] mq
2

] t
+

m

T

] mq
2

] Sm

T
tD2 k2

Ek
q , sA7d

where the explicit t dependence in Cst ,m /T td,
mqst ,m /T td, andEk

qst ,m /T td has been suppressed for the
sake of lucidity.

APPENDIX B: METHOD OF CHARACTERISTICS
Equations(11) and (12) are a set of coupled quasilinear

first-order partial differential equations for the effective cou-
pling constantG2sT,md and the confinement factorCsT,md.
Equation(11) does not depend onCsT,md. Thus we can first
solve this equation forG2sT,md and insert the result in Eq.
(12).

The usual method found in textbooks is to reduce a qua-
silinear partial differential equation of the form

aTsT,m;Xd
] X

] T
+ amsT,m;Xd

] X

] m
= csT,m;Xd sB1d

to a system of coupled ordinary differential equations,

dTssd
ds

= aT,
dmssd

ds
= am,

dXssd
ds

= c. sB2d

This determines the characteristic curvesTssd, mssd, and the
evolution of X along such a curve, given an initial value.
However, this method is not well suited for numerical use
which is necessary for nontrivialaT, am, andc. Rewriting Eq.
sB1d as

aTSdX

dT
−

] X

] m

dm

dT
D + am

] X

] m
= c ⇒

] X

] m
Sam

aT
dT− dmD

=
c

aT
dT− dX, sB3d

we find the equationamdT−aTdm=0 for the characteristics
and cdT−aTdX=0 for the evolution ofX. These equations
can easily be solved numerically.
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