PHYSICAL REVIEW C 69, 034903(2004)

Causal theories of dissipative relativistic fluid dynamics for nuclear collisions
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Nonequilibrium fluid dynamics derived from the extended irreversible thermodynamics of the causal Miiller-
Israel-Stewart theory of dissipative processes in relativistic fluids based on Grad’s moment method is applied
to the study of the dynamics of hot matter produced in ultrarelativistic heavy ion collisions. The temperature,
energy density, and entropy evolution are investigated in the framework of the Bjorken boost-invariant scaling
limit. The results of these second order theories are compared to those of first order theories due to Eckart and
to Landau and Lifshitz and those of zeroth ordperfect fluid due to Euler. In the presence of dissipation
perfect fluid dynamics is no longer valid in describing the evolution of the matter. First order theories fail in the
early stages of evolution. Second order theories give a better description in good agreement with transport
models. It is shown in which region the Navier-Stokes-Fourier |gfivst order theoriesare a reasonable
limiting case of the more general extended thermodynaxsiesond order theorigs
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I. INTRODUCTION terms up to linear order in dissipative quantities and hence
The study of space-time evolution and nonequilibriumthey are referred to aé#rst order theoriesof dissipative flu-

properties of matter produced in high energy heavy ion collds. The resulting equations for th(_a dissipative fluxes are I!n—
lisions, such as those at the Relativistic Heavy lon Collidef2"y related to the thermodynamic forces, and the resulting

(RHIC) at Brookhaven National Laboratory, USA and the equations of mo_tion are parabolic in structure, from which

Large Hadron CollidetLHC) at CERN, Geneva using rela- W& g€t the Fourier-Navier-Stokes equations. They have the
tivistic dissipative fluid dynamics are of importance in un- undesirable feature that causality may not be satisfied. That
derstanding the observables. RHIC has already provided
with some interesting resul{d]. One of the most important
reasons for colliding heavy nuclei at high energies is thelVI
possibility of creating the quark-gluon plas@GP) [2].

Js they may propagate viscous and thermal signals with
Speeds exceeding that of light.
Extended theories of dissipative fluids due to Gf&¢
dller [9], and Israel and Stewafi0] were introduced to
Hiah h X lisi fer th ity t reme_dy some of these undesirablt_a features. These causal
Igh energy heéavy 1on collisions ofter th€ opportunity 10 y,eqries are based on the assumption that the entropy four-
study the properties of hot and dense matter. To do SO W rrent should include terms quadratic in the dissipative
must follow its space-time evolution, which is affected notfj xes and hence they are referred tsasond order theories
only by the equation of state but also by dissipative, nonequipf dissipative fluids. The resulting equations for the dissipa-
librium processes. Thus we need to know the transport coetiye fluxes are hyperbolic and they lead to causal propagation
ficients such as viscosities, conductivities, and diffusivities of signals[10,11. In second order theories the space of ther-
We also need to know the relaxation times for various dissimodynamic quantities is expanded to include the dissipative
pative processes under consideration. Knowledge of the varguantities for the particular system under consideration.
ous time and length scales is of central importance to help uShese dissipative quantities are treated as thermodynamic
decide whether to apply fluid dynami@macroscopizor ki-  variables in their own right.
netic theory(microscopig or a combination of the two. The A qualitative study of relativistic dissipative fluids for ap-
use of fluid dynamics as one of the approaches in modelinglications to relativistic heavy ions collisions has been done
the dynamic evolution of nuclear collisions has been sucusing these first order theori¢s2—-17. The application of
cessful in describing many of the observahigdgl. The as- second order theories to nuclear collisions has just begun
sumptions and approximations of the fluid dynamical model§18—20Q, and the results of relativistic fluid dynamics can
are another source for uncertainties in predicting the obsenalso be compared to the prediction of spontaneous symmetry
ables. So far most work have focused on the ideal or perfedireaking result$21].
fluid and/or multifluid dynamics. In this work we apply the  The rest of the paper is outlined as follows. In Sec. Il the
relativistic dissipative fluid dynamical approach. It is known basic formulation of relativistic dissipative fluid dynamics
even from nonrelativistic studie®] that dissipation might will be briefly introduced. In Sec. Il we discuss the role of
affect the observables. dissipation in relativistic nuclear collisions. In Sec. IV we
The first theories of relativistic dissipative fluid dynamics summarize the results and discuss the need for hyperbolic
are due to Eckarf6] and to Landau and Lifshitf7]. The theories for relativistic dissipative fluids.
difference in formal appearance stems from different choices Throughout this paper we adopt the unitsc=kg=1.
for the definition of the hydrodynamical four-velocity. These The sign convention used follows the timelike convention
conventional theories of dissipative fluid dynamics are basewith the signaturé+,—,—,-), and ifu® is a timelike vector,
on the assumption that the entropy four-current containsi“u,>0. The metric tensor is always taken to Ipg”
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=diag+1,-1,-1,-1, the Minkowski tensor. Upper greek alized equations of state, which are of interest in the descrip-
indices are contravariant and lower greek indices covariantion of system under consideration. The phenomenological
The greek indices used in four-vectors go from 0 to 3formulation of the transport equations for the first order and
(t,x,y,2) and the roman indices used in three-vectors gosecond order theories is accomplished by combining the con-
from 1 to 3(x,y,z). The scalar product of two four-vectors servation of energy-momentum and particle number with the
a*,b* is denoted bya*g, b"=a"b,. The scalar product of Gibbs equation. One then obtains an expression for the en-
two three-vectors is denoted by boldface type, namellg, ~ tropy four-current, and its divergence leads to entropy pro-
a-b. The notationsA(@®) = (A®B+AB%) /2 and AleBl= (A8 duction. Because of the enlargement of the space of variables
-AB%)/2 denote symmetrization and antisymmetrization, rethe expressions for the energy-momentum teri6i par-
spectively. The four-derivative is denoted liy,= d/Jxe. ticle four-currentN#, entropy four-curreng*, and the Gibbs
Contravariant components of a tensor are found from cova€duation contain extra terms. Transport equations for dissi-

riant components by, sA*=Ag, §,.,0,sF**=F ,,, and so on. pative fluxes are obtained by imposing the second law of
a a thermodynamics, that is, the principle of nondecreasing en-

tropy. The kinetic approach is based on Grad’'s 14-moment
Il. NONEQUILIBRIUM/DISSIPATIVE RELATIVISTIC method[8]. For a review on generalization of the 14-moment
FLUID DYNAMICS method to a mixture of several particle species see [Réf.
In this section we give a brief review of the basics of For applications and discussions of the moment method in

nonequilibrium fluid dynamics. The central role of entropy is kinetic and transport theory of gases see, e.g., R&l.and
highlighted. Nonequilibrium effects are introduced by en-for applications in astrophysics and cosmology see, e.g., Ref.
larging the space of basic independent variables through tHe8]- The need for hyperbolic theory in relativistic and non-
introduction of nonequilibrium variables, such as dissipative'€lativistic systems is also emphasized in Ref].
fluxes appearing in the conservation equations. The next step N the early stages of relativistic nuclear collisions we
is to find evolution equations for these extra variablesWant to describe phenomena at frequencies comparable to
Whereas the evolution equations for the equilibrium vari-the inverse of the relaxation times of the fluxes. At such time
ables are given by the usual conservation laws, no generdfales, these fluxes must be included in the set of basic in-
criteria exist concerning the evolution equations of the dissidependent variables. In order to model dissipative processes
pative fluxes, with the exception of the restriction imposede need nonequilibrium fluid dynamics or irreversible ther-
on them by the second law of thermodynamics. modynamics. A satisfactory approach to irreversible thermo-

The entropy is conserved in ideal fluid dynamics. Thusdynamlcs is via nonequilibrium kinetic theory. In this work
perfect fluids in equilibrium generate no entropy and nowe Will, however, follow a phenomenological approach.
frictional-type heating because their dynamics is reversibl&Vhenever necessary we will point out how kinetic theory
and without dissipation. For many processes in nuclear colSUPPOrts many of the results and their generalization. A com-
lisions a perfect fluid model is adequate. However, real fluiddlete discussion of irreversible thermodynamics is given in
behave irreversibly, and some processes in heavy ion reaf’® monograph$30-32, where most of the theory and ap-
tions may not be understood except as dissipative processddications are nonrelativistic but include relativistic thermo-
requiring a relativistic theory of dissipative fluids. An equi- dynamics. A relativistic, but more advanced, treatment may
librium state is characterized by the absence of viscou®® found in Refs[33-35. In this work we will present a
stresses, heat flow and diffusion, and maximum entropy prinSimple introduction to these features, leading up to a formu-
ciple, while a nonequilibrium state is characterized by theation of relativistic causal fluid dynamics that can be used
principle of nondecreasing entropy which arises due to thdor applications in nuclear collisions.
presence of dissipative fluxes.

