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Phenomenology of thepp— pp#» reaction close to threshold
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The recent high statistics measurement offipe- pp» reaction at an excess ener@y 15.5 MeV has been
analyzed by means of partial wave decomposition of the cross section. Guided by the dominance of the final
state'S, pp interaction(FSI), we keep only terms involving the FSI enhancement factor. The meappraad
np effective mass spectra can be well reproduced by lifting the standard Watson-Migdal approximation in the
enhancement factor and by allowing for a linear energy dependence in the |éRgirg'S,,s partial wave
amplitude. Higher partial waves seem to play only a marginal role.
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[. INTRODUCTION constanty production amplitude is multiplied by an on-shell
] ~proton-proton FSI enhancement factor is only qualitatively
In recent years major advances have been made in theyrect, but at a quantitative level turns out to be insufficient
experimental[1-6] and theoretica[7-1] investigation of  to explain the experimentgp and 7p effective mass distri-
the near threshold meson production reactions in nucleorbutions. The contribution from higher partial waves and the
nucleon collisiongfor a comprehensive review cf. Rgfl]).  final stateyp interaction have been indicated as the possible
With the advent of medium-energy accelerat@@®JF, CEL-  sources of this discrepancy. In comparison wiihinterac-
SIUS, and COSYand the corresponding influx of high pre- tion, however, the role of)-N interaction is much less im-
cision data on the total and differential cross section as welportant and taking as a rough measure the ratio ofjfhand
as the polarization observables, it has become possible fop scattering lengths squared we may expect an effect at the
study the interaction of the flavor-neutral mesoag.,7°,»,  level of about 1%. A full three-body calculation based on the
and ) with nucleons. A direct insight into such interaction hyperspherical harmonics method accounting for all pair-
cannot be gained from meson-nucleon scattering experiise final state interactions corroborates the above estimate
ments as the latter are impractical owing to the very short lifeShowing that thexp interaction modifies significantly only
time of these mesons. Naturally, the largest data base h&€ total production cross section as function of the exci-
been accumulated for the piof but the bulk of data om; ~ [@tion energy whereas the distortion of the shapes of the ef-
production in proton-proton collisions has also expanded Sigtectlve mass distributions does not exceed the current experi-

nificantly [3-6]. The 5 meson, which is the next lightest mental uncertainties. The hyperspherical harmonics method

will be presented elsewhef&2] and here instead we would
nonstrange member of the pseudoscalar octet, has focusE e to confine our attention to a purely phenomenological

consid_erable attention Of. the nuc_:lear comml_mity since it Wa?iescription of the effective mass spectra at the lowest avail-
established that the-N interaction was quite strong and able excitation energy)=15.5 MeV. At such low &Q only
attractive which might lead to a possible existence of the, o\ partial waves in both initial and final states are ex-
7-nuclear bound states. pected to participate in the creation process which substan-

In the recent measiurernents of thp— ppy reaction a tially facilitates the interpretation of the experimental find-
very accurate determination of the four-momenta of bot ngs

