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We studied meson-meson interactions using the ’t Hooft model, which represents QCD in 1+1 dimensions
and assumes a large number of colorssNcd. The dominant interactions in this largeNc limit are generated by
quark exchange. Our results show that QCD in 1+1 dimensions allows the realization of a constituent-type
quark model for the mesons and generates a scalar “s”-like meson-meson resonance, whose effective coupling
and mass are determined by the underlying QCD dynamics. These results suggest an interpretation of the
lightest scalar mesons asqq̄qq̄ systems.
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I. INTRODUCTION

At low energies, systems which are due to, or interact
through, the strong nuclear interaction may be described by
effective field theories, examples of which are quantum
hadrodynamics[1] and chiral perturbation theory[2], or
simple constituent quark models[3]. With more or less phe-
nomenological content, those frameworks are in general very
successful, but there are still questions not completely an-
swered.

For instance, whether the nature of the broads meson
corresponds truly to a simple quark structure, or to a reso-
nance in the meson-meson dynamics, or to an unusual quark
structure as a meson-glueball combination, or even to some
combination of these, is still an open issue. Models of QCD
did not yet resolve this question quantitatively. In general for
the light scalar mesons, arguments have been advanced for
the importance of aqq̄qq̄ component[4] at short distances,
compatible with a dominant meson-meson component at
large distances. A very recent lattice calculation[5] also in-
dicates that aqq̄qq̄ bound state may exist just below thresh-
old in the nonexotic channel of pseudoscalar-pseudoscalar
s-wave scattering.

In this work we apply the ’t Hooft model[6], a formula-
tion of QCD in 1+1 dimensions and in the largeNc limit, to
the meson-meson scattering process. The ’t Hooft model has
no physical gluons, thus it includes no glueballs. Further-
more, due to the largeNc limit, quark exchange dominates
gluon exchange and only a finite number of diagrams con-
tribute. Since the finite sum of regular contributing diagrams
is unable to produce a pole at real energies, no meson-meson
bound states can be produced.

However, while meson-meson bound states are excluded
in this framework, complex-energy resonant states should
still be possible. It is the purpose of this paper to calculate
the meson-meson scattering amplitude based on meson-qq̄
vertex functions obtained in the ’t Hooft model and to look
for low-lying resonances. As we will show, the ’t Hooft
model indeed supports the existence of meson-meson reso-
nances, suggesting the relevance of theqq̄qq̄ structure for the
light scalar mesons.

A calculation ofp-p forward and backward scattering in
the Dyson-Schwinger, Bethe-Salpeter approach, and in the
rainbow-ladder approximation was presented in Ref.[7]. It
uses an effectiveqq̄ interaction and incorporates features of
QCD. Based on this approach, a scalar meson emerges as a
resonance inp-p scattering. However, the calculation is per-
formed using the Euclidean metric. In our work, while sim-
plifying the problem by working in 1+1 dimensions, we use
the Minkowski metric throughout.

Clearly, a model in 1+1 dimensions is limited in its
scope, and one has to be very cautious when comparing its
results to phenomena in the real world. Nevertheless, for
kinematic conditions of scattering processes with a negli-
gible component of the momentum transfer in the transverse
direction, we may conjecture that the ’t Hooft model, and
thus the calculation presented here, has the main features of
realistic microscopic QCD, and that its results are valid at
least qualitatively.

Section II reviews the model and introduces the calcula-
tional framework. Section III presents the input for the de-
scription of the meson-meson scattering transition amplitude.
Section IV shows the results and Sec. V presents the conclu-
sions.

II. FORMALISM

A. The ’t Hooft model and the choice of gauge

This work models the meson-meson interaction using the
’t Hooft model. Here we review briefly the dynamics of this
model by starting with the corresponding Lagrangian. Sub-
sequently, we write the equations that we solved for the one-
body (quark propagator) and two-body (quark-antiquark
bound state) problems.

