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The recent high statistics measurement of thepp→pph reaction at an excess energyQ=15.5 MeV has been
analyzed by means of partial wave decomposition of the cross section. Guided by the dominance of the final
state1S0 pp interaction(FSI), we keep only terms involving the FSI enhancement factor. The measuredpp and
hp effective mass spectra can be well reproduced by lifting the standard Watson-Migdal approximation in the
enhancement factor and by allowing for a linear energy dependence in the leading3P0→ 1S0,s partial wave
amplitude. Higher partial waves seem to play only a marginal role.
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I. INTRODUCTION

In recent years major advances have been made in the
experimental[1–6] and theoretical[7–11] investigation of
the near threshold meson production reactions in nucleon-
nucleon collisions(for a comprehensive review cf. Ref.[1]).
With the advent of medium-energy accelerators(ICUF, CEL-
SIUS, and COSY) and the corresponding influx of high pre-
cision data on the total and differential cross section as well
as the polarization observables, it has become possible to
study the interaction of the flavor-neutral mesons(e.g.,p0,h,
andh8) with nucleons. A direct insight into such interaction
cannot be gained from meson-nucleon scattering experi-
ments as the latter are impractical owing to the very short life
time of these mesons. Naturally, the largest data base has
been accumulated for the pions[2] but the bulk of data onh
production in proton-proton collisions has also expanded sig-
nificantly [3–6]. The h meson, which is the next lightest
nonstrange member of the pseudoscalar octet, has focused
considerable attention of the nuclear community since it was
established that theh-N interaction was quite strong and
attractive which might lead to a possible existence of the
h-nuclear bound states.

In the recent measurements of thepp→pph reaction a
very accurate determination of the four-momenta of both
outgoing protons allowed for the full reconstruction of the
kinematics of the finalhpp state. In consequence, these mea-
surements provided in addition toh and the proton angular
distributions, also thepp andhp effective mass distributions
[4–6]. The common feature of the near-threshold meson pro-
duction in proton-proton collisions is the dominance of the
very strong proton-proton final state interaction. The Monte
Carlo simulations[6] as well as direct calculations reveal
that for small excess energies the inclusion of the final state
1S0 pp interaction(FSI) enhances the cross section by more
than an order of magnitude. This effect is also clearly visible
in the effective mass distributions: as a prominent peak close
to threshold in thepp effective mass distribution or as a
bump near the end point in thehp effective mass distribu-
tion. The description in terms of a simple model in which a

constanth production amplitude is multiplied by an on-shell
proton-proton FSI enhancement factor is only qualitatively
correct, but at a quantitative level turns out to be insufficient
to explain the experimentalpp andhp effective mass distri-
butions. The contribution from higher partial waves and the
final statehp interaction have been indicated as the possible
sources of this discrepancy. In comparison withpp interac-
tion, however, the role ofh-N interaction is much less im-
portant and taking as a rough measure the ratio of thehp and
pp scattering lengths squared we may expect an effect at the
level of about 1%. A full three-body calculation based on the
hyperspherical harmonics method accounting for all pair-
wise final state interactions corroborates the above estimate
showing that thehp interaction modifies significantly only
the totalh production cross section as function of the exci-
tation energy whereas the distortion of the shapes of the ef-
fective mass distributions does not exceed the current experi-
mental uncertainties. The hyperspherical harmonics method
will be presented elsewhere[12] and here instead we would
like to confine our attention to a purely phenomenological
description of the effective mass spectra at the lowest avail-
able excitation energy,Q=15.5 MeV. At such low aQ only
a few partial waves in both initial and final states are ex-
pected to participate in theh creation process which substan-
tially facilitates the interpretation of the experimental find-
ings.

