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Nonequilibrium fluid dynamics derived from the extended irreversible thermodynamics of the causal Müller-
Israel-Stewart theory of dissipative processes in relativistic fluids based on Grad’s moment method is applied
to the study of the dynamics of hot matter produced in ultrarelativistic heavy ion collisions. The temperature,
energy density, and entropy evolution are investigated in the framework of the Bjorken boost-invariant scaling
limit. The results of these second order theories are compared to those of first order theories due to Eckart and
to Landau and Lifshitz and those of zeroth order(perfect fluid) due to Euler. In the presence of dissipation
perfect fluid dynamics is no longer valid in describing the evolution of the matter. First order theories fail in the
early stages of evolution. Second order theories give a better description in good agreement with transport
models. It is shown in which region the Navier-Stokes-Fourier laws(first order theories) are a reasonable
limiting case of the more general extended thermodynamics(second order theories).
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I. INTRODUCTION

The study of space-time evolution and nonequilibrium
properties of matter produced in high energy heavy ion col-
lisions, such as those at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory, USA and the
Large Hadron Collider(LHC) at CERN, Geneva using rela-
tivistic dissipative fluid dynamics are of importance in un-
derstanding the observables. RHIC has already provided us
with some interesting results[1]. One of the most important
reasons for colliding heavy nuclei at high energies is the
possibility of creating the quark-gluon plasma(QGP) [2].

High energy heavy ion collisions offer the opportunity to
study the properties of hot and dense matter. To do so we
must follow its space-time evolution, which is affected not
only by the equation of state but also by dissipative, nonequi-
librium processes. Thus we need to know the transport coef-
ficients such as viscosities, conductivities, and diffusivities.
We also need to know the relaxation times for various dissi-
pative processes under consideration. Knowledge of the vari-
ous time and length scales is of central importance to help us
decide whether to apply fluid dynamics(macroscopic) or ki-
netic theory(microscopic) or a combination of the two. The
use of fluid dynamics as one of the approaches in modeling
the dynamic evolution of nuclear collisions has been suc-
cessful in describing many of the observables[3,4]. The as-
sumptions and approximations of the fluid dynamical models
are another source for uncertainties in predicting the observ-
ables. So far most work have focused on the ideal or perfect
fluid and/or multifluid dynamics. In this work we apply the
relativistic dissipative fluid dynamical approach. It is known
even from nonrelativistic studies[5] that dissipation might
affect the observables.

The first theories of relativistic dissipative fluid dynamics
are due to Eckart[6] and to Landau and Lifshitz[7]. The
difference in formal appearance stems from different choices
for the definition of the hydrodynamical four-velocity. These
conventional theories of dissipative fluid dynamics are based
on the assumption that the entropy four-current contains

terms up to linear order in dissipative quantities and hence
they are referred to asfirst order theoriesof dissipative flu-
ids. The resulting equations for the dissipative fluxes are lin-
early related to the thermodynamic forces, and the resulting
equations of motion are parabolic in structure, from which
we get the Fourier-Navier-Stokes equations. They have the
undesirable feature that causality may not be satisfied. That
is, they may propagate viscous and thermal signals with
speeds exceeding that of light.

Extended theories of dissipative fluids due to Grad[8],
Müller [9], and Israel and Stewart[10] were introduced to
remedy some of these undesirable features. These causal
theories are based on the assumption that the entropy four-
current should include terms quadratic in the dissipative
fluxes and hence they are referred to assecond order theories
of dissipative fluids. The resulting equations for the dissipa-
tive fluxes are hyperbolic and they lead to causal propagation
of signals[10,11]. In second order theories the space of ther-
modynamic quantities is expanded to include the dissipative
quantities for the particular system under consideration.
These dissipative quantities are treated as thermodynamic
variables in their own right.

A qualitative study of relativistic dissipative fluids for ap-
plications to relativistic heavy ions collisions has been done
using these first order theories[12–17]. The application of
second order theories to nuclear collisions has just begun
[18–20], and the results of relativistic fluid dynamics can
also be compared to the prediction of spontaneous symmetry
breaking results[21].

The rest of the paper is outlined as follows. In Sec. II the
basic formulation of relativistic dissipative fluid dynamics
will be briefly introduced. In Sec. III we discuss the role of
dissipation in relativistic nuclear collisions. In Sec. IV we
summarize the results and discuss the need for hyperbolic
theories for relativistic dissipative fluids.

Throughout this paper we adopt the units"=c=kB=1.
The sign convention used follows the timelike convention
with the signatures+,−,−,−d, and if ua is a timelike vector,
uaua.0. The metric tensor is always taken to begmn

PHYSICAL REVIEW C 69, 034903(2004)

0556-2813/2004/69(3)/034903(16)/$22.50 ©2004 The American Physical Society69 034903-1



=diags+1,−1,−1,−1d, the Minkowski tensor. Upper greek
indices are contravariant and lower greek indices covariant.
The greek indices used in four-vectors go from 0 to 3
st ,x,y,zd and the roman indices used in three-vectors go
from 1 to 3 sx,y,zd. The scalar product of two four-vectors
am ,bm is denoted byamgmnb

n;ambm. The scalar product of
two three-vectors is denoted by boldface type, namely,a,b,
a·b. The notationsAsabd;sAab+Abad /2 and Afabg;sAab

−Abad /2 denote symmetrization and antisymmetrization, re-
spectively. The four-derivative is denoted by]a;] /]xa.
Contravariant components of a tensor are found from cova-
riant components bygabAa=Ab, gmagnbFab=Fmn, and so on.

II. NONEQUILIBRIUM/DISSIPATIVE RELATIVISTIC
FLUID DYNAMICS

In this section we give a brief review of the basics of
nonequilibrium fluid dynamics. The central role of entropy is
highlighted. Nonequilibrium effects are introduced by en-
larging the space of basic independent variables through the
introduction of nonequilibrium variables, such as dissipative
fluxes appearing in the conservation equations. The next step
is to find evolution equations for these extra variables.
Whereas the evolution equations for the equilibrium vari-
ables are given by the usual conservation laws, no general
criteria exist concerning the evolution equations of the dissi-
pative fluxes, with the exception of the restriction imposed
on them by the second law of thermodynamics.

The entropy is conserved in ideal fluid dynamics. Thus
perfect fluids in equilibrium generate no entropy and no
frictional-type heating because their dynamics is reversible
and without dissipation. For many processes in nuclear col-
lisions a perfect fluid model is adequate. However, real fluids
behave irreversibly, and some processes in heavy ion reac-
tions may not be understood except as dissipative processes,
requiring a relativistic theory of dissipative fluids. An equi-
librium state is characterized by the absence of viscous
stresses, heat flow and diffusion, and maximum entropy prin-
ciple, while a nonequilibrium state is characterized by the
principle of nondecreasing entropy which arises due to the
presence of dissipative fluxes.

Perfect fluid dynamics has been successful in describing
most of the observables[3,4,22]. The current status of ideal
hydrodynamics in describing observables can be found in
Refs. [1,23,24]. Already at the level of ideal fluid approxi-
mation constructing numerical solution scheme to the equa-
tions is not an easy task. This is due to the nonlinearity of the
system of conservation equations. Much work has been done
in ideal hydrodynamics for heavy ion collision simulations
(see, e.g., Ref.[25]). In this work the results are based on a
simple one-dimensional consideration.

A natural way to obtain the evolution equations for the
fluxes from a macroscopic basis is to generalize the equilib-
rium thermodynamic theories. That is, we assume the exis-
tence of a generalized entropy which depends on the dissi-
pative fluxes and on the equilibrium variables as well.
Restrictions on the form of the evolution equations are then
imposed by the laws of thermodynamics. From the expres-
sion for generalized entropy one can then derive the gener-

alized equations of state, which are of interest in the descrip-
tion of system under consideration. The phenomenological
formulation of the transport equations for the first order and
second order theories is accomplished by combining the con-
servation of energy-momentum and particle number with the
Gibbs equation. One then obtains an expression for the en-
tropy four-current, and its divergence leads to entropy pro-
duction. Because of the enlargement of the space of variables
the expressions for the energy-momentum tensorTmn, par-
ticle four-currentNm, entropy four-currentSm, and the Gibbs
equation contain extra terms. Transport equations for dissi-
pative fluxes are obtained by imposing the second law of
thermodynamics, that is, the principle of nondecreasing en-
tropy. The kinetic approach is based on Grad’s 14-moment
method[8]. For a review on generalization of the 14-moment
method to a mixture of several particle species see Ref.[26].
For applications and discussions of the moment method in
kinetic and transport theory of gases see, e.g., Ref.[27] and
for applications in astrophysics and cosmology see, e.g., Ref.
[28]. The need for hyperbolic theory in relativistic and non-
relativistic systems is also emphasized in Ref.[29].