Perfect fluid dynamics has been successful in describing A. Basic features of irreversible thermodynamics
most of the observablg8,4,23. The current status of ideal and imperfect fluids

hydrodynamics in describing observables can be found in The basic formulation of relativistic hydrodynamics can

Refs.[1,23,24. Already at the level of ideal fluid approxi- be found in the literaturésee, for example, Refs7,36-38).

mation constructing numerical solution scheme to the €Y% e consider a simple fluid and no electromagnetic fields.

tions is not an easy task. This is due to the nonlinearity of they.< id is characterized by
system of conservation equations. Much work has been done

in ideal hydrodynamics for heavy ion collision simulations NA(x), particle 4-current, (1)
(see, e.g., Refl.25]). In this work the results are based on a
simple one-dimensional consideration. TE'(x), energy-momentum tensor )

A natural way to obtain the evolution equations for the
fluxes from a macroscopic basis is to generalize the equilib-
rium thermodynamic theories. That is, we assume the exis-
tence of a generalized entropy which depends on the dissivhere A=1, ... r for the r conserved net charge currents,
pative fluxes and on the equilibrium variables as well.such as electric charge, baryon number, and strangelgss.
Restrictions on the form of the evolution equations are themnd T#* represent conserved quantities:
imposed by the laws of thermodynamics. From the expres-
sion for generalized entropy one can then derive the gener- 9,NA=0, (4)

S4(x), entropy 4-current, (3)
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5, =0, (5) U, U =0, a9

The above equations are the local conservation of net char
and energy-momentum. They are the equations of motion % can be taken parallel to the particle fldi. This is known

- - . . .
e e o oS he ECkat o e rame, an i Ui =0 1t
dynamics requires ' can also be taken to be parallel_ to the energy flow. This is

known as the Landau and Lifshitz or energy frame, and in
9S>0 (6) this frameW*=0. This implies thag*=-hV*.

# ’ The two choices of velocity four-flow have different com-
and it forms the basis for the development of the extended@utational advantage of each of the formulations. The
irreversible thermodynamics. The equality in E8§).is foran ~ Landau-Lifshitz formalism is convenient to employ since it
equilibrium state, that is, for an ideal fluid. reduces the energy-momentum tensor to a simpler form. The

We now perform a tensor decompositionf, T#*, and  price for this is the implicit definition of the four-velocity.
S* with respect to an arbitrary, timelike, four-vectot, nor-  The Eckart formalism has the advantage when one wants to
malized asu*u, =1, and the projection onto the three-spacehave simple integration of particle conservation law. This
A#r=grv—yry?= A¥* orthogonal tou®, that is, A“*u,=0. choice is also more intuitive than that of Landau-Lifshitz.

hich is a useful relation. There are two choicesui6]33].

The tensor decomposition reads For a system with no net charge, the four-velocity in the
Eckart formalism is not well defined, and therefore in gen-
N# = nu* + V#, (7) eral under this situation one should use the Landau-Lifshitz
formalism. The Landau-Lifshitz formalism is also advanta-
TA = gutu? — pA,LLV+ zvv(,u,uv+ th, (8) geous in the case of mixtures.
S =sut + PH, (9) B. Conservation laws and the second law of thermodynamics

We will now consider one type of charge, namely, the net
baryon number. We insert the expressions for the number
WE = g + hVH, (10) four-current and the energy-momentum tensor in the conser-
vation laws and project them onto the four-velocity and the
projection tensor. Using the orthogonality properti&8 of
= — AR (1) dissipative fluxes we obtain the following conservation
laws. The equation of continuitgnet charge conservatipn
d,N*=0, equation of motion(momentum conservation
A#5, T =0, and the equation of energgnergy conserva-

where we have defined

Hereh is the enthalpy per particle defined by

h= w (12) tion) u,d,T#’=0 are, respectively,
n
The dissipative fluxes are orthogonal ¢ and in addition Dn=-nV u*-V, V¥+V Du*, (15
the shear tensor is traceless:
u,V¥=0, u,q*=0, uW=0, u,t=0, m,=0. (e + p+11)Du¥ = V¥(p+1I) - AUV 77 + 7#'Du,
(13 - [A“DW + 2W* V u V], (16)

In the local rest fram&LRF) defined byu#=(1,0) the
quantities appearing in the decomposed tensors have the fol, . _ _ P _ " "
lowing meaningsn=u,N* is the net density of charg#// De=-(e+p+IDV, U+ 7V, u ) =V, W+ 2WDu,.
=A#N" is the net flow of charges =u,T*u, is the energy (17)
density,p+1I= —%AWTW is the local isotropic pressure plus
bulk pressureW*=u, T AL is the energy flow,g*=W+ The five conservation equationd5)—(17) contain 14 un-
-hV* is the heat flow,7’=T*" is the stress tensos known functionsn,e,IT,W*, 77#*, andu*. To close the sys-
=u, S"is the entropy density, ani*= A/'S” is the entropy  tem of equations we need to obtain nine additional equations
flux. The angular bracket notation, representing the symme{for dissipative fluxesin addition to the five conservation
trized spatial and traceless part of the tensor, is defined bgquations(for primary variables we already know. In pre-
Ay = [%(AﬁAHA’;A(V,)—%AWAW]A‘”. The space-time de- senting the nine additional equations we will use the Eckart’s
rivative decomposes ini@ =u*D +V# with u*V,,=0. In this  definition of u*.
space-time derivative decompositibr= u*d,, is the convec- From the phenomenological treatment of deriving the
tive time derivative and&#=A#"g, is the gradient operator. nine additional equations we need the expression for the out-
So far, u# is arbitrary. It has the following properties. of-equilibrium entropy four-current. The most general off-
Differentiating u,u*=1 with respect to space-time coordi- equilibrium entropy four-curren®*(N*, T#") takes the form
nates,d,, yields [10]
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S =p(a, B) B* — aNF + B, TH + QH(SNH, TH, .. ), tiese andn and is given precisely by the equation of state
(18) S=Sef&,N).