For sufficiently low excitation energies the3P0→ 1S0,s
transition amplitude becomes necessarily the sole contributor
to the cross section as it is the only amplitude surviving at
threshold. The supposition that this happens atQ
=15.5 MeV appears to be quite plausible especially that in
the experiment[5] at Q=15 MeV the measured angular dis-
tributions were consistent with isotropy, but under this hy-
pothesis it has not been possible to explain satisfactorily the
effective mass distributions from Ref.[6]. Nevertheless,
among the possible amplitudes the partial wave amplitude in
which the two protons are deposited in the1S0 state must
play a dominant role for smallQ because it is proportional to
the exceptionally large FSI enhancement factor and this is
going to be the central ansatz of this paper. Accordingly, in
the first approximation, the cross section should contain all
such terms which are proportional to the FSI enhancement
factor and this comprises the square of the modulus of the
3P0→ 1S0,s amplitude plus possibly the appropriate interfer-*Email address: deloff@fuw.edu.pl
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ence terms. However, after integrating over the angles all the
interference terms vanish and give no contribution to thepp
effective mass distribution. On the other hand, in a situation
where we have very low excitation energy, exceptionally
larges-wave amplitude and both angular distribution isotro-
pic thes-wave dominance concept still seems to be the most
obvious explanation. Since at lowQ higher partial waves
should be suppressed, there is really not much room for im-
provements left unless a weak energy dependence is admit-
ted in the production amplitude and, surprisingly, such a pos-
sibility has never been considered in the literature. We
demonstrate in this paper that with this rather modest and
natural assumption bothpp and hp effective mass distribu-
tions can be quite well reproduced so that one may conclude
a posteriorithat the role of higher partial waves seems to be
marginal.

Returning now to the higher partial waves option, the con-
tribution from the p waves, or, more precisely, from the
1S0→ 3P0,s and 1D2→ 3P2,s amplitudes, has the best
chance to show up when the relative momenta of the final-
state protons take the largest values allowed by the phase
space. Since atQ=15.5 MeV this sector still overlaps with
the peak region of the1S0 enhancement factor, thes wave
also receives their maximal amplification. Therefore, the
relative strength of thep-wave amplitudes to be discernable
has to be quite substantial which in general should be re-
flected by a pronounced angular dependence of the cross
section. This difficulty has been thoroughly examined by Na-
kayamaet al. [9] who pointed out that the unwanted angular
dependence might still be suppressed under two circum-
stances:(i) if the 1D2→ 3P2,s amplitude was negligibly
small so that the angular dependent term was absent, or,(ii )
if the lack of angular dependence resulted from
cancellations—from a destructive interference between1S0
→ 3P0,s and 1D2→ 3P2,s amplitudes. Thus, a model basing
upon a strongp wave needs additionally somewhat fortuitous
coincidences. Finally, we wish to reiterate that the correction
to the s-wave amplitude proposed above gets amplified by
the large FSI enhancement factor while thep-wave contribu-
tion is not and therefore we expect that the former should be
more important.

The plan of our presentation is as follows. In the follow-
ing section the FSI enhancement factor is revisited. We argue
that owing to too steep a fall of the Watson-Migdal enhance-
ment factor the approximate form thereof should be aban-
doned in favor of the full off-shell expression. Having estab-
lished the best form of the enhancement factor we discuss the
partial wave expansion of thepp→hpp transition amplitude
in a quest of an approximate expression for the cross section
that would be valid for the lowest excitation energies. Fi-
nally, in Sec. III we verify our simple model by presenting
the comparison with experiment.

II. THEORETICAL FRAMEWORK

A. Derivation of the enhancement factor

Since the proton-proton final-state interaction is believed
to be the dominant ingredient in the description of thepp
→pph reaction close to threshold, it is logical that we first

wish to reexamine the FSI problem to make sure that ad-
equate measures have been taken to obtain the ultimate so-
lution. The basic idea how to account for final state interac-
tion was put forward 50 years ago by Fermi[13], Watson
[14], Migdal [15], and others(for a review cf. Refs.[16–18])
and is based on the observation that in many processes the
interaction responsible for carrying the system from the ini-
tial to the final state is of such a short range that in the first
approximation it may be regarded as pointlike. As a proto-
type one may consider a mesonsxd production reactionNN
→NNx. To generate the meson massm in nucleon-nucleon
collision a large momentum transfer is required between the
initial and the final nucleons, which is typically of the order
ÎMm, with M being the nucleon mass. The corresponding
“range” of the production interaction is therefore much
shorter than the range of the interaction between the two
final state nucleons. Although it is perfectly true that the final
stateNN interaction significantly distorts theNN wave func-
tion but in the transition matrix element the contribution
from all but the smallestNN separations will be strongly
suppressed and the main effect may be attributed to the
change of the normalization of the wave function at zero
separation. If the noninteractingNN pair is described by a
plane wavee−ı k·r, where k is the relativeNN momentum
("=c=1 units are used hereafter), to account for final state
interaction the latter must be replaced in the transition matrix
element by the completeNN wave functionC−sk ,rd† satis-
fying outgoing spherical wave boundary condition at infinity.
Nevertheless, for apointlike interaction, we may set