outgoing protons allowed for the full reconstruction of the For sufficiently low excitation energies tHP,— 1Sy,s
. th?df";a.hpp dséa.te' In condser(]quence, these rlnea'transition amplitude becomes necessarily the sole contributor
surements provided in addition #and the proton angular , e cross section as it is the only amplitude surviving at
distributions, also th@p and »p effective mass distributions  .cchold. The supposition that this happens @t
[4-6]. The common feature of the near-threshold meson pro= 5 5 ey appears to be quite plausible especially that in
duction in proton-proton collisions is the dominance of thethe experiment5] at Q=15 MeV the measured angular dis-
very strong proton-proton final state interaction.. The Mont ributions were consistent with isotropy, but under this hy-
g}z;l?of'g‘nl:ﬁ“ggsgs aeigs:le:?hgI:ﬁgltugﬁ)lﬁutln?t;ﬁgsfirrlg\lli?gt othesis it has not been possible to explain satisfactorily the
15, pp interaction(FSI) enhances the cross section by more ffective mass _dlstrlbutlc_)ns from Re[ﬁ]. Neverthel_ess, :
: . ; . ~among the possible amplitudes the partial wave amplitude in
than an order of magnitude. This effect is also clearly V|5|bleWhich the two protons are deposited in tH&, state must
in the eﬁectlvg mass d|str|bqt|ons: asa Pfom'”?”t peak CIOSSlay a dominant role for smal) because it is proportional to
LO thresholdhm th%pp gffep'uve mafsfs Q|str|but|ondpr %S 2 the exceptionally large FSI enhancement factor and this is
_umpTrr:eadr the end point in thﬂ%) € 'ectllve mzssl . 'Strr']_ur'l going to be the central ansatz of this paper. Accordingly, in
tion. The description in terms of a simple model In which a,q first approximation, the cross section should contain all
such terms which are proportional to the FSI enhancement
factor and this comprises the square of the modulus of the
*Email address: deloff@fuw.edu.pl 3Py— 1Sy, s amplitude plus possibly the appropriate interfer-
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ence terms. However, after integrating over the angles all thevish to reexamine the FSI problem to make sure that ad-
interference terms vanish and give no contribution togpe equate measures have been taken to obtain the ultimate so-
effective mass distribution. On the other hand, in a situatiorution. The basic idea how to account for final state interac-
where we have very low excitation energy, exceptionallytion was put forward 50 years ago by Ferfii3], Watson
large s-wave amplitude and both angular distribution isotro-[14], Migdal [15], and othergfor a review cf. Refs[16-1§)
pic thes-wave dominance concept still seems to be the mosand is based on the observation that in many processes the
obvious explanation. Since at lo® higher partial waves interaction responsible for carrying the system from the ini-
should be suppressed, there is really not much room for imtial to the final state is of such a short range that in the first
provements left unless a weak energy dependence is adm#pproximation it may be regarded as pointlike. As a proto-
ted in the production amplitude and, surprisingly, such a postype one may consider a mes@r production reactiolNN
sibility has never been considered in the literature. We— NNx To generate the meson massin nucleon-nucleon
demonstrate in this paper that with this rather modest andollision a large momentum transfer is required between the
natural assumption botpbp and 7p effective mass distribu- initial and the final nucleons, which is typically of the order
tions can be quite well reproduced so that one may concludeMm, with M being the nucleon mass. The corresponding
a posteriorithat the role of higher partial waves seems to be‘range” of the production interaction is therefore much
marginal. shorter than the range of the interaction between the two
Returning now to the higher partial waves option, the con{inal state nucleons. Although it is perfectly true that the final
tribution from the p waves, or, more precisely, from the stateNN interaction significantly distorts thidN wave func-
15y—3Py,s and 'D,—3P,,s amplitudes, has the best tion but in the transition matrix element the contribution
chance to show up when the relative momenta of the finalfrom all but the smallesNN separations will be strongly
state protons take the largest values allowed by the phasgippressed and the main effect may be attributed to the
space. Since &=15.5 MeV this sector still overlaps with change of the normalization of the wave function at zero
the peak region of théS, enhancement factor, ttewave  separation. If the noninteractifgN pair is described by a
also receives their maximal amplification. Therefore, theplane wavee™ ', wherek is the relativeNN momentum
relative strength of th@-wave amplitudes to be discernable (A=c=1 units are used hereafjeto account for final state
has to be quite substantial which in general should be reinteraction the latter must be replaced in the transition matrix
flected by a pronounced angular dependence of the croggement by the completN wave function¥~(k,r)" satis-
section. This difficulty has been thoroughly examined by Nafying outgoing spherical wave boundary condition at infinity.
kayamaet al. [9] who pointed out that the unwanted angular Nevertheless, for gointlike interaction we may set
dependence might1 still ?e suppressed under two circum-
stances:(i) if the “D,—°P,,s amplitude was negligibly - T ot ket
small so that the angular dependent term was absertij or, vk ~e C @)

if the lack of angular dependence resulted from, . ) . . .
cancellations—from a destructive interference betw&gn " the matrix element so that the final state interaction will be

—.3p,,s and 'D,— 3P,,s amplitudes. Thus, a model basing accounted for by multiplying thg transition matrix element

upon a strong wave needs additionally somewhat fortuitous PY the enhancement factor, defined as

coincidences. Finally, we wish to reiterate that the correction

to the sswave amplitude proposed above gets amplified by C(k) = limW*(-k,r)/e™ X, (2)

the large FSI enhancement factor while thevave contribu- r—0

tion is not and therefore we expect that the former should be

more important. The factor|C(k)|? that appears in the cross section represents
The plan of our presentation is as follows. In the follow- the ratio of two probabilities: one of finding the interacting

ing section the FSI enhancement factor is revisited. We argublN pair at zero separation, while the other probability is

that owing to too steep a fall of the Watson-Migdal enhanceassociated with noninteracting particles. By construction,

ment factor the approximate form thereof should be abanwhen the final state interaction is turned off, the enhance-

doned in favor of the full off-shell expression. Having estab-ment factor will be equal to unity. Expanding both, the nu-

lished the best form of the enhancement factor we discuss tHaerator and the denominator on the right-hand side of Eq.

