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A model is developed for the reactiong+d→K++L+n that includes both impulse and rescattering contri-
butions. Most of the well-established resonances of spins1

2 and 3
2 below 1.9 GeV are incorporated in the

model. Initial estimates for the relevant coupling strengths are extracted from empirical information and SU(3)
symmetry relations. For certain resonances, these initial estimates are modified to bring the cross sections
calculated for certain elementary processes related to the rescattering terms in rough qualitative agreement with
the empirical cross sections for these processes. For theN* andD resonances included in the model, off-shell
width extrapolations are obtained by treating the energy and momentum dependence of each decay channel
separately. Since the main intent of the study is to ascertain the importance of the rescattering terms in the
reaction amplitudes, no attempt has been made to include final state correlations. To represent the initial state,
a nonrelativistic deuteron wave function is employed. Results are presented for the differential cross section in
the deuteron rest frame at fixed kaon energy and angle. The results indicate that rescattering contributions to
the photoproduction of kaons from the deuteron may be significant over a wide kinematical range.
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I. INTRODUCTION

Electromagnetic production of mesons from light nuclei
has long been of interest in nuclear physics as a means of
studying baryon-baryon interactions. A major advantage of
such reactions over reactions involving strong interaction
probes is that the electromagnetic part of the reaction can be
treated perturbatively.

While there exists a fairly extensive literature concerning
pion photoproduction and electroproduction from light nu-
clei, such as the deuteron[1,2] and3He [3], it has only been
comparatively recently that kaon electromagnetic production
from light nuclei has received much attention. Detailed stud-
ies of kaon electromagnetic production are of interest for
several reasons. They provide information concerning the
hyperon-nucleon interaction in a different kinematical region
from that accessible in hypernuclear studies, and thus expand
our knowledge of that important interaction. Because kaons
involve the strangeness degree of freedom, reactions involv-
ing kaons also provide information concerning the quark-
gluon interaction that cannot be obtained from pion reactions
alone. Finally, kaon production provides a new arena for test-
ing reaction models for electromagnetic meson production.

Prior to the late 1980s, virtually all the theoretical studies
of kaon electromagnetic production were carried out for pro-
ton targets. Among the earliest of these are the work of Thom
[4] and Renard and Renard[5]. Subsequently, a number of
groups performed exhaustive semiphenomenological analy-
ses of the existing photoproduction and electroproduction
data using an effective Lagrangian approach[6–12]. The ma-
jor difficulty with this approach is that the data do not ad-
equately constrain the resonances included in the fits. Differ-
ent analyses achieve comparable fits using quite different
sets of resonances, so that the reliability of the resulting cou-
pling strength determinations is not clear. Recently, the Gh-
ent group has studied a number of issues related to electro-
magnetic production of strangeness from the proton[13].

Kaon photoproduction from the deuteron was first studied

in detail by Renard and Renard[14] within a one-body reac-
tion model (impulse approximation) supplemented by final
state interactions. Due to a paucity of data, there was little
further work on photoproduction from the deuteron until the
construction of CEBAF made the acquisition of new high
quality data possible. Most of the recent theoretical work
employs a reaction model similar to that of Renard and Re-
nard and focuses primarily on the role of final state interac-
tions [15–17]. The model has recently been extended to a
treatment of kaon photoproduction from3He [18] with the
emphasis again on final state interactions.

While the role of final state interactions in kaon photopro-
duction is certainly a very significant question, the reaction
mechanism itself also deserves attention. Within the one-
body reaction model, a single nucleon absorbs the incident
photon and emits the outgoing kaon. However, to conserve
momentum in the reaction, momentum has to be transferred
between the outgoing baryons. Because of the lack of high
momentum components in the deuteron, the only effective
mechanism for achieving this in the one-body model is
through the final state interaction. When the outgoing bary-
ons have small relative momentum, they can interact
strongly, and final state interactions are effective in transfer-
ring momentum between the outgoing baryons. However,
when the relative momentum is not small, the final state
interaction falls off rapidly, and with it the calculated cross
section.

The inclusion of two-body terms in the reaction mecha-
nism, in which different nucleons absorb the photon and emit
the kaon, could alter this result significantly. These two-body
terms involve an explicit meson exchange between the par-
ticipating baryons and thus provide an additional momentum
transfer mechanism. Laget has shown, in the case of pion
photoproduction from the deuteron, that such rescattering
terms can make significant contributions to the cross section
in certain kinematical regimes[2]. In the work described
here, we examine the contributions of rescattering terms in
kaon photoproduction.
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A related question, which has not received much attention
in the literature, is the dependence of the deuteron kaon pho-
toproduction results on the input coupling strengths. As dis-
cussed above, it is possible to achieve comparable fits to the
data for photoproduction from the proton using quite differ-
ent sets of intermediate resonances. In the impulse approxi-
mation one might expect these different resonance sets to
yield similar results for the deuteron reaction since in that
approximation, the reaction mechanisms for the deuteron re-
action and the proton reaction are essentially the same. This
is not the case, however, when two-body contributions are
included, which suggests that a careful examination of the
deuteron data away from threshold may allow one to distin-
guish between different fits to the proton data.

In Sec. II of this work, a model for the reaction

g + d → K+ + L + n s1d

is presented which contains both one-bodysimpulsed and
two-body srescatteringd terms. Section II enumerates the set
of intermediate resonances incorporated in the model and
contains a detailed discussion of the resonance propagators
and interaction vertices that are employed.

