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We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of
an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the
effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while
the collisions among quarks and mesons change the time structure of the phase transition significantly.
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I. INTRODUCTION

It is generally accepted that the most interesting quantum
chromodynamics(QCD) phase transition in hot and dense
nuclear matter is the deconfinement phase transition between
normal nuclear matter and quark-gluon plasma(QGP),
where quarks and gluons are no longer confined. The theo-
retical and experimental investigation of QGP is one of the
most challenging problems in high energy physics. It is
widely believed that QGP phase can be formed in ultrarela-
tivistic heavy-ion collisions.

Due to the difficulty of nonperturbative treatment in
QCD, various models have been considered in the study of
the phase transition among which Friedberg-Lee model[1],
also referred as nontopological soliton model, has been
widely discussed in the past two decades, see for instance
Refs.[2,3] and references therein. In this model, the nonper-
turbative dynamics responsible for confinement in QCD is
simulated in terms of a nonlinear coupling to a scalar fields.
It shows an intuitive mechanism for the deconfinement phase
transition. In vacuum state, the physical value ofs is large
and the quark mass is more than 1 GeV, so that the effective
heavy quarks have to be confined in hadron bags[1]. With
increasing temperature and/or density of the system, the
physical value ofs and in turn the effective quark mass
drops down, the thermodynamic motion leads to a deconfine-
ment of the effective light quarks.

Wilets and his co-workers[3,4] did a great deal of work
on the properties of Friedberg-Lee model, mostly in mean
field approximation and in vacuum state. It is proved very
successful in describing the static properties of the nucleon.
During the past years, Friedberg-Lee model was extended to
finite temperature and density to study deconfinement phase
transition[5–8]. Similar to most of these investigations in the
frame of finite temperature field theory, the temperature and
density effect on the phase transition is based on the assump-
tion of a thermalized plasma phase. While one can use vari-
ous parameters and take different treatments, the critical tem-
perature of the deconfinement phase transition in the model
is limited in the region of 80–120 MeV at zero chemical
potential, much lower than the prediction in Lattice QCD[9].

Because of the estimated very short lifetime of the heavy-
ion collision zone, the highly excited particle system may
spend a considerable fraction of its life in a nonthermalized,

preequilibrium state. The dynamical tool to treat dissipative
processes in heavy-ion collisions and the approach to local
thermal equilibrium is in principle nonequilibrium quantum
transport theory. A relativistic and gauge covariant kinetic
theory for quarks and partons has been derived[10], both in
a classical framework[11,12] and as a quantum kinetic
theory [13,14] based on Winger operators defined in eight-
dimensional phase space[15]. To solve the quantum kinetic
equations as initial problems, the transport and off-shell con-
straint hierarchies have been established[16–19] in the
frame of equal-time Wigner operators. The properties of
nucleon-nucleon collisions have been explored[20,21] in
transport approach of Friedberg-Lee model.

In the present paper, we consider an expanding nonequi-
librium system with collision terms in the framework of
Friedberg-Lee model to investigate the approach of strong
interaction matter toward thermal equilibrium and the decon-
finement phase transition during this process. The collision
terms will be introduced through a relaxation time approxi-
mation in transport equations of quarks and sigmas, and the
expansion of the system is simply described by the Bjorken
scaling hydrodynamics[22]. We specially focus on the effect
of collision terms and nonequilibrium on the deconfinement
phase transition, by investigating at what proper time the
phase transition occurs, how long it lasts for a first-order
transition, and their dependence on the relaxation time.

The outline of the paper is as follows. The full transport
equations for quarks and sigmas in relaxation time approxi-
mation, and the simplified equations in quasiparticle limit
and boost invariance approximation are presented in Sec. II.
In Sec. III we exhibit the numerical results and discussions.
Finally a brief summary is given in the last section.

II. TRANSPORT EQUATIONS

The Friedberg-Lee model is defined as[1–3]

LFL = c̄
ˆ figm]m − sm0 + gŝdgĉ + 1

2]mŝ]mŝ − Usŝd,

Usŝd =
a

2
ŝ2 +

b

3!
ŝ3 +

c

4!
ŝ4 + B, s1d

where ĉ ,c̄
ˆ
, and ŝ are quark, antiquark, and scalar fields,

respectively,m0 is the current quark mass and chosen to be 0
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in the following to simplify the calculations. There are five
parameters in the Friedberg-Lee model.a with dimension
L−2, b with dimensionL−1, dimensionlessc, the coupling
constantg between quark and scalar fields, and the bag con-
stant B used to provide a quark confinement potential in
mean field approximation in the vacuum. Of the five param-
eters, two are adjusted to fit the proton size and the nucleon
mass, and the others are left to survey, fit, and predict physi-
cal data. Since the model is an effective one, the values of
the parameters depend on the level of approximation em-
ployed [23]. Different parameter sets can be found in the
book by Wilets[3].