The QCD Lagrangian is

L = − 1
4Tr fGmnGmng + q̄siDmgm − m0dq, s1d

with the notation

Am = Aa
mla

2
,
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Gmn = ]mAn − ]nAm + iafAm,Ang,

Dm = ]m + iaAm, s2d

whereAa
m are the gluon fields with the Lorentz indexm and

the color indexa, the la’s are the generators of the SUsNd
color group,Gmn is the field tensor,q is the quark field,m0
is the bare quark mass, anda is the quark-gluon coupling
strength. Following ’t Hooftf6g, the coupling strengtha
depends on the number of colors in the following way:

a =
g

ÎNc

. s3d

Introducing for an arbitrary two-vectorb the light cone
variables

b+ =
1
Î2

sb0 + b1d,

b− =
1
Î2

sb0 − b1d, s4d

the scalar product of any two vectorsa and b becomes
a+b−+a−b+, and the derivatives correspond to

]− =
]

] x+
=

1
Î2

s]0 − ]1d =
1
Î2

S ]

] x0 +
]

] x1D ,

]+ =
]

] x−
=

1
Î2

s]0 + ]1d =
1
Î2

S ]

] x0 −
]

] x1D . s5d

In the same way, the + and − components of theg matrices
are defined. The anticommutation relations read

hg−,g−j = hg+,g+j = 0,

hg+,g−j = 2. s6d

In the light cone variables, the nonvanishing components of
the field strength tensor are

G+− = − G−+ = ]+A− − ]−A+ + iafA−,A+g, s7d

so that the free gauge field Lagrangian becomes

Lfree= 1
2G+−

2 . s8d

We choose to work in the light cone gauge,A−=0, so that
the commutator contained in the field tensorG+− disappears.
Moreover, since we consider only two dimensions, we do not
have any physical gluonic degrees of freedom. In addition,
because of the gauge condition, there is only one degree of
freedom left. Consequently, the gluonic field is not a dynami-
cal variable and does not couple to ghosts any longer.

In this parametrization the Lagrangian(1) becomes

L = 1
2Tr fs]−A+d2g + q̄si]+g− + i]−g+ − ag−A+ − m0dq.

s9d

Before quantizing the theory given by this Lagrangian, we
calculate the gluonic field. The equation of motion related to
this field is

S ]

] x+
D2

A+ = − aq̄g−q. s10d

The solution of Eq.s10d is

A+sx+,x−d = − aE dy+q̄sy+,x−dg−qsy+,x−dGsy+ − x+d,

s11d

where the Green’s functionG is given by

Gsy+ − x+d = uy+ − x+u + c1sy+ − x+d + c2. s12d

The coefficientsc1 and c2 are free parameters. This means
that the gauge condition did not eliminate all the redundant
degrees of freedom, just as the Coulomb or Lorentz gauge do
not determine uniquely the photon propagator in QEDsGri-
bov ambiguityd. We can therefore set the coefficientsc1 and
c2 equal to zero in order to simplify our calculations.

The Fourier transform of the Green’s function(12) gives
the gluon “propagator,” or more precisely the momentum
dependence of the effective quark-quark interaction,

Dskd = Dsk−d =
1

k−
2 − dsk−dPE

−`

` d,−

,−
2 . s13d

The second term in Eq.(13) was first considered by Gross
and Milana[8] in the different context of a quasipotential
two-body equation for the quark-antiquark system. It makes
the potentialA+ finite everywhere.

From this point we proceed to solve the one-body equa-
tion for the quark propagator.

B. Quark Dyson-Schwinger equation

The (undressed) fermion propagator is

S0skd =
k−g+ + k+g− + m0

2k+k− − m0
2 + ie

s14d

and the quark-gluon interaction is

− iV = − iag−. s15d

We determine the dressed single-quark propagatorSspd
using the(one-body) Dyson-Schwinger equation

Sspd = S0spd + ig2SspdFPE d2k

s2pd2Dsk − pdg−Sskdg−GS0spd,

s16d

which we show also graphically in Fig. 1.
Since for every internal loop there is a factor ofa2

=g2/Nc, and a multiplicative factor ofNc, the color depen-
dence disappears. The vertex corrections and the quark-gluon
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vertices do not have a multiplicative factor, being suppressed
in the largeNc limit. Therefore, in this limit the rainbow
approximation(undressed vertices and the absence of the
quark loops from the gluon propagator) is justified [6].