In the early stages of relativistic nuclear collisions we
want to describe phenomena at frequencies comparable to
the inverse of the relaxation times of the fluxes. At such time
scales, these fluxes must be included in the set of basic in-
dependent variables. In order to model dissipative processes
we need nonequilibrium fluid dynamics or irreversible ther-
modynamics. A satisfactory approach to irreversible thermo-
dynamics is via nonequilibrium kinetic theory. In this work
we will, however, follow a phenomenological approach.
Whenever necessary we will point out how kinetic theory
supports many of the results and their generalization. A com-
plete discussion of irreversible thermodynamics is given in
the monographs[30–32], where most of the theory and ap-
plications are nonrelativistic but include relativistic thermo-
dynamics. A relativistic, but more advanced, treatment may
be found in Refs.[33–35]. In this work we will present a
simple introduction to these features, leading up to a formu-
lation of relativistic causal fluid dynamics that can be used
for applications in nuclear collisions.

A. Basic features of irreversible thermodynamics
and imperfect fluids

The basic formulation of relativistic hydrodynamics can
be found in the literature(see, for example, Refs.[7,36–38]).
We consider a simple fluid and no electromagnetic fields.
This fluid is characterized by

NA
msxd, particle 4-current, s1d

Tmnsxd, energy-momentum tensor, s2d

Smsxd, entropy 4-current, s3d

where A=1, . . . ,r for the r conserved net charge currents,
such as electric charge, baryon number, and strangeness.NA

m

andTmn represent conserved quantities:

]mNA
m = 0, s4d
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]mTmn = 0. s5d

The above equations are the local conservation of net charge
and energy-momentum. They are the equations of motion of
a relativistic fluid. There are 4+r equations and 10+4r in-
dependent unknown functions. The second law of thermo-
dynamics requires

]mSm ù 0, s6d

and it forms the basis for the development of the extended
irreversible thermodynamics. The equality in Eq.s6d is for an
equilibrium state, that is, for an ideal fluid.

We now perform a tensor decomposition ofNm ,Tmn, and
Sm with respect to an arbitrary, timelike, four-vectorum, nor-
malized asumum=1, and the projection onto the three-space
Dmn;gmn−umun;Dnm orthogonal toum, that is, Dmnun=0.
The tensor decomposition reads

Nm = num + Vm, s7d

Tmn = «umun − pDmn + 2Wsmun + tmn, s8d

Sm = sum + Fm, s9d

where we have defined

Wm = qm + hVm, s10d

tmn = pmn − PDmn. s11d

Hereh is the enthalpy per particle defined by

h =
s« + pd

n
. s12d

The dissipative fluxes are orthogonal toum and in addition
the shear tensor is traceless:

umVm = 0, umqm = 0, umWm = 0, umtmn = 0, pn
n = 0.

s13d

In the local rest frame(LRF) defined byum=s1,0d the
quantities appearing in the decomposed tensors have the fol-
lowing meanings:n;umNm is the net density of charge,Vm

;Dn
mNn is the net flow of charge,«;umTmnun is the energy

density,p+P;−1
3DmnT

mn is the local isotropic pressure plus
bulk pressure,Wm;unT

nlDl
m is the energy flow,qm;Wm

−hVm is the heat flow,pmn;Tkmnl is the stress tensor,s
;um Sm is the entropy density, andFm;Dn

mSn is the entropy
flux. The angular bracket notation, representing the symme-
trized spatial and traceless part of the tensor, is defined by
Akmnl;f 1

2sDs
mDt

n+Dt
mDs

nd− 1
3DmnDstgAst. The space-time de-

rivative decomposes into]m=umD+,m with um¹m=0. In this
space-time derivative decompositionD;um]m is the convec-
tive time derivative and¹m;Dmn]n is the gradient operator.

So far, um is arbitrary. It has the following properties.
Differentiating umum=1 with respect to space-time coordi-
nates,]m, yields

um]nu
m = 0, s14d

which is a useful relation. There are two choices forum f33g.
It can be taken parallel to the particle fluxNm. This is known
as the Eckart or particle frame, and in this frameVm=0. It
can also be taken to be parallel to the energy flow. This is
known as the Landau and Lifshitz or energy frame, and in
this frameWm=0. This implies thatqm=−hVm.

The two choices of velocity four-flow have different com-
putational advantage of each of the formulations. The
Landau-Lifshitz formalism is convenient to employ since it
reduces the energy-momentum tensor to a simpler form. The
price for this is the implicit definition of the four-velocity.
The Eckart formalism has the advantage when one wants to
have simple integration of particle conservation law. This
choice is also more intuitive than that of Landau-Lifshitz.
For a system with no net charge, the four-velocity in the
Eckart formalism is not well defined, and therefore in gen-
eral under this situation one should use the Landau-Lifshitz
formalism. The Landau-Lifshitz formalism is also advanta-
geous in the case of mixtures.

B. Conservation laws and the second law of thermodynamics

We will now consider one type of charge, namely, the net
baryon number. We insert the expressions for the number
four-current and the energy-momentum tensor in the conser-
vation laws and project them onto the four-velocity and the
projection tensor. Using the orthogonality properties(13 of
dissipative fluxes) we obtain the following conservation
laws. The equation of continuity(net charge conservation)
]mNm;0, equation of motion(momentum conservation)
Dn

m]lTnl;0, and the equation of energy(energy conserva-
tion) um]nT

mn;0 are, respectively,

Dn = − n¹mum − ¹mVm + VmDum, s15d

s« + p + PdDum = ¹msp + Pd − Dn
m¹spns + pmnDun

− fDn
mDWn + 2Wsmd¹nu

sndg, s16d

D« = − s« + p + Pd¹mum + pmn¹knlukml − ¹mWm + 2WmDum.

s17d

The five conservation equationss15d–s17d contain 14 un-
known functions,n,« ,P ,Wm ,pmn, andum. To close the sys-
tem of equations we need to obtain nine additional equations
sfor dissipative fluxesd in addition to the five conservation
equationssfor primary variablesd we already know. In pre-
senting the nine additional equations we will use the Eckart’s
definition of um.

From the phenomenological treatment of deriving the
nine additional equations we need the expression for the out-
of-equilibrium entropy four-current. The most general off-
equilibrium entropy four-currentSmsNm ,Tmnd takes the form
[10]

CAUSAL THEORIES OF DISSIPATIVE RELATIVISTIC… PHYSICAL REVIEW C 69, 034903(2004)

034903-3



Sm = psa,bdbm − aNm + bnT
mn + QmsdNm,dTmn, . . .d,

s18d

where a;m /T is the thermal potential,bn;un /T is the
inverse-temperature four-vector, andQm is a function of de-
viationsdNm anddTmn from local equilibrium,

dTmn = Tmn − Teq
mn, dNm = Nm − Neq

m , s19d

containing all the information about viscous stresses and heat
flux in the off-equilibrium state.

Since the equilibrium pressure is only known as a func-
tion of the equilibrium energy density and equilibrium net
charge density, we need to match/fix the equilibrium pressure
to the actual state. We do this by requiring that the equilib-
rium energy density and the equilibrium net charge density
be equal to the off-equilibrium energy density and off-
equilibrium net charge density. This is equivalent to

dTmnumun = dNmum = 0. s20d

With the help of the expression for the divergence ofpbm,
that is,

]mspbmd = Neq
m ]ma − Teq

mn]mbn, s21d

and the conservation laws forNm and forTmn the generalized
second law of thermodynamics becomes

]mSm = − sdNmd]ma + dTmn]mbn + ]mQm. s22d

Once a detailed form ofQm is specified, linear relations
between irreversible fluxessdNm ,dTmnd and gradients
s]smdbsnd ,]mad follow by imposing the second law of thermo-
dynamics, namely, that the entropy production be positive.
The key to a complete phenomenological theory thus lies in
the specification ofQm.

C. Standard relativistic dissipative fluid dynamics

The standard Landau-Lifshitz and Eckart theories make
the simplest possible assumption aboutQm: that it is linear in
the dissipative quantitiessP ,qm ,pmnd. In kinetic theory this
amounts to Taylor expanding the entropy four-current ex-
pression up to first order in deviations from equilibrium. This
leads to an expression of entropy four-current which is just a
linear function of the heat flux.

This can be understood as follows: Take a simple fluid
with particle currentNm. Let us choosebm=um /T parallel to
the currentNm of the given off-equilibrium state, so we are in
the Eckart frame. Projecting Eq.(18) onto the three-space
orthogonal toum gives

Fm ; Dn
mSn = bqm + QnDn

m, s23d

so that

Fm = qm/T + second order terms, s24d

which, to linear order, is just the standard relation between
entropy fluxFm and heat fluxqm. From Eq.s23d this implies
that the entropy fluxFm is a strictly linear function of heat
flux qm, and depends on no other variables; also that the
off-equilibrium entropy density depends only on the densi-

ties « and n and is given precisely by the equation of state
s=seqs« ,nd.

