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Deconfinement phase transition in an expanding quark system
in the relaxation time approximation
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We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of
an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the
effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while
the collisions among quarks and mesons change the time structure of the phase transition significantly.
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[. INTRODUCTION preequilibrium state. The dynamical tool to treat dissipative
processes in heavy-ion collisions and the approach to local
It is generally accepted that the most interesting quantunthermal equilibrium is in principle nonequilibrium quantum
chromodynamicgQCD) phase transition in hot and dense transport theory. A relativistic and gauge covariant kinetic
nuclear matter is the deconfinement phase transition betweReory for quarks and partons has been deril, both in
normal nuclear matter and quark-gluon plasf@GP, a classical framewor11,12 and as a quantum kinetic
where quarks and gluons are no longer confined. The theaheory[13,14 based on Winger operators defined in eight-
retical and experimental investigation of QGP is one of thedimensional phase spag#5]. To solve the quantum kinetic
most challenging problems in high energy physics. It isequations as initial problems, the transport and off-shell con-
widely believed that QGP phase can be formed in ultrarelastraint hierarchies have been establisHé6-19 in the
tivistic heavy-ion collisions. frame of equal-time Wigner operators. The properties of
Due to the difficulty of nonperturbative treatment in nucleon-nucleon collisions have been explof€®,2] in
QCD, various models have been considered in the study afansport approach of Friedberg-Lee model.
the phase transition among which Friedberg-Lee médig! In the present paper, we consider an expanding nonequi-
also referred as nontopological soliton model, has beefibrium system with collision terms in the framework of
widely discussed in the past two decades, see for instang&iedberg-Lee model to investigate the approach of strong
Refs.[2,3] and references therein. In this model, the nonperinteraction matter toward thermal equilibrium and the decon-
turbative dynamics responsible for confinement in QCD isfinement phase transition during this process. The collision
simulated in terms of a nonlinear coupling to a scalar field  terms will be introduced through a relaxation time approxi-
It shows an intuitive mechanism for the deconfinement phasgation in transport equations of quarks and sigmas, and the
transition. In vacuum state, the physical valuecofs large  expansion of the system is simply described by the Bjorken
and the quark mass is more than 1 GeV, so that the effectivecaling hydrodynamicg22]. We specially focus on the effect
heavy quarks have to be confined in hadron bddsWith  of collision terms and nonequilibrium on the deconfinement
increasing temperature and/or density of the system, thghase transition, by investigating at what proper time the
physical value ofo and in turn the effective quark mass phase transition occurs, how long it lasts for a first-order
drops down, the thermodynamic motion leads to a deconfinaransition, and their dependence on the relaxation time.
ment of the effective light quarks. The outline of the paper is as follows. The full transport
Wilets and his co-worker§3,4] did a great deal of work equations for quarks and sigmas in relaxation time approxi-
on the properties of Friedberg-Lee model, mostly in mearmation, and the simplified equations in quasiparticle limit
field approximation and in vacuum state. It is proved veryand boost invariance approximation are presented in Sec. II.
successful in describing the static properties of the nucleonn Sec. 11l we exhibit the numerical results and discussions.
During the past years, Friedberg-Lee model was extended teinally a brief summary is given in the last section.
finite temperature and density to study deconfinement phase
transition[5—8|. Similar to most of these investigations in the Il. TRANSPORT EQUATIONS
frame of finite temperature field theory, the temperature and o Friedberg-Lee model is defined [ds-3]
density effect on the phase transition is based on the assump-
tion of a thermalized plasma phase. While one can use vari-
ous parameters and take different treatments, the critical tem-
perature of the deconfinement phase transition in the model
is limited in the region of 80—-120 MeV at zero chemical Us) = 962+£&3+£&4+B, (1)
potential, much lower than the prediction in Lattice Q). 2 3! 41
Because of the estimated very short lifetime of the heavy- A
ion collision zone, the highly excited particle system maywhere ,, and 6 are quark, antiquark, and scalar fields,
spend a considerable fraction of its life in a nonthermalizedrespectivelym, is the current quark mass and chosen to be 0

