PHYSICAL REVIEW C 69, 035209(2004)

Meson-meson interactions and resonances in the 't Hooft model

Zoltan Batiz* M. T. Pefiat and A. Stadler®
Centro de Fisica das Interac¢des Fundamentais and Department of Physics, Instituto Superior Técnico, Avenida Rovisco Pais,
1049-001 Lisboa, Portugal
2Centro de Fisica Nuclear da Universidade de Lisboa, Avenida Gama Pinto 2, P-1649-003 Lisboa, Portugal
3Departamento de Fisica, Universidade de Evora, Colégio Luis Verney, P-7000-671 Evora, Portugal
(Received 16 September 2003; published 25 March 004

We studied meson-meson interactions using the 't Hooft model, which represents QCD in 1+1 dimensions
and assumes a large number of col@s). The dominant interactions in this larg& limit are generated by
quark exchange. Our results show that QCD in 1+1 dimensions allows the realization of a constituent-type
guark model for the mesons and generates a scafaliKe meson-meson resonance, whose effective coupling
and mass are determined by the underlying QCD dynamics. These results suggest an interpretation of the
lightest scalar mesons asjqq systems.
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I. INTRODUCTION A calculation of -7 forward and backward scattering in

At low energies, systems which are due to, or interacth® Dyson-Schwinger, Bethe-Salpeter approach, and in the
through, the strong nuclear interaction may be described bjginbow-ladder approximation was presented in Ref. It
effective field theories, examples of which are quantumuses an effectiveq interaction and incorporates features of
hadrodynamics[1] and chiral perturbation theorj2], or ~ QCD. Based on this approach, a scalar meson emerges as a
simple constituent quark modd]3]. With more or less phe- resonance inr- scattering. However, the calculation is per-
nomenological content, those frameworks are in general verformed using the Euclidean metric. In our work, while sim-
successful, but there are still questions not completely anplifying the problem by working in 1+1 dimensions, we use
swered. the Minkowski metric throughout.

For instance, whether the nature of the breadneson Clearly, a model in 1+1 dimensions is limited in its
corresponds truly to a simple quark structure, or to a resoscope, and one has to be very cautious when comparing its
nance in the meson-meson dynamics, or to an unusual quargsults to phenomena in the real world. Nevertheless, for
structure as a meson-glueball combination, or even to somkinematic conditions of scattering processes with a negli-
combination of these, is still an open issue. Models of QCDgible component of the momentum transfer in the transverse
did not yet resolve this question quantitatively. In general fordirection, we may conjecture that the 't Hooft model, and
the light scalar mesons, arguments have been advanced finus the calculation presented here, has the main features of
the importance of ajqgq component4] at short distances, realistic microscopic QCD, and that its results are valid at
compatible with a dominant meson-meson component deast qualitatively.
large distances. A very recent lattice calculat[si also in- Section Il reviews the model and introduces the calcula-
dicates that @j0qq bound state may exist just below thresh- tional framework. Section Il presents the input for the de-
old in the nonexotic channel of pseudoscalar-pseudoscal&cription of the meson-meson scattering transition amplitude.
s-wave scattering. Section IV shows the results and Sec. V presents the conclu-

In this work we apply the 't Hooft mod€6], a formula- ~ sions.
tion of QCD in 1+1 dimensions and in the lartje limit, to
the meson-meson scattering process. The 't Hooft model has Il. FORMALISM
no physical gluons, thus it includes no glueballs. Further-
more, due to the larg8l; limit, quark exchange dominates ] ] _ _
gluon exchange and only a finite number of diagrams con- This work models the meson-meson interaction using the
tribute. Since the finite sum of regular contributing diagramst Hooft model. Here we review briefly the dynamics of this
is unable to produce a pole at real energies, no meson-mes#tPdel by starting with the corresponding Lagrangian. Sub-
bound states can be produced. sequently, we write the equations that we solved for the one-

However, while meson-meson bound states are excludeedy (quark propagatgr and two-body (quark-antiquark
in this framework, complex-energy resonant states shoul@ound stateproblems.
still be possible. It is the purpose of this paper to calculate The QCD Lagrangian is
the meson-meson scattering amplitude based on on- _ 1 " ;
vertex functions obtained ingthe ’tpHooft model and r':([)qa[.?ook L£=-5Tr[G"G,] +q7'D“7M ~Mo)q, (1)
for low-lying resonances. As we will show, the 't Hooft with the notation
model indeed supports the existence of meson-meson reso-
nances, suggesting the relevance ofdbeq structure for the Ak = A,LE
light scalar mesons. ag’