partial wave expansion of thep— 7pp transition amplitude  (2) in partial waves, we have

in a quest of an approximate expression for the cross section

that would be valid for. the Iowgst excitation energies.. Fi- Ew_ 26+ 11 (k1) Pe(lz-?)

nally, in Sep. I we verify our simple model by presenting C(K) = lim =0 3

the comparison with experiment. r—0 E;—o (2€ + 1)|—€ j((kr) P((IA< ’r:)

Il. THEORETICAL FRAMEWORK . . .
where ¢,(k,r) ~r¢*?! for smallr, j.(kr) is spherical Bessel

function andP,(k-f) denotes Legendre polynomial. Clearly,
Since the proton-proton final-state interaction is believedn the limit r — 0 in Eq. (3), all higher partial waves will be

to be the dominant ingredient in the description of g suppressed by the centrifugal barrier, and only the contribu-

— ppn reaction close to threshold, it is logical that we first tion from s-wave survives. Thus, we obtain a simple formula

A. Derivation of the enhancement factor
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C(K) = o(k,0)' /K, (4) has been referred to as the Jost functj@8]. It is worth
) o ) noting that unlike the scattering amplitud® which can be
where prime denotes derivative with respectrfoand, as  expressed solely in terms of the logarithmic derivative of the
apparent from Eq(4), the enhancement factor is determined eqyar solution, the enhancement fact8 depends sepa-
by the slope of the wave function at the qrigin. To find_ this rately upon bothu andu’, and therefore the calculation of
slope we must know thBIN swave interaction and for sim-  ¢(k) requires off-shell information. In particular, a phase
plicity we shall in the following assume that the latter takesgp;ft equivalent transformation of the potential may change

the form of a spherically symmetric radial potential. The {ha enhancement factor by orders of magnitude. Forrf@)la
shape of this potential may be arbitrary but it must be of 3may be cast to the form

short range. Given th&lN potential, we can integrate out-
ward the appropriate wave equation, containing both the (- k?)Cy(7m)?

nuclear and the Coulomb potential, generating numerically a Clk) = CWM(k)W[FO(‘I],kR),UO(k, R]’ (10)
regular solutiorug(k,r) (i.e., vanishing at the origjnwhose
derivative satisfies the boundary condition where
= e'%sin &
Uo(k,0)" = Co( )k, (5 Con(K) = (11)

where 7 denotes the Sommerfeld parameter abgl7)? k Go(n)

=2myl[exp27y)-1] is the Coulomb barrier penetration is the familiar Watson-Migdal factdr16], depending solely
factor. The sought for physical solutiof(k,r) occurring  upon the on-shell quantities, whereas the Wronskian occur-
in Eqg. (4), which is also regular, is necessarily propor-ing in Eq.(10) represents the off-shell correction.

tional to uy(k,r), and, more explicitly, we have Formula(8) deserves some further comments. It is easy to
check that when both, the Coulomb and the strong interac-
o(k,r) = [C(k)/Co(7)]up(k,r). (6) tion are switched off, the enhancement fac{8y goes to

Now, all we need to calcula@(k) is the asymptotic expres- unity. When the nuclear potential alone is set equal to zero,
. : . . we haveug(k,R)=Fy(7,kR) and Eq.(8) yields C(k)=Cqy(7).

Z'.On for the physical wave function. FoFR W.'th R much . _Clearly, these are the right limits but they could not have
'gger tha’? the range of the nuclear potential, the physic een obtained with the Watson-Migdal factor alone which

wave function takes the form implies the importance of the off-shell correction. Neverthe-

Yok, R) = [C(K)/Co(7) Tug(k,R) less, close to threshold the off-shell factor varies slowly with
. energy, and the Watson-Migdal factor usually makes a good
=Fo(7,kR) + fo(KHo(7.kR), (7)  approximation. It should be kept in mind, however, that in

result of multiplying the cross section by the Watson-Migdal
factor the overall normalization is lost precluding an absolute
calculation(cf. Ref. [21]).