L= fliv"d, - (Mo+ g1+ 2#6a,6- U(8),
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in the following to simplify the calculations. There are five if

parameters in the Friedberg-Lee modealwith dimension Ku=Pu+ an

L2, b with dimensionL™%, dimensionless, the coupling

constantg between quark and scalar fields, and the bag con-

stant B used to provide a quark confinement potential in S, = <a+b0+E(<&,&r>+02)>e—(i/2)ha;‘a2,

mean field approximation in the vacuum. Of the five param- 2

eters, two are adjusted to fit the proton size and the nucleon

mass, and the others are left to survey, fit, and predict physi- _ hop , (o,

cal data. Since the model is an effective one, the values of ~ >q= | Mo+ go CO 5(9555'# —lgosin 5(955(9# . (6)
the parameters depend on the level of approximation em-

ployed [23]. Different parameter sets can be found in thewhereo and g’ are, respectively, the mean field and quan-
book by Wilets[3]. tum fluctuation of the scalar field;=(o) ando=c+0d’. The

The relativistically covafiant quark Wigner operatéf, sigma and quark scalar densitiés'6') and <J[ﬁ> can be
and sigma Wigner operat, are the Fourier transform of calculated through the Wigner functions
the corresponding density matricgld]

)~ d*
R <o"o">=f (Z:AW(,(X,p),
Wq(vaFJd4yépy‘i’q(x,y)=fd4YépylAﬂ<x+g>Z(x—)5/),

4

e d
(g =Tr f (2754

\7V0(x,p) = f d4yépy<i>0(x,y) :f d4yépy&(x+ %)&(x— X). In relaxation time approximation the collision terr@s and

Wy(X,p). (7)

2 C, can be written as
(2 _\ih
. . L C,=-ihpu,——,
Calculating the first-order derivatives df; and second- “oop
order derivatives ofb,, with respect tax andy, and making
use of the equations of motion i% Wq—VV‘h
Cy=—-774u , 8
) Q=TT YT (8)
[i¥d,—(mo+go)]y=0, whereu,, is the four velocity of the hot medium formed by

quarks and sigmas, andlis the relaxation time. It is neces-
JUE) A sary to note that the space-time derivatliﬂgpin the self-
#d,0+ ——— +gyy=0, ©)] energiesX,, andX, works only the mean field- and scalar
do density(&'¢') on its left.

Making ensemble average of the Klein-Gordon equation
for the fields, one obtains evolution equations for the densityn Eg.(3), one gets the equation of motion for the condensate
matrices. After Wigner transform one derives the kinetic,
equationg(for details, see the similar work in RefL7] for

QED) a0+ 2t =g, ©
# do
(KK# =2 )Wo(x,p) = C,, with the definition of the effective confinement potential

Ueff(a,<&’r}’>,<%:lf>) at finite temperature

K, —=27Wy(X,p) =C,, 4 “y o~

(YK, = 2g)Wy(x,p) = Cq (4) IUes_ 3U(0) +<G,U,>
for the Wigner functionsi,(x,p) and W,(x,p) which are, do do 2

respectively, the ensemble average of the Wigner operatorsyhich depends on not only the mean field but also the sigma
and quark scalar densities. Equatidd$ and (9) together

/. e y determine the sigma and quark scalar distributions and the
Wy (x,p) = J diyePY ¢<x+ E)E(x— 5) , condensater self-consistently.
The way to derive the quark and sigma transport equa-
tions (4) is the same as that in the literatyre7,18, where
the quantum kinetic equations of scalar and spinor QED are
W, (X,p) :J d4yépy< (}(X+ X>(}<x— X)> (5) obtained in mean field approximation in covariant and equal-
2 2 time formalisms. The difference lies only in two aspe¢is:

In Refs.[17,18 the electromagnetic field is considered as an
The operatorK,,>,, and2 are defined as external field, the fermions move in the classical mean field,

(b+co)+ gy,  (10)
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gredients is essential for a physical understanding of quan-
tum kinetic theory. The quark Wigner function itself has no
direct physical analog since it is not a self-Hermitian func-
tion. After the Lorentz decompositioii3,14,17-19 the ki-
netic equation for quark is changed into 16 transport equa-
tions and 16 constraint equations for the 16 Lorentz
components of the quark Wigner function. In classical limit
with =0, the constraint equations for quark and sigma are
reduced to

(p? - M)W,(x,p) =0,

(p? - M)W,(x,p) =0, (13)
_ _ ) . with effective sigma mass and quark mass
FIG. 1. The effective potentidl.¢s as a function ofo at initial
time 7, critical time 7, and the limit7— . The deconfinement 5 C onfn,
phase transition begins at=5.6 fm and ends at,=30 fm. m;=a+bo + 5((0 o)+ 0%,

but in the derivation here the sigma quantum fluctuation is —m 4+ 14
taken into account through the sigma scalar density’); Mg=Mo* g0, (14)