Section III outlines the procedure employed for the deter-
mination of the coupling strengths and phases associated
with the various interaction vertices. In most previous work,
these coupling strengths and phases have just been taken
from one of the fits to the proton data. Two considerations
make this procedure unsatisfactory for the calculations de-
scribed here. First, as mentioned above, different fits to the
proton data involve quite different sets of resonances. While
the various fits presumably give similar results for the im-
pulse contributions to the deuteron reaction, they might yield
rather different results for the rescattering contributions to
the deuteron reaction. Since there does not appear to be any
compelling reason to regard one fit as superior to the others,
one is faced with the problem of deciding which fit to use.

A second more serious problem is that the rescattering
terms involve couplings that are not determined at all in the
proton fits. For example, the rescattering terms have contri-
butions from intermediateD resonances that do not occur in
the impulse terms. Evaluation of the rescattering terms also
requires knowledge ofp-baryon andh-baryon coupling
strengths that are not determined in the proton fits. We by-
pass these difficulties by relying on other data sources and on
symmetry relations to estimate the coupling strengths and
phases required in the model. The quality of the resulting
coupling strengths is tested by using them to evaluate the
cross sections for certain related elementary processes, in
particular, kaon-nucleon elastic scattering, the reactionp−p
→K0L, and photoproduction of theL from the proton, and
then comparing with empirical curves generated using the
SAID facility [19]. This procedure reveals the need for some
adjustments, as discussed in Sec. III.

In addition to coupling strengths, values are required for
the widths of the nonstrange resonances included in the
model. Wherever possible, empirical information has been
employed to fix the widths on the mass shell. However, the
widths are usually needed quite far off the mass shell, mak-

ing it necessary to develop a model for the energy and mo-
mentum dependence of the widths. This model is described
in some detail in Sec. IV.

The matrix element for the reaction(1) must be evaluated
between an initial deuteron state and a three-body final state.
In principle, a relativistic deuteron wave function should be
employed for the initial state and all possible interactions
included in the final state. In practice, a more modest calcu-
lation has been performed using a nonrelativistic deuteron
wave function and neglecting final state interactions. The
major effect of relativity on the deuteron is to introduce
smallp-wave components in the wave function. The effect of
these small components on kaon photoproduction has been
studied within the impulse approximation in a previous work
and found to be relatively unimportant[15]. Details concern-
ing the evaluation of the matrix elements are contained in
Sec. V. Numerical results for the photoproduction cross sec-
tion are presented and discussed in Sec. VI.

II. THE REACTION MODEL

The contributions to the reaction model included in the
present work are depicted diagrammatically in Figs. 1 and 2.
In addition to the diagrams shown, there is a second set of
diagrams with the photon absorbed on the right which must
be included to correctly account for the deuteron isospin.
These additional diagrams need not be evaluated explicitly,
however, since their amplitudes are identical to those de-
picted in the figures. They can be incorporated by just dou-

FIG. 1. Impulse contributions to the reaction amplitude.
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bling the calculated matrix elements. Together with a factor
1/Î2 from the deuteron isospin, this yields an overall factor
of 2 in the cross section as compared with a calculation that
does not account for the deuteron isospin.

Figure 1 depicts the usuals-channel, u-channel, and
t-channel contributions to the amplitude in the impulse ap-
proximation. Note that the Born terms, in which the interme-
diate lines in thes- and u-channel contributions are ground
state baryons, have been included in these diagrams.

Figure 2 depicts the rescattering contributions included in
the present analysis. These diagrams represent all possible
rescattering contributions with one intermediate resonance
excitation on each baryon line. The exchanged meson can be
either neutral or charged depending upon whether the
nucleon on the left is a proton or a neutron. Since the deu-
teron has isospin zero, the neutral exchange contributions
have to be subtracted from, rather than added to, the charge
exchange contributions. It should be noted that the zero iso-
spin of the deuteron precludes the excitation ofD resonances
in either of diagrams(d) or (e).

We have made no attempt to include vector meson ex-
change in the rescattering amplitudes. The incorporation of
vector meson exchange would not only complicate those am-
plitudes considerably, but it would require a host of addi-
tional coupling strengths that are difficult to determine. Even
more significantly, vector meson exchanges involve the rela-
tive phases between vector meson-baryon-resonance vertices
and pseudoscalar-baryon-resonance vertices. SU(3) symme-
try relations are of no help in determining these phases since
they do not connect the couplings of mesons in different
SU(3) multiplets. The same situation regarding coupling
strengths and phases applies tos exchange as well, sos

exchange terms in the rescattering amplitudes have not been
included in the model. By contrast, the pseudoscalar ex-
change contributions involve only the phases of the photon
interactions relative to the pseudoscalar meson interactions,
which can generally be fixed with the aid of empirical pho-
toproduction amplitudes and SU(3).

We include a much larger set of resonances in the present
work than has been incorporated in most previous work. This
is made necessary by the fact that resonances that do not
have much effect in the impulse approximation can, in prin-
ciple, have a large effect in the rescattering terms. In the
impulse terms, a resonance must couple strongly to both the
photon and the kaon to have a significant impact on the
amplitude, but in the rescattering termsdifferent resonances
are associated with the photon absorption and kaon emission
vertices. Thus, resonances need to be included which interact
strongly with the kaon but may not interact strongly with the
photon. This discussion should also make clear that the cou-
pling strengths at the photon vertices and at the pseudoscalar
meson vertices need to be knownseparately. The coupling
strengths determined in the proton fits, which are actually
products of the coupling strengths at the photon and kaon
vertices, are of little utility in evaluating the rescattering am-
plitudes.