C−sk,rd† < e−ı k·r Cskd s1d

in the matrix element so that the final state interaction will be
accounted for by multiplying the transition matrix element
by the enhancement factor, defined as

Cskd ; lim
r→0

C+s− k,rd/e−ı k·r . s2d

The factoruCskdu2 that appears in the cross section represents
the ratio of two probabilities: one of finding the interacting
NN pair at zero separation, while the other probability is
associated with noninteracting particles. By construction,
when the final state interaction is turned off, the enhance-
ment factor will be equal to unity. Expanding both, the nu-
merator and the denominator on the right-hand side of Eq.
s2d in partial waves, we have

Cskd = lim
r→0

o,=0

`
s2, + 1dı−, c,sk,rd/r P,sk̂ · r̂d

o,=0

`
s2, + 1dı−, j,skrdP,sk̂ · r̂d

, s3d

where c,sk,rd, r,+1 for small r, j,skrd is spherical Bessel

function andP,sk̂ ·r̂d denotes Legendre polynomial. Clearly,
in the limit r →0 in Eq. s3d, all higher partial waves will be
suppressed by the centrifugal barrier, and only the contribu-
tion from s-wave survives. Thus, we obtain a simple formula
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Cskd = c0sk,0d8/k, s4d

where prime denotes derivative with respect tor, and, as
apparent from Eq.s4d, the enhancement factor is determined
by the slope of the wave function at the origin. To find this
slope we must know theNN s-wave interaction and for sim-
plicity we shall in the following assume that the latter takes
the form of a spherically symmetric radial potential. The
shape of this potential may be arbitrary but it must be of a
short range. Given theNN potential, we can integrate out-
ward the appropriate wave equation, containing both the
nuclear and the Coulomb potential, generating numerically a
regular solutionu0sk,rd si.e., vanishing at the origind whose
derivative satisfies the boundary condition

u0sk,0d8 = C0shdk, s5d

where h denotes the Sommerfeld parameter andC0shd2

=2ph / fexps2phd−1g is the Coulomb barrier penetration
factor. The sought for physical solutionc0sk,rd occurring
in Eq. s4d, which is also regular, is necessarily propor-
tional to u0sk,rd, and, more explicitly, we have

c0sk,rd = fCskd/C0shdgu0sk,rd. s6d

Now, all we need to calculateCskd is the asymptotic expres-
sion for the physical wave function. Forr =R with R much
bigger than the range of the nuclear potential, the physical
wave function takes the form

c0sk,Rd = fCskd/C0shdgu0sk,Rd

= F0sh,kRd + f0skdH0
+sh,kRd, s7d

where H0
+sh ,kRd=G0sh ,kRd+ ı F0sh ,kRd with G0sh ,kRd

and F0sh ,kRd being the standard Coulomb wave functions
defined in Ref.f19g, and f0skd=sin d eıd denotes thes-wave
scattering amplitude withd being thes-wave phase shift.
The differentiation of Eq.s7d with respect toR, provides
us with a second condition for the derivatives but it should
be noted thatu0sk,Rd and usk,Rd8 occurring in these two
matching conditions are to be regarded as known quanti-
ties. Indeed, they are fully specified by the boundary con-
dition at the origins5d and can be either calculated ana-
lytically, or obtained by numerical methods. Therefore,
what we end up with are two algebraic equations in which
the two unknowns are the enhancement factorCskd and
the scattering amplitudef0skd, and the respective solutions
can be conveniently written as

Cskd =
k C0shd

wfH0
+sh,kRd,u0sk,Rdg

, s8d

and

f0skd = −
wfF0sh,kRd,u0sk,Rdg
wfH0

+sh,kRd,u0sk,Rdg
, s9d

where the symbolwff ,gg denotes the Wronskian defined as
wff ,gg; fg8− f8g. We wish to recall that the specific
Wronskian involving the regular solution and the outgoing
wave solution present in the denominator of Eqs.s8d ands9d

has been referred to as the Jost functionf16g. It is worth
noting that unlike the scattering amplitudes9d which can be
expressed solely in terms of the logarithmic derivative of the
regular solution, the enhancement factors8d depends sepa-
rately upon both,u and u8, and therefore the calculation of
Cskd requires off-shell information. In particular, a phase
shift equivalent transformation of the potential may change
the enhancement factor by orders of magnitude. Formulas8d
may be cast to the form

Cskd = CWMskd
s− k2dC0shd2

wfF0sh,kRd,u0sk,Rdg
, s10d

where

CWMskd =
eıdsin d

k C0shd
, s11d

is the familiar Watson-Migdal factorf16g, depending solely
upon the on-shell quantities, whereas the Wronskian occur-
ring in Eq. s10d represents the off-shell correction.