Some authors choose to simplify further the Watson-
Migdal enhancement factofll) by applying a Coulomb
modified effective range formula for the phase shift. Thus,

us with a second condition for the derivatives but it should . .
be noted thatiy(k,R) andu(k,R)’ occurring in these two Loggreiz%?ész?’ the phase shift can be obtained, e.g., from the

matching conditions are to be regarded as known quanti-
ties. Indeed, they are fully specified by the boundary con-C3(7)k cot 8+ 2k 5 h(7) = - 1/a+b K2 =P K/(1 +Qk),
dition at the origin(5) and can be either calculated ana- (12)
lytically, or obtained by numerical methods. Therefore,
what we end up with are two algebraic equations in whichwith h(z)=Rey(1+17)-In(7), where ¢ is the logarithmic
the two unknowns are the enhancement fac@ok) and  derivative of thel function. In Eq.(12) a=-7.83 fm and
the scattering amplitudgy(k), and the respective solutions b=2.8 fm denote, respectively, the experimenpgl scat-
can be conveniently written as tering length and the effective range and the remaining
two parameterg¢P=0.73 fn? and Q=3.35 fn¥) are related
C(k) = k Co(n) to a specificNN potential[23]. The approximation(12)
WH(7,kR),ug(k,R)]’ has been popular in certain quarters and used in conjunc-
tion with Watson-Migdal formula11) for not very large
and k, which results in a good approximation to the enhance-
ment factor owing to a rather fortuitous cancellation of
- W{Fo(7,KR), Ug(k,R)] , 9 errors associated with different approximations.
W[HS(W:kR)vUo(k'R)]

where the symbol[f,g] denotes the Wronskian defined as
w(f,g]=fg’'-f'g. We wish to recall that the specific We are now going to illustrate the results obtained in the
Wronskian involving the regular solution and the outgoingpreceding section by explicit calculations carried out for
wave solution present in the denominator of E@.and(9)  three phenomenologicdIN potentials which are the delta-

where H(7,kR =Gy(7,kR +1 Fo(7,kR) with Gy(7,kR)
and Fy(n,kR) being the standard Coulomb wave functions
defined in Ref[19], andf,y(k)=sin & €° denotes thes-wave
scattering amplitude witl being thes-wave phase shift.
The differentiation of Eq(7) with respect toR, provides

8

fo(k) =

B. Examples
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shell Vp, a GaussiaiVg, and the soft-core Reidy potential

[20]. Among these three potentials only Reid potential hasa | . | Delta 1
repulsive short-range component while the two remaining — Reid

. N Y A Y RE eff. range
ones are purely attractive. The reason for selecting these par- 50 - Goauss —
ticular shapes is that they exhibit different behavior in the % experiment

close to the origin region: the delta-shell potential vanishes
for small r, while a Gaussian potential shows maximum
strength ar =0, and, finally, the Reid potential is singular at
the origin, i.e.,Vg— 0. Our purpose is to examine how this
very different off-shell behavior influences the enhancement
factor properties. Thus, as our first example we shall con-
sider the delta-shell potential specified by a rafygand a
dimensionless depth paramegeefined by the formula

M Vp(r) =-(s/R)&(r - R), (13

where the values of the parameters &=1.84 fm ands
=0.906. Athough this potential is not realistic, its main
advantage lies in its simplicity: both the phase shift and
the enhancement factor may be for this case obtained in an
analytic form. A simple calculation gives the Coulomb
distorted phase shift

(s/p)Fo(7,p)?
1 -(p)Fo(7,p)Go(7.p)

wherep=KR, and, respectively, the enhancement factor

(k) = Co(n)

tan 6=

(14)

(15

20

10
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200
k (MeV)

300

FIG. 1. Momentum dependence t#, phase shift for different
pp potentials.

potentials are devised in such a way that they are capable of
reproducing the experimentally determined effective range

= - .
1=(Sp)Fo(.p)Ho(7.p) parameters. The main consequence of conducting a phase

It is apparent from Eq(15) that when the nuclear potential is shift equivalent transformation is that the asymptotic wave

switched off by setting equal to zero the enhancement fac- function and its derivative acquire a common factor preserv-

tor reduces to the Coulomb fact@y( 7).

The Gaussian potentialg(r)=V, exp(—-r2/R?) has also
two parameters, the deptfy and the rang®, whose values
areVy=-31 MeV andR=1.8 fm and in this case the solution
of the wave equation will be obtained numerically. Finally,
we consider the fully realistic Reid soft core potenfia0],
given in the form of a superposition of three Yukawa poten-
tials, which also requires numerical treatment. The results of
our computations are presented in Figs. 1 and 2.