Ideally, our analyses should incorporate all the well-
established resonances(those of three or four star status in
the particle data tables) below some maximum energy. In
practice, one can include only those resonances for which the
required interaction strengths and phases can be estimated
with some degree of reliability. This restriction effectively
rules out most of the resonances above a rest energy of
1.9 GeV or so. Above this energy, there is little width or

FIG. 2. Rescattering contribu-
tions to the reaction amplitude.
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photoamplitude data available, and uncertain multiplet as-
signments limit the applicability of SU(3) symmetry rela-
tions. We have further restricted the resonances considered to
those with spins of12 or 3

2, mainly to avoid complications
associated with the vertex functions and propagators of
higher spin states. There are only a few well-established
resonances with spins greater than3

2 below 1.9 GeV; their
exclusion should not qualitatively affect the results obtained.

A list of all the resonances incorporated in the present
work is given in Table I. The spin-parity assignments in the
third column have been taken from the particle data tables
[20], while the symmetry assignments in columns 4 and 5 are
consistent with those used in SUs6d3Os3d analyses of spec-
tra and decay rates[21,22].

As discussed above, the impulse amplitude consists of the
s-channel,u-channel, andt-channel exchanges represented
by the diagrams depicted in Fig. 1. These amplitudes have
the general forms

T̂s = o
R

VK
†spKdDRspRdVgspgd, s2d

T̂u = o
R

Vg
†spgdDRspR8dVKspKd, s3d

and

T̂t = o
K!

VgK
† spg,pK!dDK!spK!dVpLspK!d, s4d

where pR=pL+pK and pR8 =pL−pg are the resonance
4-momenta in thes-channel andu-channel terms, respec-
tively, andpK! is the 4-momentum carried by the kaon reso-
nance in thet-channel term. TheV’s here denote vertex func-
tions, while the D’s denote intermediate resonance
propagators. In thes-channel term, the intermediate reso-
nance sum includes the nucleon and allN! resonances incor-
porated in the model; in theu-channel term, the sum includes
the ground stateL andS and allY! resonances incorporated
in the model; and in thet-channel term, the sum includes the
K!s892d and theK1s1270d resonances, which have been
incorporated in previous analyses.

The vertex functions and intermediate propagators ap-
pearing in thes- andu-channel impulse amplitudes are of the
same form as those employed in the rescattering terms and
are discussed below. Thet-channel vertex functions are
given by

VgK
m =

ggKK!

msc
emnrlenpgrpK!l s5d

and

VpL
m = SgpLK!

V +
gpLK!

T

mp + mL

g · pK!Dgm s6d

for the K!s892d resonance and

VgK
m =

ggKK1

msc
se · pK1pg

m − pg · pK1emd s7d

and

VpL
m = SgpLK1

V +
gpLK1

T

mp + mL

g · pK1Dgmg5 s8d

for the K1s1270d resonance, wheremsc is a scaling mass
that we set equal to1000 MeV. The twokaon resonances
have propagators of the same form,

DK! =

− gmn +
pK!mpK!n

mK!
2

pK!
2 − mK!

2 + imK!GK!

, s9d

where now the labelK! refers to either of the two reso-
nances.

The rescattering terms are given by the general expres-
sions

T̂A = T̂gdGp,hsqdT̂Kd,

T̂B = T̂gdGp,hsqdT̂Kc,

T̂C = T̂gdGKsqdT̂Kc,

T̂D = T̂gcGp,hsqdT̂Kd,

TABLE I. Resonances included in the model.

Resonance I JP SUs6d SUs3d

Ns1440d 1
2

1
2

+ 56,0+ 28

Ns1520d 1
2

3
2

− 70,1− 28

Ns1535d 1
2

1
2

− 70,1− 28

Ns1650d 1
2

1
2

− 70,1− 48

Ns1700d 1
2

3
2

− 70,1− 48

Ns1710d 1
2

1
2

+ 70,0+ 28

Ns1720d 1
2

3
2

+ 56,2+ 28

Ds1232d 3
2

3
2

+ 56,0+ 410

Ds1600d 3
2

3
2

+ 56,0+ 410

Ds1620d 3
2

1
2

− 70,1− 210

Ds1700d 3
2

3
2

− 70,1− 210

Ls1405d 0 1
2

− 70,1− 21

Ls1520d 0 3
2

− 70,1− 21

Ls1600d 0 1
2

+ 56,0+ 28

Ls1670d 0 1
2

− 70,1− 48

Ls1690d 0 3
2

− 70,1− 28

Ls1810d 0 1
2

+ 70,0+ 28

Ls1890d 0 3
2

+ 56,2+ 28

Ss1385d 1 3
2

+ 56,0+ 410

Ss1660d 1 1
2

+ 56,0+ 28

Ss1670d 1 3
2

− 70,1− 28

Ss1750d 1 1
2

− 70,1− 210
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T̂E = T̂gcGp,hsqdT̂Kc,

T̂F = T̂gcGKsqdT̂Kc, s10d

each of which contains a factor involving the absorbed pho-
ton shereafter, termed the photon absorption amplituded, a
factor involving the emitted kaonshereafter, termed the kaon
emission amplituded, and a propagator for the exchange of
either a nonstrange mesonslabeledp ,hd or a kaon. The di-
rect and crossed photon absorption amplitudessidentified
with subscriptsd andcd have the same structure as thes- and
u-channel impulse amplitudes, respectively, except for addi-
tional meson vertex form factors to account for the off-shell
nature of the exchanged mesons. The meson propagators and
kaon emission amplitudes have the forms

GM =
1

q2 − mM
2 , s11d

wheremM andq are the meson mass and 4-momentum, and

T̂Kd = o
R

VK
†spKdDRspRdVMspMd,

T̂Kc = o
R

VM
† spMdDRspR8dVKspKd, s12d

where theVM’s are the interaction vertices associated with
the exchanged mesons and include off-shell form factors.