(2) The collision term is fully neglected in Refgl7,18, but  and the 16 spinor components are no longer fully indepen-
introduced in the transport equatiot® in relaxation time dent. Only the quark number densityand the spin density

approximation. do are the fundamental elements and the other components
From the first-order derivative of the effective potential can be expressed in termsquandgjo [17,18. The classical
Uerr, EQ. (10), it can be defined as transport equations for sigma and quark densitigand f,

R A are reduced to the familiar Boltzmann equations in the rest
Uet(0,(&' &), (k) = U(0) + U ({57 5")) + Uq(cr,wl})), frame of the heat bath where the four velocityujs={1, 0},

-V v foq= firg
APA I\ — 7 ~1"l"r ~ ~ 8tfrrq+<p )f(rq_ U,Q_fo(rq:_ = = ’
Uy (o(a’c")) = doE(a' o")(o,x)(b+co), ' E,q/ " 2E,q 0
0
(15
5 U D with the particle energiequ:\e'mi’ +p?. The relations be-
Ul (yh) = Jo dog(y)(o.x). (1D tween the scalar densities and r?umber densities are
The two extra termdJ,, and U, arise from the collective <&,(},>:f d°p if (x,p)
motion of the quarks and sigmas. In the vacuum without 2m3E, 7
collective motion the confinement potentld};;=U has two
minima, op,e=0 corresponding to the perturbative vacuum ~ dcp 1
and o, # 0 to the physical vacuum, see the dashed line in (gnh) = mqf (277)3E_fq(x’p)' (16)
q

Fig. 1. From the definition of the bag constant, the energy

density difference between the perturbative and physicarhe equilibrium distribution functions in the classical trans-

vacua,B is determined byJ(oypn,) =0, port equationg15) are the familiar Bose-Einstein and Fermi-
a b Dirac distributions

Cc
-B= _O-Shy-'- i(fl?;hy"' Zo-ghy (12)

2! 9o,

fth
JdD 51

TaxP) = 7 (17

The bag constarB® depends strongly on the parametar®,

¢, andg. For various reasonable sets of parameters, howevewith the sigma and quark degeneratgs-1 andg,=24.

B is around 20 MeV/frA[3]. As discussed in Ref5], it is The classical transport equations can be greatly simplified

the small bag constarB which leads to the low critical by taking into account Bjorken’s boost invariant picture of-

temperature of deconfinement phase transition irten used to describe longitudinal expansion of relativistic

Friedberg-Lee model. heavy-ion collisions where a central plateau of the final ra-
An important aspect of the covariant kinetic theory is thatpidity distribution exists[22]. Baym extended Bjorken’s

the complex kinetic equation can be split up into a constrainmethod of scalar hydrodynamics to the phase space and

and a transport equatigt3,14,17—-19 where the formeris a solved the Vlasov-Boltzmann equation with a constant par-

quantum extension of the classical on-shell condition, andicle mass[24].

the latter is a covariant generalization of the Vlasov- Neglecting transverse expansion of the system and assum-

Boltzmann equation. The complementarity of these two ining boost invariance along the longitudinal direction make
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the transport equations, E¢L5), for sigma and quark with ginning of the evolution and are damped with increasing
effective masses much more simple, depending on the propé&me. With this feature in mind we model the relaxation time

time 7=vt?-2° only, by a simple step function,
foq=fo SR
0rfpq= = 2, (18) PERENACRRL (22)

where\ is an inverse measure of the collision strength and

ith th luti . = .
with the solutions indicates the collision duration scakhas the order of 1 fm

T d7 r and\ — o means equilibrium without collision. In order to
foq(T.p) = eXP(—f 0—,>fg,q<70.pmpz—) get a more realistic parametrization we replace in the fol-
w 07') o lowing numerical calculations th@ function by a more
T odr T\ r gradual exponential functiofil +e™7%")=1 with the colli-
+f o) ex ‘f/ M foq T!pTvp27 . sion duration variancé. When!|—0, it goes back to the
’TO T

step function.
(19 In order to solve numerically the transport equations for
. . , _ the distributionsf, , and the Klein-Gordon equation for the
where the time ratios/ 7, and 7/ 7" come from the longitu- 1 aan fieldo as functions of proper time, one must know

dinal expansion of the systefa4]. _ their initial values. Since the particles produced in relativistic
While the quark distribution in Eq19) is the same as that  peayy.jon collisions at initial timey, are essentially emitted