The relativistically covariant quark Wigner operatorŴq

and sigma Wigner operatorŴs are the Fourier transform of
the corresponding density matrices[15]

Ŵqsx,pd =E d4yeipyF̂qsx,yd =E d4yeipyĉSx +
y

2
Dc̄

ˆ Sx −
y

2
D ,

Ŵssx,pd =E d4yeipyF̂ssx,yd =E d4yeipyŝSx +
y

2
DŝSx −

y

2
D .

s2d

Calculating the first-order derivatives ofF̂q and second-

order derivatives ofF̂s with respect tox andy, and making
use of the equations of motion

figm]m − sm0 + gŝdgĉ = 0,

]m]mŝ +
] Usŝd

] ŝ
+ gc̄

ˆ
ĉ = 0, s3d

for the fields, one obtains evolution equations for the density
matrices. After Wigner transform one derives the kinetic
equations(for details, see the similar work in Ref.[17] for
QED)

sKmKm − SsdWssx,pd = Cs,

sgmKm − SqdWqsx,pd = Cq, s4d

for the Wigner functionsWqsx,pd and Wssx,pd which are,
respectively, the ensemble average of the Wigner operators,

Wqsx,pd =E d4yeipyKĉSx +
y

2
Dc̄

ˆ Sx −
y

2
DL ,

Wssx,pd =E d4yeipyKŝSx +
y

2
DŝSx −

y

2
DL . s5d

The operatorsKm ,Ss, andSq are defined as

Km = pm +
i"

2
]m,

Ss = Sa + bs +
c

2
skŝ8ŝ8l + s2dDe−si/2d"]x

m]m
p
,

Sq = Fm0 + gs cosS"

2
]x

m]m
pDG − igs sinS"

2
]x

m]m
pD , s6d

wheres and ŝ8 are, respectively, the mean field and quan-
tum fluctuation of the scalar field,s=kŝl andŝ=s+ŝ8. The

sigma and quark scalar densitieskŝ8ŝ8l and kc̄ˆ ĉl can be
calculated through the Wigner functions

kŝ8ŝ8l =E d4p

s2pd4Wssx,pd,

kc̄ˆ ĉl = TrE d4p

s2pd4Wqsx,pd. s7d

In relaxation time approximation the collision termsCs and
Cq can be written as

Cs = − i"pmum

Ws − Ws
th

u
,

Cq = −
i"

2
gmum

Wq − Wq
th

u
, s8d

whereum is the four velocity of the hot medium formed by
quarks and sigmas, andu is the relaxation time. It is neces-
sary to note that the space-time derivative]x in the self-
energiesSs andSq works only the mean fields and scalar
densitykŝ8ŝ8l on its left.

Making ensemble average of the Klein-Gordon equation
in Eq. (3), one gets the equation of motion for the condensate
s,

]m]ms +
] Ueff

] s
= 0, s9d

with the definition of the effective confinement potential

Ueffss ,kŝ8ŝ8l ,kc̄ˆ ĉld at finite temperature

] Ueff

] s
=

] Ussd
] s

+
kŝ8ŝ8l

2
sb + csd + gkc̄ˆ ĉl, s10d

which depends on not only the mean field but also the sigma
and quark scalar densities. Equationss4d and s9d together
determine the sigma and quark scalar distributions and the
condensates self-consistently.

The way to derive the quark and sigma transport equa-
tions (4) is the same as that in the literature[17,18], where
the quantum kinetic equations of scalar and spinor QED are
obtained in mean field approximation in covariant and equal-
time formalisms. The difference lies only in two aspects:(1)
In Refs.[17,18] the electromagnetic field is considered as an
external field, the fermions move in the classical mean field,
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but in the derivation here the sigma quantum fluctuation is
taken into account through the sigma scalar densitykŝ8ŝ8l;
(2) The collision term is fully neglected in Refs.[17,18], but
introduced in the transport equations(4) in relaxation time
approximation.