The vertex functions and resonance propagators appearing
in these expressions depend upon the spin and parity of the
excited resonance. For spin12 resonances, we employ the
standard spin1

2 photon vertex function and use the pseudo-
scalar version of the meson vertex function. This gives for
the positive parity resonances(with form factors not shown)

VKs1/2+dspKd = gg5 s13d

and

Vgs1/2+dspgd = ggemismnspgdn s14d

with

gg =
ek

2mB
, s15d

wheremB is the mass of the ground state baryon participating
in the interaction, and the parameterk is defined by its rela-
tion to the transition magnetic moment,

mT =
ek

mB + mR
. s16d

If the intermediate baryon is a proton, the photon vertex
contains an additional charge term,egmspgdm. The negative
parity spin 1

2 vertex functions are given by similar expres-
sions but with theg5 factor occurring in the photon vertex
function rather than in the kaon vertex function.

For the spin1
2 propagator, we employ a relativistic Breit-

Wigner form

D1/2 =
g · pR + mR

pR
2 − mR

2 + imRGR

, s17d

whereGR is the resonance width. This form has been used in
most of the previous photoproduction studies. However,
Benmerroucheet al. have noted that Eq.(17) leads to incon-
sistent amplitudes in different partial waves and hence, vio-
lates unitarity[23]. A better procedure would be to generate
the imaginary part of thet-matrix explicitly through a
K-matrix approach. This requires the solution of coupled
channel equations, however, and would be technically very
difficult in the present case which involves a large number of
resonances coupled to many different channels.

For the spin3
2 propagator, we make use of the Rarita-

Schwinger form consisting of the spin12 propagator multi-
plied on the right by the operator

Pmn = gmn −
1

3
gmgn +

1

3

spRdmgn − spRdngm

mR
−

2

3

spRdmspRdn

mR
2 .

s18d

This differs from the propagator used in Ref.f6g. To ensure
gauge invariance, the authors of that reference replace the
masses in Eq.s18d and in the numerator of the Feynman
propagator byÎs. However, the resulting form does not
satisfy the differential equation that defines the propaga-
tor, as shown in Ref.f23g. Moreover, as noted in Ref.
f12g, it introduces unphysical singularities in the
u-channel whereÎs can vanish. Recent workf12,23,24g
has shown that the correct gauge invariant treatment of
spin 3

2 particles requires the incorporation of additional
off-shell structure in the spin32 interaction Lagrangians.
We have made no attempt to include this off-shell struc-
ture here, as we have no means of estimating the associ-
ated parameters. We note, however, that the off-shell
structure could have a significant impact in rescattering
processes where the intermediate resonances can be quite
far off-shell, especially in theu channel.

With off-shell terms omitted, the spin32 interaction verti-
ces reduce to those used in Ref.[12] with the u functions
replaced by the metric tensor. In particular, for the positive
parity resonances, we have(with form factors suppressed)

VKs3/2+d
m spKd = −

g

mp

pK
m, s19d

where the factormp has been included to makeg dimension-
less, and

Vgs3/2+d
m spgd = F g1

2mB
semg · pg − pg

mg · ed

+
g2

4mB
2 se · pBpg

m − pg · pBemdGg5, s20d

where pB is the 4-momentum of the ground state baryon
participating in the interaction. The negative parity vertex
functions are given by similar expressions but with theg5
factor occurring in the kaon vertex function rather than in the
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photon vertex function. The spin32 propagator is given by the
expression

Dmn
3/2 =

g · pR + mR

pR
2 − mR

2 + imRGR

Pmn, s21d

with Pmn defined by Eq.s18d.

III. COUPLING STRENGTHS AND PHASES

To evaluate the amplitudes discussed above, the various
coupling strengths must be assigned values. For thet-channel
impulse term, we need the products of the photon coupling
strengths with the vector and tensor baryon coupling
strengths. For these products we employ the values

gpLK!ggKK!
V = − 2.01,

gpLK!ggKK!
T = 1.00,

gpLK1ggKK1
V = 0.25,

gpLK1ggKK1
V = 2.13, s22d

which are just those given in Ref.f11g.
For the rescattering terms, we need the coupling strengths

at the photon vertices and the meson vertices separately.
Thus, we cannot just use the results from one of the proton
fits, since these fits give only the product of the two coupling
strengths, not the coupling strengths individually. We could,
of course, adopt one of the proton fits for the impulse terms,
where only the coupling strength products are required, and
then employ a different prescription for the rescattering
terms, but for the sake of consistency, we have rejected this
approach. Instead we determine the two sets of couplings
independently. For each type of vertex, we first derive a pre-
liminary set of coupling strengths and use these to calculate
the cross sections for a number of elementary processes that
are related to the rescattering contributions depicted in Fig.
2. We then make adjustments in individual coupling
strengths so as to make the calculated cross sections re-
semble the empirical ones as closely as possible within the
model adopted.

In connection with the meson vertices, we examine the
amplitudes forK+p andK+n elastic scattering and the ampli-
tude for the reaction

p− + p → K0 + L. s23d

Contributions to these processes are shown in Fig. 3. Note
that we have only considered contributions that are specifi-
cally related to the rescattering diagrams depicted in Fig. 2.
There are additional contributions to these processes that we
have not considered since they are not related to the rescat-
tering diagrams in Fig. 2, and consequently, we should not
expect to reproduce the empirical cross sections for these
processes too closely.