In Fig. 1 we show the calculatgzb phase shift vs center-
of-mass momentum as obtained from the different potentials.
They are compared with the data and we can see that up to
about 150 MeV all models agree well with experiment. For
bigger momenta the situation is less satisfactory, except for
the Reid potential whose performance is still very good.

Clearly, among the considered potentials only the Reid
potential has a repulsive core and therefore is capable of
reproducing the crossover from positive to negative values in
the phase shift at 340 MeV. In Fig. 2 we compare the en-
hancement factors calculated from form@a®) for different
potentials. We stipulated the normalization as to get in all
cases the same height at the maximum. It is evident from
Fig. 2 that very good agreement between different potential
model's results sustains for momenta up to about 150 MeV
indicating that, apart from normalization, different off-shell

|C(k)|2 (arbitrary units)

2

ing thereby the shape of the enhancement factor. The differ-

10

10

100

10

---- Gauss
=~ eff. range

= T

100 200
k (MeV)

properties have little impact on the shape of the enhancement FIG. 2. Enhancement fact@(k)|? vs k for different pp poten-
factor. This can be easily understood since close to thresholthls. The dot-dashed curve has been obtained from @ds.and

effective range approximation is usually adequate ani/ll
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TABLE |. List of allowed transitions?S**L;— 2*1¢; \ for the  protons. In the transition matrix element the evedd) par-

lowest partial waves in the reactigmp— pp7. tial wave amplitude will be multiplied by an appropriate pro-
jection operator which is symmetri@ntisymmetri¢ under
Even{ Odd ¢ the transformatiork — —k. Since the final state protons are
s L 1 s indistinguishable all observables must be invariant under the
Po—"%.s So—"Po,s interchange of the proton momenta, i.e., under khe —k
3p,—15,d D, —3P,,s transformation. This means that all interference terms be-
8F,—15,,d 3Py—3P1,p tween even and odd states which are antisymmetric under
3p,,1D,s 3p, 3P, p k— -k transformation are bound to vanish if one wants to
3 1 3 3 respect Pauli principle. In consequence, interference is al-
F2—> Dsz F2—> Pl,p . .
3p._.3p lowed on_Iy betw_e_en partial waves belonging to the same
27— F1P group which significantly reduces the number of terms in the
*F,—3P2,p cross section.
3P, —3Pg,p For small excitation energy the final stgi@ interaction
3p, 3P, p appears to be the dominant effect and therefore it seems jus-
3p,_.3p, p tified to neglect in the cross section all terms which do not
3F1 3P2’p contain the enhancement factefk). With this assumption
3= 2,

the only contribution to the cross section comes from the
even partial waves listed in Table I. The partial wave ampli-

. | - tudes are functions of bottk? and g® but since these two
ences appearing at larger momenta are not surprising as thg,a ntities are linked by energy conservation one of them is

different models do differ there also on-shell, as apparenfoqyndant. Terms linear kor q will be absent which can be
from Fig. 1. In particular, as seen from Fig. 2, the effectiveseen as follows. The momentum dependence in a partial
range formula makes a reliable approximationkarot big-  ave amplitude originates from the spherical Bessel func-
ger than about 80 MeV. With the current high precision datations j,(k¢) j,(qz) occurring in the appropriate overlap inte-
however, this approximation is insufficient causing a t00grals, where¢ and 7 are the Jacobi coordinates canonically
rapid fall off of the enhancement factor. Indeed, already forconjugated withk and g, respectively. For even orbital mo-
the excitation energy as low &~=15.5 MeV and the maxi- mentum the spherical Bessel function is an even function of
mal momentumk.,=120 MeV, |[Cyu(knad|? calculated the argument so that in the expansion of the partial wave
from Eq. (12) is by a factor of 2 smaller fromiC(ky,0|>  amplitudes only even powers of the momenta will be admit-
obtained from Eq(10), with both functions normalized to ted. However, for practical reasons, it does not seem feasible
yield the same height at the peak. In consequence, with th® go beyond the second orderkrandg. _
Watson-Migdal approximation the relative momentum distri- ~ The above considerations lead us to take the following
bution in thepp— pp7 reaction has a too rapid fall off. simple expression for thep— pp7 reaction cross section

dofdLips=|C([a+b Py(p- )]+ Co()