From the first-order derivative of the effective potential
Ueff, Eq. (10), it can be defined as

Ueffss,kŝ8ŝ8l,kc̄
ˆ
ĉld = Ussd + Usss,kŝ8ŝ8ld + Uqss,kc̄ˆ ĉld,

Usss,kŝ8ŝ8ld =E
0

s

ds̃
1

2
kŝ8ŝ8lss̃,xdsb + cs̃d,

Uqss,kc̄ˆ ĉld =E
0

s

ds̃gkc̄ˆ ĉlss̃,xd. s11d

The two extra termsUs and Uq arise from the collective
motion of the quarks and sigmas. In the vacuum without
collective motion the confinement potentialUeff=U has two
minima, sper=0 corresponding to the perturbative vacuum
and sphyÞ0 to the physical vacuum, see the dashed line in
Fig. 1. From the definition of the bag constant, the energy
density difference between the perturbative and physical
vacua,B is determined byUssphyd=0,

− B =
a

2!
sphy

2 +
b

3!
sphy

3 +
c

4!
sphy

4 . s12d

The bag constantB depends strongly on the parametersa, b,
c, andg. For various reasonable sets of parameters, however,
B is around 20 MeV/fm3 f3g. As discussed in Ref.f5g, it is
the small bag constantB which leads to the low critical
temperature of deconfinement phase transition in
Friedberg-Lee model.

An important aspect of the covariant kinetic theory is that
the complex kinetic equation can be split up into a constraint
and a transport equation[13,14,17–19], where the former is a
quantum extension of the classical on-shell condition, and
the latter is a covariant generalization of the Vlasov-
Boltzmann equation. The complementarity of these two in-

gredients is essential for a physical understanding of quan-
tum kinetic theory. The quark Wigner function itself has no
direct physical analog since it is not a self-Hermitian func-
tion. After the Lorentz decomposition[13,14,17–19], the ki-
netic equation for quark is changed into 16 transport equa-
tions and 16 constraint equations for the 16 Lorentz
components of the quark Wigner function. In classical limit
with "=0, the constraint equations for quark and sigma are
reduced to

sp2 − ms
2dWssx,pd = 0,

sp2 − mq
2dWqsx,pd = 0, s13d

with effective sigma mass and quark mass

ms
2 = a + bs +

c

2
skŝ8ŝ8l + s2d,

mq = m0 + gs, s14d

and the 16 spinor components are no longer fully indepen-
dent. Only the quark number densityfq and the spin density
gW0 are the fundamental elements and the other components
can be expressed in terms offq andgW0 [17,18]. The classical
transport equations for sigma and quark densitiesfs and fq
are reduced to the familiar Boltzmann equations in the rest

frame of the heat bath where the four velocity isum=h1,0Wj,

]t fs,q + Sp · =

Es,q
D fs,q −

=ms,q
2

2Es,q
· =pfs,q = −

fs,q − fs,q
th

u
,

s15d

with the particle energiesEs,q=Îms,q
2 +p2. The relations be-

tween the scalar densities and number densities are

kŝ8ŝ8l =E d3p

s2pd3

1

Es

fssx,pd,

kc̄ˆ ĉl = mqE d3p

s2pd3

1

Eq
fqsx,pd. s16d

The equilibrium distribution functions in the classical trans-
port equations(15) are the familiar Bose-Einstein and Fermi-
Dirac distributions

fs,q
th sx,pd =

gs,q

esEs,q/Td 7 1
s17d

with the sigma and quark degeneratesgs=1 andgq=24.
The classical transport equations can be greatly simplified

by taking into account Bjorken’s boost invariant picture of-
ten used to describe longitudinal expansion of relativistic
heavy-ion collisions where a central plateau of the final ra-
pidity distribution exists[22]. Baym extended Bjorken’s
method of scalar hydrodynamics to the phase space and
solved the Vlasov-Boltzmann equation with a constant par-
ticle mass[24].

Neglecting transverse expansion of the system and assum-
ing boost invariance along the longitudinal direction make

FIG. 1. The effective potentialUeff as a function ofs at initial
time t0, critical time tc, and the limitt→`. The deconfinement
phase transition begins attc=5.6 fm and ends atth=30 fm.
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the transport equations, Eq.(15), for sigma and quark with
effective masses much more simple, depending on the proper
time t=Ît2−z2 only,

]tfs,q = −
fs,q − fs,q

th

u
, s18d

with the solutions

fs,qst,pd = expS−E
t0

t dt8

ust8dD fs,qSt0,pT,pz
t

t0
D

+E
t0

t dt8

ust8d
expS−E

t8

t dt9

ust9dD fs,q
th ST,pT,pz

t

t8
D ,

s19d

where the time ratiost /t0 andt /t8 come from the longitu-
dinal expansion of the systemf24g.