In Eq. (16) d2k=dk−dk+, and sinceDskd does not depend
on k+, the principal partPed2k does not depend onp+. This
allows the following parametrization of the full quark propa-
gator:

Sspd =

p−g+ + Sp+ −
Ssp−d

2
Dg− + m0

2p−Sp+ −
Ssp−d

2
D − m0

2 + ie

, s17d

where the self-energy contributionS, originated byPed2k,
depends only onk−:

Ssp−d = −
4g2

s2pd2i
PE dk−dk+Dsk− − p−d

3
k−

2k−k+ − k−Ssk−d − m0
2 + ie

. s18d

Performing thek+ integral first one obtains

E dk+
k−

2k−k+ − k−Ssk−d − m0
2 + ie

= −
ip

2
sgnsk−d. s19d

Substituting this result back into Eq.s18d one finds that

Ssp−d =
g2

2pp−
PE dk−Dsk− − p−dsgnsp−d. s20d

Using Eq.s13d for Dsk−−p−d and performing the integral we
get

Ssp−d = −
g2

pp−
. s21d

This, in combination with Eq.s17d, results in

Sspd =
Sp+ +

g2

2p−p
Dg− + p−g+ + m0

2p+p− − Sm0
2 −

g2

p
− ieD . s22d

Note that the mass pole has been shifted:

m0
2 → m2 = m0

2 −
g2

p
. s23d

Having obtained the dressed propagator, we are ready to pro-
ceed to the next stage, namely, the calculation of theq-q̄
bound statef9g.

C. Two-body bound states

In the following, we label the dressed quark mass bym1.
As for the antiquark(which might have a different flavor),
we label its dressed mass bym2. The total momentum of the
bound state is denoted byr and the momentum of the quark
by p. The momentum of the antiquark is thenr −p.

The bound state wave functionGsp,rd is given by the
Bethe-Salpeter equation(also shown graphically in Fig. 2),

Gsp,rd = ig2PE d2k

s2pd2Dsk−dg−S2sp + k − rd

3Gsp + k,rdS1sp + kdg−, s24d

whereS1 andS2 are the quark and the antiquark propagators,
respectively. With the substitutionGsp,rd=g−csp,rd f6g Eq.
s24d becomes

csp,rd = is2gd2PE d2k

s2pd2

3
Dsk−dsp + kd−sp + k − rd−csp + k,rd
fsp + kd2 − m1

2gfsp + k − rd2 − m2
2g

. s25d

The equalx− wave function is defined in the following fash-
ion:

wsp−,r−d =E
−`

`

dp+
p−sp − rd−csp,rd

sp2 − m1
2dfsp − rd2 − m2

2g
. s26d

By substituting this into Eq.s25d one gets

csp,rd =
g2

− ip2PE dk−Dsk−dwsp− + k−,r−d. s27d

Note thatcsp,rd does not depend onp+. Multiplying both
sides of the former equation byfp−sp−rd−g / fsp2−m1

2dssp
−rd2−m2

2dg and integrating overp+ we consider the two poles
in the complexp+ plane, namely,k1=sm1

2/2p−d− ie sgnsp−d
andk2=fm2

2/2sp−−r−dg− ie sgnsp−−r−d. If both of them are
in the same half-plane the integral overp+ is zero, because
the sum of the two residues is zero. If the first pole is in
the upper half-plane and the second one is in the lower
half-plane swhich means thatp−,0 and p−−r−.0d, the
integral is 2pi / sk1−k2d=2pius−p−dusp−−r−d / sk1−k2d. If
the second pole is in the upper half-plane and the first one
is in the lower half plane, the integral is −2piusp−dus−p−

FIG. 1. (Color online) The quark Dyson-Schwinger equation.
The curly line represents the strong interaction, the thin line repre-
sents the unperturbed quark propagator, and the solid line represents
the dressed quark propagator.