C. The cross section of the reactiompp— ppzn X[d Re C(k) + e Im C(k)]P,(p - |2). (16)

Since close to threshold only a small number partialin Eq. (16) we are using the standard notation whetéps
waves contribute to thpp— ppz transition amplitude, it is  stands for the invariant three-body phase space element. In
feasible to expand them in terms of angular momentum. Th&q. (16) a denotes the modulus squared of the sole produc-
transition amplitude is an operator in spin space that dependi®n amplitude which survives at threshold, associated with
upon the three center-of-mass. momenta, which determingae transition®P,— S, s, b represents the interference term
the kinematics of the reaction, namely, the initial proton mo-between the latter amplitude and e, — 'S;,d amplitude,
mentump, the relative momentum of the final state protonsand the(d,e) pair describes, respectively, the interference
k, and finally the momentum of relative to thepp pairq  Wwith the 3P, — D,,s amplitude. All of the above-mentioned
(other possible choices will be discussed latey. dine quan-  coefficients are functions of the final state momenta. Taking
tum numbers associated with the initial state are the anguldnto account only threshold behavior, we can see tha
momenturrL, the total spirs, and the total angular momen- constantp will be proportional tog? and (d,e) both are of
tum J. In the final state, the angular momentum and the théhe order ofk?. In this situation, we have to expamcto the
total spin of thepp pair are denoted aéands;, respectively, same order setting=a,+a; g° where a, and a; are two
and the relative motion ofy is described by the angular unknown parameters. The paramedgrcan be absorbed in
momentum\. Among the above quantum numbers odlis  the normalization constant adjusted to the experimental total
conserved while the remaining quantum numbers are corsross section value, and the ultimate expression for the cross
strained by parity conservation and by the Pauli principlesection reads
Since 7 is a pseudoscalar meson, parity conservation re- o ¢ K2
quires thal.+¢+X\ must be an odd number. Alist of possible  ——— = |C(K)[>{ 1+ 5—[x+y Py(p- @] + 5 Co(7n)
transitions consistent with the above restrictions involving ps max max
the lowest angular momenta is presented in Table I. A

These trangitions can be cIasZified as even or odd accord- X[z Re C(k) +2 Im C(k)]P(p - k), 17
ing to the value of the angular momentuhof the final state  wherex,y,z,z are real dimensionless parameters to be de-
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FIG. 3. s, distribution is compared with the data from Moskal S )

et al. [6]. The dotted curve corresponds to a consfity— 1Sy,s FIG. 4. s,, distribution is compared with the data from Moskal
transition amplitude with on-shell enhancement fagti) calcu-  ©t @l [6]. The dotted curve has been obtained keeping only the
lated from Eq.(12). In the dashed curve the complé@(Kk)|? has dominant*Py— Sy, s transition amplitude, which is assumed to be
been used while in the full curve, at the top of that, a correction? constant withiCyy(K)|? calculated from Eq(12). In the dashed
linear in energy has been included. curve the complet¢C(k)|? has been used while in the dot-dashed
curve, at the top of that, a correction linear in energy has been
included. The full curve accounts for also the interference with

termined. For reasons of convenience we have scpitik 3p,—15,,d amplitude

by dividing them by their maximal valueg.x and Kmnax.
respectively. The parameterepresents the correction of the
order g? to the dominant transition, the parametgrsand
(z,,z) provide the measure of the admixture of thavaves.