Formula(8) deserves some further comments. It is easy to
check that when both, the Coulomb and the strong interac-
tion are switched off, the enhancement factor(8) goes to
unity. When the nuclear potential alone is set equal to zero,
we haveu0sk,Rd=F0sh ,kRd and Eq.(8) yields Cskd=C0shd.
Clearly, these are the right limits but they could not have
been obtained with the Watson-Migdal factor alone which
implies the importance of the off-shell correction. Neverthe-
less, close to threshold the off-shell factor varies slowly with
energy, and the Watson-Migdal factor usually makes a good
approximation. It should be kept in mind, however, that in
result of multiplying the cross section by the Watson-Migdal
factor the overall normalization is lost precluding an absolute
calculation(cf. Ref. [21]).

Some authors choose to simplify further the Watson-
Migdal enhancement factor(11) by applying a Coulomb
modified effective range formula for the phase shift. Thus,
for thepp case, the phase shift can be obtained, e.g., from the
expression[22]

C0
2shdk cot d + 2k h hshd = − 1/a + b k2/2 − P k4/s1 + Qk2d,

s12d

with hshd=Recs1+ıhd−lnshd, wherec is the logarithmic
derivative of theG function. In Eq.s12d a=−7.83 fm and
b=2.8 fm denote, respectively, the experimentalpp scat-
tering length and the effective range and the remaining
two parameterssP=0.73 fm3 and Q=3.35 fm2d are related
to a specificNN potential f23g. The approximations12d
has been popular in certain quarters and used in conjunc-
tion with Watson-Migdal formulas11d for not very large
k, which results in a good approximation to the enhance-
ment factor owing to a rather fortuitous cancellation of
errors associated with different approximations.

B. Examples

We are now going to illustrate the results obtained in the
preceding section by explicit calculations carried out for
three phenomenologicalNN potentials which are the delta-
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shell VD, a GaussianVG, and the soft-core ReidVR potential
[20]. Among these three potentials only Reid potential has a
repulsive short-range component while the two remaining
ones are purely attractive. The reason for selecting these par-
ticular shapes is that they exhibit different behavior in the
close to the origin region: the delta-shell potential vanishes
for small r, while a Gaussian potential shows maximum
strength atr =0, and, finally, the Reid potential is singular at
the origin, i.e.,VR→`. Our purpose is to examine how this
very different off-shell behavior influences the enhancement
factor properties. Thus, as our first example we shall con-
sider the delta-shell potential specified by a rangeR and a
dimensionless depth parameters, defined by the formula

M VDsrd = − ss/Rddsr − Rd, s13d

where the values of the parameters areR=1.84 fm ands
=0.906. Although this potential is not realistic, its main
advantage lies in its simplicity: both the phase shift and
the enhancement factor may be for this case obtained in an
analytic form. A simple calculation gives the Coulomb
distorted phase shift

tan d =
ss/rdF0sh,rd2

1 − ss/rdF0sh,rdG0sh,rd
, s14d

wherer=kR, and, respectively, the enhancement factor

Cskd =
C0shd

1 − ss/rdF0sh,rdH0
+sh,rd

. s15d

It is apparent from Eq.s15d that when the nuclear potential is
switched off by settings equal to zero the enhancement fac-
tor reduces to the Coulomb factorC0shd.

The Gaussian potentialVGsrd=V0 exps−r2/R2d has also
two parameters, the depthV0 and the rangeR, whose values
areV0=−31 MeV andR=1.8 fm and in this case the solution
of the wave equation will be obtained numerically. Finally,
we consider the fully realistic Reid soft core potential[20],
given in the form of a superposition of three Yukawa poten-
tials, which also requires numerical treatment. The results of
our computations are presented in Figs. 1 and 2.