Alternatively we may begin with the ansatz for the en-
where a=u/T is the thermal potentialg,=u,/T is the tropy four-currentS* In the limit of vanishingll, g#, and
inverse-temperature four-vector, a@d is a function of de- 7% the entropy four-current must reduce to the one of ideal
viations SN* and 8T#* from local equilibrium, fluid. The only nonvanishing four-vector which can be

STAV= TV THY SN = NF = NE (19 formed f_rom t_he availa_ble tensotg’, g~, and_w’” is Bg~,
- eq - eq whereg is arbitrary but it turns out to be nothing else but the
containing all the information about viscous stresses and he#iverse temperature. Thus the first order expression for the

flux in the off-equilibrium state. entropy four-current in the Eckart frame is given by
Since the equilibrium pressure is only known as a func- q
tion of the equilibrium energy density and equilibrium net S=su+—_—, (25)

charge density, we need to match/fix the equilibrium pressure T
to the actual state. We do this by requiring that the equilib-and one immediately realizes that
rium energy density and the equilibrium net charge density

be equal to the off-equilibrium energy density and off- = q*

equilibrium net charge density. This is equivalent to T (26)

sT#"u,u, = 6Nu, = 0. (200 isthe entropy flux. Using the expressions i, T#*, andS*
in the second law of thermodynamiggS“=0 and using the
conservation lawsi,d, T#"=0, 4,N*=0 and the Gibbs equa-
tion

With the help of the expression for the divergencepgt,
that is,

— NIM _ TMY

ﬁﬂ(pﬁﬂ) - Neqﬂﬂ«a Teqa,uﬁw (21) O')M(pB,U-) = N#aﬁa - TMV&MBW (27)

and the conservation laws fof* and forT#” the generalized
second law of thermodynamics becomes entropy production:

0uS' == (NH)9,a+ 5TH9, 8, + 9,Q". (22) T9,8=q“(V,B8+Du,) + 7'V u,- TV, u* = 0.
Once a detailed form oQ* is specified, linear relations (28)

between irreversible fluxes(SN#,5T#*) and gradients

(3, B 1), d,a) follow by imposing the second law of thermo- Notice that the equilibrium conditiorge., the bulk free and

dynamics, namely, that the entropy production be positive.Shear free of the flow and the constancy of the thermal po-

The key to a complete phenomenological theory thus lies i
the specification o*.

the divergence of Eq25) gives the following expression for

ential, i.e., no heat flopead to the vanishing of each factor
multiplying the dissipative terms on the right, and therefore
lead tod,5*=0. The expressioli28) splits into three inde-
pendent, irreducible pieces:

The standard Landau-Lifshitz and Eckart theories make X = X, + 7 X4y = 0, (29
the simplest possible assumption abQ¥t that it is linear in  \yhere the thermodynamic forces ané=-V u* X
the dissipative quantitied1,qg*, #*"). In kinetic theory this = (VAT/T)-DU¥, x<,w>E[;(AMAV+AVA,L)_1A,LVA’L veur.
amounts to Taylor expanding the entropy four-current ex- =00 the second Iawzof Oihérmgdyrnar%i@ﬂgo we
pression up to first qrder in deviations from equiliprium. _This see that the simplest way to satisfy the bilinear e>'<pression
leads to an expression of entropy four-current which is just 8,g, s t impose the following linear relationships between

linear function of the heat flux. : .
the thermodynamic fluxeHd ,g*, #*”, and the correspondin
This can be understood as follows: Take a simple ﬂUidthermodynar):ﬂc forces: 4 P g

with particle curreniN#. Let us choosgg*=u*/T parallel to
the currenfN* of the given off-equilibrium state, so we are in IT=-¢v,u-, (30)
the Eckart frame. Projecting E@18) onto the three-space

C. Standard relativistic dissipative fluid dynamics

orthogonal tou* gives VAT ANT2 P
g*=\T| — -Du*| =~ v =1, (32
O = ALS'= Bo+ QAL (23 T e+p \T
so that = 2V P, (32)
d*=g*/T+ second order terms, (24)

That is, we assume that the dissipative fluxes are linear and
which, to linear order, is just the standard relation betweempurely local functions of the gradients. We then obtain
entropy fluxd®# and heat fluxg*. From Eq.(23) this implies  uniquely, if the equilibrium state is isotropi€urie’s prin-

that the entropy fluxd* is a strictly linear function of heat ciple), the above linear expressions.

flux g“, and depends on no other variables; also that the These are the constitutive equations for dissipative fluxes
off-equilibrium entropy density depends only on the densi-in the standard Eckart theory of relativistic irreversible ther-
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modynamics. They are relativistic generalizations of the cornamic force is suddenly switched off/on, then the corre-
responding Newtonian laws. The linear laws allow us tosponding thermodynamic flux instantaneously vanishes/
identify the thermodynamic coefficients, namely, the bulkappears. This indicates that a signal propagates through the
viscosity {(e,n), the thermal conductivity\(e,n), and the fluid at infinite speed, violating relativistic causality. This is

shear viscosityy(e,n). known as a paradox since in special relativity the speed of
Given the linear constitutive equatio30)—(32), the en- light is finite and all maximum speeds should not be greater
tropy production raté28) becomes than this speed. This paradox was first addressed by Cattaneo
5 [39] by introducingad hocrelaxation terms in the phenom-
9 Sh= 1 oq.9* + 7 e =0 (33) enological equations. The resulting equations conform with
. T \T? 29T ’ causality. The only problem was that a sound theory was
o . ] needed. It is from these arguments that the causal extended
which is guaranteed to be non-negative provided that theory of Miiller, Israel, and Stewart was developed.
(=0, \=0, 5=0. (34
Note thatg“g, <0 which can be most easily proven from D. Causal relativistic dissipative fluid dynamics
g“u,=0 in the LRF. Clearly the Eckart postulat@5) for Q“ and hences is

Using the fundamental thermodynamic equation of Gibbsoo simple. Kinetic theory indicates that in fa@t: is second
the entropy evolution equation can be written in the follow-order in the dissipative fluxes. The Eckart assumption, by
ing convenient form: truncating at first order, removes the terms that are necessary
to provide causality, hyperbolicity, and stability.

19,8= 0, 7" =110 - 9,0" + qa,, (35) The second order kinetic theory formulation of the en-
which can be found with the help of ttilid kinematic iden- ~ tropy four-current, see Ref8], was the starting point for
tity good work on extending the domain of validity of conven-
tional thermodynamics to shorter space-time scale. The turn-
M, =0y, + @, + %GA,WJf a,u,, (36) ing point was Muller’'s papef9] which, for the first time,

expressed Q“ in terms of the off-equilibrium forces

Wherea'uEUV(?VUM is the fpur-acceleration of the fIUquM,, (H,q,wij) and thus linked phenomeno|ogy to the Grad ex-
= A A%drgu, is the vorticity tensorgl,, = AgA%d,u, is the  pansion[8]. This marked the birth of what is now known as
expansion tensof=A*"¢,,=4,u* is the volume expansion, extended irreversible thermodynami&9-37.
ando,,= GW—%AWH is the shear tensor. The quantities de- For small deviations, it will suffice to retain only the
fined here are the fluid kinematic variables. lowest-order, quadratic terms in the Taylor expansioQbtf

The Navier-Stokes-Fourier equations comprise a set ofeading to linear phenomenological laws. The most general
nine equations. Together with the five conservation lawslgebraic form forQ* that is at most second order in the
ad,T""=9,N#=0, they should suffice, on the basis of naive dissipative fluxes givegL0]
counting, to determine the evolution of the 14 variablé$ " " g~
and N# fr_om s_wtable _|n|t|al data. L_Jnfortunate_ly, th_ls system qu—gp 4 a_ (BolT2 = 10,0 + By ™) — — aollq”
of equations is of mixed parabolic-hyperbolic-elliptic type. T 2T T
Just like the nonrelativistic Fourier-Navier-Stokes theory, "
they predict infinite propagation speeds for thermal and vis- + 1—q”, (37)
cous disturbances. Already at the nonrelativistic level, the T

parabolic character of the equations has been a source @fhere g,(¢,n)=0 are thermodynamic coefficients for sca-
concern [39]. One would expect signal velocities t0 be |5¢ vector, and tensor dissipative contributions to the entropy

bounded by the mean molecular speed. However in the Noyensity, anda,(e,n) are thermodynamic viscous/ heat cou-
relativistic case wave-front velocities can be infinite such a ling coefficients. It follows from Eq(37) that the effective

the case in the tail of Maxwell’'s distribution which has arbi-
trarily large velocities. However, a relativistic theory which
predicts infinite speeds of propagation contradicts the foun- _. 1 5 " v
dation or the basic principles of relativity and must be a U,S* = 8= "2 (Boll” = £10, 0" + Bom,, ™), (38)
cause of concern especially when one has to use the theory to
explain observables from relativistic phenomena or experiindependent otx,. Note that the entropy density is a maxi-
ments such as ultrarelativistic heavy ion experiments. Th&wum in equilibrium. The condition,Q*<0, which guaran-
other problem is that these first order theories possess instt€s that entropy is maximized in equilibrium, requires that
bilities: equilibrium states are unstable under small perturbathe Sa be non-negative. The entropy flux is
tions[11]. _ _ v