FIG. 2. The Bethe-Salpeter equation for theqq̄ bound state.
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+r−d / sk1−k2d. Combining these two cases one obtains

wsp,rd =
pi

2

us− p−dusp− − r−d − usp−dusr− − p−d
m1

2

2p−
−

m2
2

2sp− − r−d
− r+

csp,rd.

s28d

Whenever the combination of theu functions does not van-
ish, it is easy to invert this relation:

csp,rd =
2

pi
fus− p−dusp− − r−d − usp−dusr− − p−dg

3S m1
2

2p−
−

m2
2

2sp− − r−d
− r+Dwsp,rd. s29d

Whenever this condition does not stand, we have to use Eq.
s27d to computec from w. Note thatw has been normalized
to 1/ÎNc in order to get the correct charge normalization.

In order to determinew, we transform Eq.(26) into a form
suitable for a numerical calculation. Theu functions limit the
range ofp− to 0,p−, r−, and for real particles only positive
values forr+ must be considered. After some algebraic ma-
nipulations, Eq.(28) becomes

m2wsx,rd = Sa1

x
+

a2

1 − x
Dwsx,rd − PE

0

1

dy
wsy,rd − wsx,rd

sy − xd2 ,

s30d

where the following notation was introduced:

m2 =
2pr+r−

g2 , a1 =
pm1

2

g2 , a2 =
pm2

2

g2 , x =
p−

r−
, y =

k−

r−
.

s31d

We solve the integral equation(30) numerically. The
wave function is expanded in cubic splines(since the wave
function w is defined only in the range betweenx=0 andx
=1, the boundary condition that they vanish at the limits of
this interval is imposed). The resulting linear matrix equation
for the expansion coefficients was solved with standard ei-
genvalue routines.

In the limit m01=m02=0, Eq.(30) yields a ground state of
zero mass, and thus is consistent with chiral symmetry. To
generate a solution that is related to the pion in the real
world, we searched for a bound state solution of Eq.(30)
with a mass of 140 MeV. To obtain such a solution, we
varied the bare massm01 of one of the quarks. For simplicity,
the second quark massm02 was not taken as an independent
free model parameter but determined by assuming a fixed
mass ratiom01/m02=3/4, which lies within the accepted
range between 0.2 and 0.8[10]. The coupling parameterg
and the dressed massesm1 andm2 were adjusted accordingly,
through Eqs.(30), (31), and(23).

We represent in Fig. 3 the values of the bare quark mass
m01, as a function of the coupling strengthg, which generate
a bound state with a mass of 140 MeV. The bare masses are

found to depend linearly ong. The slope and they-axis in-
tercept of the numerical straight line in Fig. 3 are easily
determined through a fit, with the result

m01 = s60.57 − 0.178gd MeV. s32d

With the help of Eq.s23d we can also predict the dependence
of the dressed masses ong from the curves for the bare
masses. Therefore, in the ’t Hooft model the dressed masses
are given as the following functions ofg:

m1
2 = Fs60.57 − 0.178gd2 −

g2

p
G MeV2,

m2
2 = Fs80.76 − 0.24gd2 −

g2

p
G MeV2. s33d

We can also determine the largest value ofg, such that each
dressed mass is physical, i.e., not imaginary. For the first
flavor this happens atg=81.64 MeV, while for the second
flavor at g=100.8 MeV. Thefirst value is therefore the
largest possible forg, such that the ’t Hooft model may
support a constituent quark model interpretation, where
the dressed masses correspond to constituent quark
masses.