In connection with the photon vertices, we examine the
amplitude for strangeness photoproduction from the proton,

g + p → K+ + L. s24d

Contributions to this process are depicted in Fig. 4. In con-
trast with the cross sections for the mesonic processes dis-
cussed above, we should be able to reproduce the cross sec-
tion for this process fairly well.

We first consider the meson couplings, which depend
upon both the quantum numbers of the particular resonance
considered and on whether that resonance is excited or de-
excited at the meson-baryon-resonance vertex. Since we only
treat the photoproduction of theL, we need not consider any
couplings that involve aS in the final state. Thus, with the
restriction to pseudoscalar meson exchange, there are only
three meson coupling strengths required for each resonance,

involving a p, an h, or aK or K̄.
The isospin symmetry of the strong interaction allows us

to express these couplings as products of an SU(2) isospin
coupling coefficient and an SU(3) isoscalar factor. In the
baryon first convention,

gsBM → Rd = sIBlBIMlMuIRlRdfBM:R s25d

at vertices where a resonance is excited and

FIG. 3. Contributions to the amplitudes for(a) K+n elastic scat-
tering, (b) K+p elastic scattering, and(c) the reactionp−p→K0L.
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gsRM→ Bd = sIRlRIMlMuIBlBdfRM:B s26d

at vertices where a resonance is deexcited. TheI ’s and l’s
here are isospins and isospin projections, and the various
hadrons involved in the interaction are identified by the la-
belsB sground state baryond, M spseudoscalar mesond, andR
sresonanced.

The meson couplings can be further constrained if it is
assumed that the overall coupling strength associated with a
given resonance multiplet does not depend on whether the
resonances are excited or deexcited in the interaction. Then
the isoscalar factors associated with resonance excitation and
deexcitation are connected by SU(3) symmetry. In particular,
using the tables compiled in Ref.[28], we obtain the rela-
tions

fN!p:N = fNp:N!,

fS!p:L = − Î3fLp:S!,

fN!h:N = fNh:N!,

fL!h:L = fLh:L!,

fL!K:N = −Î1

2
fNK̄:L!,

fS!K:N =Î3

2
fNK̄:S! s27d

for SUs3d octets,

fL!h:L = − 2Î2fLh:L!,

fL!K:N = 2fNK̄:L! s28d

for singlets, and

fDp:N =
2

5
Î10fNp:D,

fS!p:L =
2

5
Î15fLp:S!,

fS!K:N = −
1

5
Î30fNK̄:S! s29d

for decuplets. These relations can be used to fix the reso-
nance deexcitation isoscalar factors in terms of the resonance
excitation factors.

Wherever possible we use experimental information to
obtain estimates for the remaining isoscalar factors. Where
experimental information is lacking, we resort to SU(3) sym-
metry relations. SU(3) symmetry relations are also employed
to fix the relative phases of different couplings within the
same SU(3) multiplet. For SU(3) octets, these relations can
be expressed in the form[28]

fNp:N! = f0,

fNh:N! = S1 −
4

3
aD f0,

fLK:N! = − S1 −
2

3
aD f0,

fNK̄:L! = Î2S1 −
2

3
aD f0,

fNK̄:S! =
Î6

3
s1 − 2adf0,

fSp:L! = −
2

3
Î3af0,

fLp:S! = − fLh:L! =
2

3
af0, s30d

involving the two parametersf0 and a. The corresponding
relations for singlets,

FIG. 4. Contributions to the amplitude for the reactiongp
→K+L.
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fNK̄:L! =
Î6

3
fSp:L!,

fLh:L! = −
Î3

3
fSp:L!,

fLh:L! = −
Î2

2
fNK̄:L!, s31d

and decuplets,

fNK̄:S! = − fSp:S!

fLp:S! = −
Î6

2
fSp:S!, s32d

each involve just a single parameter.
For the ground state baryon octet, we use the values given

in Ref. [29] to fix the pion couplings and then use Eqs.(30)
to fix the kaon andh meson couplings. This yields a prelimi-
nary set of values given by

fNp:N = 23.3,

fLp:S = 12.3,

fNh:N = 3.88,

fLh:L = − 12.3,

fLK:N = − 13.6,

fNK̄:L = 19.2,

fNK̄:S = − 4.76. s33d

For resonances the isoscalar factors are related to the widths
for decays into particular pseudoscalar meson ground state
baryon channels. For the pseudoscalar meson interactions
defined previously, these widths are given in the resonance
rest frame by

GS1P

2
→ 1+

2
+ 0−D =

f2

4p

p
Îs

fEB − hPmBg s34d

for spin 1
2 resonances and by

GS3P

2
→ 1+

2
+ 0−D =

1

12p

f2

mp
2

p3

Îs
fEB + hPmBg s35d

for spin 3
2 resonances, wherep is the channel momentum and

EB is the ground state baryon energy. Equationss34d and
s35d yield estimates for the magnitudes of the corresponding
isoscalar factors for decay channels with reasonably well de-
termined branching ratios. These include theNp decay chan-

nels of the nonstrange resonances and most of theNK̄ or LK
decay channels of the strange resonances that lie above the

corresponding thresholds. By contrast, most of theLp andh
baryon branching ratios are not known.