Most of the applications of dissipative fluid dynamics in PF=B(a - agllg” + ay7q,), (39
relativistic nuclear collisions have used the Eckart/Landauand is independent of thé,.
Lifshitz theory. However, the algebraic nature of the Eckart The divergence of the extended currésit) together with
constitutive equations leads to severe problems. Qualitethe Gibbs equation27) and the conservation equations
tively, it can be seen from Eq&30)—(32) that if a thermody-  (15—17) leads to

entropy density measured by comoving observers is
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arise from the presence ofin terms that couple the vorticity

to the heat flux and shear stresses. These may be large even
in steady states where vorticity is important. There are also
other acceleration coupling terms to bulk and shear stresses
and the heat flux. The coefficients for these vanish in para-
bolic theories, but they could be large even in the steady
state. The convective part of the time derivative, which is not
negligible in the presence of large spatial gradients, and
modifications in the equations of state due to the presence of
dissipative fluxes also differentiate hyperbolic theories from
parabolic ones. However, it is precisely before the establish-

The simplest way to satisfy the second law of thermodynamMent of the steady-state regime that both types of theories
ics, 9,9*=0, is to impose, as in the standard theory, lineardiffer more significantly. Therefore, if one wishes to study a
relationships between the thermodynamical fluxes and exdissipative process for times shorter thait is mandatory to
tended thermodynamic forces, leading to the following con.€sort to a hyperbolic theory which is a more accurate mac-

stitutive or transport equations:

Tr[l;[ +1I=-760- {%H&M(%U”>H] gV, (41

. . 1 pe
70+ 4 =NV, T =T + [EAT20V<)\—_FZUV> q#]

gV, I =14,V 7, (42

. )
TWAZAfoaﬂ +7,,= 290, — [ nTz?)\(—u}‘) 77#,,:|

27T
gV G- (43)
Here the relaxational times,(e,n) are given by
m= gBO! Tq = )\T:Blv Tn= 277ﬁ21 (44)

and the heat-viscous coupling lengths coefficidntsge,n)
are given by

IqH = )\Tao, Iqﬂ.: )\Tal, qu = 2’)7&’1.

(45)

A key quantity in these theories is the relaxation timef

|Hq = Lay,

roscopic approximation to the underlying kinetic description.

Provided that the spatial gradients are not so large that the
convective part of the time derivative becomes important,
and that the fluxes and coupling terms remain safely small,
then for times larger thanm it is sensible to resort to a para-
bolic theory. However, even in these cases, it should be kept
in mind that the way a system approaches equilibrium may
be very sensitive to the relaxation time. The future of the
system at time scales much longer than the relaxation time,
once the steady state is reached, may also critically depend
on .

The crucial difference between the standard Eckart and
the extended Israel-Stewart transport equations is that the
latter are differential evolution equations, while the former
are algebraic relations. The evolution terms, with the relax-
ational time coefficients,, are needed for causality, as well
as for modeling high energy heavy ion collisions relaxation
effects are important. The price paid for the improvements
that the extended causal thermodynamics brings is that new
thermodynamic coefficients are introduced. However, as is
the case with the coefficiens \, and » that occur also in
standard theory, these new coefficients may be evaluated or
at least estimated via kinetic theory. The relaxation times
involve complicated collision integrals. They are usually es-
timated as mean collision times, of the form=1/nov,

the corresponding dissipative process. It is a positive-definitd’herea is a collision cross section andthe mean particle
quantity by the requirement of hyperbolicity. It is the time SPeed. _ _ -
taken by the corresponding dissipative flux to relax to its The form of transport equations obtained here is justified
steady-state value. It is connected to the mean collision timBY kinetic theory, which leads to the same form of the trans-
t, of the particles responsible for the dissipative process, buROrt equations, but with extra terms and explicit expressions
the two are not the same. In principle they are different sincdor transport, relaxation, and coupling coefficients. With
7 is a macroscopic time, although in some instances it majhese transport equations, the entropy production rate has the
correspond just to a fety. No general formula linking.and ~ Same non-negative forr83) as in the standard theory. In
t. exists; their relationship depends in each case on the sydddition to viscous/heat couplings, kinetic theory shows that
tem under consideration. in general there will also be couplings of the heat flux and
Besides the fact that parabolic theories are necessarifie anisotropic pressure to the vorticity. These couplings give
noncausal, it is obvious that whenever the time scale of th&Se to the following additions to the right-hand sides of Egs.
problem under consideration becomes of the order of of42) and(43), respectively:
smaller than the relaxation time, the latter cannot be ignored.
Neglecting the relaxation time in this situation amounts to
disregarding the whole problem under consideration.
Even in the steady-state regime the descriptions offereth the case of scaling solution assumption in nuclear colli-
by parabolic and hyperbolic theories might not necessarilysions these additional terms do not contribute since they van-
coincide. The differences between them in such a situatioish. Also, the resulting expression féf,S* in general con-

+ 10,97 and 47, (@ - (46)
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tains terms involving gradients at, and B, multiplying  general scheme, when applied to first order theories, always
second order quantities such as the bilinear termgields wave-front speeds that are superluminglll].
(aﬂal)qm)‘“ and(d,ao)g"Il. In the present work where we We will be studying the dynamics of a pion fluid in the
will assume scaling solution these terms do not contribute tdnadronic regime and a quark-gluon plasma fluid in the par-
the overall analysis. tonic regime. It is therefore important to check if these sys-
It is also important to remember that the derivation of thetems conform with the principle of relativity under small
causal transport equations is based on the assumption that therturbation of the equilibrium state. For a quark-gluon
fluid is close to equilibrium. Thus the dissipative fluxes areplasma we consider a gas of weakly interacting massless
small: quarks and gluons. We also consider such a system to have a
vanishing baryon chemical potentigkg=0). This implies
[ <p, (m,)"?<p, (-qa)"*<s. (47)  also that the net baryon charge is zéng=0). The equation

These conditions will also be useful in guiding us when We?f Stlatf .|st_g|vent. t}yp:tf_]/?’t') 'szr _masstless p_arr1t|cles or ul-
discuss the initial conditions for the dissipative fluxes. Con-' &/ S1allVISliC particies the bulk VISCOSily vanisnes.

o ; - ) In the absence of any conserved charge the convenient
Ege(ré%? gt]iﬁ ﬁ\é%l;tlon of entropy in the Israel-Stewart theory’choice of the four-velocity is the Landau-Lifshitz frame. In

It will be inconceivable if the more general theory doesthIS gasg the charactgrlstlm gqu?rt]loqs f(_)tr (;c_he lwavde-front
not conform to the principles of relativity. In order to check speeds become very simple. For the fongitudinal modes we

that the system of 14 equations conforms with causality ondet only thefastlongitudinal modgassociated with the true

writes the five conservation equations and the nine evolutiOI"i‘COl“'St'C"’II Wav)af E‘e ;bsence of heatfgmlljcno.? z‘."‘s Ias a
equations for dissipative quantities in one single linearizedONS€duUeNce ot the disappearance o ongtucina

- ; ropagation mode(associated with thermal dissipation
system as done in Rdfl1]. The system of 14 equations may P X Lo :
be written as a quasilinear system of 14 equations in the forﬁé;’is\éﬁ'bghe phase velocity of the fast longitudinal mode is

MgA(UC)aaUB =fAU° (AB=1, ...,14, (48) , 1+208, 5 -
whereMgA(UC) andfA(U°) can be taken to be components of oL -