Alternatively we may begin with the ansatz for the en-
tropy four-currentSm: In the limit of vanishingP, qm, and
pmn the entropy four-current must reduce to the one of ideal
fluid. The only nonvanishing four-vector which can be
formed from the available tensorsum, qm, and pmn is bqm,
whereb is arbitrary but it turns out to be nothing else but the
inverse temperature. Thus the first order expression for the
entropy four-current in the Eckart frame is given by

Sm = sum +
qm

T
, s25d

and one immediately realizes that

Fm =
qm

T
s26d

is the entropy flux. Using the expressions forNm, Tmn, andSm

in the second law of thermodynamics]mSmù0 and using the
conservation lawsun]mTmn=0, ]mNm=0 and the Gibbs equa-
tion

]mspbmd = Nm]ma − Tmn]mbn, s27d

the divergence of Eq.s25d gives the following expression for
entropy production:

T]mSm = qms¹mb + Dumd + pmn¹mun − P¹mum ù 0.

s28d

Notice that the equilibrium conditionssi.e., the bulk free and
shear free of the flow and the constancy of the thermal po-
tential, i.e., no heat flowd lead to the vanishing of each factor
multiplying the dissipative terms on the right, and therefore
lead to]aSa=0. The expressions28d splits into three inde-
pendent, irreducible pieces:

PX − qmXm + pmnXkmnl ù 0, s29d

where the thermodynamic forces areX;−¹mum, Xm

;s¹mT/Td−Dum, Xkmnl;f 1
2sDs

mDt
n+Ds

nDt
md− 1

3DmnDstg¹sut.
From the second law of thermodynamics,]mSmù0, we

see that the simplest way to satisfy the bilinear expression
(28) is to impose the following linear relationships between
the thermodynamic fluxesP ,qm ,pmn, and the corresponding
thermodynamic forces:

P = − z¹mum, s30d

qm = lTS¹mT

T
− DumD = −

lnT2

« + p
¹mSm

T
D , s31d

pmn = 2h¹kmluknl. s32d

That is, we assume that the dissipative fluxes are linear and
purely local functions of the gradients. We then obtain
uniquely, if the equilibrium state is isotropicsCurie’s prin-
cipled, the above linear expressions.

These are the constitutive equations for dissipative fluxes
in the standard Eckart theory of relativistic irreversible ther-
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modynamics. They are relativistic generalizations of the cor-
responding Newtonian laws. The linear laws allow us to
identify the thermodynamic coefficients, namely, the bulk
viscosity zs« ,nd, the thermal conductivityls« ,nd, and the
shear viscosityhs« ,nd.

Given the linear constitutive equations(30)–(32), the en-
tropy production rate(28) becomes

]mSm =
P2

zT
−

qmqm

lT2 +
pmnpmn

2hT
ù 0, s33d

which is guaranteed to be non-negative provided that

z ù 0, l ù 0, h ù 0. s34d

Note thatqmqm,0 which can be most easily proven from
qmum=0 in the LRF.

Using the fundamental thermodynamic equation of Gibbs
the entropy evolution equation can be written in the follow-
ing convenient form:

T]mSm = smnpmn − Pu − ]mqm + qmam, s35d

which can be found with the help of thefluid kinematic iden-
tity

]num = snm + vnm + 1
3uDmn + amun, s36d

wheream;un]num is the four-acceleration of the fluid,vmn

;Dm
aDn

b]fbuag is the vorticity tensor,umn;Dm
aDn

b]sbuad is the
expansion tensor,u;Dmnumn=]mum is the volume expansion,
andsmn;umn− 1

3Dmnu is the shear tensor. The quantities de-
fined here are the fluid kinematic variables.

The Navier-Stokes-Fourier equations comprise a set of
nine equations. Together with the five conservation laws
]mTmn=]mNm=0, they should suffice, on the basis of naive
counting, to determine the evolution of the 14 variablesTmn

andNm from suitable initial data. Unfortunately, this system
of equations is of mixed parabolic-hyperbolic-elliptic type.
Just like the nonrelativistic Fourier-Navier-Stokes theory,
they predict infinite propagation speeds for thermal and vis-
cous disturbances. Already at the nonrelativistic level, the
parabolic character of the equations has been a source of
concern [39]. One would expect signal velocities to be
bounded by the mean molecular speed. However in the non-
relativistic case wave-front velocities can be infinite such as
the case in the tail of Maxwell’s distribution which has arbi-
trarily large velocities. However, a relativistic theory which
predicts infinite speeds of propagation contradicts the foun-
dation or the basic principles of relativity and must be a
cause of concern especially when one has to use the theory to
explain observables from relativistic phenomena or experi-
ments such as ultrarelativistic heavy ion experiments. The
other problem is that these first order theories possess insta-
bilities: equilibrium states are unstable under small perturba-
tions [11].

Most of the applications of dissipative fluid dynamics in
relativistic nuclear collisions have used the Eckart/Landau-
Lifshitz theory. However, the algebraic nature of the Eckart
constitutive equations leads to severe problems. Qualita-
tively, it can be seen from Eqs.(30)–(32) that if a thermody-

namic force is suddenly switched off/on, then the corre-
sponding thermodynamic flux instantaneously vanishes/
appears. This indicates that a signal propagates through the
fluid at infinite speed, violating relativistic causality. This is
known as a paradox since in special relativity the speed of
light is finite and all maximum speeds should not be greater
than this speed. This paradox was first addressed by Cattaneo
[39] by introducingad hocrelaxation terms in the phenom-
enological equations. The resulting equations conform with
causality. The only problem was that a sound theory was
needed. It is from these arguments that the causal extended
theory of Müller, Israel, and Stewart was developed.

D. Causal relativistic dissipative fluid dynamics

Clearly the Eckart postulate(25) for Qm and henceSm is
too simple. Kinetic theory indicates that in factQm is second
order in the dissipative fluxes. The Eckart assumption, by
truncating at first order, removes the terms that are necessary
to provide causality, hyperbolicity, and stability.

The second order kinetic theory formulation of the en-
tropy four-current, see Ref.[8], was the starting point for
good work on extending the domain of validity of conven-
tional thermodynamics to shorter space-time scale. The turn-
ing point was Müller’s paper[9] which, for the first time,
expressed Qm in terms of the off-equilibrium forces
sP ,q ,pi jd and thus linked phenomenology to the Grad ex-
pansion[8]. This marked the birth of what is now known as
extended irreversible thermodynamics[30–32].

For small deviations, it will suffice to retain only the
lowest-order, quadratic terms in the Taylor expansion ofQm,
leading to linear phenomenological laws. The most general
algebraic form forQm that is at most second order in the
dissipative fluxes gives[10]

Sm = sum +
qm

T
− sb0P2 − b1qnq

n + b2pnlpnld
um

2T
−

a0Pqm

T

+
a1pmnqn

T
, s37d

wherebAs« ,ndù0 are thermodynamic coefficients for sca-
lar, vector, and tensor dissipative contributions to the entropy
density, andaAs« ,nd are thermodynamic viscous/ heat cou-
pling coefficients. It follows from Eq.s37d that the effective
entropy density measured by comoving observers is

umSm = s−
1

2T
sb0P2 − b1qmqm + b2pmnpmnd, s38d

independent ofaA. Note that the entropy density is a maxi-
mum in equilibrium. The conditionumQmø0, which guaran-
tees that entropy is maximized in equilibrium, requires that
the bA be non-negative. The entropy flux is

Fm = bsqm − a0Pqm + a1pmnqnd, s39d

and is independent of thebA.
The divergence of the extended current(37) together with

the Gibbs equation(27) and the conservation equations
(15)–(17) leads to
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T]mSm = − PFu + b0Ṗ +
1

2
T]mSb0

T
umDP − a0¹mqmG

− qmF¹m ln T − u̇m − b1q̇m −
1

2
T]nSb1

T
unDqm

− a0¹npm
n − a1¹mPG + pmnFsmn − b2ṗmn

+
1

2
T]lSb2

T
ulDpmn + a1¹knlqkmlG . s40d

The simplest way to satisfy the second law of thermodynam-
ics, ]mSmù0, is to impose, as in the standard theory, linear
relationships between the thermodynamical fluxes and ex-
tended thermodynamic forces, leading to the following con-
stitutive or transport equations:

tPṖ + P = − zu − F1

2
zT]mS t0

zT
umDPG + lPq¹mqm, s41d

tqDm
n q̇n + qm = ls¹mT − Tu̇md + F1

2
lT2]nS t1

lT2unDqmG
− lqP¹mP − lqp¹npm

n , s42d

tpDm
aDn

bṗab + pmn = 2hsmn − FhT]lS t2

2hT
ulDpmnG

+ lpq¹kmlqknl. s43d

Here the relaxational timestAs« ,nd are given by

tP = zb0, tq = lTb1, tp = 2hb2, s44d

and the heat-viscous coupling lengths coefficientslABs« ,nd
are given by

lPq = za0, lqP = lTa0, lqp = lTa1, lpq = 2ha1.

s45d

A key quantity in these theories is the relaxation timet of
the corresponding dissipative process. It is a positive-definite
quantity by the requirement of hyperbolicity. It is the time
taken by the corresponding dissipative flux to relax to its
steady-state value. It is connected to the mean collision time
tc of the particles responsible for the dissipative process, but
the two are not the same. In principle they are different since
t is a macroscopic time, although in some instances it may
correspond just to a fewtc. No general formula linkingt and
tc exists; their relationship depends in each case on the sys-
tem under consideration.

Besides the fact that parabolic theories are necessarily
noncausal, it is obvious that whenever the time scale of the
problem under consideration becomes of the order of or
smaller than the relaxation time, the latter cannot be ignored.
Neglecting the relaxation time in this situation amounts to
disregarding the whole problem under consideration.