In Fig. 1 we show the calculatedpp phase shift vs center-
of-mass momentum as obtained from the different potentials.
They are compared with the data and we can see that up to
about 150 MeV all models agree well with experiment. For
bigger momenta the situation is less satisfactory, except for
the Reid potential whose performance is still very good.

Clearly, among the considered potentials only the Reid
potential has a repulsive core and therefore is capable of
reproducing the crossover from positive to negative values in
the phase shift at 340 MeV. In Fig. 2 we compare the en-
hancement factors calculated from formula(10) for different
potentials. We stipulated the normalization as to get in all
cases the same height at the maximum. It is evident from
Fig. 2 that very good agreement between different potential
model’s results sustains for momenta up to about 150 MeV
indicating that, apart from normalization, different off-shell
properties have little impact on the shape of the enhancement
factor. This can be easily understood since close to threshold
effective range approximation is usually adequate and allNN

potentials are devised in such a way that they are capable of
reproducing the experimentally determined effective range
parameters. The main consequence of conducting a phase
shift equivalent transformation is that the asymptotic wave
function and its derivative acquire a common factor preserv-
ing thereby the shape of the enhancement factor. The differ-

FIG. 1. Momentum dependence of1S0 phase shift for different
pp potentials.

FIG. 2. Enhancement factorCskdu2 vs k for different pp poten-
tials. The dot-dashed curve has been obtained from Eqs.(11) and
(12).
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ences appearing at larger momenta are not surprising as the
different models do differ there also on-shell, as apparent
from Fig. 1. In particular, as seen from Fig. 2, the effective
range formula makes a reliable approximation fork not big-
ger than about 80 MeV. With the current high precision data,
however, this approximation is insufficient causing a too
rapid fall off of the enhancement factor. Indeed, already for
the excitation energy as low asQ=15.5 MeV and the maxi-
mal momentum kmax=120 MeV, uCWMskmaxdu2 calculated
from Eq. (12) is by a factor of 2 smaller fromuCskmaxdu2
obtained from Eq.(10), with both functions normalized to
yield the same height at the peak. In consequence, with the
Watson-Migdal approximation the relative momentum distri-
bution in thepp→pph reaction has a too rapid fall off.

C. The cross section of the reactionpp\pph

Since close to threshold only a small number partial
waves contribute to thepp→pph transition amplitude, it is
feasible to expand them in terms of angular momentum. The
transition amplitude is an operator in spin space that depends
upon the three center-of-mass. momenta, which determine
the kinematics of the reaction, namely, the initial proton mo-
mentump, the relative momentum of the final state protons
k, and finally the momentum ofh relative to thepp pair q
(other possible choices will be discussed later on). The quan-
tum numbers associated with the initial state are the angular
momentumL, the total spinsi, and the total angular momen-
tum J. In the final state, the angular momentum and the the
total spin of thepp pair are denoted as, andsf, respectively,
and the relative motion ofh is described by the angular
momentuml. Among the above quantum numbers onlyJ is
conserved while the remaining quantum numbers are con-
strained by parity conservation and by the Pauli principle.
Since h is a pseudoscalar meson, parity conservation re-
quires thatL+,+l must be an odd number. A list of possible
transitions consistent with the above restrictions involving
the lowest angular momenta is presented in Table I.

These transitions can be classified as even or odd accord-
ing to the value of the angular momentum, of the final state

protons. In the transition matrix element the even(odd) par-
tial wave amplitude will be multiplied by an appropriate pro-
jection operator which is symmetric(antisymmetric) under
the transformationk→−k. Since the final state protons are
indistinguishable all observables must be invariant under the
interchange of the proton momenta, i.e., under thek→−k
transformation. This means that all interference terms be-
tween even and odd states which are antisymmetric under
k→−k transformation are bound to vanish if one wants to
respect Pauli principle. In consequence, interference is al-
lowed only between partial waves belonging to the same
group which significantly reduces the number of terms in the
cross section.