While the quark distribution in Eq.(19) is the same as that
obtained in Baym scenario[24], the quark mass here de-
pends on the mean fields. This dependence couples the
quark distributionfq with the meson distributionfs and the
mean fields. It is this coupling that leads to the phase tran-
sition from confinement to deconfinement through the
change of the quark mass with the mean field. In the longi-
tudinal boost invariant picture, the equation of motion, Eq.
(9), for the scalar condensates is simplified as a normal
second-order derivative equation,

S]t
2 +

1

t
]tDs +

] U

] s
+

1

2
kŝ8ŝ8lsb + csd + gkc̄ˆ ĉl = 0.

s20d

The proper time dependence of the temperatureTstd in
the equilibrium distributionf th is determined by the energy
conservation law in collisions,

est,sd = ethsT,sd,

est,sd =E d3p

s2pd3fEsfsst,s,pWd + Eqfqst,s,pWdg,

ethsT,sd =E d3p

s2pd3fEsfs
thsT,s,pWd + Eqfq

thsT,s,pWdg, s21d

where we kept only the particle contribution to the energy
density, and neglected the mean field terms ine andeth, since
they are the same and do not affect the energy conservation
law.

In the relaxation time approximation, the key step is the
computation of the relaxation timeu. In principle,u depends
on the type of particles, sigma or quark, and is a function of
phase space coordinates. For all the discussions above we
have neglected its type dependence and momentum depen-
dence. Qualitatively,u has the order of the standard strong
interaction scale,u,1 fm [24]. Considering the fact that col-
lision terms are the driving force for the system to reach
equilibrium, they affect the system strongly only in the be-

ginning of the evolution and are damped with increasing
time. With this feature in mind we model the relaxation time
by a simple step function,

1

ustd
=

1

l
Qste − td, s22d

wherel is an inverse measure of the collision strength andte
indicates the collision duration scale.l has the order of 1 fm
andl→` means equilibrium without collision. In order to
get a more realistic parametrization we replace in the fol-
lowing numerical calculations theQ function by a more
gradual exponential functions1+est−te/ldd−1 with the colli-
sion duration variancel. When l →0, it goes back to the
step function.

In order to solve numerically the transport equations for
the distributionsfs,q and the Klein-Gordon equation for the
mean fields as functions of proper timet, one must know
their initial values. Since the particles produced in relativistic
heavy-ion collisions at initial timet0 are essentially emitted
from the colliding pointz=0 at t=0, the initial distributions
in the central slice are peaked in the planepz=0 [24]. There-
fore, we can choose the initial distributions as

fs,qst0,pWd = fs,q
th sT0,pWddspzd. s23d

With the known number distributions(19) one can get the

scalar condensateskŝ8ŝ8l and kc̄ˆ ĉl through the relations
(16) and in turn the effective quark potentialUeff.

As we discussed above, there are two minima of the po-
tential in the vacuum without collective motion,sphy is the
global minimum butsper is only the local minimum, see the
dashed line in Fig. 1. This means that the system is in physi-
cal vacuum. Since we focus in this paper on the phase tran-
sition from deconfinement to confinement, which can be re-
alized in relativistic heavy-ion collisions, we put initially the
system in a deconfinement state with strong enough collec-
tive motion, and then study when the phase transition hap-
pens. To this end, the temperatureT0 in the initial distribu-
tions (23) should be high enough to guarantee that the
system is in perturbative vacuum initially, namelysper is the
absolute minimum of the effective potential in the beginning.
Due to the expansion and the collision terms, the energy
density and effective temperature of the system fall down,
and the potential difference between the physical and pertur-
bative vacua decreases during the evolution. At some critical
time tc the difference between the two vacua disappears and
a first-order phase transition begins.