obtained in Baym scenarif24], the quark mass here de- fqm the colliding pointz=0 att=0, the initial distributions

pends on the mean field. This dependence couples the i ihe central slice are peaked in the plane0 [24]. There-
quark distributionf, with the meson distributiori, and the  ¢,.6 \ve can choose th% initial distribﬂt?gns a[s 1

mean fieldo. It is this coupling that leads to the phase tran-

sition from confinement to deconfinement through the foq(70.P) = ff,h’q(To,ﬁ)é(pz). (23
change of the quark mass with the mean field. In the longi-
tudinal boost invariant picture, the equation of motion, Eg. ~
(9), for the scalar condensate is simplified as a normal scalar condensateSr’'c’) and (y) through the relations

With the known number distributiond.9) one can get the

second-order derivative equation, (16) and in turn the effective quark potentidls.
R As we discussed above, there are two minima of the po-
<a§+ }(97)0+ oy + 1«}/ &b+ co) + g(@) =0. tential in_ the vacuum W_ithout collective m_ot_ionphy is the
T do 2 global minimum butoy,, is only the local minimum, see the

(20) dashed line in Fig. 1. This means that the system is in physi-

cal vacuum. Since we focus in this paper on the phase tran-

The proper time dependence of the temperaflrg in  sjtion from deconfinement to confinement, which can be re-
the equilibrium distributionf™ is determined by the energy alized in relativistic heavy-ion collisions, we put initially the

conservation law in collisions, system in a deconfinement state with strong enough collec-
" tive motion, and then study when the phase transition hap-
e(r,0)=€'(T,0), pens. To this end, the temperatifgin the initial distribu-

tions (23) should be high enough to guarantee that the
d®p . system is in perturbative vacuum initially, namety,, is the

e(7,0) :f W[Eafg(ﬂ a,p) + Eqf(r,0,p)], absolute minimum of the effective potential in the beginning.

7 Due to the expansion and the collision terms, the energy
density and effective temperature of the system fall down,
and the potential difference between the physical and pertur-
bative vacua decreases during the evolution. At some critical
time 7, the difference between the two vacua disappears and
where we kept only the particle contribution to the energya first-order phase transition begins.

eNT,0) = J dg—p[E T, o, p) + E,fN(T,0,p)], (21)
) (277_)3 oo\ 1Y qigr oM !

density, and neglected the mean field terme &mde”, since ~ We definer, as the terminating time of the first-order
they are the same and do not affect the energy conservatigihase transition. During the process of the phase transition,
law. the deconfinement state and confinement state coexist, the

In the relaxation time approximation, the key step is theenergy densities can be expressed as
computation of the relaxation time In principle, # depends
on the type of particles, sigma or quark, and is a function of &(7,0) = X(7) (7, 0pe) +[1 = X(7)]e(7,0pny),
phase space coordinates. For all the discussions above we
have neglected its type dependence and momentum depen-  €"(Te, o) =X(7)€™(T¢, 0pe) + [1 = X(D)]€™(Te, Tpny).
dence. Qualitativelyp has the order of the standard strong (24)
interaction scale§~ 1 fm [24]. Considering the fact that col-
lision terms are the driving force for the system to reachwhere x(7) is the fraction of matter in the deconfinement
equilibrium, they affect the system strongly only in the be-phase at timer,<7<7, From the energy conservation,
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e(r,0) = €T 0), (25) Lr
one reads
0.9
_ €T, 0pny) = €(7,051y)
xX(7) = m m . o
[e(, 0'p(—:tr) —e'(T, U'per)] +[e (Tmo'phy) - €(T, O'phy)] — 0.8l
(26) iy
Clearly, at the beginning time. and the end timey, of the 0.7}
first-order transition, one has
x(te) =1, 0.6}
1 2 3 4 5
X(1) =0. (27) 7 (fm)
FIG. 2. The temperature parameter as a function of proper time
IIl. NUMERICAL RESULTS AND DISCUSSIONS before the phase transition.