For small excitation energy the final statepp interaction
appears to be the dominant effect and therefore it seems jus-
tified to neglect in the cross section all terms which do not
contain the enhancement factorCskd. With this assumption
the only contribution to the cross section comes from the
even partial waves listed in Table I. The partial wave ampli-
tudes are functions of both,k2 and q2 but since these two
quantities are linked by energy conservation one of them is
redundant. Terms linear ink or q will be absent which can be
seen as follows. The momentum dependence in a partial
wave amplitude originates from the spherical Bessel func-
tions j,skjd jlsqhd occurring in the appropriate overlap inte-
grals, wherej andh are the Jacobi coordinates canonically
conjugated withk andq, respectively. For even orbital mo-
mentum the spherical Bessel function is an even function of
the argument so that in the expansion of the partial wave
amplitudes only even powers of the momenta will be admit-
ted. However, for practical reasons, it does not seem feasible
to go beyond the second order ink andq.

The above considerations lead us to take the following
simple expression for thepp→pph reaction cross section

ds/dLips= uCskdu2fa + b P2sp̂ · q̂dg + C0shd

3fd Re Cskd + e Im CskdgP2sp̂ · k̂d. s16d

In Eq. s16d we are using the standard notation wheredLips
stands for the invariant three-body phase space element. In
Eq. s16d a denotes the modulus squared of the sole produc-
tion amplitude which survives at threshold, associated with
the transition3P0→ 1S0,s, b represents the interference term
between the latter amplitude and the3P0→ 1S0,d amplitude,
and thesd,ed pair describes, respectively, the interference
with the 3P2→ 1D2,s amplitude. All of the above-mentioned
coefficients are functions of the final state momenta. Taking
into account only threshold behavior, we can see thata is
constant,b will be proportional toq2 and sd,ed both are of
the order ofk2. In this situation, we have to expanda to the
same order settinga=a0+a1 q2 where a0 and a1 are two
unknown parameters. The parametera0 can be absorbed in
the normalization constant adjusted to the experimental total
cross section value, and the ultimate expression for the cross
section reads

ds

dLips
~ uCskdu2H1 +

q2

qmax
2 fx + y P2sp̂ · q̂dgJ +

k2

kmax
2 C0shd

3fzr Re Cskd + zi Im CskdgP2sp̂ · k̂d, s17d

wherex,y,zr ,zi are real dimensionless parameters to be de-

TABLE I. List of allowed transitions2si+1LJ→ 2sf+1,J,l for the
lowest partial waves in the reactionpp→pph.

Even, Odd ,

3P0→ 1S0,s 1S0→ 3P0,s
3P2→ 1S0,d 1D2→ 3P2,s
3F2→ 1S0,d 3P0→ 3P1,p
3P2→ 1D2,s 3P2→ 3P2,p
3F2→ 1D2,s 3F2→ 3P1,p

3P2→ 3P1,p
3F2→ 3P2,p
3P1→ 3P0,p
3P1→ 3P1,p
3P1→ 3P2,p
3F3→ 3P2,p
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termined. For reasons of convenience we have scaledq andk
by dividing them by their maximal valuesqmax and kmax,
respectively. The parameterx represents the correction of the
order q2 to the dominant transition, the parametersy and
szr ,zid provide the measure of the admixture of thed waves.

III. COMPARISON WITH EXPERIMENT

In Figs. 3 and 4 we present the experimental distribution
[6] of the square of the effectivepp massspp and the square
of the hp massshp, respectively. For a start, we assumed a
constant production amplitude settingx=y=zr =zi =0. Using
the Watson-Migdal enhancement factoruCWMskdu2 specified
in Eq. (11) with the effective range approximation(12), from
Eq. (17) we obtain the theoretical distributions depicted by a
dotted curve in Figs. 3 and 4.

Qualitatively, the dotted curves in Figs. 3 and 4 are
roughly in accord with experiment but they are far not satis-
factory in quantitative terms. In both figures the peak in the
calculated curves is too big and partially responsible for that
is the oversimplified enhancement factor. As we already
know, uCWMskdu2 calculated by using effective range formula
(12) exhibits too steep a fall and by normalizing the distri-
butions to the total cross section, to compensate that, the
curves are moved up so that the peak gets magnified. There-
fore, the simplest remedy is to abandon the Watson-Migdal
approximation and from now on we will use the complete
enhancement factor calculated from Eq.(10). The appropri-
ate distributions are presented by the dashed curves in Figs. 3

and 4. Although the resulting corrections go in the right di-
rection bringing the calculation closer to experiment, but this
is still not enough for providing a full understanding of the
data. In this situation, it is interesting to know how much we
can improve the agreement by disposing of the various cor-
rections discussed in the preceding section and represented
by the adjustable parametersx,y,zr ,zi. Before proceeding,
however, it should be observed that in the case of thepp
effective mass distribution a major simplification takes place
because, as apparent from Eq.(17), after integrating over the
angles only thes-wave amplitude survives. Therefore, the
parametersy,zr ,zi representing interference terms never en-
ter spp distribution.