To obtain preliminary estimates for those isoscalar factors
not fixed by the width data and to fix the relative phases of
the isoscalar factors, we employ the SU(3) symmetry rela-
tions given previously. For the octet resonances, two input
couplings are required for each octet to fix the remaining
couplings within that octet. The selection of these input cou-
plings is motivated by the expectation that decay channels
with similar total masses are more likely to satisfy SU(3)
constraints than are decay channels with widely divergent
masses. Whether this expectation is actually realized in prac-
tice is not clear, but it does give a definite prescription for
fixing isoscalar factors. Thus, for the two low lying1+

2 octets,

we use empirical values for theNK̄L! andNK̄S! couplings
to provide estimates for theLKN!, LpS!, andh couplings
where needed. For octets where theS resonance is missing,

we use theSpL! coupling as input instead of theNK̄S!

coupling, and for the two octets which contain just anN!

resonance, we use theNpN! andNhN! couplings as input.
For singlet and decuplet resonances, only one input cou-

pling is required. We use theSpS! coupling as input to

provide estimates of theNK̄Ss1385d and LpSs1750d cou-
plings, use theSpLs1405d coupling to provide estimates of

the NK̄Ls1405d and LhLs1405d couplings, and use the

NK̄Ls1520d coupling to provide an estimate of the
LhLs1520d coupling.

Using these coupling estimates, we then calculated the
cross sections for the three mesonic processes represented in
Fig. 3. The amplitudes for these processes have the same
form as the kaon emission amplitudes discussed previously
but without form factors. In the center of mass(c.m.), the
cross sections are given by the general expression

ds

dV
=

1

s2pd2

mImFqF

4qIs

1

2 o
spins

ukFuT̂uIlu2, s36d

where mI and mF are the incident nucleon and outgoing
baryon masses,qI andqF are the 3-momenta of the incident
and outgoing mesons, ands is the square of the total c.m.
energy.

A comparison of the calculated cross sections with em-
pirical cross sections[19] revealed a need for modifications
in the preliminary set of couplings used. We considered the
K+n elastic scattering results first, since the calculated cross
section for this process depends only on the kaon couplings
to the S and S! resonances. To get the right magnitude for
the K+n elastic cross section, we had to increase the magni-
tude of the Ss1660d coupling by a factor of 1.8 and to
slightly modify theSs1385d andSs1670d couplings.

Next, we consideredK+p elastic scattering. The calculated
cross section for this process depends on the kaon couplings
of both S andL resonances. TheS! couplings have already
been modified through consideration ofK+n elastic scatter-
ing, so we employedK+p elastic scattering to test theL and
L! couplings. We find that the original choices for these
couplings make theK+p elastic cross section much too large.
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To get the magnitude of this cross section correctly, we had

to reduce theNK̄:L coupling by a factor of 4 and to elimi-
nate the kaon coupling to theLs1520d entirely. We also had
to reduce the kaon coupling to theLs1690d by a factor of 2
and to increase the kaon coupling to theLs1600d by about

15%. It should be noted that the reduction of theNK̄:L
coupling reduces theLK :N coupling as well because of the
relations given by Eq.(27).

Finally, we considered reaction(23), which we used to
test thep couplings to theS resonances and theKL cou-
plings to the nucleon resonances. Like theK+p elastic cross
section, the calculated cross section for this process is much
too large with the original coupling choices. To get the right
order of magnitude for this cross section, it was necessary to
reduce thep couplings to theS and theSs1660d by factors
of 2 and to suppress thep couplings to theSs1385d and
Ss1670d entirely. We also had to reduce theKL coupling to
the Ns1520d by a factor of 4.

The final set of isoscalar factors for the ground state bary-
ons and all resonances are listed in Table II. The phases have
been fixed by requiring thatfNp:N!, fNp:D and the singlet
fSp:L! all be positive.

Panels(a)–(c) of Fig. 5 display the resulting angular dis-
tributions for the three processes considered. In each panel
the solid curve is the calculated cross section and the double
solid curve the empirical cross section[19]. In the case of
kaon-nucleon elastic scattering, the model gives the magni-
tudes of the empirical curves correctly, but not the shapes,
while for reaction(23), the shape is correct but the calculated
cross section too large. These discrepancies are most likely
due to contributions to the elementary amplitudes that have
not been included in the calculations. As discussed above, we
have included only those contributions that are related to the
rescattering diagrams in Fig. 2 and thus should not expect to
achieve good fits to the empirical data for these three pro-
cesses, no matter what coupling strengths are employed.

We turn now to the couplings at the photon vertices. Here
the available data are much less extensive and less reliable
than for the meson vertices. For the ground state baryons, the
empirical magnetic moments given in Ref.[20] can be used
to extract thek values

kp = 2.793,

kn = − 1.916,

kL = − 0.729,

kSL = 1.91. s37d

We found it necessary to modify the last of these to accom-
modate the empirical results for reactions24d, as discussed
below.

For the nonstrange resonances, estimates of the photon
couplings can be extracted from the empirical photodecay
amplitudes, which are related to spin matrix elements of the

photon vertex functions discussed in the preceding section.
In particular, for the spin1

2 helicity matrix elements defined
by

t1/2P
MR,MB = ūsMBdVgs1/2PdusMRd s38d

and for the spin3
2 matrix elements defined by

t3/2P
MR,MB = ūsMBdV

gs3/2Pd
m

umsMRd, s39d

whereP is the resonance parity and

umsMRd = o
M1,M2

S1

2
M11M2U3

2
MRDusM1demsM2d s40d

is the spin3
2 Rarita-Schwinger isobar, we have the relations

TABLE II. Meson isoscalar factors.

N! resonances

fNp:N! fNh:N! fLK:N!