_ 5\{\/2 fm(‘:? c:)ozs??g;hg f mploge:nzggo 2?3?@%5;;&2 g ce:)n— drops down rapidly. Correspondingly, the phase transition
star}tg:14.8,.which are satisfactory for fitting a part of the OgglrjtrSTﬁzrga?:r?]etth; gg,ﬁg;‘ ;Léhﬁl:rvs;]ﬁgegg?ﬁsfon IS
static properties of hadrons and lead to a small bag constai Iar-e + means a lona last of collisions. the svstem rr11-eeds
B=28 MeV/fn?. The temperature in the initial distributions g€ 7e 9 ’ y

; _ R — only a short time to get to the points where the phase tran-
(23) is taken asfo=160 MeV which is high enough to guar %'tion begins and ends. If the duration of the collisignis

antee an initial deconfinement state. As explained above, ﬂ]on enouah. the svstem will approach equilibrium state
collision parametek describes the intensity of collisions and 9 ugh, y wiil app qurlibriur
cia_ventually. If 7o is too small, however, the system will not

therefore determines how long it needs to approach the equa roach equilibrium state unless the collision strength is
librium state, andr, is the duration of the collisions which PP q 9

controls how long the interaction lasts. As discussed bftrong enough. Figure 3 shows the effective potential as a

Baym[24], \<1 fm is reasonable for strong interaction. Ac- function of o in the limit of A . In this case, the only

cording to the space-time scale of relativistic heavy-ion col—(i:g;?]gf.g;ci thetr?me t?]gazent;?nnigp: IS rtehle fecl)‘glcntg do'fntTr?e
lisions, one can estimatg,~ r,Al’3 fm. ! y ’ ynamics IS purely '

Figure 1 shows the effective potentldl as a function of effective particle masses, andm,. The transport equations,
o at different time for collision parameters=0.5 fm and Eq. (19), are reduced to
7.=4 fm. At initial time 7y, U has two minima, the local r
one ato=op,, and the global one at=o,,,=0. The system foq(T,P) = f<r,q<TOvﬁTvpz_)- (28)
stays initially in the perturbative vacuum. As time goes on, 7o
the system expands and its energy density drops down gradif-we neglect the collective motion of since it is heavy
ally. While the positions of the two minima remain un- enough, and consider the fact that before the phase transition
changed during the evolution, the potential difference beyuarks are massless in the deconfinement state, the energy

tween the two minima, the effective bag const&i(7),  conservation law in the limit ok — gives approximately
becomes smaller and smaller. At a critical timg Bgt( )

=0, the first-order phase transition begins and the confine-
ment phase appears. Afteg, the temperature parameter in
f;ﬁq(T,@ remains a constarit;, the physical vacuum and the
perturbative vacuum coexist, namely the deconfinement
phase and confinement phase coexist until another critical
time 7, when the transition is totally completed and the sys-
tem is purely in confinement state. For the collision param-
eters used, the numerical calculation gives5.6 fm, 7,
=30.4 fm, andT.=94 MeV. After 7,, the temperature param-
eter drops down again, and the global minimum is located at
o=0pn, Whent— x, the effective potentiadl; approaches
to U in the vacuum, shown as the dashed line in Figure 1.
Figure 2 shows the evolution of the temperature parameter o (GeV)
before .

The two critical timesz, and 7, strongly depend on the FIG. 3. The effective potentidl; as a function ofr at initial
relaxation time parameters, and 7.. A system with strong time 7, critical time 7., and the limit7—o in the case without

interaction, namely small, needs only a short time to ap- collisions. In this limit, the phase transition startsrg& 10 fm and
proach equilibrium state, and the temperature parametads atr,=841 fm.
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1f 1
u
u
0.5 0.8} . A
- 2 )
[ ] o]
l:o‘s :60.6- A .
(o = °
60'4' a .Te=2fm
0.7 o
= A Te=4 fm
0.2}
0.6 ore:6fm
0
0.5 1 1.5 2 2.5
A (fm)

FIG. 4. The time evolution of the temperature parameter with
initial nonequilibrium state&solid line) and with initial equilibrium

state(dashed lingin the limit of no collisions. FIG. 5. The beginning time of first-order phase transition scaled

by its limit value without collisions as a function of the collision
strength for collision duratiome=2,4,6 fm.

the time evolution of the temperature paramet@tr)  ing collision duration. When the collisions are strong enough
~To(7o/ ¥4 Only when the thermal distribution in E3)  and the collision duration is long enough, the phase transi-
is taken as Boltzmann distribution, we have exactly, tion will start before the collisions cease. This is clearly re-
14 flected in Fig. 5 wherer, at A\=0.2 fm no more changes
T() :TO(E> . (29) when re>_4 fm. Wlth increasing\ the starting timer, and
T the durationA 7 will approach finally the limit values of no