By contrast, in the case ofshp distribution the interference
terms, in general, do not vanish in result of angular integra-
tion. Since a nonrelativistic approach is here completely ad-
equate, in order to obtain the cross section as a function of
shp we have to introduce an equivalent Jacobi frame taking
as the two independent momenta theh-p relative momentum
k1 and the momentum of the other proton relative to this pair
q1. The transformation between the two Jacobi frames, takes
the form

Sk

q
D = S− 1/2 − m/n

1 − m/M
DSk1

q1
D , s18d

wherem is theh-p reduced mass andn is the reduced mass
of theh and thepp pair. Clearly, substituting Eq.s18d in Eq.

FIG. 3. spp distribution is compared with the data from Moskal
et al. [6]. The dotted curve corresponds to a constant3P0→ 1S0,s
transition amplitude with on-shell enhancement factor(11) calcu-
lated from Eq.(12). In the dashed curve the completeuCskdu2 has
been used while in the full curve, at the top of that, a correction
linear in energy has been included.

FIG. 4. shp distribution is compared with the data from Moskal
et al. [6]. The dotted curve has been obtained keeping only the
dominant3P0→ 1S0,s transition amplitude, which is assumed to be
a constant withuCWMskdu2 calculated from Eq.(12). In the dashed
curve the completeuCskdu2 has been used while in the dot-dashed
curve, at the top of that, a correction linear in energy has been
included. The full curve accounts for also the interference with
3P2→ 1S0,d amplitude.
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s17d and integrating over the angles ofk1 andq1, the inter-
ference terms give nonvanishing contribution.

Since thespp distribution depends solely uponx, we ad-
justed this parameter by fitting the theoreticalspp distribution
to the experimental data with the best fit value ofx beingx
=−0.514. The resulting distribution displayed in Fig. 3 by the
full curve agrees now quite well with experiment. Actually,
since the interference terms drop out and thehp interaction
gives here a small effect, there is really not much room for
improvement other than including theq2 correction in the the
dominant 3P0→ 1S0,s transition amplitude. Next, with the
value of x in hand, we calculated theshp distribution, still
leaving out the interference terms, i.e., settingy=zr =zi =0.
The resulting cross section which does not involve adjustable
parameters any more is presented in Fig. 4 by a dot-dashed
curve. We can see that also in this case the agreement with
experiment looks much better. The interference terms in Eq.
(17) involving the parametersszr ,zid are probably much
smaller than the term proportional toy because the former
terms exhibit only a linear dependence upon the enhance-
ment factor, so we ignored these terms adjusting the single
parametery to the experimentalshp distribution. With x
fixed, the best fit value ofy wasy=3.38. The corresponding
cross section is displayed in Fig. 4 by the full curve and the
agreement is quite good. We tried also to vary the parameters
szr ,zid but this was not very successful as the fitting proce-
dure attempts to reproduce a structure at the high energy end
of the spectrum. With three adjustable parameters it is quite
easy to produce a two-peaked distribution with a goodx2.
Since it is not quite certain that the data really reveal a two-
peaked distribution we did not pursue this fit any further. It
should be also mentioned that when the interference term
linear inCskd is accounted for, the calculation becomes very

sensitive to theNN potential used to obtainCskd because the
normalization ofCskd cannot be absorbed in the overall nor-
malization of the cross section.

In Fig. 5 we are going to present the changes in the exci-
tation energy distribution caused by adding an energy depen-
dent term to theh production amplitude[the interference
terms in Eq.(17) give no contribution].

The casex=0 corresponds to a constant production am-
plitude(dotted curve in Fig. 5), while x=−1 (dashed curve in
Fig. 5) represents the lower limit for this parameter which
must be imposed to prevent the cross section from going
negative. The best fit valuex<−0.5 necessary to reproduce
the effective mass distributions forQ=15.5 MeV is roughly
midway between these values and the corresponding cross
section is presented by the full curve in Fig. 5. The linear
energy dependence introduced in the amplitude of theh pro-
duction has little impact on the total cross section. In fact, the
two curves wherexø0 exhibit slightly better agreement with
experiment as compared with the dotted curve corresponding
to constant production amplitude. To obtain our curves we
used the full expression for the enhancement factor. We wish
to note that as a result of using the Watson-Migdal approxi-
mation for the enhancement factor the calculated cross sec-
tion is underestimated at largeQ.