Even in the steady-state regime the descriptions offered
by parabolic and hyperbolic theories might not necessarily
coincide. The differences between them in such a situation

arise from the presence oft in terms that couple the vorticity
to the heat flux and shear stresses. These may be large even
in steady states where vorticity is important. There are also
other acceleration coupling terms to bulk and shear stresses
and the heat flux. The coefficients for these vanish in para-
bolic theories, but they could be large even in the steady
state. The convective part of the time derivative, which is not
negligible in the presence of large spatial gradients, and
modifications in the equations of state due to the presence of
dissipative fluxes also differentiate hyperbolic theories from
parabolic ones. However, it is precisely before the establish-
ment of the steady-state regime that both types of theories
differ more significantly. Therefore, if one wishes to study a
dissipative process for times shorter thant, it is mandatory to
resort to a hyperbolic theory which is a more accurate mac-
roscopic approximation to the underlying kinetic description.

Provided that the spatial gradients are not so large that the
convective part of the time derivative becomes important,
and that the fluxes and coupling terms remain safely small,
then for times larger thant it is sensible to resort to a para-
bolic theory. However, even in these cases, it should be kept
in mind that the way a system approaches equilibrium may
be very sensitive to the relaxation time. The future of the
system at time scales much longer than the relaxation time,
once the steady state is reached, may also critically depend
on t.

The crucial difference between the standard Eckart and
the extended Israel-Stewart transport equations is that the
latter are differential evolution equations, while the former
are algebraic relations. The evolution terms, with the relax-
ational time coefficientstA, are needed for causality, as well
as for modeling high energy heavy ion collisions relaxation
effects are important. The price paid for the improvements
that the extended causal thermodynamics brings is that new
thermodynamic coefficients are introduced. However, as is
the case with the coefficientsz ,l, andh that occur also in
standard theory, these new coefficients may be evaluated or
at least estimated via kinetic theory. The relaxation timestA
involve complicated collision integrals. They are usually es-
timated as mean collision times, of the formt<1/nsv,
wheres is a collision cross section andv the mean particle
speed.

The form of transport equations obtained here is justified
by kinetic theory, which leads to the same form of the trans-
port equations, but with extra terms and explicit expressions
for transport, relaxation, and coupling coefficients. With
these transport equations, the entropy production rate has the
same non-negative form(33) as in the standard theory. In
addition to viscous/heat couplings, kinetic theory shows that
in general there will also be couplings of the heat flux and
the anisotropic pressure to the vorticity. These couplings give
rise to the following additions to the right-hand sides of Eqs.
(42) and (43), respectively:

+ tqvmnq
n and +tppkml

l vknll. s46d

In the case of scaling solution assumption in nuclear colli-
sions these additional terms do not contribute since they van-
ish. Also, the resulting expression for]mSm in general con-
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tains terms involving gradients ofaA and bA multiplying
second order quantities such as the bilinear terms
s]ma1dqlplm and s]ma0dqmP. In the present work where we
will assume scaling solution these terms do not contribute to
the overall analysis.

It is also important to remember that the derivation of the
causal transport equations is based on the assumption that the
fluid is close to equilibrium. Thus the dissipative fluxes are
small:

uPu ! p, spmnpmnd1/2 ! p, s− qmqmd1/2 ! «. s47d

These conditions will also be useful in guiding us when we
discuss the initial conditions for the dissipative fluxes. Con-
sidering the evolution of entropy in the Israel-Stewart theory,
Eq. s35d still holds.

It will be inconceivable if the more general theory does
not conform to the principles of relativity. In order to check
that the system of 14 equations conforms with causality one
writes the five conservation equations and the nine evolution
equations for dissipative quantities in one single linearized
system as done in Ref.[11]. The system of 14 equations may
be written as a quasilinear system of 14 equations in the form

MB
aAsUcd]aUB = fAsUcd sA,B = 1, . . . ,14d, s48d

whereMB
aAsUcd and fAsUcd can be taken to be components of

14314 matrices and 14 vectors. The right-hand side con-
tains all the collision terms, and the coefficientsMB

aAsUcd
are purely thermodynamical functions.

Let S be a characteristic hypersurface for the system(48)
and letfsxad=0 be the local equation forS. Thenf satisfies
the characteristic equation

detfMB
aAs]afdg = 0. s49d

fsxad is a three-dimensional space across which the vari-
ablesUB are continuous but their first derivatives are allowed
to present discontinuitiesf]aUBg normal to the surface
⇒f]aUBg=UBs]afd. The characteristic speeds are indepen-
dent of the microscopic details such as cross sections. To
solve the characteristic equations49d we consider a coordi-
nate systemxa chosen in such a way that at any point in the
fluid the system of reference is orthogonal and comoving. If
f is a function ofx0 and x1 only, the characteristic speeds
can be determined from

detsvMB
A0 − MB

A1d = 0, s50d

wherev is the characteristic speed defined by

v = − ]0f/]1f. s51d

The 14-component vectorU is split into a scalar-
longitudinal six-vector UL=f« ,n,P ,ux,qx,pxxg; two
longitudinal-transverse three-vectors(corresponding to the
two transverse directions of polarization); ULT1
=fuy,qy,pxyg and ULT2

=fuz,qz,pxzg and purely transverse
two-vectorUT=fpyz,pyy−pzzg. Equation(50) for v accord-
ingly splits into one sixth-degree and two third-degree equa-
tions. The purely transverse modes do not propagate. This

general scheme, when applied to first order theories, always
yields wave-front speedsv that are superluminal[11].

We will be studying the dynamics of a pion fluid in the
hadronic regime and a quark-gluon plasma fluid in the par-
tonic regime. It is therefore important to check if these sys-
tems conform with the principle of relativity under small
perturbation of the equilibrium state. For a quark-gluon
plasma we consider a gas of weakly interacting massless
quarks and gluons. We also consider such a system to have a
vanishing baryon chemical potentialsmB=0d. This implies
also that the net baryon charge is zerosnB=0d. The equation
of state is given byp=« /3. For massless particles or ul-
trarelativistic particles the bulk viscosity vanishes.

In the absence of any conserved charge the convenient
choice of the four-velocity is the Landau-Lifshitz frame. In
this case the characteristic equations for the wave-front
speeds become very simple. For the longitudinal modes we
get only thefast longitudinal mode(associated with the true
acoustical wave). The absence of heat conduction has as a
consequence of the disappearance of theslow longitudinal
propagation mode(associated with thermal dissipation
wave). The phase velocity of the fast longitudinal mode is
given by

vL
2 =

1 + 2pb2

6pb2
=

5

9
, s52d

where we have usedb2<s3/4ds1/pd ssee Ref.f10g for the
coefficientsai and bid. Thus if we are considering only the
shear viscosity we will get the above result. The wave-front
speedssignal speedd for the transverse plane wave is given
by

vT
2 =

1

8pb2
=

1

6
. s53d

For a pion fluid with vanishing chemical potentialmp=0
we have, for the fast longitudinal mode and the transverse
mode, the following expressions for the wave-front speeds:

vL
2 =

2

3
b0 + b2 + b0b2s« + pd ] p/] «

b0b2s« + pd
, s54d

vT
2 =

1

2b2s« + pd
. s55d

Note that for the pion system we are in the relativistic re-
gime. Then the equation of state is taken to be that of a
noninteracting gas of pions only. The bulk viscosity does not
vanish. We show the dependence of the wave-front speeds
and the adiabatic speed of sound on temperature in Fig. 1.
Thus in all the systems we will consider heressee the fol-
lowing sectiond causality is obeyed.

III. THE ROLE OF DISSIPATION IN RELATIVISTIC
NUCLEUS-NUCLEUS COLLISIONS

We now describe the evolution of the matter produced at
high energy nuclear collisions such as those at RHIC and
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LHC. Of interest is the midrapidity region with no net
baryon number. Based on the observation that the rapidity
distribution of the charged particle multiplicitydNch/dy is
constant in the midrapidity region[40], that is, it is invariant
under Lorentz transformation in the midrapidity region, it is
reasonable to assume that all other quantities such as number
density, energy density, and dissipative fluxes also have this
symmetry. Thus these quantities depend on the proper time,
t= t /g=Ît2−z2. The longitudinal component of the matter
velocity is parametrized asv=z/ t=tanhy, with t=t coshy,
z=t sinh y, and the space-time rapidity is defined asy
= 1

2lnsst+zd / st−zdd. This is the Bjorken[40] scaling solution
assumption for high energy nuclear collisions. Then the four-
velocity can be written as

um = scoshy,0,0,sinhyd. s56d

We use the following transformation matrix of the deriva-
tives to reduce the equations to simple forms:

1
]

] t

]

] z
2 = S coshy − sinhy

− sinhy coshy
D1

]

] t

1

t

]

] y
2 . s57d

We also note that using the transformation of derivatives
and the definition of the four-velocity we can write

u ; ]mum =
1

t
, s58d

D ; um]m =
]

] t
. s59d

The recipe given here will be used to simplify the equations
of relativistic fluid dynamics in the following sections. In
this work we consider as1+1d-dimensional scaling solution
in which we have one nonvanishing spatial component of the
four-velocity in as3+1d space-time.