A. The 't Hooft model and the choice of gauge
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G,uv = a,uAv - aVA,u + ia[A,ulAv]:

2

whereA4 are the gluon fields with the Lorentz indgxand
the color indexa, the \;’'s are the generators of the 8U)
color group,G,,, is the field tensorg is the quark fieldm,
is the bare quark mass, amdis the quark-gluon coupling
strength. Following 't Hooff 6], the coupling strengtla
depends on the number of colors in the following way:

D,=d,+iaA,,

g
a=—.

VN, 3

Introducing for an arbitrary two-vectds the light cone
variables

_1

b, = —=(b%+bY),
S+ b

_ Lot
b——\ﬁ(b b%), (4)

the scalar product of any two vectoes and b becomes
a,b_+a b,, and the derivatives correspond to

S0 :%(ao—al)—1<‘9 (9)1

= | —+—
X V21ax0  axt
Jd 1 1 Jd Jd
NETEVETER R
b= \,,2( ) 2\0 ok (5

In the same way, the + and — components of th@atrices
are defined. The anticommutation relations read

rm v ={ys 74t =0,

{yeyt=2. (6)

In the light cone variables, the nonvanishing components of

the field strength tensor are

Gi-=-G =0 A - d-A +ialAA], (7)
so that the free gauge field Lagrangian becomes
‘Cfree: %GE—- (8)

We choose to work in the light cone gaude =0, so that
the commutator contained in the field tenstr disappears.

Moreover, since we consider only two dimensions, we do not
have any physical gluonic degrees of freedom. In addition,
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L= %TI’ [(-A)2]+qlid,y- +idy, — ay A, - mo)q.
(9)

Before quantizing the theory given by this Lagrangian, we
calculate the gluonic field. The equation of motion related to
this field is

a \? _
((m) A =-aqy-q. (10
The solution of Eq(10) is
AXx)=—a f Ay, q(y+ X)) Y-y, X )G (Y4 = X4),
(11)
where the Green'’s functio@ is given by
G(Y+ = %) = Y4 =X+ Coys = X,) + Co. (12)

The coefficientsc; and ¢, are free parameters. This means
that the gauge condition did not eliminate all the redundant
degrees of freedom, just as the Coulomb or Lorentz gauge do
not determine uniquely the photon propagator in QEDi-
bov ambiguity. We can therefore set the coefficiemtsand
C, equal to zero in order to simplify our calculations.

The Fourier transform of the Green'’s functi¢t?) gives
the gluon “propagator,” or more precisely the momentum
dependence of the effective quark-quark interaction,

e

1
D(k)=D(k-) = 2 6(IL)79J (13

- 2
The second term in Eq13) was first considered by Gross
and Milana[8] in the different context of a quasipotential
two-body equation for the quark-antiquark system. It makes
the potentialA, finite everywhere.
From this point we proceed to solve the one-body equa-
tion for the quark propagator.

B. Quark Dyson-Schwinger equation

The (undressegfermion propagator is

Ky tky-+my
K=—"—"""-> 14
S0 2k, k. —mi+ie (4
and the quark-gluon interaction is
—-iV=-iay.. (15

We determine the dressed single-quark propag8tpy
using the(one-body Dyson-Schwinger equation
d?k
(2m)?

D(k-p)y-SK)y- |S(p),
(16)

S(p) = S(p) + ing(p){Pf

because of the gauge condition, there is only one degree @fhich we show also graphically in Fig. 1.

freedom left. Consequently, the gluonic field is not a dynami-

cal variable and does not couple to ghosts any longer.
In this parametrization the Lagrangigh) becomes

Since for every internal loop there is a factor af
=g?/N,, and a multiplicative factor oN,, the color depen-
dence disappears. The vertex corrections and the quark-gluon
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FIG. 1. (Color online The quark Dyson-Schwinger equation.
The curly line represents the strong interaction, the thin line repre-
sents the unperturbed quark propagator, and the solid line represents
the dressed quark propagator. 2

mg—>m2:m§—g;. (23)

FIG. 2. The Bethe-Salpeter equation for tigbound state.

vertices do not have a multiplicative factor, being suppressed
in the largeN, limit. Therefore, in this limit the rainbow Having obtained the dressed propagator, we are ready to pro-
approximation(undressed vertices and the absence of théeed to the next stage, namely, the calculation of dfe
quark loops from the gluon propagatds justified [6]. bound state9].