With a good fit to the effective mass distributions forQ
=15.5 MeV, it is interesting to know whether the approach
presented above makes sense forQ=41 MeV since for this
value of the excitation energy the experimental data are also
available in the literature[5]. Strictly speaking, for this much
larger excitation energy the validity of the simple formula

FIG. 5. The total cross section for thepp→pph reaction vs the
excitation energyQ for different values of the parameterx. The
experimental data are from Ref.[3].

FIG. 6. spp distribution for an excitation energyQ=41 MeV is
compared with the data form Abdel-Baryet al. [5]. In our calcula-
tion we have neglected all higher waves except the3P0→ 1S0,s
transition amplitude. The energy dependence in the latter is propor-
tional to the parameterx, cf. Eq. (17).
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(17) becomes questionable and the inclusion ofp waves
might be indispensable. Nevertheless, it is useful to find out
what a simple model can do for largerQ.

The results of our computations are presented in Figs. 6
and 7 where they are compared with the data from[5]. In the
calculation we neglected the interference terms, settingy
=zr =zi =0 in Eq. (17). The dotted curve in Figs. 6 and 7
corresponds to a constanth production amplitude. While the
shp distribution is not too far off the experiment, thespp
distribution is in a bad shape as the peak caused bypp FSI is
definitely much too big. The dashed curve is obtained by
adopting forx the same value that forQ=15.5 MeV gave the
best agreement with experiment, i.e., we are pretending that
this parameter does not vary withQ. This brings improve-
ment in both cross sections and in fact theshp distribution
agrees with the data quite well. Since the parameterx may
depend uponQ, and forQ=41 MeV its value could be dif-
ferent than forQ=15.5 MeV, we allowedx to vary, adjusting
its value to the data from[5]. This time the best fit value
turns out to bex=−0.863 and the corresponding distributions
are presented by full curves in Figs. 6 and 7. It is not possible

to improve the agreement in both distributions using the
same value of the parameterx, and therefore the fit depicted
by the full curve is a compromise. Although the corrections
go in the right direction but the agreement is still not satis-
factory and we have to accept the fact that forQ=41 MeV
the assumed functional form of the cross section is incom-
plete. We tried to include the interference terms with thed
waves but the fit was unsuccessful. Clearly, further exten-
sions call for additional parameters but this does not seem to
be affordable with the present data, and therefore we stop
here.

Summarizing, a simple model in which thepp→pph
cross section contains only the dominant3P0→ 1S0,s partial
wave amplitude corrected by the final statepp interaction is
capable of explaining the current experimental data at an
excitation energyQ=15.5 MeV. The experimentalpp and
thehp effective mass distributions can be both reproduced if
(i) in the h production amplitude a correction linear in en-
ergy is admitted and(ii ) the full pp FSI enhancement factor
without the Watson-Migdal approximation is used. In the
presented calculation thehp final state interaction has not
been included explicitly for reasons outlined in the Introduc-
tion but since the parametersx andy have been adjusted to
the data, they effectively account for this effect.

It has to be noted here that the same set of data[6] has
been analyzed in Ref.[9] where the latter authors obtained a
comparable agreement with experiment but in contrast with
the present work this has been achieved by introducing ex-
plicitly the p-wave amplitudes. Therefore, it is fair to say that
we have now two alternative models capable of explaining
the data of Moskalet al. [6]. In addition to that one can also
imagine schemes being a compromise between these two
solutions. Which one is realized in nature remains to be seen
and polarization experiments are needed to settle this ques-
tion. Thes-wave dominance scheme advocated in this paper
predicts vanishing of the analyzing power which is a direct
indicator signalling the presence of higher partial waves.

After the present work had been submitted for publication
yet another calculation[24] came to our attention, emphasiz-
ing the three-body aspects of thepp→pph reaction. Accord-
ing to these authors, up to an excess energyQ=60 MeV the
contribution of higher partial waves in the final state is of
minor importance as compared to thes wave.
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