In order to solve the fluid dynamical equations one needs
the initial and boundary conditions in addition to a realistic
equation of state. The initial conditions can be taken in prin-
ciple from transport calculations describing the approach to
equilibrium, such as the parton cascade model commonly

known as VNI[41], which treats the entire evolution of the
parton gas from the first contact of the cold nuclei to had-
ronization or Heavy Ion Jet Interaction Generator(HIJING)
[42]. For initializing a hadronic state one can use ultrarela-
tivistic quantum molecular dynamics(UrQMD) [43].

Another frequently used relation between the initial tem-
perature and the initial time is based on the uncertainty prin-
ciple [44]. The formation timet of a particle with an average
energy kEl is given by tkEl.1. The average energy of a
thermal parton is about 3T. Hence, we findt0.1/s3T0d.
However, if data for hadron production are available, such as
at SPS, they can be used to determine or at least constrain the
initial conditions for a hydrodynamical calculation of observ-
ables such as the photon spectra[45].

Under the simplifying assumption of an ideal fluid, the
full hydrodynamical equations can be solved numerically us-
ing an equation of state and the initial conditions, such as
initial time and temperature, as input. The final results de-
pend strongly on the input parameters as well as on other
details of the model, as in the simple one-dimensional case.
For a system out of equilibrium the Euler equations should
be replaced by the Navier-Stokes[16,17] or hyperbolic dis-
sipative equations[18–20].

In dissipative fluid dynamics entropy is generated by dis-
sipation. The dissipative quantities, namely,P, qm, andpmn

are not seta priori to zero. They are specified through addi-
tional equations. Since we will be working with a baryon-
free systemsn=0d, a convenient choice of the reference
frame is the Landau and Lifshitz frame. The number current,
energy-momentum tensor, and the entropy four-current in
this frame are obtained from Eqs.(7)–(9) with Wm=0. In the
LRF the energy-momentum tensor is given by

TLRF
mn =1

« 0 0 0

0 sp + P − p/2d 0 0

0 0 sp + P − p/2d 0

0 0 0 sp + P + pd
2 .

s60d

This satisfiesTn
n=«−3sp+Pd, pn

n=pmnun=0. To study the
dynamics of the system it is necessary to apply a boost in the
longitudinal direction. Using Eq.s56d we have

Tmn =1
W cosh2y − P 0 0 W coshy sinh y

0 P' 0 0

0 0 P' 0

W coshy sinh y 0 0 W sinh2y + P
2 ,

s61d

with W=«+P the effective enthalpy density,P=p+P+p
the effective longitudinal pressure, andP'=p+P−p /2 the
effective transverse pressure. For perfect fluidsp=P=0. It
is clear that the effects of viscosity is to reduce pressure in
the longitudinal direction and increase pressure in the trans-
verse direction. Thes1+1d-dimensional scaling solution im-
plies that the thermodynamic quantities depend ont only.
Thus the scaling solution and the relations]t /]xm=um and

FIG. 1. The transversesvTd, longitudinal svLd, and soundsvsd
phase velocities in a pion gas, as a function ofz=m/T, whenm is
the mass of pion.
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]fstd /]xm=ums]fstd /]td fwhere fstd represent thermody-
namic variables such as temperature, chemical potential, and
dissipative fluxesg reduce the first order transport equations
s30d–s32d to

P = − z
1

t
, s62d

Vm = 0, s63d

p = −
4

3
h

1

t
. s64d

The currentVm is induced by heat conduction,Vm=−qm /h.
Equations63d implies that there is no heat conduction in the
scaling solutions. This is independent of the fact thatn=0,
another condition that also makesVm vanish.

In the second order theoryP andp have to be determined
from the second order transport equations. In the Landau-
Lifshitz frame the transport equations are still given by Eqs.
(41)–(43) but with slightly different heat coupling coeffi-
cients in the bulk and shear viscous pressure equations. Un-
der the scaling solution assumption those coupling terms do
not contribute to the dynamics of the system. The
s1+1d-scaling solution ins3+1d dimensions reduces the re-
laxation equations(41)–(43) to

] P

] t
= −

P

tP

−
1

2

1

b0
PFb0

1

t
+ T

]

] t
Sb0

T
DG −

1

b0

1

t
, s65d

] qm

] t
= −

qm

tq
+

1

2

1

b1
qmFb1

1

t
+ T

]

] t
Sb1

T
DG , s66d

] pmn

] t
= −

pmn

tp

−
1

2

1

b2
pmnFb2

1

t
+ T

]

] t
Sb2

T
DG

+
1

b2
FD̃mn −

1

3
DmnG1

t
. s67d

In the last of the above equationsD̃mn=Dmn for 0øm ,nø1
and 0 otherwisesbecause of only one nonvanishing spatial
component of the four-velocityd.

For the (111)-dimensional Bjorken similarity fluid flow
in (311) dimensions the energy equation(17) becomes

d«

dt
+

« + p

t
−

1

t
p − P

1

t
= 0, s68d

where p;p00−pzz is determined from the shear viscous
tensor evolution equations67d

d

dt
p = −

1

tp

p −
1

2
pF1

t
+

1

b2
T

d

dt
Sb2

T
DG +

2

3

1

b2

1

t
, s69d

andP is determined from Eq.s65d. Note that in Eq.s68d p
andP are positive. In the case of massless particles the bulk
pressure equations65d does not contribute since the bulk
viscosity is negligible or vanishesf37g. We will distinguish

the perfect fluid, first order, and second order theories by the
quantityp:

p ; 0, perfect fluid, s70d

p =
4

3
h/t, first order theory, s71d

dp

dt
= −

p

tp

−
1

2
pF1

t
+

1

b2
T

d

dt
Sb2

T
DG

+
2

3

1

b2

1

t
, second order theory. s72d

Equations68d can be written in terms of the ratios of non-
dissipative to dissipative terms as

] «

] t
+

« + p

t
=

« + p

Rt
, s73d

where the ratioR, associated with the Reynolds number in
Refs.f13,50g, is defined by

R=
s« + pd

p
. s74d

For this exploratory study a simple equation of state is
used, namely, that of a weakly interacting plasma of massless
u,d,s quarks and gluons. The pressure is given byp=« /3
=aT4 with zero baryon chemical potential. That is,m=0, «
=3p or s=4aT3, h=bT3, and z=0, a,b=const. The energy
equation(68) and the shear viscous pressure equation(69)
reduce to

d

dt
T = −

T

3t
+

T−3p

12at
, s75d

d

dt
p = −

2aTp

3b
−

1

2
pS1

t
− 5

1

T

d

dt
TD +

8aT4

9t
. s76d

For a perfect fluid and a first order theory Eq.(75) can be
solved analytically. In this case the solution of Eq.(75) is

T

T0
= F t0

t
G1/3H1 +

R0
−1

2
S1 −F t0

t
G2/3DJ , s77d

whereT0 andR0 are the initial values of the temperature and
the Reynolds number at the initial proper timet=t0. Note
that whenR0

−1=0 we obtain the familiar ideal fluid results
while a nonvanishingR−1 makes the cooling rate smaller.
Here

a = S16 +
21

2
NfDp2

90
s78d

is a constant determined by the number of quark flavors and
the number of gluon colors. The only relaxation coefficient
we need isb2 which, for massless particles, is given byb2
=3/s4pd. The shear viscosity is givenf51g by h=bT3, where
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b = s1 + 1.70Nfd
0.342

s1 + Nf/6das
2 lnsas

−1d
s79d

is a constant determined by the number of quark flavors and
the number of gluon colors. HereNf is the number of quark
flavors, taken to be 3, andas is the strong fine structure
constant, taken to be 0.4–0.5.

The role of dissipation can be examined by rewriting en-
ergy equation as

] «

] t
= sR−1 − 1d

« + p

t
. s80d

As is seen in this equation, the energy density increases with
time if R,1 and decreases ifR.1. WhenR=1, the critical
value for Reynolds number, the thermodynamic quantities do
not change with time. One of the mathematical advantages of
the parabolic theories is the direct connection between the
Reynolds number and the initial conditionssT0,t0d. This is
because the first order theory does not have well-defined
initial conditions for the dissipative fluxes, and the latter are
related to the thermodynamic forces by linear algebraic ex-
pressions.

We now discuss the issue of initial condition forp. For an
ideal fluid p vanishes since there are no dissipative fluxes.
For the first order theories the initial condition forp is not
well defined and is given by the initial conditionssT0,t0d.
For the second order theories we have well-defined initial
condition for p since the dissipative fluxes are found from
their evolution equations.

In deriving the transport equations it is assumed that the
dissipative fluxes are small compared to the primary vari-
abless« ,n,pd. For shear flux we require that

fpmnpmng1/2 =Î3

2
p ! p. s81d

In terms ofp this condition can be written as

p !Î2

3
p. s82d

In first order theories the question of how much a particu-
lar dissipative flux is generated as a response to correspond-
ing thermodynamic/kinematic forces in nuclear collisions is
governed by the primary initial conditionssT0,t0d. That is,
one just reads off the value ofp0 from the linear algebraic
expression forp. We have seen that for values of the Rey-
nolds number less than one, the thermodynamic quantities
increase with time. This might be signaling the instability of
the solution. Alternatively this might imply that we are using
the first order theories beyond their domain of validity. The
primary initial conditions can in principle be extracted from
experiments. These in turn will give us the value ofp0. This
value of p0 will eventually determine how the thermody-
namic variables evolve with time. This is clearly understood
by looking at the ratio of the pressure term to viscous term,
namely,R, as already discussed above.