In Eq. (16) d’k=dk_dk,, and sinceD(k) does not depend
onk,, the principal part” f d’k does not depend op,. This
allows the following parametrization of the full quark propa-

C. Two-body bound states

gator:

> (p-
p—7++<p+—%>7-+mo
Sp) =
2

: (17
p+——2(p )) mi+ie

where the self-energy contributidl, originated byP [ d’k,
depends only or_:

3(p) =" fdkth(lg p_)

(2 )2
y k.
2k k, K S(k)-m@+ie

(18)

Performing thek, integral first one obtains

ke
f k+2kk+ k.S(k) - mﬁ+|

sgn(k_) (19

Substituting this result back into E¢L8) one finds that

2
3002527 [ akoic-pisonip). (20
Using Eq.(13) for D(k_—p_) and performing the integral we
get
2
S(p)=- (21

This, in combination with Eq(17), results in

g2
<D++ 20 W)7-+ pP-y: + My

g2
2p.p- - (mé—; —if)

S(p) = (22)

Note that the mass pole has been shifted:

In the following, we label the dressed quark massigy
As for the antiquarkkwhich might have a different flavr
we label its dressed mass by. The total momentum of the
bound state is denoted lbyand the momentum of the quark
by p. The momentum of the antiquark is theap.

The bound state wave functiohi(p,r) is given by the
Bethe-Salpeter equatiqalso shown graphically in Fig.)2

d?k
I'(p,r) = igz?’f D(k)y-S(p+k-r)

(2m)?
XL(p+kS(p+ky-, (24)

whereS; andS,; are the quark and the antiquark propagators,
respectively. With the substitutioi(p,r)=y_¢(p,r) [6] Eq.
(24) becomes

d
p,r) = i(ZQ)ZPJ (2m)?

D(k)(p+K)-(p+k-r)_fp+kr)
[(p+K)?=mi][(p+k=r)-m]
The equalk_ wave function is defined in the following fash-
p-(P—1)-¥Ap.r)

ion:
#lp-1-) = f T T

By substituting this into Eq(25) one gets

(25

(26)

2

P(p,r) = _g —P

f dk D) p(p_+k.r).  (27)

Note thaty(p,r) does not depend op,. Multiplying both
sides of the former equation bﬂp_(p—r)_]/[(pz—mf)((p
-r)?-mj)] and integrating ovep, we consider the two poles

in the complexp, plane, namelyk,=(m2/2p_)—ie sgn(p.)
andk,=[m3/2(p_—r_)]-ie sgn(p_—r_). If both of them are

in the same half-plane the integral oygris zero, because
the sum of the two residues is zero. If the first pole is in
the upper half-plane and the second one is in the lower
half-plane (which means thap_<0 and p_-r_>0), the
integral is 2ri/(ky—ky)=2mi 6(—p_)O(p-—r_)/(k;—ky). If

the second pole is in the upper half-plane and the first one
is in the lower half plane, the integral is 729(p_) 6(—p_
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+r_)/ (k;—ky). Combining these two cases one obtains n
mi 6(- p_)6(p-—r-) - 6(p_) 6(r_— p.) —"
e(p,r)=— > Hp,r). >
2 m _ m% _ O 50
2p. 2(p--r) " =
28 8"
Whenever the combination of thefunctions does not van- E 30__
ish, it is easy to invert this relation: H ok
S| — bare mass
2 N dressed mass
Hp,r) = ;[0(— po)6(p-—r-) - 6(p-)o(r-—p-)] I
> 2 % ' 2 ' 20 % 0
x| =L - —2— ¢ |o(p,r). (29) g [MeV]
<2p- 2(p-—r.) op

FIG. 3. The bare magsolid line) and the dressed magfashed
Whenever this condition does not stand, we have to use Edne) of the first quark, as a function of the strong coupling constant
(27) to_computeys from ¢. Note thate has been normalized g, with the constraints that the pion mass is 140 MeV and the ratio
to 1/VN, in order to get the correct charge normalization. my,/my,=3/4.