If we put the initial state in a three-dimensional equilib- QOII'S'OnS' they converge at 10.12 fm and 831 fm, respec-
tlvely. The speed of the convergence is governed by the col-

rium state and take the mass to be zero, the Iongitudinansion duration. When the collision duration is short enough
expansion of the system will force the state in nonequilib- : 9n,

rium afterwards. The energy conservation in the limit of nothe system IS not sensitive to the collisions in the region of
collisions leads to weak strength. This is the reason whyand A7 converge

very fast with smallr,.
70\ Y4 Figure 7 shows the temperature parameter as a function of
T(1)=To o g(7), time for fixed collision duratior,=4 fm but different values
of collision strength. Each line starts at initial time
=1 fm and ends at the critical timg which depends on the
2 1/4 ..
.1 <To) collision strength. Afterr, the temperature does not change
sin 1-{— . s - o . -
1| T until the second critical timer,. With increasing collision

ol + + \2 (30 strength, namely decreasing the system cools down more
1-(2)
T

Since the quark mass is taken as a constant in this
special case, the quark distribution is decoupled from the 0.8 A Te:4 fm .
meson distribution and the mean field, the system is reduced o Te=6 fm .

to the case in Baym scenario. Therefore, the rg80it has a
similar structure to Eq¢19) of the work by Baym[24].

The comparison between Eq29) and (30) is shown in
Fig. 4. Since the functiog(7) <1, the temperature with ini-
tial equilibrium state is always lower than that with initial
nonequilibrium state for any time> . 0.2

While the collisions do not change the critical value of the A
temperature parameter remarkably, it is 94 MeV for ol_a & °
=0.5 fm andr,=4 fm and 89 MeV fom\ — oo, the time struc- 0 0.5 1 1.5 2 2.5
ture of the phase transition is controlled by the collisions. A (fm)

The relaxation time dependence of the critical timeand

the durationA7=7,— 7. scaled by their values in the limit of FIG. 6. The duration of the first-order phase transition scaled by
no collisions is shown in Figs. 5 and 6. Both decrease moits limit value without collisions as a function of the strength for
notonously with increasing collision strength and/or increase<ollision durationr.=2,4,6 fm.

g(7) =

n Te=2 fm

=

0.6

g
=
=
~
N’ O
=
<
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FIG. 7. The temperature paramefEras a function of proper
time 7 at fixed 7. The solid curves from the bottom to the top
correspond tov=0.5,1, and 2 fm, and the two dashed lines corre-
spond to the limit29) and the Bjorken limit, respectively.

and more fast, and the phase transition happens more aggr

more early.

In principle, only one of the two collision parametexs
and . is free. A system with strong interaction needs a shor
time to approach equilibrium, and vice versa. While it is

difficult to determine the relation between the two param-

eters in relaxation time approximation, we can obtain a con
straint condition. For a system with fixed collision duration
scale 7, the collision strength should be larger than the
maximum value corresponding to the well-known Bjorken
scaling solutionT/Ty=(7y/ 73 [22]. Since\ is the inverse
measure of the collision strength, we have the constraint

(31)

For 7.=4 fm, \.,in is approximately 0.3 fm. WhenR is less
than i, the result will not be physical.

Ain < \.

IV. SUMMARY

PHYSICAL REVIEW C 69, 035203(2004)

ing the collision terms in relaxation time approximation. We
calculated the beginning time and the duration of the first-
order phase transition for different collision strength. While
the critical temperature of the phase transition is dominated
by mean field, described by— o« in our treatment, the col-
lision terms have significant influence on the beginning time
and the duration of the transition. Strong collisions result in
an early and short transition, and weak collisions make the
transition begin late and last a long time. Although our re-
sults are derived in a particular model, we expect the quali-
tative dependence of the phase transition times on the colli-
sions to be of more general validity, because it is well known
that collisions are the driving force of thermalization and
control the speed of thermalization process of any system.
Since the deconfinement phase is only an intermediate
state in relativistic heavy-ion collisions, there is no way to
measure its properties directly. One needs to extract signa-
tures of the phase transition and the new state from analysis
of final state distributions of different particles, such as low
moment dilepton enhancement]/V suppression and
angeness enhancement at $25 and disappearance of
back-to-back jets at relativistic heavy-ion collid@6]. Nor-
mally the theoretical study on these signatures is based on

the assumption of equilibrium system. According to our dis-

cussion above, the thermalization process due to collisions
among the particles make the phase transition happen early
and shorten the duration of the first-order phase transition.
As a consequence, the contribution from the deconfinement
phase and the coexisting phase to the final state distributions
will be changed, especially for those signatures extracted
from the early evolution.
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