6pB, 9
14X 14 matrices and 14 vectors. The right-hand side con- _
tains all the collision terms, and the coefficieg(U°) where we have usef;~(3/4)(1/p) (see Ref[10] for the

v th d ical functi coefficientsa; and B;). Thus if we are considering only the
areLgtuéebé a?:g?acﬁgfilsr,rt]ilcc?]ypggt;?f;ié for the systaB shear viscosity we will get the above result. The wave-front
and letg(x*) =0 be the local equation fc. Then ¢ satisfies speed(signal speedfor the transverse plane wave is given

the characteristic equation by
1 1
2 _ —
defMg*d,4)]1=0. (49) T80, 6 (53

#(x*) is a three-dimensional space across which the vari- Eor a pion fluid with vanishing chemical potentjal. =0
ablesU® are continuous but their first derivatives are allowede have, for the fast longitudinal mode and the transverse

to present discontinuitie$d,U®] normal to the surface mode, the following expressions for the wave-front speeds:
0 [9,UB]=UB(3,¢). The characteristic speeds are indepen-
dent of the microscopic details such as cross sections. To 2 + A+ +

L . . . - aplo
solve the characteristic equatiéf9) we consider a coordi- 3B 0+ Bat Pobole +p) dploe

nate systenx®* chosen in such a way that at any point in the UE = BofBo(e +p) ' (54)
fluid the system of reference is orthogonal and comoving. If

¢ is a function ofx? and x* only, the characteristic speeds 1

can be determined from 2 (55)

o= 2B,(e+p)

A0 _ pALy —
de{vMg"~M3z) =0, (50 Note that for the pion system we are in the relativistic re-

whereu is the characteristic speed defined by gime. Then the equation of state is taken to be that of a
noninteracting gas of pions only. The bulk viscosity does not

v == doply . (51)  vanish. We show the dependence of the wave-front speeds

) o and the adiabatic speed of sound on temperature in Fig. 1.
The 14-component vectot is split into a scalar-  thys in all the systems we will consider heisee the fol-

longitudinal  six-vector U =[g,n,II,u*,g*,7]; two lowing section causality is obeyed.
longitudinal-transverse three-vectogsorresponding to the
two transverse directions of polarizatjpn ULTl
=[w,q’, 7] and U, r,=[u* 0%, 7 and purely transverse
two-vector Ut=[ 7Y%, mY—7%4. Equation(50) for v accord-
ingly splits into one sixth-degree and two third-degree equa- We now describe the evolution of the matter produced at
tions. The purely transverse modes do not propagate. Thisigh energy nuclear collisions such as those at RHIC and

Ill. THE ROLE OF DISSIPATION IN RELATIVISTIC
NUCLEUS-NUCLEUS COLLISIONS
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1.00

TTTTI—T T T T 1T known as VNI[41], which treats the entire evolution of the

: = parton gas from the first contact of the cold nuclei to had-
ronization or Heavy lon Jet Interaction GeneratdiJING)
[42]. For initializing a hadronic state one can use ultrarela-
tivistic quantum molecular dynami¢s®)rQMD) [43].

Another frequently used relation between the initial tem-
perature and the initial time is based on the uncertainty prin-
ciple [44]. The formation timer of a particle with an average

energy(E) is given by XE)=1. The average energy of a
1 m/T1O 100 thermal parton is aboutT3 Hence, we findry=1/(3T)).
However, if data for hadron production are available, such as

FIG. 1. The transversévt), longitudinal (v,), and soundv,) at SPS, they can be used to determine or at least constrain the
phase velocities in a pion gas, as a functiorzem/T, whenm is initial conditions for a hydrodynamical calculation of observ-
the mass of pion. ables such as the photon spedua].

Under the simplifying assumption of an ideal fluid, the
LHC. Of interest is the midrapidity region with no net full hydrodynamical equations can be solved numerically us-
baryon number. Based on the observation that the rapiditind an equation of state and the initial conditions, such as
distribution of the charged particle multiplicitgiN.,/dy is initial time and temperature, as input. The final results de-
constant in the midrapidity regid@0], that is, it is invariant  pend strongly on the input parameters as well as on other
under Lorentz transformation in the midrapidity region, it is details of the model, as in the simple one-dimensional case.
reasonable to assume that all other quantities such as numtbe@r a system out of equilibrium the Euler equations should
density, energy density, and dissipative fluxes also have thige replaced by the Navier-Stokgks,17 or hyperbolic dis-
symmetry. Thus these quantities depend on the proper timéipative equation§18-20Q.
7=t/ y=\t2-22. The longitudinal component of the matter  In dissipative fluid dynamics entropy is generated by dis-
velocity is parametrized as=z/t=tanhy, with t=7 coshy,  sipation. The dissipative quantities, namdl, g*, and 7"
z=rsinhy, and the space-time rapidity is defined ps are not sek _priori t(_) zero. Thgy are spec_ified t_hrough addi-
:%m((tﬂ)/(t_z))_ This is the Bjorker{40] scaling solution ~ tional equations. Since we will be working with a baryon-
assumption for high energy nuclear collisions. Then the fourfree system(n=0), a convenient choice of the reference

Characteristic Speeds
o
=)

o

2
=
=

velocity can be written as frame is the Landau and Lifshitz frame. The number current,
. energy-momentum tensor, and the entropy four-current in
u“ = (coshy,0,0,sinhy). (56)  this frame are obtained from Eq&)—(9) with W#=0. In the

We use the following transformation matrix of the deriva- LRF the energy-momentum tensor is given by

tives to reduce the equations to simple forms:

€ 0 0 0
9 7 qur [ O (p¥Il-ml2) 0 0
It _ ( coshy - sinhy) ar - RFT 1 o 0 (p+11 - 7/2) 0
g | \=sinhy coshy (57) 0 0 0 (p+I+m)

19

Jz Ty (60)

We also note that using the transformation of derivatives! Nis satisfiesT,=e—-3(p+11), m,=m=*u,=0. To study the
and the definition of the four-velocity we can write dynamics of the system it is necessary to apply a boost in the
longitudinal direction. Using Eq56) we have

1
0=d,u"=", (58) Wecoslty-P 0 0 W coshysinhy
0 P, 0 0
a ™= :
D=utd,=—. (59) 0 0 P, 0
aT Wecoshysinhy 0 0  Wsintty+P
The recipe given here will be used to simplify the equations (61)

of relativistic fluid dynamics in the following sections. In
this work we consider #1+1)-dimensional scaling solution with W=¢+P the effective enthalpy densityP=p+I1+x
in which we have one nonvanishing spatial component of théhe effective longitudinal pressure, afti =p+11-x/2 the
four-velocity in a(3+1) space-time. effective transverse pressure. For perfect fluidsII=0. It

In order to solve the fluid dynamical equations one needss clear that the effects of viscosity is to reduce pressure in
the initial and boundary conditions in addition to a realisticthe longitudinal direction and increase pressure in the trans-
equation of state. The initial conditions can be taken in prinverse direction. Thél+1)-dimensional scaling solution im-
ciple from transport calculations describing the approach tglies that the thermodynamic quantities dependroonly.
equilibrium, such as the parton cascade model commonlyhus the scaling solution and the relatiohs 9x*=u,, and
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df(r)/ ox*=u,(df(7)/d7) [where f(7) represent thermody- the perfect fluid, first order, and second order theories by the
namic variables such as temperature, chemical potential, argliantity 7
dissipative fluxe$reduce the first order transport equations

(30~(32) 10 7=0, perfect fluid, (70
__ 1 4
Im=- e (62 = 577/7, first order theory, (71
ve=0, (69 dr_ w1 [Liﬁ(&)}
41 dr To 2777' Bo dr\ T
T, (64) 211
3'7 +§——, second order theory. (72
2 T

The currentV* is induced by heat conductioN*=-qg*/h.
Equation(63) implies that there is no heat conduction in the Equation(68) can be written in terms of the ratios of non-
scaling solutions. This is independent of the fact thaD,  dissipative to dissipative terms as
another condition that also mak¥$ vanish.