In order to determine, we transform Eq(26) into a form

suitable for a numerical calculation. Tidunctions limitthe  found to depend linearly og. The slope and thg-axis in-
range ofp_ to 0<p_<r_, and for real particles only positive tercept of the numerical straight line in Fig. 3 are easily
values forr, must be considered. After some algebraic ma-getermined through a fit, with the result
nipulations, Eq(28) becomes

mp1 = (60.57 - 0.178)) MeV. (32
W2o(xr) = (ﬂ + i) o(x,r) - pfl dyw, With the help of Eq(23) we can also predict the dependence
X 1-x 0 (y-x)? of the dressed masses gnfrom the curves for the bare
(30) masses. Therefore, in the 't Hooft model the dressed masses
are given as the following functions gf
where the following notation was introduced: o
m?=| (60.57 - 0.178&)? - = | MeV?,
aa
o 2l _ e : ms _p- ke
M= 2 al__Z! Cl'2__21 - Y=
g g g r- r- 5 g?
(31) m5 = (80.76 — 0.24)% - = MeV?. (33

We solve the integral equatio(80) numerically. The e can also determine the largest valugyp$uch that each
wave function is expanded in cubic splingsnce the wave dressed mass is physical, i.e., not imaginary. For the first
function ¢ is defined only in the range betweer0 andx  flavor this happens aj=81.64 MeV, vhile for the second
=1, the boundary condition that they vanish at the limits offlavor at g=100.8 MeV. Thefirst value is therefore the
this interval is imposed The resulting linear matrix equation largest possible fog, such that the 't Hooft model may
for the expansion coefficients was solved with standard eisupport a constituent quark model interpretation, where
genvalue routines. the dressed masses correspond to constituent quark

In the limit my;=my,=0, Eq.(30) yields a ground state of masses.
zero mass, and thus is consistent with chiral symmetry. To
generate a solution that is related to the pion in the real
world, we searched for a bound state solution of Bf) IIl. MESON-MESON SCATTERING
with a mass of 140 MeV. To obtain such a solution, we ) ] ) )
varied the bare massy, of one of the quarks. For simplicity, ]n this sgcnon we consqjer the meson-meson .elastlc scat-
the second quark mass,, was not taken as an independentte”ng amplitude. We continue to assume two different fla-
free model parameter but determined by assuming a fixe¥ors for the quarks, whose dressed massesmarand m,,
mass ratiomy,/my,=3/4, which lies within the accepted and we consider the lowegtj bound state only.
range between 0.2 and O[&0]. The coupling parametey The diagrams that QOmlnate in the Iar‘gg_hmn. are the
and the dressed massesandm, were adjusted accordingly, quark-exchange box dlagrar_n, represented in Flg_. 4, _and the
through Eqs(30), (31), and(23). quark-exchange crossbox diagram, represented in F!g. 5. 1n

We represent in Fig. 3 the values of the bare quark mas§'® center of mass system, the momenta of the ingoing me-
Moy, as a function of the coupling strengghwhich generate sons _are P=(P°,PY)=(yu?+p®,p) and P=(P° P}

a bound state with a mass of 140 MeV. The bare masses ard\u?+p?,—p), Wherep is the mass of the meson apdahe
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FIG. 4. The quark-exchange box diagram. The vertex funCtionsfheFIS\/'v; J:lfngrl:arflgéet);crrs]znrgeeircl)i?t?dslil%);/?\lagilag&gsf;&ﬁ? o
are represented by filled circles and the mesons by double lines. The P 9 - Explictly s ' 0
. - . - comes from the color summation in the internal loop.
power counting from the vertices is explicitly shown. An extra fac-

tor of N, comes from the color summation in the internal loop. As for the gluon-exchange diagrams, such as in Fig. 6

relative momentum. The outgoing particles then have th%@%pfgfesutgafg Ziirlﬂ-g:(ecrhaa"r?gggrgﬁrgg a factor of 1N

same(but interchangedmomenta. . Since the vertex function is independent of the + compo-
Both diagrams are symmetrized in terms of the outgoingyent of the relative momentum, the momentum integral in

states. Similar diagrams which are obtained from the formefne |0ops of Figs. 4 and 5 is simplified: we can first integrate

ones by InterChang"]g]l andm2 in the intermediate state are the propagator products ka]; ana|ytica||y and then per-

also considered. There are a total of eight diagrams WhiCIfbrm numerica”y the second integration O\‘e_r, which in-

were calculated. When there is only one quark flavor, ongludes now the vertex functions.

does not need to interchange the two masses and there areAs an illustrative example, we demonstrate the calculation

only four diagrams. The sum of these diagrams is proporef the box diagran{Fig. 4) in greater detail.

tional to 1/N.. The corresponding scattering amplitude is

1
\Nc

1

Mooy = f dk_fc dk, y(— k,— P)(k,P) (P + P -k, P)yk— P - P,- P) -
- k- == +iesgn(k.)