In the second order theories the question of how much a
particular dissipative flux is generated as a response to cor-

responding thermodynamic/kinematic forces in the early
stages of nuclear reactions is not trivial but interesting. In
order to find the viscous contribution to the time evolution of
thermodynamic quantities we need to solve the differential
equation forp. Therefore one has to determine the initial
conditions forp independently. Although we do not know
the exact form of the initial value forp we will discuss the
limiting cases. The first and most important limiting case is
based on the assumption made when deriving the second
order theory transport equations, namely, that the dissipative
fluxes be small compared to the primary variables. For the
shear viscous flux this means that the shear viscous stress
tensor must be small compared to the pressure. The value of
p will always be less thanp, hence the initial valuep0 will
always be less thanp0. This has an interesting consequence:
the initial Reynolds number is always greater than one. Thus
in second order theory under these conditions there will be
no increase of thermodynamic variables with increasing
time. In general the thermodynamic quantities will decrease
with time for as long as the condition

p ø « + p s83d

is satisfied, which in the present case implies thatp0ø4p0.
However, values ofp greater than the pressurep leads to
unphysical negative effective enthalpy. Unlike in the first
order theories where it is not always possible to address this
problem of negative effective enthalpy, in the second order
theories we are guided by the limitations which are embed-
ded in the valid application regimes of the theories, namely,
the conditionspmnpmnd1/2!p. This condition guarantees that
the effective enthalpy is always positive.

Under physical initial conditions the second order theory
gives a Reynolds number that is always greater than one.
This can be seen from Fig. 2 where for illustrative purposes
we also include curves for unphysical initial conditions for
p. Note thatp0=4p0 is the maximum value before the solu-
tions becomes unstable. This is a critical value that gives a
Reynolds numberR0=1. As expected the first order theory
gives R,1 at the same time. Throughout this work, unless
otherwise stated so, we use the primary initial conditions
based on the uncertainty principle as already discussed. Un-
der this prescription of primary initial conditions, which
might be relevant for RHIC and LHC, the first order theories

FIG. 2. Proper time evolution of the inverse Reynolds number
for different values ofp0 for the given primary initial conditions.
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are not suitable in describing the dynamics of thermody-
namic quantities. On the other hand, the second order theo-
ries are suitable in describing the physical process happening
at earlier times. An advantage of the extended irreversible
thermodynamics, or second order theories, is their ability to
be applicable over a wide range of regimes. However, for a
different choice of initial conditions both theories might
yield similar results, as we shall see[46].

There are other two ways of determining the initial con-
ditions for p. The first one is by using the existing micro-
scopic models such as VNI[41], (HIJING) [42], and
(UrQMD) [43] to extract the various components ofpmn

from Tmn. Since we are dealing here with a partonic gas VNI
seems to be a good choice for the present work. We will use
the results from the improved version of VNI[47] to fit our
calculation in order to extract the initial value forp. Another
way of determining the initial value forp is to extract the
initial value of the Reynolds number experimentally. Two of
the most experimentally accessible quantities are the multi-
plicity per unit rapiditydN/dy and the transverse energy per
unit rapidity dET/dy. A detailed study for the initial and
boundary conditions for dissipative fluxes is needed to fully
incorporate these fluxes into the dynamical equations for the
thermodynamic quantities.

We use Eqs.(75)–(77) to study the proper time evolution
of temperature. The other thermodynamic quantities, namely,
energy density and entropy density, are related to the tem-
perature by the equation of state. It is important to show the
entropy results due to the importance of entropy in the theory
of irreversible extended thermodynamics and due to the fact
that entropy is related to multiplicity.

In Fig. 3(a) we start by showing the dependence of the
temperature evolution on the initial value ofp. One sees that
there is a peak inT in the case of first order theory since
R0,1, and no peak in the second order theory sinceR0.1.
In studying the dependence of the results on the initial con-
ditions for p we have also included even the critical value
for illustrative purposes. For 0.1,p0/p0,1 the choice of
p0 is important, but belowp0=0.1p0 the equation forp
gives the same contribution to the evolution of thermody-
namic quantities.

It is also tempting to choose the initial conditions for the
second order theory to match what the first order theory pre-
dicts to be the initial value ofp. Note the order of the curves
in Fig. 3(b). The second order theory predicts larger devia-
tions than the first order theory. This should be exactly the
same picture if both theories are synchronized in a regime

where both are valid. Unfortunately, it is not trivial to make
the reverse match of initial conditions. This situation will
arise in natural way when both first order and second order
theories are applied in the situation where they are both
valid, as we will see later.

In what follows we will try to get close to the conditions
that are realized in the laboratory. We will consider scenarios
close to those at RHIC and LHC. But first, we have to esti-
mate the initial value ofp for these two scenarios. We will
use the recent results from VNI calculations for the proper
time evolution[47]. We will make a fit to the data points and
extract the initial value ofp. This is done in Fig. 4. Even
though the motive is to extract an initial condition forp,
there is something interesting in Fig. 4. In this figure a com-
parison between the perfect fluid approximation, the first or-
der theory, and the second order theory is clear. The kinetic
theory result, of course, differs significantly from the perfect
fluid dynamics result. The first order theory obviously fails
terribly. The essential point, however, is that the second order
theory is in good agreement with the VNI results. Due to the
preliminary nature of VNI results we cannot yet claim per-
fect agreement between the two approaches. However, the
fact that both have similar power laws is striking. In the
beginning it looks liket−1 and then later ont−4/3 for the VNI
results. One expects that when the full three-dimensional
problem is studied within the fluid dynamical approach we
might have even better agreement. The fitted value ofp0 is
found to be about 0.2p0 which is, of course, a physical value.
The value ofas used is about 0.5. For all RHIC results pre-
sented here we will use the expected primary initial condi-
tions with p=0.2p0 and as=0.5. For the LHC scenario we

FIG. 3. The proper time evolution of tempera-
ture (a) for different choices ofp0 and (b) for
p0

2nd=p0
1st.

FIG. 4. Proper time evolution of the energy density. The data
points are from VNI simulations and the curves are fluid dynamical
results.
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will use the expected primary initial conditions withp0
=0.3p0 andas=0.4.

As a benchmark both the fluid dynamical and cascade
models have been solved numerically for same primary ini-
tial conditions and equation of state. This is done for consis-
tency. It is apparent that hyperbolic models perform better
than the parabolic ones, in agreement with VNI simulations.
Also for energy density there is a peak in the parabolic
model which is absent in the hyperbolic model. This spurious
unphysical result highlights the difference between the para-
bolic and hyperbolic models in region of large gradients. We
remark that the initial state under consideration presents very
steep velocity gradients. Therefore this is an ideal benchmark
for testing fluid dynamical models against transport models.
Comparisons of Navier-Stokes-Fourier results with transport
models were made in Ref.[48] with NSF failing terribly for
smaller cross sections. In that particular study the NSF also
brought in the problem of negative effective pressure. The
transport results however gave a much better description.
What is important however is that the second order theory
seems to do a better job even in this case. The latest results
on this latter point to be published elsewhere are still under
investigation and comparison to previous work on the effec-
tive pressure of a saturated gluon plasma[49] is done.

The effect of dissipation is more pronounced at the very
early stages of heavy ion collisions when gradients of tem-
perature, velocity, etc., are large. This can be seen by com-
paring Figs. 5(a) and 5(b). One also sees that Euler hydro-
dynamics predicts the fastest cooling. The first order theory
fails badly even for this case where we have a very high
initial parton density. The first order theory significantly un-
derpredicts the work done during the expansion relative to
the Müller-Israel-Stewart and Euler predictions. Thus the en-
tropy density decreases more slowly with the inclusion of
dissipative effects. This would lead to greater yields of ob-
servables such as photons and dileptons. The system takes
longer to cool down. This will delay freeze-out. More en-
tropy is generated. This is important because entropy produc-
tion can be related to the final multiplicity.

A legitimate question to ask is that do we really want to
synchronize the initial conditions for both ideal fluid, first
order, and second order theories. Given some initial condi-
tions, we want to investigate the importance of second order
theories as compared to first order theories and perfect fluids.
That is, if one is given a set of well known initial conditions
from experiment we want to see which of the theories best

describes the dynamics of the system. Given an observable
and a set of primary initial conditions we would like to see
whether the microscopic cascade models, the ideal fluid, the
first order theory, or second order theory best describes the
evolution of the system.

Let us now analyze the differences between the second
order and first order theories. The first thing we notice is that
the Eckart-Landau-Lifshitz theory predicts that at early times
the temperature will rise before falling off. This is more pro-
nounced when we have small initial times. Naively one
would expect that the system would cool monotonically as it
expands, even in the case of dissipation where energy-
momentum is conserved.