In the second order theoly and have to be determined Je + etp_sg*p (73
from the second order transport equations. In the Landau- ar T Rr '
Lifshitz frame the transport equations are still given by Egs. i . i i
(41)~(43) but with slightly different heat coupling coeffi- where the ratioR, a_ssomated with the Reynolds number in
cients in the bulk and shear viscous pressure equations. UR€fs.[13,50), is defined by
der the scaling solution assumption those coupling terms do

not contribute to the dynamics of the system. The R= w (74)
(1+1)-scaling solution in(3+1) dimensions reduces the re- ™
laxation equation$41)-(43) to For this exploratory study a simple equation of state is

ITl o 11 1 (B 11 used, namely, that of a weakly interacting plasma of massless
— = ——1]{/30— +T—( 0)} -—=, (65 u,d,s quarks and gluons. The pressure is givenpaye/3
BoT =aT* with zero baryon chemical potential. That j$=0, ¢
=3p or s=4aT?, »=bT? and =0, a,b=const. The energy
gt . 11 [ 1 _9 (lBl)] 66 equation(68) and the shear viscous pressure equatif)

= = B+ T—| =
JT 4 2B g '817' or\ T reduce to
d T T . T 37 (75)
uv g —T=-— ,
gmhr _m }iww[ﬁzl +Ti(&>] dr 37 12ar
ar T 20 T  d7\T
1|~ 1 1 d 2aTn 1(1 1d> gaT*
+— | A*Y = AR =, 67 —g=—————q| —=b5=—T|+—. 76
,32[ 3 ]T (67) dr 3 2"\7 “Tdr 97 (76)
In the last of the above equatio@V:AMV for O<p,v<1 For a perfect fluid and a first order theory KE@5) can be

and 0 otherwisgbecause of only one nonvanishing spatialS0lved analytically. In this case the solution of E@S) is

component of the four-velocity 13 1 23
For the (1+1)-dimensional Bjorken similarity fluid flow T - [E} {1 + &(1 _ {E] )} 77
in (3+1) dimensions the energy equati¢h7) becomes To T 2 T ,
des e+p 1 1 whereT, andR, are the initial values of the temperature and
d_r+ - ;”'H;: 0, (68) the Reynolds number at the initial proper time r,. Note

that whenR;'=0 we obtain the familiar ideal fluid results
where 7= 7°°- 7?% is determined from the shear viscous while a nonvanishingR™* makes the cooling rate smaller.

tensor evolution equatio(67) Here
4 1.1 [}+iTE<&>]+gi} (69 a—<16+2—1N>ﬂ—2 (78
dTW_ 7'7777 277 T B, dr\ T 38,7 - 2 /90

andII is determined from Eq(65). Note that in Eq(68) = is a constant determined by the number of quark flavors and
andII are positive. In the case of massless particles the bulkhe number of gluon colors. The only relaxation coefficient
pressure equatio65) does not contribute since the bulk we need isB, which, for massless particles, is given By
viscosity is negligible or vanishd87]. We will distinguish ~ =3/(4p). The shear viscosity is gived1] by »=bT?, where
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1.5 I I | I
b= (1+170N) 20 (79 D
(1 +N¢/6)as In(ag™) R PO 20:2)1:0 -
N
is a constant determined by the number of quark flavors and 1.0~ T ’F‘?;f‘o'r‘(’;er ]
the number of gluon colors. Helé; is the number of quark - I |
flavors, taken to be 3, ands is the strong fine structure = T, = 500 MeV
constant, taken to be 0.4-0.5. 0.5% To =013 finfe —
The role of dissipation can be examined by rewriting en- AW
ergy equation as

d
7€ - (R—l_ 1)@ (80)
JT T

. . . . o . FIG. 2. Proper time evolution of the inverse Reynolds number
As is seen in this equation, the energy density increases Wity gifferent values ofm for the given primary initial conditions.
time if R<1 and decreases R>1. WhenR=1, the critical

value for Rey_nold_s number, the thermodyngmm quantities d? sponding thermodynamic/kinematic forces in the early
not change with time. One of the mathematical advantages o ! . g . .
. T ) : Stages of nuclear reactions is not trivial but interesting. In
the parabolic theories is the direct connection between the ' : oo : ,
Reynolds number and the initial conditiofiy, 7). This is order to find the viscous contribution to the time evolution of
y . > 70)- . ermodynamic quantities we need to solve the differential
because the first order theory does not have well-define

S o A quation fors. Therefore one has to determine the initial
initial conditions for the d|SS|_pat|ve fluxes,. and the Iatte.r are_onditions for independently. Although we do not know
related to the thermodynamic forces by linear algebraic ex

. the exact form of the initial value forr we will discuss the
pressions.

Wi di the i f initial dition for E limiting cases. The first and most important limiting case is
o s e et oS 22528 on the assumpon made vihen dervng the secod
; . N " . order theory transport equations, namely, that the dissipative
For the first order theories the initial condition faris not Y P q Y P

. o o . fluxes be small compared to the primary variables. For the
well defined and is given by the initial conditiori$,, ). hear viscous flux this means that the shear viscous stress

condition for 7 since the dissipative fluxes are found from
their evolution equations.

In deriving the transport equations it is assumed that th
dissipative fluxes are small compared to the primary vari
ables(e,n,p). For shear flux we require that

7 will always be less thap, hence the initial valuery will
always be less thap,. This has an interesting consequence:
&he initial Reynolds number is always greater than one. Thus
in second order theory under these conditions there will be
no increase of thermodynamic variables with increasing

time. In general the thermodynamic quantities will decrease
[WMVW#V]J-/Z: \/;T< p. (81) with time for as long as the condition

In terms ofr this condition can be written as m<etp (83)
2 is satisfied, which in the present case implies thg& 4p,.
T<1\/5P (82 However, values ofr greater than the pressupeleads to

unphysical negative effective enthalpy. Unlike in the first

In first order theories the question of how much a particu-order theories where it is not always possible to address this
lar dissipative flux is generated as a response to correspongroblem of negative effective enthalpy, in the second order
ing thermodynamic/kinematic forces in nuclear collisions istheories we are guided by the limitations which are embed-
governed by the primary initial condition§,, ry). That is,  ded in the valid application regimes of the theories, namely,
one just reads off the value of, from the linear algebraic the condition(w“”qrm,)l’2< p. This condition guarantees that
expression forr. We have seen that for values of the Rey-the effective enthalpy is always positive.
nolds number less than one, the thermodynamic quantities Under physical initial conditions the second order theory
increase with time. This might be signaling the instability of gives a Reynolds number that is always greater than one.
the solution. Alternatively this might imply that we are using This can be seen from Fig. 2 where for illustrative purposes
the first order theories beyond their domain of validity. Thewe also include curves for unphysical initial conditions for
primary initial conditions can in principle be extracted from 7. Note thatmy=4p, is the maximum value before the solu-
experiments. These in turn will give us the valuemyf This  tions becomes unstable. This is a critical value that gives a
value of y will eventually determine how the thermody- Reynolds numbeR,=1. As expected the first order theory
namic variables evolve with time. This is clearly understoodgives R<1 at the same time. Throughout this work, unless
by looking at the ratio of the pressure term to viscous termptherwise stated so, we use the primary initial conditions
namely,R, as already discussed above. based on the uncertainty principle as already discussed. Un-