2k_
1 1
T ma ~ ~ m? ~
k, — P_——2~+iesgn(k_— P.) k+—P+—P+——1~+iesgn(k_— P.-P))
2(k-P) 2(k-P_-P)
1
X > . (39
™ +iesgn(k.-P.)
-P,-— -P_
ke 2k -p) €9
[
The propagators have four poles ~ mi ~
ks=P,+P,+ ——————iesgn(k - P_-P_),
5 2(k=-P_-P))
ml .
klzi—lesgn(lc), ,
k4:P++2(K—_2P_)—iesgn(k_—P_). (35)
ko=P,+———2— —iesgn(k.-P.), In order to perform thé integration, one needs to close the
2(k.-P.) contour in the complex plane and consider the residues of all
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TABLE I. Constants and resonance parameters for models I-IV.

\IE The first five rows show the quark-gluon coupling constant, the bare
and the dressed quark massgie latter are unphysical in model IV
and thus not included The following rows are the results of the
s-channel resonance fit using E®7). All parameters are in MeV.
Model | Model I Model IlI Model IV
g 1 20.1 80 2500
Mo1 60.0 57.0 46.4 6.0
Moo 80.0 76.1 61.8 5.0
1 1
my 60.0 55.9 10.6
N N m, 80.0 75.2 42.2
FIG..6. The gluon_-exchange diagram. I_Dowgr counting is shoqur(:ER) 280.0 282.4 280.7 300.0
as previously. For this purpose the gluon line is represented as two
. m; 4.4 68.6 80.7 139.3
parallel quark lines. An extra factdf, comes from the color sum-
mation in the internal loop. r 0.07 16.4 232 64.7

poles inside the contour. There are 16 different p035|ble><(vm_p):0’ implying that the two integration limits

combinations of signs of the imaginary parts of the poles. o ; .
Some of these cases can be excluded, because they cor. '(Iazqslaﬁz) g:r:nt?:edgﬁsvr\]/g ftcr)]ftrr?cl;ocr)(tehg]reteimgIgﬁ?ﬁe\/:;lsl?tize
spond to values ok_ which make thek, integral vanish. P

. : - not explicitly written here.

e e O e e ot s worth mentoning rat we nplemented stabily st
T = ) o of the numerical results against the number of gridpoints, the

would havek > P_=(u+p*+p)/y2>0, in contradiction  nymper of splines, and the singularity regulatorthe k.

with the initial hypothesis <0. Likewise the poleg; and  integral of the propagators is singulaThese checks pro-

ks cannot be in the lower half-plane either. Thereforéifs ~ ceeded by imposing the following criteria: doubling each of

in the upper half-plane, the other three poles are also in thghe mentioned parameters, the relative change in the results

upper half-plane. This would imply that the integral van-  should be less than 1%. Convergence is typically obtained

ishes, since one may close the contour belowkhexis.  for 440 gridpoints, 40 splines, ang=1072.

Therefore we can exclude the case wlkgns in the upper

half-plane.

After a detailed analysis one finds that there are only three IV. RESULTS
cases that have a nonvanishing contribution to the integral:

(i) only ks is in the upper half-plandii) the polesk, andks The numerical calculation of the meson-meson scattering

: : ” i amplitude (Sec. ll)) starts with the evaluation of the two-
are in the upper half plgng, ém? only k1~|s in the lower body quark-antiquark wave function from the Bethe-Salpeter
half-plane. As for casgi), it implies k- >P_ andk-<P- o4 ation(Sec. 11 C). In turn, this demands as input the bare
+P_. Under these circumstances(P+P—k,P)=(2/mi)(k;  quark masses and the quark-gluon coupling congjdftec.
—ko)|o((P+P-K)_/P.) and y(k-P-P,-P)=(2/mi)(k, Il Bvil' i _ dels which
_ Sy /5 ; e constructed four representative models which corre-
Ky)|og(P+P—K)_/P.), due to Eq.(29), while the other spond to four different choices of the quark-gluon coupling
constant and bare quark masses. They are subjected to the
constraint that the bound state mass of giogsystem is the

vertex functions have to be evaluated using Ey). The
contribution from case€i) becomes