and 4. Although the resulting corrections go in the right di-
rection bringing the calculation closer to experiment, but this
is still not enough for providing a full understanding of the
data. In this situation, it is interesting to know how much we
can improve the agreement by disposing of the various cor-
rections discussed in the preceding section and represented
In Figs. 3 and 4 we present the experimental distributiorPy the adjustable parametexsy,z,z. Before proceeding,
[6] of the square of the effectivep masss,, and the square Nhowever, it should be observed that in the case offipe
of the 7p masss,,, respectively. For a start, we assumed aeffective mass distribution a major simplification takes place
constant production amplitude settingy=z=z=0. Using  because, as apparent from E&j7), after integrating over the
the Watson-Migdal enhancement fact@yy(k)|? specified ~angles only thes-wave amplitude survives. Therefore, the
in Eq. (11) with the effective range approximatigh?), from  Parametery,z.,z representing interference terms never en-
Eq. (17) we obtain the theoretical distributions depicted by ater Spp distribution. o _
dotted curve in Figs. 3 and 4. By contrast, in the case sfj, distribution the interference
Qualitatively, the dotted curves in Figs. 3 and 4 arel€mS, in general, do not vanish in result of angular integra-
roughly in accord with experiment but they are far not satis{ion. Since a nonrelativistic approach is here completely ad-
factory in quantitative terms. In both figures the peak in theeduate, in order to obtain the cross section as a function of
calculated curves is too big and partially responsible for thaf»» We have to introduce an equivalent Jacobi frame taking
is the oversimplified enhancement factor. As we already?S the two independent momenta t relative momentum
know, | Cyu(K)|? calculated by using effective range formula k, and the momentgm of the other proton relat[ve to this pair
(12) exhibits too steep a fall and by normalizing the distri- d1- The transformation between the two Jacobi frames, takes
butions to the total cross section, to compensate that, th&'€ form
curves are moved up so that the peak gets magnified. There- (k) (— 12 - pulv )(kl)
fore, the simplest remedy is to abandon the Watson-Migdal = _ ,
T . q 1 uIM J\0gq
approximation and from now on we will use the complete
enhancement factor calculated from E§0). The appropri- whereu is the 5-p reduced mass andis the reduced mass
ate distributions are presented by the dashed curves in Figs.d3 the » and thepp pair. Clearly, substituting Eq18) in Eq.

I1Il. COMPARISON WITH EXPERIMENT

(18
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FIG. 5. The total cross section for tigp— ppz reaction vs the o o )
excitation energyQ for different values of the parameter The FIG. 6. s, distribution for an excitation energ@=41 MeV is
experimental data are from Ré8]. compared with the data form Abdel-Baey al. [5]. In our calcula-

tion we have neglected all higher waves except iRg— 'S;,s
(17) and integrating over the angles f andq;, the inter-  transition amplitude. The energy dependence in the latter is propor-
ference terms give nonvanishing contribution. tional to the parametex, cf. Eq. (17).

Since thes,, distribution depends solely upon we ad-

justed this parameter by fitting the theoretisg) distribution  sensitive to thé\N potential used to obtai@(k) because the
to the experimental data with the best fit valuexdfeingx normalization ofC(k) cannot be absorbed in the overall nor-
=-0.514. The resulting distribution displayed in Fig. 3 by themalization of the cross section.
full curve agrees now quite well with experiment. Actually,  In Fig. 5 we are going to present the changes in the exci-
since the interference terms drop out and #einteraction  tation energy distribution caused by adding an energy depen-
gives here a small effect, there is really not much room fordent term to thez production amplitudgthe interference
improvement other than including tiog correction in the the  terms in Eq.(17) give no contributiof
dominant®P,— 1S,,s transition amplitude. Next, with the The casex=0 corresponds to a constant production am-
value ofx in hand, we calculated thg,, distribution, still  plitude (dotted curve in Fig. § while x=-1 (dashed curve in
leaving out the interference terms, i.e., settngz,.=z=0.  Fig. 5) represents the lower limit for this parameter which
The resulting cross section which does not involve adjustablenust be imposed to prevent the cross section from going
parameters any more is presented in Fig. 4 by a dot-dashetbgative. The best fit value=—-0.5 necessary to reproduce
curve. We can see that also in this case the agreement withe effective mass distributions f@=15.5 MeV is roughly
experiment looks much better. The interference terms in Egmidway between these values and the corresponding cross
(17) involving the parameterdz,z) are probably much section is presented by the full curve in Fig. 5. The linear
smaller than the term proportional fobecause the former energy dependence introduced in the amplitude ofitipeo-
terms exhibit only a linear dependence upon the enhancetuction has little impact on the total cross section. In fact, the
ment factor, so we ignored these terms adjusting the singlevo curves whera< 0 exhibit slightly better agreement with
parametery to the experimentak,, distribution. With x  experiment as compared with the dotted curve corresponding
fixed, the best fit value of wasy=3.38. The corresponding to constant production amplitude. To obtain our curves we
cross section is displayed in Fig. 4 by the full curve and theused the full expression for the enhancement factor. We wish
agreement is quite good. We tried also to vary the parametets note that as a result of using the Watson-Migdal approxi-
(z;,z) but this was not very successful as the fitting proce-mation for the enhancement factor the calculated cross sec-
dure attempts to reproduce a structure at the high energy ertin is underestimated at largg.
of the spectrum. With three adjustable parameters it is quite With a good fit to the effective mass distributions Qr
easy to produce a two-peaked distribution with a gadd =15.5 MeV, it is interesting to know whether the approach
Since it is not quite certain that the data really reveal a twopresented above makes sense@sr41l MeV since for this
peaked distribution we did not pursue this fit any further. Itvalue of the excitation energy the experimental data are also
should be also mentioned that when the interference terravailable in the literaturgs]. Strictly speaking, for this much
linear in C(k) is accounted for, the calculation becomes verylarger excitation energy the validity of the simple formula
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70 - T - E T to improve the agreement in both distributions using the
F same value of the parameterand therefore the fit depicted
by the full curve is a compromise. Although the corrections
go in the right direction but the agreement is still not satis-
g factory and we have to accept the fact that @=41 MeV
the assumed functional form of the cross section is incom-
plete. We tried to include the interference terms with the
8 waves but the fit was unsuccessful. Clearly, further exten-
sions call for additional parameters but this does not seem to
be affordable with the present data, and therefore we stop
T here.