In the second order theories the question of how much aer this prescription of primary initial conditions, which
particular dissipative flux is generated as a response to comight be relevant for RHIC and LHC, the first order theories
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are not suitable in describing the dynamics of thermodywhere both are valid. Unfortunately, it is not trivial to make
namic quantities. On the other hand, the second order thethe reverse match of initial conditions. This situation will
ries are suitable in describing the physical process happeningise in natural way when both first order and second order
at earlier times. An advantage of the extended irreversibléheories are applied in the situation where they are both
thermodynamics, or second order theories, is their ability tq/alid, as we will see later.
be applicable over a wide range of regimes. However, for a |n what follows we will try to get close to the conditions
different choice of initial conditions both theories might that are realized in the laboratory. We will consider scenarios
yield similar results, as we shall s¢¢6]. o close to those at RHIC and LHC. But first, we have to esti-
_There are other two ways of determining the initial con-mate the initial value ofr for these two scenarios. We will

ditions for 7r. The first one is by using the existing micro- ,se the recent results from VNI calculations for the proper
scopic models such as VN[41], (HNUING) [42], and  {ime evolution[47]. We will make a fit to the data points and
(UrQMD) [43] to extract the various components @f”  gyiract the initial value ofr. This is done in Fig. 4. Even
from T#*. Since we are dealing here with a partonic gas VNIihough the motive is to extract an initial condition far;
seems to be a good choice for the present work. We will usgyere is something interesting in Fig. 4. In this figure a com-
the results from the improved version of V7] to fit our  5is0n between the perfect fluid approximation, the first or-
calculation in order to extract the initial value fet Another  yer theory, and the second order theory is clear. The kinetic
way of determining the initial value fofr is to extract the  theory result, of course, differs significantly from the perfect
initial value of the Reynolds number experimentally. Two of fjig dynamics result. The first order theory obviously fails
the most experimentally accessible quantities are the multigerriply. The essential point, however, is that the second order
plicity per unit rapiditydN/dy and the transverse energy per heory is in good agreement with the VNI results. Due to the
unit rapidity dE;/dy. A detailed study for the initial and preliminary nature of VNI results we cannot yet claim per-
boundary conditions for dissipative fluxes is needed to fullyzgt agreement between the two approaches. However, the
incorporate these fluxes into the dynamical equations for the,t that both have similar power laws is striking. In the
thermodynamic quantities. _ _ beginning it looks liker ! and then later on™#3for the VNI

We use Eqs(75)—77) to study the proper time evolution egyjts. One expects that when the full three-dimensional
of temperature. The other thermodynamic quantities, ”ame%roblem is studied within the fluid dynamical approach we
energy density and entropy density, are related to the temyight have even better agreement. The fitted valuerpis
perature by the equation of state. It is important to show thgq \nd to be about 0f, which is, of course, a physical value.
entropy results due to the importance of entropy in the theorytpe value ofa used is about 0.5. For all RHIC results pre-
of irreversible extended thermodynamics and due to the faddgnted here we will use the expected primary initial condi-

that entropy is related to multiplicity. tions with 7=0.2p, and as=0.5. For the LHC scenario we
In Fig. 3@ we start by showing the dependence of the

temperature evolution on the initial value f One sees that T
there is a peak i in the case of first order theory since 10? PR, . To-300Mev
Ro<1, and no peak in the second order theory siRge 1. 4 T

In studying the dependence of the results on the initial con- f?; ; T
ditions for 7= we have also included even the critical value = 10
for illustrative purposes. For 01 my/py<1 the choice of % .
_— - ) ] 3
o IS important, but belowmry;=0.1p, the equation form PRI o
. . . . 10 + VNI (p,™)=2.0 Gev
gives the same contribution to the evolution of thermody- — — Second order
namic quantities. A
It is also tempting to choose the initial conditions for the T e L
second order theory to match what the first order theory pre- 10 T [fm/c1]0

dicts to be the initial value ofr. Note the order of the curves

in Fig. 3(b). The second order theory predicts larger devia- FIG. 4. Proper time evolution of the energy density. The data
tions than the first order theory. This should be exactly thepoints are from VNI simulations and the curves are fluid dynamical
same picture if both theories are synchronized in a regimeesults.
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will use the expected primary initial conditions withy describes the dynamics of the system. Given an observable
=0.3py and as=0.4. and a set of primary initial conditions we would like to see
As a benchmark both the fluid dynamical and cascadavhether the microscopic cascade models, the ideal fluid, the
models have been solved numerically for same primary inifirst order theory, or second order theory best describes the
tial conditions and equation of state. This is done for consisevolution of the system.
tency. It is apparent that hyperbolic models perform better Let us now analyze the differences between the second
than the parabolic ones, in agreement with VNI simulationsorder and first order theories. The first thing we notice is that
Also for energy density there is a peak in the parabolicthe Eckart-Landau-Lifshitz theory predicts that at early times
model which is absent in the hyperbolic model. This spurioughe temperature will rise before falling off. This is more pro-
unphysical result highlights the difference between the paranounced when we have small initial times. Naively one
bolic and hyperbolic models in region of large gradients. Wewould expect that the system would cool monotonically as it
remark that the initial state under consideration presents vergxpands, even in the case of dissipation where energy-
steep velocity gradients. Therefore this is an ideal benchmarkiomentum is conserved.
for testing fluid dynamical models against transport models. So far our focus has been on the quark-gluon plasma
Comparisons of Navier-Stokes-Fourier results with transportvhere the composition of the parton fluid enters the descrip-
models were made in Ref48] with NSF failing terribly for  tion through the form of the conservation laws and the equa-
smaller cross sections. In that particular study the NSF alstion of state. Now we study the dynamics of a pion fluid.
brought in the problem of negative effective pressure. TheéPions are the lightest hadrons. They are produced in abun-
transport results however gave a much better descriptiorflance in ultrarelativistic collisions compared to heavier had-
What is important however is that the second order theoryons, particularly in the central region. It is therefore impor-
seems to do a better job even in this case. The latest resukignt to study their influence on the expansion. If pions are
on this latter point to be published elsewhere are still undeproduced by hadronization of quark-gluon plasma, then dis-
investigation and comparison to previous work on the effecsipation encountered during their subsequent expansion may
tive pressure of a saturated gluon plasi#g] is done. change the observables. The expansion in the central region
The effect of dissipation is more pronounced at the veryconserves pion energy and momentum. Since pions carry
early stages of heavy ion collisions when gradients of tembaryon number zero, their total number is not conserved.
perature, velocity, etc., are large. This can be seen by conmFherefore, we expect the equilibrium number density of
paring Figs. 8a) and %b). One also sees that Euler hydro- pions in a given volume to vary with temperature.
dynamics predicts the fastest cooling. The first order theory The equation of state is approximated by that of a mass-
fails badly even for this case where we have a very higHess pion gas. Thus the pressure is givenpsaT* with a
initial parton density. The first order theory significantly un- =g,7?/90, whereg,=3 is the number of degrees of freedom.
derpredicts the work done during the expansion relative td'he energy density and entropy density are given by
the Mller-Israel-Stewart and Euler predictions. Thus the en=3aT* ands=4aT®, respectively. The bulk viscous pressure
tropy density decreases more slowly with the inclusion ofequation does not contribute for massless particles, since
dissipative effects. This would lead to greater yields of ob-— 0 [37]. For the(1+1)-dimensional Bjorken-type hydrody-
servables such as photons and dileptons. The system tak@gmics the heat term in the energy equation will not contrib-
longer to cool down. This will delay freeze-out. More en- ute. Thus we need only the shear viscous pressure for this
tropy is generated. This is important because entropy produgeresentation. The energy density evolution equation is deter-
tion can be related to the final multiplicity. mined as before since the equation of state is the same except
A legitimate question to ask is that do we really want tofor the degeneracy factor. However this time the shear vis-
synchronize the initial conditions for both ideal fluid, first cosity coefficient is approximated by=r,/(283,). For mass-
order, and second order theories. Given some initial condiless particles3,=3/(4p), and this is used in the expression
tions, we want to investigate the importance of second ordefor 7.. The primary transport coefficients of a massless pion
theories as compared to first order theories and perfect fluidgas are not that well known. For chiral pions the expressions
That is, if one is given a set of well known initial conditions for shear viscosity and thermal conductivity are given in Ref.
from experiment we want to see which of the theories besf26]. We will estimate the shear viscosity from the mean
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collision time of the pions. The mean time between collisiongtions. The effects of viscosity are small but non-negligible. In

of pions moving atv)=~1 is given by this regime the first order theory describes the dynamics
well. However it is clearly unable to deal with the evolution
- :i (84) towards this regime, or with the overall dynamics of the
T on’ fluid, in a satisfactory way.