N 23.3 3.88 −3.4

Ns1440d 11.355 −0.152 −4.028

Ns1520d 2.714 −0.120 0.276

Ns1535d 1.185 −2.025 0.420

Ns1650d 1.452 0.525 −0.709

Ns1700d 0.621 −0.628 0.004

Ns1710d 1.808 0.832 −6.187

Ns1720d 0.257 0.126 −0.512

D resonances

fNp:D

Ds1232d 2.201

Ds1600d 0.507

Ds1620d 0.849

Ds1700d 1.317

L resonances

fLh:L! fNK̄:L!

L −12.3 4.8

Ls1405d −0.912 1.289

Ls1520d −3.017 0

Ls1600d −4.181 6.95

Ls1670d −1.152 0.447

Ls1690d −1.358 0.779

Ls1810d −1.971 3.965

Ls1890d −0.080 0.291

S resonances

fLp:S! fNK̄:S!

S 6.15 −4.76

Ss1385d 0 1.163

Ss1660d 2.09 −6.44

Ss1670d 0 −0.931

Ss1750d 0.282 0.715
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t1/2P
1/2,−1/2= Î4mBss− mB

2dA1/2
1/2P

D1/2 1/2
1/2 su,fd,

t3/2P
1/2,−1/2= hP

Î4mBss− mB
2dA1/2

3/2P
D1/2 1/2

3/2 su,fd,

t3/2P
3/2,1/2= hP

Î4mBss− mB
2dA3/2

3/2P
D3/2 3/2

3/2 su,fd. s41d

Here theA’s are the conventional photodecay amplitudes, the
D’s are Wigner rotation functions, andhP is +1 or −1 for
even or odd resonances. When the photon vertex functions
given previously are used in these relations, one obtains

A1/2
1/2P

= − hP
ek

2mB

Îs− mB
2

2mB
,

A1/2
3/2P

= − hP
1

4mB

Îs− mB
2

mB
FPssd,

A3/2
3/2P

= − hP
1

4mB

Îs− mB
2

mB
GPssd, s42d

with

FPssd =
1
Î3
SmB

Îs
g1 + hP

Îs− hPmB

4mB
g2D s43d

and

GPssd = g1 −
Îs− hPmB

4mB
g2. s44d

Note that these expressions are consistent with those used by
Feuster and Mosel in their study of photon and meson in-
duced reactions on the nucleonf25g.

By contrast with the nonstrange resonances, there are no
empirical photodecay amplitudes established for most of the
strange resonances, so some other scheme is necessary for
fixing the strange resonance photon couplings. One possibil-
ity is to adopt an SU(3) symmetry model which treats the
electromagnetic transition operator as aU-spin scalar. This
model yields relationships between the electromagnetic cou-
plings of baryons within the sameU-spin multiplet and has
been used to study the magnetic moments of the ground state
baryons[26]. If we suppose that the model is also valid for
resonance multiplets, we obtain the relations[27]

aLL! =
1

2
anN!0,

aLS!0 = −
Î3

2
anN!0 s45d

among members of the same SU(3) octet and

aLS!0 =
Î3

2
anD0 s46d

among members of the same SUs3d decuplet, wherea refers
to any of the three photon couplings defined previouslysek,
g1, or g2d. These relations allow us to extract preliminary
estimates for the strange resonance photon couplings from

FIG. 5. Angular distributions
in the c.m. for the reactions(a)
K+n elastic scattering,(b) K+p
elastic scattering,(c) p−p→K0L,
and (d) gp→K+L. The solid
curves are the calculated distribu-
tions; the double solid curves are
empirical fits from Ref.[19].
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the couplings of nonstrange resonances within the same
SUs3d octet or decuplet.

For the singletLs1405d, there exists an empirical photo-
decay width that allows us to extract an estimate for the
absolute value of the photon coupling. To find the phase of
this coupling, we employ the results of theK+ photoproduc-
tion fit of Ref. [5]. For the singletLs1520d, no photon cou-
pling is required because the kaon coupling to this resonance
has been set to zero(see discussion above). Thus, this reso-
nance cannot contribute to the photon absorption amplitude
in the rescattering terms.

Unfortunately, the preliminary estimates for the resonance
photon couplings proved to be quite inadequate when the
cross section for reaction(24) was examined. The amplitude
for this reaction has the same form as the photon absorption
amplitude discussed previously. The c.m. cross section is
again given by Eq.(36), except that nowqI is the
3-momentum of the incident photon, and there is an extra
factor of 1

2 from the average over photon polarizations.
With the original couplings, the calculated cross section

for reaction(24) is much too large at intermediate and back-
ward angles. To fix this problem, it was necessary to elimi-
nate the photon couplings to most of those resonances not
found in other fits to the proton data. These include the
Ns1520d, Ns1535d, Ls1690d, Ss1385d, and Ss1750d reso-
nances. We also eliminated the photon coupling to the
Ns1440d, which is either absent or small in the more recent
fits. For a number of other resonances, we had to substan-
tially modify the original photon couplings, generally in the
direction of those values obtained in other fits. For example,
the original signs of theNs1710d, Ns1720d, andSs1660d cou-
plings were all reversed, and the coupling to theLs1670d,
which figures prominently in several other fits, was increased
by a factor of 100. We found that a number of the resonances
considered, including theNs1700d and the twoL resonances
above 1800 MeV, make such small contributions to the pho-
ton absorption amplitudes in the rescattering diagrams that
we could disregard their photon interactions completely. Fi-
nally, it was necessary to reducekSL from its original value
of 1.91 to a final value of 1.43.