Summarizing, a simple model in which thgp— pp»n
cross section contains only the domindRt— 1S, s partial
wave amplitude corrected by the final staeinteraction is
- capable of explaining the current experimental data at an
excitation energyQ=15.5 MeV. The experimentgbp and
the np effective mass distributions can be both reproduced if
— (i) in the » production amplitude a correction linear in en-

60 -

50

40

(arbitrary units)

np

W

S
|

do /ds

%)
[=)
|

---- x=0.514
— x=-0.863 . ) :
....... §= 0.0 ergy is admitted andii) the full pp FSI enhancement factor

without the Watson-Migdal approximation is used. In the
0 . L . ' : presented calculation thep final state interaction has not

10k

22 2.25 23 2.35

s (GeVD) been included explicitly for reasons outlined in the Introduc-
np

tion but since the parametexsandy have been adjusted to
the data, they effectively account for this effect.

It has to be noted here that the same set of f@ltdnas
been analyzed in Ref9] where the latter authors obtained a
comparable agreement with experiment but in contrast with
the present work this has been achieved by introducing ex-
plicitly the p-wave amplitudes. Therefore, it is fair to say that
(17) becomes questionable and the inclusionpofvaves we have now two alternative models capable of explaining
might be indispensable. Nevertheless, it is useful to find outhe data of Moskaét al. [6]. In addition to that one can also
what a simple model can do for largéx imagine schemes being a compromise between these two

The results of our computations are presented in Figs. 6olutions. Which one is realized in nature remains to be seen
and 7 where they are compared with the data fféinin the  and polarization experiments are needed to settle this ques-
calculation we neglected the interference terms, setying tion. Thes-wave dominance scheme advocated in this paper
=z=z=0 in Eq. (17). The dotted curve in Figs. 6 and 7 predicts vanishing of the analyzing power which is a direct
corresponds to a constantproduction amplitude. While the indicator signalling the presence of higher partial waves.

s,p distribution is not too far off the experiment, tisg, After the present work had been submitted for publication
distribution is in a bad shape as the peak causegdySl is  yet another calculatiof24] came to our attention, emphasiz-
definitely much too big. The dashed curve is obtained bying the three-body aspects of thp— pp# reaction. Accord-
adopting forx the same value that f@=15.5 MeV gave the ing to these authors, up to an excess en€g60 MeV the
best agreement with experiment, i.e., we are pretending thabntribution of higher partial waves in the final state is of
this parameter does not vary witD. This brings improve- minor importance as compared to thevave.

ment in both cross sections and in fact g distribution

agrees with the data quite well. Since the parameteray

depend uporQ, and forQ=41 MeV its value could be dif- ACKNOWLEDGMENTS

ferent than folQ=15.5 MeV, we allowec to vary, adjusting The author wishes to thank S. Wycech for reading the
its value to the data fronfi5]. This time the best fit value manuscript and for constructive criticism. Partial support un-
turns out to bex=-0.863 and the corresponding distributionsder Grant No. KBN 5B 03B04521 is gratefully acknowl-
are presented by full curves in Figs. 6 and 7. It is not possibledged.

FIG. 7. s, distribution for an excitation energQ=41 MeV is
compared with the data form Abdel-Baey al. [5]. In our calcula-
tion we have neglected all higher waves except IRg— 1S;,s
transition amplitude. The energy dependence in the latter is propo
tional to the parametex, cf. Eq.(17).
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