2\2 (P ep 1 pion masam_ =140 MeV.
Mbox|1:_277i<_> ﬁ’ Tdk —— The parameters defining the four models are shown in
w) Jp. (ks —Ka)l=o Table I. The organization principle for these models is that,
~ ~ going from model | to model IV, the quark-gluon coupling
<P< (P+P- k)—) <(P +P- k)—) constant increases and the quark masses decrease.
P_ P In models | and II, the sum of the dressed quark masses is

_ close to the real pion mass. Consequently, they can be inter-
X (= k,— P)i(k,P). (36) preted as constituent quark masses in a constituent quark
model for the “pion,” generated by QCD within the 't Hooft
This integral is computed numerically. We treat the othermodel assumptions. However, this correspondence breaks
two cases in a similar fashion. down for large couplings, as seen for the model considered
We note that the amplitude of E@36) vanishes in the next.
chiral limit, which supports that the ground state solution for  In model Ill, the value of the coupling is chosen slightly
the qq system has features of the pion. Indeed, since in théelow the maximum value determined in Sec. Il for a con-
chiral limit Eq. (30) gives u=0, one hasP_=(1/y2) stituent quark model interpretation, while in model IV that
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I

wave function
[ 3
T

— g=1 MeV
g=20.1 MeV
- g=80 MeV

- g=2500 MeV

FIG. 7. Bethe-Salpeteqq wave functions for models -1V
=p_/r_ is the momentum fractioor Bjorken variablg defined in

Eq. (31).
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primarily interested in their structure, the amplitudes have
been scaled such that the maximum of their absolute squares
are equal to 1. In all four cases, we find a resonance structure
close to threshold.

This feature could be a sign for the existence af’g?
bound state, for which the lattice calculations of RgH]
found indications. We remind the reader that working in per-
turbation theory we cannot generate a bound state directly,
but it would be interesting to see if in a nonperturbative
extension of our calculation, such a bound state would also
emerge from the 't Hooft model.

On the other hand, the experimentally observed reso-
nances have energies well above threshold. It may be neces-
sary to include gluon-exchangeot considered in our calcu-
lation) and higher-order quark-exchange terms in the
expansion in powers of N; in order to achieve a descrip-
tion resembling more closely the real world.

In order to determine approximately the position and
width of the resonance, we compare the 't Hooft model am-
plitudes to a simple resonance model. We calculate the am-

maximum value is exceeded substantially. In this last casglitude for an intermediate-channel resonance at tree level,
the dressed masses are imaginary and thus not physical. the absolute square of which is

Not surprisingly, the bare quark masses differ from the up

and down current quark masses of QCD for all models. This

is a known artifact of the 't Hooft model: from E@23) one

can see that the mass shift due to the dressing decreases the ) ) _ _
quark mass, instead of increasing it as in 3+1 dimensionaherem andm are the real part and the imaginary part of

QCD.

Figure 7 shows the obtained Bethe-Salpedgr wave 0Ny ,
functions for each model. Clearly, the description of thethe parameters of this simple model to best reproduce the 't

quark-gluon vertices varies considerably. The wave function§looft model results.
are strongly peaked aroumxcclose to 0.4 for small values of

g, while for largerg they become broader and more and

more constant. This behavior can be easily understood: larger
values ofg cause stronger attraction between quark and an-
tiquark, leading to a tighter bound state and therefore a more

spread out wave function in momentum space.

As described in the preceding section, for each of these

1

(s-m)2+m?’ (37)

IM2=7"

the square of the resonance mass, respectivelygasdhe
effective meson-mesons® coupling constant. We then fit

In the nonrelativistic limit, Eq(37) becomes

1
) 4 4EZ
M| -7 e (38)
E-ER2+—5
( R) 4E2

R

models we calculated the meson-meson scattering amplitudé/e can compare E¢38) with the well-known Breit-Wigner
the squares of which are displayed in Fig. 8. Since we aréorm

Model I (@) 7

— ’t Hooft model
-- Resonance fit

— ’t Hooft model
-- Resonance fit

290 300

E [MeV]

T
Model I

— ’t Hooft model
-- Resonance fit

T

(b)

FIG. 8. (Color onling Absolute squares of

300
E [MeV]

290

310

meson-meson scattering amplitudes for models
I-IV close to threshold energies. A resonance
structure is clearly visible. The solid lines are ob-
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The amplitudes are scaled to 1 at their maximum.
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5 — T4 calculations—does not depend on the particular value chosen
M|*~g (E-En2+T%a’ (39 as a constraint for theqbound state mass. If we use, instead
of 140 MeV, a much larger or a much smaller value, we find
whereEg is the resonance energl,is its width, andg the ~ again a narrow resonance close to threshold.
corresponding coupling strength, and simply read off the re-
lationsT?=m{*/m? and Eg=m.