III. MESON-MESON SCATTERING

In this section we consider the meson-meson elastic scat-
tering amplitude. We continue to assume two different fla-
vors for the quarks, whose dressed masses arem1 and m2,
and we consider the lowestqq̄ bound state only.

The diagrams that dominate in the largeNc limit are the
quark-exchange box diagram, represented in Fig. 4, and the
quark-exchange crossbox diagram, represented in Fig. 5. In
the center of mass system, the momenta of the ingoing me-

sons are P=sP0,P1d=sÎm2+p2,pd and P̃=sP̃0, P̃1d
=sÎm2+p2,−pd, wherem is the mass of the meson andp the

FIG. 3. The bare mass(solid line) and the dressed mass(dashed
line) of the first quark, as a function of the strong coupling constant
g, with the constraints that the pion mass is 140 MeV and the ratio
m01/m02=3/4.
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relative momentum. The outgoing particles then have the
same(but interchanged) momenta.

Both diagrams are symmetrized in terms of the outgoing
states. Similar diagrams which are obtained from the former
ones by interchangingm1 andm2 in the intermediate state are
also considered. There are a total of eight diagrams which
were calculated. When there is only one quark flavor, one
does not need to interchange the two masses and there are
only four diagrams. The sum of these diagrams is propor-
tional to 1/Nc.

As for the gluon-exchange diagrams, such as in Fig. 6,
they are suppressed in the largeNc limit by a factor of 1/Nc
compared to the quark-exchange terms.

Since the vertex function is independent of the + compo-
nent of the relative momentum, the momentum integral in
the loops of Figs. 4 and 5 is simplified: we can first integrate
the propagator products overk+ analytically and then per-
form numerically the second integration overk−, which in-
cludes now the vertex functions.

As an illustrative example, we demonstrate the calculation
of the box diagram(Fig. 4) in greater detail.

The corresponding scattering amplitude is

Mbox =E
−`

`

dk−E
−`

`

dk+cs− k,− Pdcsk,P̃dcsP + P̃ − k,Pdcsk − P − P̃,− P̃d
1

k+ −
m1

2

2k−
+ ie sgnsk−d

3
1

k+ − P̃− −
m2

2

2sk− − P̃−d
+ ie sgnsk− − P̃−d

1

k+ − P+ − P̃+ −
m1

2

2sk− − P− − P̃−d
+ ie sgnsk− − P− − P̃−d

3
1

k+ − P+ −
m2

2

2sk− − P−d
+ ie sgnsk− − P−d

. s34d

The propagators have four poles

k1 =
m1

2

2k−
− ie sgnsk−d,

k2 = P̃+ +
m2

2

2sk− − P̃−d
− ie sgnsk− − P̃−d,

k3 = P+ + P̃+ +
m1

2

2sk− − P− − P̃−d
− ie sgnsk− − P− − P̃−d,

k4 = P+ +
m2

2

2sk− − P−d
− ie sgnsk− − P−d. s35d

In order to perform thek+ integration, one needs to close the
contour in the complex plane and consider the residues of all

FIG. 4. The quark-exchange box diagram. The vertex functions
are represented by filled circles and the mesons by double lines. The
power counting from the vertices is explicitly shown. An extra fac-
tor of Nc comes from the color summation in the internal loop.

FIG. 5. The quark-exchange crossed box diagram. As in Fig. 4,
the power counting factors are explicitly shown. An extra factorNc

comes from the color summation in the internal loop.
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poles inside the contour. There are 16 different possible
combinations of signs of the imaginary parts of the poles.
Some of these cases can be excluded, because they corre-
spond to values ofk− which make thek+ integral vanish.

For instance, a polek1 in the upper half-plane implies that
the polek2 cannot be in the lower half-plane, otherwise one

would havek−. P̃−=sÎm2+p2+pd /Î2.0, in contradiction
with the initial hypothesisk−,0. Likewise the polesk3 and
k4 cannot be in the lower half-plane either. Therefore, ifk1 is
in the upper half-plane, the other three poles are also in the
upper half-plane. This would imply that thek+ integral van-
ishes, since one may close the contour below thek+ axis.
Therefore we can exclude the case whenk1 is in the upper
half-plane.