We defineth as the terminating time of the first-order
phase transition. During the process of the phase transition,
the deconfinement state and confinement state coexist, the
energy densities can be expressed as

est,sd = xstdest,sperd + f1 − xstdgest,sphyd,

ethsTc,sd = xstdethsTc,sperd + f1 − xstdgethsTc,sphyd,

s24d

where xstd is the fraction of matter in the deconfinement
phase at timetc,t,th. From the energy conservation,
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est,sd = ethsTc,sd, s25d

one reads

xstd =
ethsTc,sphyd − est,sphyd

fest,sperd − ethsTc,sperdg + fethsTc,sphyd − est,sphydg
.

s26d

Clearly, at the beginning timetc and the end timeth of the
first-order transition, one has

xstcd = 1,

xsthd = 0. s27d

III. NUMERICAL RESULTS AND DISCUSSIONS

We choose the potential parameters[3,4,7] a
=51.6 fm−2,b=−799.9 fm−1,c=4000, and the coupling con-
stantg=14.8, which are satisfactory for fitting a part of the
static properties of hadrons and lead to a small bag constant
B=28 MeV/fm3. The temperature in the initial distributions
(23) is taken asT0=160 MeV which is high enough to guar-
antee an initial deconfinement state. As explained above, the
collision parameterl describes the intensity of collisions and
therefore determines how long it needs to approach the equi-
librium state, andte is the duration of the collisions which
controls how long the interaction lasts. As discussed by
Baym [24], lø1 fm is reasonable for strong interaction. Ac-
cording to the space-time scale of relativistic heavy-ion col-
lisions, one can estimatete, r0A

1/3 fm.
Figure 1 shows the effective potentialUeff as a function of

s at different time for collision parametersl=0.5 fm and
te=4 fm. At initial time t0, Ueff has two minima, the local
one ats=sphy and the global one ats=sper=0. The system
stays initially in the perturbative vacuum. As time goes on,
the system expands and its energy density drops down gradu-
ally. While the positions of the two minima remain un-
changed during the evolution, the potential difference be-
tween the two minima, the effective bag constantBef fstd,
becomes smaller and smaller. At a critical timetc, Bef fstcd
=0, the first-order phase transition begins and the confine-
ment phase appears. Aftertc, the temperature parameter in
fs,q
th sT,pWd remains a constantTc, the physical vacuum and the

perturbative vacuum coexist, namely the deconfinement
phase and confinement phase coexist until another critical
time th when the transition is totally completed and the sys-
tem is purely in confinement state. For the collision param-
eters used, the numerical calculation givestc=5.6 fm, th
=30.4 fm, andTc=94 MeV. Afterth, the temperature param-
eter drops down again, and the global minimum is located at
s=sphy. Whent→`, the effective potentialUeff approaches
to U in the vacuum, shown as the dashed line in Figure 1.
Figure 2 shows the evolution of the temperature parameter
beforetc.

The two critical timestc and th strongly depend on the
relaxation time parameters,l and te. A system with strong
interaction, namely smalll, needs only a short time to ap-
proach equilibrium state, and the temperature parameter

drops down rapidly. Correspondingly, the phase transition
occurs early and the duration of the first-order transition is
short. The parameterte controls also the values oftc andth.
A large te means a long last of collisions, the system needs
only a short time to get to the points where the phase tran-
sition begins and ends. If the duration of the collisionte is
long enough, the system will approach equilibrium state
eventually. If te is too small, however, the system will not
approach equilibrium state unless the collision strength is
strong enough. Figure 3 shows the effective potential as a
function of s in the limit of l→`. In this case, the only
driving force of the phase transition is the cooling of the
mean field system, the dynamics is purely reflected in the
effective particle massesms andmq. The transport equations,
Eq. (19), are reduced to

fs,qst,pd = fs,qSt0,pWT,pz
t

t0
D . s28d

If we neglect the collective motion ofs since it is heavy
enough, and consider the fact that before the phase transition
quarks are massless in the deconfinement state, the energy
conservation law in the limit ofl→` gives approximately

FIG. 2. The temperature parameter as a function of proper time
before the phase transition.

FIG. 3. The effective potentialUeff as a function ofs at initial
time t0, critical time tc, and the limitt→` in the case without
collisions. In this limit, the phase transition starts attc=10 fm and
ends atth=841 fm.
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the time evolution of the temperature parameter,Tstd
,T0st0/td1/4. Only when the thermal distribution in Eq.s23d
is taken as Boltzmann distribution, we have exactly,

Tstd = T0S t0

t
D1/4

. s29d

If we put the initial state in a three-dimensional equilib-
rium state and take the mass to be zero, the longitudinal
expansion of the system will force the state in nonequilib-
rium afterwards. The energy conservation in the limit of no
collisions leads to

Tstd = T0S t0

t
D1/4

gstd,

gstd = 31

21 t0

t
+

sin−1Î1 −S t0

t
D2

Î1 −S t0

t
D2 24

1/4

. s30d

Since the quark mass is taken as a constant,m=0 in this
special case, the quark distribution is decoupled from the
meson distribution and the mean field, the system is reduced
to the case in Baym scenario. Therefore, the result(30) has a
similar structure to Eq.(19) of the work by Baym[24].