So far our focus has been on the quark-gluon plasma
where the composition of the parton fluid enters the descrip-
tion through the form of the conservation laws and the equa-
tion of state. Now we study the dynamics of a pion fluid.
Pions are the lightest hadrons. They are produced in abun-
dance in ultrarelativistic collisions compared to heavier had-
rons, particularly in the central region. It is therefore impor-
tant to study their influence on the expansion. If pions are
produced by hadronization of quark-gluon plasma, then dis-
sipation encountered during their subsequent expansion may
change the observables. The expansion in the central region
conserves pion energy and momentum. Since pions carry
baryon number zero, their total number is not conserved.
Therefore, we expect the equilibrium number density of
pions in a given volume to vary with temperature.

The equation of state is approximated by that of a mass-
less pion gas. Thus the pressure is given byp=aT4 with a
=ghp2/90, wheregh=3 is the number of degrees of freedom.
The energy density and entropy density are given by«
=3aT4 ands=4aT3, respectively. The bulk viscous pressure
equation does not contribute for massless particles, sincez
→0 [37]. For the(111)-dimensional Bjorken-type hydrody-
namics the heat term in the energy equation will not contrib-
ute. Thus we need only the shear viscous pressure for this
presentation. The energy density evolution equation is deter-
mined as before since the equation of state is the same except
for the degeneracy factor. However this time the shear vis-
cosity coefficient is approximated byh=tp / s2b2d. For mass-
less particlesb2=3/s4pd, and this is used in the expression
for tp. The primary transport coefficients of a massless pion
gas are not that well known. For chiral pions the expressions
for shear viscosity and thermal conductivity are given in Ref.
[26]. We will estimate the shear viscosity from the mean

FIG. 5. The proper time evolution of entropy
density for given primary initial conditions
sT0,t0d for (a) RHIC and(b) LHC scenarios.
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collision time of the pions. The mean time between collisions
of pions moving atkvl<1 is given by

tp =
1

sn
, s84d

wherensTd=bT3 with b=3zs3d /p2 is the pion density and
s<1 fm2 is an effective cross section. The quantitytpT3

=1/ssbd fm2 is roughly constant for temperatures
T.100 MeV. Theshear viscosity can therefore be repre-
sented by

h = fhT with fh =
2

3

a

b

1

s
. s85d

Using the transport and thermodynamic properties out-
lined here the energy and transport equations can be written
as before with the equation forp given by

dp

dt
= − sbT3p −

1

2
S1

t
− 5

1

T

dT

dt
D +

8

9

aT4

t
. s86d

The energy equation can be solved analytically for the
perfect fluid and the first order(provided h is constant)
cases. But since we wanth to depend on temperature or time
one must then solve the equations numerically, or first find
the temperature evolution as done in the preceding section.

In Figs. 6(a) and 6(b) we show thet dependence of tem-
perature for the three different cases: a perfect fluid, a first
order theory of dissipative fluids, and a second order theory
of dissipative fluids. Here we assume that the pion gas is
produced at hadronization of quark-gluon plasma att
=4 fm/c. As expected, in this regime, with the given initial
conditions, the first order and second order theories con-
verge. This convergence is faster with increasing cross sec-

tions. The effects of viscosity are small but non-negligible. In
this regime the first order theory describes the dynamics
well. However it is clearly unable to deal with the evolution
towards this regime, or with the overall dynamics of the
fluid, in a satisfactory way.

In Figs. 7(a) and 7(b) we assume that the pion gas is
formed att0,1/s3T0d. As we know by now, the difference
between the three theories is noticeable and first order theo-
ries are not suitable. We see here also that the convergence of
first order theory results and second order theory results will
occur for large cross sections.

IV. CONCLUSIONS

In this work I have given a comprehensive exposition of
the nonequilibrium properties of a new state of matter pro-
duced in heavy ion reactions. In doing so I presented some
basic features of nonequilibrium fluid dynamics. I studied the
space-time description of high energy nuclear collisions. The
main aim is to bridge the phenomenological theory with the
kinetic theory of the matter produced in heavy ion collisions.
In doing so I made use of the dissipative fluid dynamics. The
connection between the macroscopic theory and microscopic
theory enters through the transport coefficients of the matter.
The equation of state provided closure to the system of con-
servation equations.

I demonstrated that extended irreversible thermodynamics
provides a consistent framework to simulate and study the
space-time evolution of ultrarelativistic nuclear collisions
from some initial time to the final particle yield. Although
this approach relies on a number of fundamental assumptions
and is far from providing an accurate quantitative descrip-
tion, it has the advantage of wide applicability.

FIG. 6. The proper time evolution of tempera-
ture (a) for or s=1.0 fm2 and(b) for s=3.0 fm2.
The initial conditionssT0,t0d are arbitrarily cho-
sen. The first order and second order theories
overlap.

FIG. 7. The proper time evolution of tempera-
ture (a) for s=1.0 fm2 and (b) s=3.0 fm2. The
primary initial conditions are those from uncer-
tainty principle.
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The advent of accelerators such as RHIC and LHC pro-
vides an opportunity for studying the dynamics and proper-
ties of the matter at very high energy density. In the descrip-
tion of the evolution of such a system, it is mandatory to
evaluate, as accurately as possible, the order of magnitude of
different characteristic time scales, since their relationship
with the time scale of observation will determine, along with
the relevant equations, the evolution pattern. This is rather
general when dealing with dissipative systems. It has been
my purpose here, by means of simple model with simple
equation of state and arguments related to a wide range of
time scales, to emphasize the convenience of resorting to
hyperbolic theories when dissipative processes, either out-
side the steady-state regime or when the observation time is
of the order of or shorter than some characteristic time of the
system, are under consideration. Furthermore, dissipative
processes may affect the way in which the system tends to
equilibrium, thereby affecting the future of the system even
for time scales much larger than the relaxation time.

In the early stages of heavy ion collisions, nonequilibrium
effects play a dominant role. A complete description of the
dynamics of heavy ion reactions needs to include the effects
of dissipation through dissipative or nonequilibrium fluid dy-
namics. As is well known, hyperbolic theories of fluid dissi-
pation were formulated to get rid of some of the undesirable
features of parabolic theories, such as acausality. It seems
appropriate therefore to resort to hyperbolic theories instead
of parabolic theories in describing the dynamics of heavy ion
collisions. Thus in ultrarelativistic heavy ion collisions,
where the fluid evolution occurs very rapidly, the second
order theories, due to their universality, should be used to
analyze collision dynamics.

Unlike in first order theories, where the transport equa-
tions are just the algebraic relations between the dissipative
fluxes and the thermodynamic forces, second order theories
describe the evolution of the dissipative fluxes from an arbi-
trary initial state to a final steady state using the transport
equations. The presence of relaxation terms in second order
theories makes the structure of the resulting transport equa-
tions hyperbolic and they thus represent a well-posed initial
value problem.

The consequences of nonideal fluid dynamics, both first
order (if applicable) and second order, were demonstrated
here in a simple situation, that of scaling solution assumption
and simple equation of state. A more careful study of the
effects of the nonideal fluid dynamics on the observables is
therefore important. Conversely, measurements of the ob-
servables related to thermodynamic quantities would allow
us to determine the importance and strength of dissipative
processes in heavy ion collisions.

In summary, although parabolic theories have proved very
useful for many practical purposes, they appear to fail hope-
lessly in describing the dynamics of heavy ion collisions. In
contrast, hyperbolic theories successfully give a better de-
scription in agreement with transport models and hopefully
they will be able to predict the experimental results. Thus
hyperbolic theories are more reliable. In the steady state,
under the conditions mentioned before and for times exceed-
ing t both theories may converge. Based on the results pre-
sented here one can only stress the convenience of using

hyperbolic transport equations when parabolic theories either
fail or the problem under consideration happens to lie outside
the range of applicability of parabolic theories.

V. OUTLOOK

Here we have used only a simple equation of state in a
simplified model of high energy nuclear collisions. A more
realistic situation(including transverse expansion) will re-
quire careful analysis of both the transport coefficients and
the equation of state which are employed in the full set of the
equations. It is then that one may have a better understanding
of when to use either of these theories in the context of
relativistic heavy ion collisions.

There are important questions that need to be investigated
in order to tackle the challenges faced by hyperbolic theo-
ries. An important question is the measurability of the dissi-
pative fluxes. The heat flux through a system may be simply
evaluated by measuring the amount of energy transported per
unit area and time. The viscous pressure can be measured
from the tangential shear force exerted per unit area. In prac-
tice, it may be difficult to evaluate these quantities at each
instant and at every point. From kinetic theory these fluxes
can be simulated from microscopic transport models such as
HIJING, VNI, and UrQMD.

A thorough study of transport coefficients is needed. The
results from lattice QCD should give clear predictions for
these coefficients. So far there are no reliable phenomeno-
logical expressions for the coefficients. The shear viscosity
results presented in Ref.[52] using the microscopic model
UrQMD serve as a starting point for future calculations of
transport coefficients.