After a detailed analysis one finds that there are only three
cases that have a nonvanishing contribution to the integral:
(i) only k3 is in the upper half-plane,(ii ) the polesk2 andk3
are in the upper half-plane, and(iii ) only k1 is in the lower

half-plane. As for case(i), it implies k−. P̃− and k−, P−

+ P̃−. Under these circumstances,csP+ P̃−k,Pd=s2/pidsk3

−k2due=0w(sP+ P̃−kd−/P−) and csk−P− P̃,−P̃d=s2/pidsk2

−k1due=0w(sP+ P̃−kd−/ P̃−), due to Eq.(29), while the other
vertex functions have to be evaluated using Eq.(27). The
contribution from case(i) becomes

Mboxu1 = − 2piS 2

p
D2E

P̃−

P̃−+P−
dk−

1

sk3 − k4due=0

3 wS sP + P̃ − kd−

P−
DwS sP + P̃ − kd−

P̃−

D
3cs− k,− Pdcsk,P̃d. s36d

This integral is computed numerically. We treat the other
two cases in a similar fashion.

We note that the amplitude of Eq.(36) vanishes in the
chiral limit, which supports that the ground state solution for
the qq̄ system has features of the pion. Indeed, since in the
chiral limit Eq. (30) gives m=0, one hasP−=s1/Î2d

3sÎm2+p2−pd=0, implying that the two integration limits
in Eq. (36) coincide, and therefore the amplitude vanishes.
The same can be shown for the other terms of the amplitude
not explicitly written here.

It is worth mentioning that we implemented stability tests
of the numerical results against the number of gridpoints, the
number of splines, and the singularity regulator« (the k+
integral of the propagators is singular). These checks pro-
ceeded by imposing the following criteria: doubling each of
the mentioned parameters, the relative change in the results
should be less than 1%. Convergence is typically obtained
for 440 gridpoints, 40 splines, and«=10−2.

IV. RESULTS

The numerical calculation of the meson-meson scattering
amplitude (Sec. III) starts with the evaluation of the two-
body quark-antiquark wave function from the Bethe-Salpeter
equation(Sec. II C). In turn, this demands as input the bare
quark masses and the quark-gluon coupling constantg (Sec.
II B ).

We constructed four representative models which corre-
spond to four different choices of the quark-gluon coupling
constant and bare quark masses. They are subjected to the
constraint that the bound state mass of theqq̄ system is the
pion massmp=140 MeV.

The parameters defining the four models are shown in
Table I. The organization principle for these models is that,
going from model I to model IV, the quark-gluon coupling
constant increases and the quark masses decrease.

In models I and II, the sum of the dressed quark masses is
close to the real pion mass. Consequently, they can be inter-
preted as constituent quark masses in a constituent quark
model for the “pion,” generated by QCD within the ’t Hooft
model assumptions. However, this correspondence breaks
down for large couplings, as seen for the model considered
next.

In model III, the value of the couplingg is chosen slightly
below the maximum value determined in Sec. II for a con-
stituent quark model interpretation, while in model IV that

FIG. 6. The gluon-exchange diagram. Power counting is shown
as previously. For this purpose the gluon line is represented as two
parallel quark lines. An extra factorNc comes from the color sum-
mation in the internal loop.

TABLE I. Constants and resonance parameters for models I–IV.
The first five rows show the quark-gluon coupling constant, the bare
and the dressed quark masses(the latter are unphysical in model IV
and thus not included). The following rows are the results of the
s-channel resonance fit using Eq.(37). All parameters are in MeV.