The comparison between Eqs.(29) and (30) is shown in
Fig. 4. Since the functiongstdø1, the temperature with ini-
tial equilibrium state is always lower than that with initial
nonequilibrium state for any timet.t0.

While the collisions do not change the critical value of the
temperature parameter remarkably, it is 94 MeV forl
=0.5 fm andte=4 fm and 89 MeV forl→`, the time struc-
ture of the phase transition is controlled by the collisions.
The relaxation time dependence of the critical timetc and
the durationDt=th−tc scaled by their values in the limit of
no collisions is shown in Figs. 5 and 6. Both decrease mo-
notonously with increasing collision strength and/or increas-

ing collision duration. When the collisions are strong enough
and the collision duration is long enough, the phase transi-
tion will start before the collisions cease. This is clearly re-
flected in Fig. 5 wheretc at l=0.2 fm no more changes
when te.4 fm. With increasingl the starting timetc and
the durationDt will approach finally the limit values of no
collisions, they converge at 10.12 fm and 831 fm, respec-
tively. The speed of the convergence is governed by the col-
lision duration. When the collision duration is short enough,
the system is not sensitive to the collisions in the region of
weak strength. This is the reason whytc and Dt converge
very fast with smallte.

Figure 7 shows the temperature parameter as a function of
time for fixed collision durationte=4 fm but different values
of collision strength. Each line starts at initial timet0
=1 fm and ends at the critical timetc which depends on the
collision strength. Aftertc the temperature does not change
until the second critical timeth. With increasing collision
strength, namely decreasingl, the system cools down more

FIG. 4. The time evolution of the temperature parameter with
initial nonequilibrium state(solid line) and with initial equilibrium
state(dashed line) in the limit of no collisions.

FIG. 5. The beginning time of first-order phase transition scaled
by its limit value without collisions as a function of the collision
strength for collision durationte=2,4,6 fm.

FIG. 6. The duration of the first-order phase transition scaled by
its limit value without collisions as a function of the strength for
collision durationte=2,4,6 fm.
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and more fast, and the phase transition happens more and
more early.

In principle, only one of the two collision parametersl
andte is free. A system with strong interaction needs a short
time to approach equilibrium, and vice versa. While it is
difficult to determine the relation between the two param-
eters in relaxation time approximation, we can obtain a con-
straint condition. For a system with fixed collision duration
scale te, the collision strength should be larger than the
maximum value corresponding to the well-known Bjorken
scaling solutionT/T0=st0/td1/3 [22]. Sincel is the inverse
measure of the collision strength, we have the constraint

lmin , l. s31d

For te=4 fm, lmin is approximately 0.3 fm. Whenl is less
than lmin, the result will not be physical.

IV. SUMMARY

We investigated the deconfinement phase transition of an
expanding quark system in Friedberg-Lee model, consider-

ing the collision terms in relaxation time approximation. We
calculated the beginning time and the duration of the first-
order phase transition for different collision strength. While
the critical temperature of the phase transition is dominated
by mean field, described byl→` in our treatment, the col-
lision terms have significant influence on the beginning time
and the duration of the transition. Strong collisions result in
an early and short transition, and weak collisions make the
transition begin late and last a long time. Although our re-
sults are derived in a particular model, we expect the quali-
tative dependence of the phase transition times on the colli-
sions to be of more general validity, because it is well known
that collisions are the driving force of thermalization and
control the speed of thermalization process of any system.

Since the deconfinement phase is only an intermediate
state in relativistic heavy-ion collisions, there is no way to
measure its properties directly. One needs to extract signa-
tures of the phase transition and the new state from analysis
of final state distributions of different particles, such as low
moment dilepton enhancement,J/C suppression and
strangeness enhancement at SPS[25] and disappearance of
back-to-back jets at relativistic heavy-ion collider[26]. Nor-
mally the theoretical study on these signatures is based on
the assumption of equilibrium system. According to our dis-
cussion above, the thermalization process due to collisions
among the particles make the phase transition happen early
and shorten the duration of the first-order phase transition.
As a consequence, the contribution from the deconfinement
phase and the coexisting phase to the final state distributions
will be changed, especially for those signatures extracted
from the early evolution.
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