The parameters obtained in this way for all models are We calculated various models for quark-antiquark vertex
also displayed in Table I. We verified in an independent fitfunctions within the 't Hooft model by solving the corre-
directly to the Breit-Wigner forng39) that the parameters are spondingqq Bethe-Salpeter equation. In all cases, the bare
not significantly altered in the nonrelativistic limit. For com- quark masses and the quark-gluon coupling constants were
parison, the mass of the “rea#? resonance is considered to tuned such that the mass of thgbound state coincides with
be in the range of 400-1200 MeV, while its width lies in the the pion mass.
interval 600—1000 MeV[1Q]. Clearly, one should not de- We found that, within a limited range of coupling con-
mand too much from the 't Hooft model with its simplifying stants and bare quark masses, one obtginbound states
assumptions. However, we consider it a significant findingwith the features of a constituent quark model, i.e., where the
that it predicts a low energy resonance at all, based solely omeson mass is approximately equal to the sum of the dressed
the leading-order quark-exchange diagrams. quark masses. On the other hand, for larger values of the

In all four cases, the resonance is located very close tguark-gluon coupling constant this constituent quark picture
threshold, and it is very narrow. The width increases slowlyis no longer sustained.
with increasing quark-gluon coupling strength. On the other We used the calculated Bethe-Salpeter wave functions to
hand, the resonance position remains more or less unchangddrive meson-mesor{“pion-pion”) scattering amplitudes
as long as we restrict ourselves to models with real dressedithin the 't Hooft model. They are calculated from the
massegmodels I-ll)). Only for model IV, whose coupling leading-order quark-exchange diagrams. These QCD-based
constant is considerably larger, the resonance moves awageson-meson amplitudes exhibit a resonance structure close
from threshold to about 300 MeV. to threshold in all considered cases. We extracted an effective

One might have expected the resonance energy to imnass and width of this-like resonance by comparison with
crease smoothly and in a more pronounced manner with the simple s-channel resonance model where pions arsl
guark-gluon coupling strength. However, one has to keep instead of quarks are the effective degrees of freedom.
in mind that the included quark-exchange processes do not The extracted values are not meant to be completely real-
directly depend omg, but only indirectly through changes of istic in the sense that they should reproduce the experimental
the vertex functions and of the dressed quark masses theata, since the 't Hooft model is QCD only under simplifying
appear in the quark propagators. Owing to the already merassumptions. However, the results of this calculation demon-
tioned peculiar feature of the 't Hooft model that dressedstrate that the 't Hooft model can accommodate a resonance
guark masses decrease with increasing coupling stremgth for the four-quark system, already in the leading-order
the latter tend to decrease the resonance energy. Moreovepark-exchange processes. In those exchange mechanisms,
while a largerg implies an effectively stronger attraction the diquark correlation, given by the quark-antiquark vertex
between the two mesons—once they overlap—through th&unction, plays an important role in determining the energy
stronger quark-quark attraction, the very probability of thisdependence of the meson-meson scattering amplitude.
overlap drops in turn, because the spatial size of the mesons The fact that in our 't Hooft model calculations a narrow
decreases. These effects seem to counterbalance each ottesonance lies close to threshold, while the broadeeso-
to a large extent, leaving the resonance position more or lesgnce is supposed to be located at higher energy, is indica-
unchanged. tive of the limitations of the 't Hooft model. It also hints at

Similarly, that the width of the meson-meson resonancdhe importance of higher-order quark-exchange processes as
increases wittg is also a consequence of the contraction ofwell as of gluon-exchange contributiotisigher-order terms
the mesons caused by the stronger quark-antiquark attrag: the 1/N. expansiol which should be investigated in fu-
tion. This shrinking in size leads to a larger spreading of theure work.
mesongg vertex function in momentum spacsee Fig. 7,
which in turn contributes to the overlap integrals in the in- ACKNOWLEDGMENTS
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