Model I Model II Model III Model IV

g 1 20.1 80 2500

m01 60.0 57.0 46.4 6.0

m02 80.0 76.1 61.8 5.0

m1 60.0 55.9 10.6

m2 80.0 75.2 42.2

mrs=ERd 280.0 282.4 280.7 300.0

mi 4.4 68.6 80.7 139.3

G 0.07 16.4 23.2 64.7
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maximum value is exceeded substantially. In this last case,
the dressed masses are imaginary and thus not physical.

Not surprisingly, the bare quark masses differ from the up
and down current quark masses of QCD for all models. This
is a known artifact of the ’t Hooft model: from Eq.(23) one
can see that the mass shift due to the dressing decreases the
quark mass, instead of increasing it as in 3+1 dimensional
QCD.

Figure 7 shows the obtained Bethe-Salpeterqq̄ wave
functions for each model. Clearly, the description of the
quark-gluon vertices varies considerably. The wave functions
are strongly peaked aroundx close to 0.4 for small values of
g, while for larger g they become broader and more and
more constant. This behavior can be easily understood: larger
values ofg cause stronger attraction between quark and an-
tiquark, leading to a tighter bound state and therefore a more
spread out wave function in momentum space.

As described in the preceding section, for each of these
models we calculated the meson-meson scattering amplitude,
the squares of which are displayed in Fig. 8. Since we are

primarily interested in their structure, the amplitudes have
been scaled such that the maximum of their absolute squares
are equal to 1. In all four cases, we find a resonance structure
close to threshold.

This feature could be a sign for the existence of aq2q̄2

bound state, for which the lattice calculations of Ref.[5]
found indications. We remind the reader that working in per-
turbation theory we cannot generate a bound state directly,
but it would be interesting to see if in a nonperturbative
extension of our calculation, such a bound state would also
emerge from the ’t Hooft model.

On the other hand, the experimentally observed reso-
nances have energies well above threshold. It may be neces-
sary to include gluon-exchange(not considered in our calcu-
lation) and higher-order quark-exchange terms in the
expansion in powers of 1/Nc in order to achieve a descrip-
tion resembling more closely the real world.

In order to determine approximately the position and
width of the resonance, we compare the ’t Hooft model am-
plitudes to a simple resonance model. We calculate the am-
plitude for an intermediates-channel resonance at tree level,
the absolute square of which is

uMu2 = g̃4 1

ss− mr
2d2 + mi

4 , s37d

wheremr
2 andmi

2 are the real part and the imaginary part of
the square of the resonance mass, respectively, andg̃ is the
effective meson-meson-“s” coupling constant. We then fit
the parameters of this simple model to best reproduce the ’t
Hooft model results.

In the nonrelativistic limit, Eq.(37) becomes

uMu2 → g̃4

1

4ER
2

sE − ERd2 +
mi

4

4ER
2

. s38d

We can compare Eq.s38d with the well-known Breit-Wigner
form

FIG. 7. Bethe-Salpeterqq̄ wave functions for models I–IV.x
=p−/ r− is the momentum fraction(or Bjorken variable) defined in
Eq. (31).

FIG. 8. (Color online) Absolute squares of
meson-meson scattering amplitudes for models
I–IV close to threshold energies. A resonance
structure is clearly visible. The solid lines are ob-
tained using the ’t Hooft model and the dashed
lines represent fits to a simple resonance model.
The amplitudes are scaled to 1 at their maximum.
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uMu2 < ḡ4 G2/4

sE − ERd2 + G2/4
, s39d

whereER is the resonance energy,G is its width, andḡ the
corresponding coupling strength, and simply read off the re-
lationsG2=mi

4/mr
2 andER=mr.

The parameters obtained in this way for all models are
also displayed in Table I. We verified in an independent fit
directly to the Breit-Wigner form(39) that the parameters are
not significantly altered in the nonrelativistic limit. For com-
parison, the mass of the “real”s resonance is considered to
be in the range of 400−1200 MeV, while its width lies in the
interval 600−1000 MeV[10]. Clearly, one should not de-
mand too much from the ’t Hooft model with its simplifying
assumptions. However, we consider it a significant finding
that it predicts a low energy resonance at all, based solely on
the leading-order quark-exchange diagrams.