In Figs. 4a) and {b) we assume that the pion gas is
formed atry~1/(3Ty). As we know by now, the difference
between the three theories is noticeable and first order theo-
ries are not suitable. We see here also that the convergence of
first order theory results and second order theory results will
occur for large cross sections.

where n(T)=bT® with b=3{(3)/#? is the pion density and
o=~1fm? is an effective cross section. The quantityl
=1/(ob) fm? is roughly constant for temperatures
T>100 MeV. Theshear viscosity can therefore be repre-
sented by

2al
=f, T with f, =—-——. 85
n=f,T wi " 3bo (85)
Using the transport and thermodynamic properties out-

. . ; In this work | have given a comprehensive exposition of
lined here the energy and transport equations can be written I, .

. . . he nonequilibrium properties of a new state of matter pro-
as before with the equation far given by

duced in heavy ion reactions. In doing so | presented some
dr 1/1 1dT\ 8aT* basic features of nonequilibrium fluid dynamics. | studied the
dr =-obTm - —< ) to— (86) space-time description of high energy nuclear collisions. The
T 2 9 7 T . . .
main aim is to bridge the phenomenological theory with the
The energy equation can be solved analytically for thekinetic theory of the matter produced in heavy ion collisions.
perfect fluid and the first ordefprovided #» is constant In doing so | made use of the dissipative fluid dynamics. The
cases. But since we wantto depend on temperature or time connection between the macroscopic theory and microscopic
one must then solve the equations numerically, or first findheory enters through the transport coefficients of the matter.
the temperature evolution as done in the preceding sectionThe equation of state provided closure to the system of con-
In Figs. Ga) and &b) we show ther dependence of tem- servation equations.
perature for the three different cases: a perfect fluid, a first | demonstrated that extended irreversible thermodynamics
order theory of dissipative fluids, and a second order theorprovides a consistent framework to simulate and study the
of dissipative fluids. Here we assume that the pion gas ispace-time evolution of ultrarelativistic nuclear collisions
produced at hadronization of quark-gluon plasma rat from some initial time to the final particle yield. Although
=4 fm/c. As expected, in this regime, with the given initial this approach relies on a number of fundamental assumptions
conditions, the first order and second order theories conand is far from providing an accurate quantitative descrip-
verge. This convergence is faster with increasing cross setion, it has the advantage of wide applicability.

IV. CONCLUSIONS

7 Tdr

250 YL L . J T 200
a 6=10fm" —]
B ;150
~~~~~~~~ O FIG. 7. The proper time evolution of tempera-
= = ture (a) for 0=1.0 fn? and (b) =3.0 fn?. The
§§§§§§ T 100 pr?mary .init.ial conditions are those from uncer-
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The advent of accelerators such as RHIC and LHC prohyperbolic transport equations when parabolic theories either
vides an opportunity for studying the dynamics and proper4ail or the problem under consideration happens to lie outside
ties of the matter at very high energy density. In the descripthe range of applicability of parabolic theories.
tion of the evolution of such a system, it is mandatory to
evaluate, as accurately as possible, the order of magnitude of V. OUTLOOK
different characteristic time scales, since their relationship
with the time scale of observation will determine, along with . "~ . o
the relevant equations, the evolution pattern. This is rathe?'mpl'f.'ed _model c.)f h'gh energy nuclear CO"'S'OnS.' A more
general when dealing with dissipative systems. It has beeﬂe"?‘l'snc 5|tuat|0n(|nqlud|ng transverse expansbom_/ll_l re-
my purpose here, by means of simple model with simpleluire cargful analysis of both the transport coefficients and
equation of state and arguments related to a wide range §f€ €quation of state which are employed in the full set of the
time scales, to emphasize the convenience of resorting tdauations. Itis ther_1 that one may have.a bgtter understanding
hyperbolic theories when dissipative processes, either ouf when to use either of these theories in the context of
side the steady-state regime or when the observation time [€lativistic heavy ion collisions.
of the order of or shorter than some characteristic time of the There are important questions that need to be investigated
system, are under consideration. Furthermore, dissipativia order to tackle the challenges faced by hyperbolic theo-
processes may affect the way in which the system tends ties. An important question is the measurability of the dissi-
equilibrium, thereby affecting the future of the system evenpative fluxes. The heat flux through a system may be simply
for time scales much larger than the relaxation time. evaluated by measuring the amount of energy transported per

In the early stages of heavy ion collisions, nonequilibriumunit area and time. The viscous pressure can be measured
effects play a dominant role. A complete description of thefrom the tangential shear force exerted per unit area. In prac-
dynamics of heavy ion reactions needs to include the effectice, it may be difficult to evaluate these quantities at each
of dissipation through dissipative or nonequilibrium fluid dy- instant and at every point. From kinetic theory these fluxes
namics. As is well known, hyperbolic theories of fluid dissi- can be simulated from microscopic transport models such as
pation were formulated to get rid of some of the undesirableHIJING, VNI, and UrQMD.
features of parabolic theories, such as acausality. It seems A thorough study of transport coefficients is needed. The
appropriate therefore to resort to hyperbolic theories insteatesults from lattice QCD should give clear predictions for
of parabolic theories in describing the dynamics of heavy iorthese coefficients. So far there are no reliable phenomeno-
collisions. Thus in ultrarelativistic heavy ion collisions, logical expressions for the coefficients. The shear viscosity
where the fluid evolution occurs very rapidly, the secondresults presented in Ref52] using the microscopic model
order theories, due to their universality, should be used t&JrQMD serve as a starting point for future calculations of
analyze collision dynamics. transport coefficients.

Unlike in first order theories, where the transport equa- A thorough study of the equation of state is required in
tions are just the algebraic relations between the dissipativerder to be consistent with the nonequilibrium description of
fluxes and the thermodynamic forces, second order theorignatter. In addition to the initial/boundary conditions for the
describe the evolution of the dissipative fluxes from an arbiprimary/equilibrium variables a thorough study of initial/
trary initial state to a final steady state using the transporboundary conditions for the dissipative fluxes is necessary.
equations. The presence of relaxation terms in second orddis is required for the evolution equations of the fluxes. For
theories makes the structure of the resulting transport equaxample, one would like to know how much of a particular
tions hyperbolic and they thus represent a well-posed initialissipative flux is generated as a response to an associated
value problem. thermodynamics force in the early stages of the heavy ion

The consequences of nonideal fluid dynamics, both firstollisions. This in turn gives us information about the initial
order (if applicable and second order, were demonstratedentropy generated as a result of dissipation.
here in a simple situation, that of scaling solution assumption For the complete description of the dynamics of viscous,
and simple equation of state. A more careful study of theneat conducting matter we need to consider more realistic
effects of the nonideal fluid dynamics on the observables isituations: a system that expands in both the longitudinal and
therefore important. Conversely, measurements of the oliransverse directiond53] and we need a full(3+1)-
servables related to thermodynamic quantities would allowdimensional solutions to the conservation and evolution
us to determine the importance and strength of dissipativequations. This will require extensive numerical computa-
processes in heavy ion collisions. tion. This is a challenging but interesting problem. In order

In summary, although parabolic theories have proved veryo understand the observables we need a full formulation of
useful for many practical purposes, they appear to fail hopehyperbolic theory that should be tested against other models/
lessly in describing the dynamics of heavy ion collisions. Intheories.
contrast, hyperbolic theories successfully give a better de- Solving imperfect hydrodynamics amounts to knowledge
scription in agreement with transport models and hopefullyof (i) a realistic equation of stat€j) reliable transport coef-
they will be able to predict the experimental results. Thusficients(iii) realistic initial/boundary conditions, ar{t/) nu-
hyperbolic theories are more reliable. In the steady stateanerical computational algorithm. In order to understand the
under the conditions mentioned before and for times exceedbservables from RHIC and LHC knowledge of these re-
ing 7 both theories may converge. Based on the results preguirements is needed and that is what | have started to do. |
sented here one can only stress the convenience of usitppe that this will gather momentum in due course.

Here we have used only a simple equation of state in a
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