A thorough study of the equation of state is required in
order to be consistent with the nonequilibrium description of
matter. In addition to the initial/boundary conditions for the
primary/equilibrium variables a thorough study of initial/
boundary conditions for the dissipative fluxes is necessary.
This is required for the evolution equations of the fluxes. For
example, one would like to know how much of a particular
dissipative flux is generated as a response to an associated
thermodynamics force in the early stages of the heavy ion
collisions. This in turn gives us information about the initial
entropy generated as a result of dissipation.

For the complete description of the dynamics of viscous,
heat conducting matter we need to consider more realistic
situations: a system that expands in both the longitudinal and
transverse directions[53] and we need a full(311)-
dimensional solutions to the conservation and evolution
equations. This will require extensive numerical computa-
tion. This is a challenging but interesting problem. In order
to understand the observables we need a full formulation of
hyperbolic theory that should be tested against other models/
theories.

Solving imperfect hydrodynamics amounts to knowledge
of (i) a realistic equation of state,(ii ) reliable transport coef-
ficients(iii ) realistic initial/boundary conditions, and(iv) nu-
merical computational algorithm. In order to understand the
observables from RHIC and LHC knowledge of these re-
quirements is needed and that is what I have started to do. I
hope that this will gather momentum in due course.

AZWINNDINI MURONGA PHYSICAL REVIEW C 69, 034903(2004)

034903-14



ACKNOWLEDGMENTS

I am grateful to Adrian Dumitru for reading the
manuscript and for valuable discussions. I also thank Joe

Kapusta, Pasi Huovinen, Dirk Rischke, and Tomoi Koide
for valuable comments. This work was supported by the
U.S. Department of Energy Grant No. DE-FG02-
87ER40382.

[1] A compilation of current RHIC results can be found inQuark
Matter ’01, Proceedings of the Fifteenth International Confer-
ence on Ultra-Relativistic Nucleus-Nucleus Collisions at
Stony-Brook, NY, USA[Nucl. Phys.A698, 1 (2002)]; Quark
Matter ’02, Proceedings of the Sixteenth International Confer-
ence on Ultra-Relativistic Nucleus-Nucleus Collisions at
Nantes, France[Nucl. Phys.(to be published)].

[2] For reviews on QGP signatures, see J. Harris and B. Müller,
Annu. Rev. Nucl. Part. Sci.46, 71 (1996); S. A. Bass, M.
Gyulassy, H. Stöcker, and W. Greiner, J. Phys. G25, R1
(1999).

[3] H. Stöcker and W. Greiner, Phys. Rep.137, 277 (1986).
[4] R. B. Clare and D. D. Strottman, Phys. Rep.141, 177

(1986).
[5] J. I. Kapusta, Phys. Rev. C24, 2545(1981).
[6] C. Eckart, Phys. Rev.58, 919 (1940).
[7] L. D. Landau and E. M. Lifshitz,Fluid Mechanics(Pergamon,

New York, 1959).
[8] H. Grad, Commun. Pure Appl. Math.2, 331 (1949).
[9] I. Müller, Z. Phys. 198, 329 (1967).

[10] W. Israel, Ann. Phys.(N.Y.) 100, 310 (1976); J. M. Stewart,
Proc. R. Soc. London, Ser. A357, 59 (1977); W. Israel and J.
M. Stewart, Ann. Phys.(N.Y.) 118, 341 (1979).

[11] W. A. Hiscock and L. Lindblom, Ann. Phys.(N.Y.) 151, 466
(1983); Phys. Rev. D31, 725 (1985); 35, 3723(1987).

[12] K. Kajantie, Nucl. Phys.A418, 41c (1984); G. Baym, ibid.
A418, 525c (1984); A. Hosoya and K. Kajantie, Nucl. Phys.
B250, 666 (1985).

[13] H. Kouno, M. Maruyama, F. Takagi, and K. Saigo, Phys. Rev.
D 41, 2903(1990).

[14] P. Danielewicz and M. Gyulassy, Phys. Rev. D31, 53
(1985).

[15] L. Mornas and U. Ornik, Nucl. Phys.A587, 828 (1995).
[16] A. K. Chaudhuri, J. Phys. G26, 1433(2000); Phys. Scr.61,

311 (2000).
[17] D. Teaney, nucl-th/0301099; nucl-th/0209024.
[18] A. Muronga, Heavy Ion Phys.15, 337 (2002); in Proceedings

of the 17th Winter Workshop on Nuclear Dynamics, edited by
G. D. Westfall and W. Bauer(EP Systema, Hungary, 2001).

[19] A. Muronga, Phys. Rev. Lett.88, 062302 (2002); 89,
159901(E) (2002).

[20] A. Muronga, Ph.D thesis, 2002.
[21] Y. Lallouet, D. Davesne, and C. Pujol, Phys. Rev. C67,

057901(2003).
[22] D. H. Rischke, inHadrons in Dense Matter and Hadrosynthe-

sis, edited by J. Cleymans, H. B. Geyer, and F. G. Scholtz,
Lecture Notes in Physics Vol. 516(Springer, Berlin, 1999).

[23] P. Huovinen, Acta Phys. Pol. B33, 1635 (2002); nucl-th/
0305064.

[24] P. F. Kolb and U. Heinz, nucl-th/0305084.
[25] D. H. Rischke, Y. Pürsün, and J. A. Maruhn, Nucl. Phys.

A595, 383 (1995); V. Schneideret al., J. Comput. Phys.105,
92 (1993).

[26] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys.
Rep. 227, 321 (1993).

[27] I. V. Karlin, A. N. Gorban, G. Dukek, and T. F. Nonnemma-
cher, Phys. Rev. E57, 1668 (1998); A. N. Gorban and I. V.
Karlin, ibid. 54, R3109(1996).

[28] R. Maartens and J. Triginer, Phys. Rev. D56, 4640(1997); R.
Maartens, astro-ph/9609119.

[29] A. M. Anile, D. Pavon, and V. Romano, gr-qc/9810014; L.
Herrera and D. Pavon, Phys. Rev. D64, 088503 (2001);
Physica A 307, 121 (2002).

[30] I. Müller and T. Ruggeri, Extended Thermodynamics
(Springer-Verlag, Berlin, 1993).

[31] D. Jou, J. Casas-Vázquez, and G. Lebon,Rational Extended
Thermodynamics(Springer-Verlag, New York, 1998).

[32] B. C. Eu, Kinetic Theory and Irreversible Thermodynamics
(Wiley, New York, 1992).

[33] S. R. deGroot, W. A. van Leeuwen, and Ch. G. van Weert,
Relativistic Kinetic Theory (North-Holland, Amsterdam,
1980).

[34] W. Israel, inRelativistic Fluid Dynamics, edited by A. Anile
and Y. Choquet-Bruhat(Springer-Verlag, Berlin, 1989).

[35] I-Shih Liu, I. Müller, and T. Ruggeri, Ann. Phys.(Leipzig)
169, 191 (1986).

[36] C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation
(Freeman, New York, 1973).

[37] S. Weinberg,Gravitation and Cosmology: Principles and Ap-
plications of the General Theory of Relativity(Wiley, New
York, 1972).

[38] L. P. Csernai,Introduction to Relativistic Heavy Ion Collisions
(Wiley, New York, 1994).

[39] C. Cattaneo,C. R. Acad. Sci. URSS247, 431 (1958).
[40] J. D. Bjorken, Phys. Rev. D27, 140 (1983).
[41] K. Geiger, Phys. Rep.258, 237 (1995); Comput. Phys. Com-

mun. 104, 70 (1997).
[42] X. N. Wang, Phys. Rep.280, 287 (1997).
[43] S. A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L.

Bravina, C. Ernst, L. Gerland, M. Hofmann, S. Hofmann, J.
Konopka, G. Mao, L. Neise, S. Soff, C. Spieles, H. Weber, L.
A. Winckelmann, H. Stöcker, W. Greiner, C. Hartnack, J.
Aichelin, and N. Amelin, Prog. Part. Nucl. Phys.41, 225
(1998).

[44] J. Kapusta, L. McLerran, and D. K. Srivastava, Phys. Lett. B
283, 145 (1992).

[45] T. Peitzmann and M. H. Thoma, Phys. Rep.364, 175
(2002).

[46] P. Huovinen, P. V. Ruuskanen, and J. Sollfrank, Nucl. Phys.
A650, 227 (1999).

[47] S. A. Bass, B. Mueller, and D. K. Srivastava, Phys. Lett. B
551, 277 (2003).

CAUSAL THEORIES OF DISSIPATIVE RELATIVISTIC… PHYSICAL REVIEW C 69, 034903(2004)

034903-15



[48] M. Gyulassy, Y. Pang, and Bin Zhang, Nucl. Phys.A626, 999
(1997).

[49] A. Dumitru and M. Gyulassy, Phys. Lett. B494, 215
(2000).

[50] S. Gavin, Nucl. Phys.A435, 826 (1985).

[51] G. Baym, H. Monien, C. J. Pethick, and D. G. Ravenhall,
Phys. Rev. Lett.64, 1867(1990); G. Baym and H. Heiselberg,
Phys. Rev. D56, 5254(1997).

[52] A. Muronga, nucl-th/0309056.
[53] A. Muronga and D. H. Rischke(unpublished).

AZWINNDINI MURONGA PHYSICAL REVIEW C 69, 034903(2004)

034903-16