In all four cases, the resonance is located very close to
threshold, and it is very narrow. The width increases slowly
with increasing quark-gluon coupling strength. On the other
hand, the resonance position remains more or less unchanged
as long as we restrict ourselves to models with real dressed
masses(models I–III). Only for model IV, whose coupling
constant is considerably larger, the resonance moves away
from threshold to about 300 MeV.

One might have expected the resonance energy to in-
crease smoothly and in a more pronounced manner with the
quark-gluon coupling strengthg. However, one has to keep
in mind that the included quark-exchange processes do not
directly depend ong, but only indirectly through changes of
the vertex functions and of the dressed quark masses that
appear in the quark propagators. Owing to the already men-
tioned peculiar feature of the ’t Hooft model that dressed
quark masses decrease with increasing coupling strengthg,
the latter tend to decrease the resonance energy. Moreover,
while a largerg implies an effectively stronger attraction
between the two mesons—once they overlap—through the
stronger quark-quark attraction, the very probability of this
overlap drops in turn, because the spatial size of the mesons
decreases. These effects seem to counterbalance each other
to a large extent, leaving the resonance position more or less
unchanged.

Similarly, that the width of the meson-meson resonance
increases withg is also a consequence of the contraction of
the mesons caused by the stronger quark-antiquark attrac-
tion. This shrinking in size leads to a larger spreading of the
meson-qq̄ vertex function in momentum space(see Fig. 7),
which in turn contributes to the overlap integrals in the in-
cluded Feynman diagrams in a wider momentum range,
thereby broadening the resonance.

Finally, we should mention that our principal finding—the
existence of a narrow low-lying resonance in our

calculations—does not depend on the particular value chosen
as a constraint for theqq̄ bound state mass. If we use, instead
of 140 MeV, a much larger or a much smaller value, we find
again a narrow resonance close to threshold.

V. CONCLUSIONS

We calculated various models for quark-antiquark vertex
functions within the ’t Hooft model by solving the corre-
spondingqq̄ Bethe-Salpeter equation. In all cases, the bare
quark masses and the quark-gluon coupling constants were
tuned such that the mass of theqq̄ bound state coincides with
the pion mass.

We found that, within a limited range of coupling con-
stants and bare quark masses, one obtainsqq̄ bound states
with the features of a constituent quark model, i.e., where the
meson mass is approximately equal to the sum of the dressed
quark masses. On the other hand, for larger values of the
quark-gluon coupling constant this constituent quark picture
is no longer sustained.

We used the calculated Bethe-Salpeter wave functions to
derive meson-meson(“pion-pion”) scattering amplitudes
within the ’t Hooft model. They are calculated from the
leading-order quark-exchange diagrams. These QCD-based
meson-meson amplitudes exhibit a resonance structure close
to threshold in all considered cases. We extracted an effective
mass and width of thiss-like resonance by comparison with
a simples-channel resonance model where pions ands’s
instead of quarks are the effective degrees of freedom.

The extracted values are not meant to be completely real-
istic in the sense that they should reproduce the experimental
data, since the ’t Hooft model is QCD only under simplifying
assumptions. However, the results of this calculation demon-
strate that the ’t Hooft model can accommodate a resonance
for the four-quark system, already in the leading-order
quark-exchange processes. In those exchange mechanisms,
the diquark correlation, given by the quark-antiquark vertex
function, plays an important role in determining the energy
dependence of the meson-meson scattering amplitude.

The fact that in our ’t Hooft model calculations a narrow
resonance lies close to threshold, while the broaders reso-
nance is supposed to be located at higher energy, is indica-
tive of the limitations of the ’t Hooft model. It also hints at
the importance of higher-order quark-exchange processes as
well as of gluon-exchange contributions(higher-order terms
in the 1/Nc expansion), which should be investigated in fu-
ture work.
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