The final values for the resonance photon couplings are
listed in Table III. Note that only those resonances with non-
zero couplings have been included.

Panel(d) of Fig. 5 displays the resulting cross section for
reaction(24). As in the rest of this figure, the solid curve is
the calculated cross section and the double solid curve the
empirical cross section[19]. Note that while the fit is not
perfect, the calculated cross section does reproduce the em-
pirical cross section fairly well.

IV. WIDTHS

The instability of the intermediate resonances can be in-
corporated in the model through the inclusion of widths in
the resonance propagators. Only the widths of resonances
excited in thes channel need to be included because for
resonances excited in theu channel, the c.m. energy of the
resonance is always below the threshold of the lowest decay
channel. Since strange resonances cannot be excited in thes

channel, the widths of these resonances need not be included.
Only the widths of the nucleon andD resonances are re-
quired.

These widths are reasonably well known on the resonance
mass shells but are generally required at positions far off the
mass shells. Since the off-shell widths can be quite different
from the on-shell widths, a model is needed for the energy
and momentum dependence of the widths. One approach,
which we adopt here, is to express the empirical widths as
sums of partial widths for decay into particular channels and
then to treat the energy and momentum dependence of each
decay channel separately.

The decay channels open at the on-shell position of a
resonance generally consist of two types: two-body channels
involving a ground state baryon and a pseudoscalar meson
and multibody channels involving more than two decay
products. The two-body channels have already been consid-
ered in the preceding section. For those channels, the partial
decay widths are given at any energy and momentum by Eqs.
(34) and(35) using the couplings discussed previously. Note
that at lower energies, some of the channels open at the
on-shell position of a resonance will be closed, while at
higher energies, additional channels can open up that are not
open at the on-shell position. We will ignore these latter
channels, since they are presumably important only when the
width is large and the corresponding contribution to the re-
action amplitude small.

The contribution of multibody channels to the on-shell
width is just the difference between the empirical width and
the sum of partial widths from all two-body channels. We
handle these multibody channels by representing them as

TABLE III. Photon couplings.

Nucleon resonances

ekpN!+ eknN!0 g1
pN!+

g2
pN!+

g1
nN!0

g2
nN!0

Ns1650d 0.13 −0.036

Ns1710d 0.023 −0.006

Ns1720d 0.09 0.32 −0.20 0.14

D resonances

ekND g1
ND g2

ND

Ds1620d 0.051

Ds1232d 1.266 1.310

Ds1600d 0.086 0.348

Ds1700d −0.546 −1.087

L resonances

ekLL!

Ls1405d 0.018

Ls1600d −0.039

Ls1670d −1.32

S resonances

ekLS! g1
LS!

g2
LS!

Ss1660d −0.19

Ss1670d 0.074 −0.043
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effective two-body channels, with the two bodies consisting
of either a nucleon and a meson resonance or a pion and a
baryon resonance. In particular, we include decays into the
Nr, Ns, Ds1232dp, and Ns1440dp channels. For some of
these channels, there exist empirical branching ratios with
large error bars[20]. After adding the corresponding widths
to the two-body widths, any remaining width still not ac-
counted for is assigned to whatever other channels are open
for that resonance. Tables IV and V list the resulting on-shell
branching ratios for theN! andD resonances.

As for the two-body channels, we determine the off-shell
structure of the multibody decay channels by choosing forms
for the effective decay vertices and then evaluating the re-
sulting widths at arbitrary energy and momenta. For theNs
channel, which involves a scalar meson, the relevant vertex
has the same form as the ground state baryon-pseudoscalar
meson vertex of a resonance of opposite parity. The vertices
for decays of spin1

2 resonances into theDs1232dp channel
can be obtained from the vertices for decays of spin3

2 reso-
nances into spin12 baryons and pseudoscalar mesons by just
interchanging the initial and final baryon states. This yields
the width given by Eq.(35) multiplied by a factor 2ss/mB

2d.
For decays of spin32 resonances into theDs1232dp chan-

nel or decays into theNr channel, the vertex function in-
volves two different couplings. The strength of only one of
these couplings is fixed by the on-shell branching ratio, how-
ever, so that further input is required if both couplings are to
be retained in the width calculation. To circumvent this dif-
ficulty, we resort to a minimal coupling scheme in which the
general vertices are replaced by modified vertices that in-
volve just a single coupling strength. For theDs1232dp de-
cay channel, the modified decay vertex is obtained by keep-
ing only the coupling of lowest order in the channel
momentum. The resulting vertex then has the same form as
that for decays of spin12 resonances into ground state bary-
ons and pseudoscalar mesons and yields widths identical to
those of Eq.(34), except for an extra factor of 5/9 in the
positive parity width.

The vertex for decays of spin12 resonances into theNr
channel has both vector and tensor contributions. In particu-
lar, for a positive parity resonance, the vertex function is
given by

Vrs1/2+dsprd = FgVgm + gT
ismn

mN
sprdnGem, s47d

wherepr ande are ther meson 4-momentum and polariza-
tion. The negative parity vertex function has the same form
but with an extra factorg5 to the right of the polarization
vector. To obtain widths that involve a single coupling, we
note that the corresponding helicity matrix elements can be
expressed in terms ofgT and the coupling combination

FPssd = gV + gT

Îs+ hPmN

2mN
, s48d

where the indexP specifies the resonance parity. If just the
FP terms are retained in the matrix elements, the center of
mass width reduces to

GS1P

2
→ 1+

2
+ 1−D =

FP
2

4pmr
2

pr
3EP

Îs
FS1 −

Er

EP
D2

+ 2Smr

EP
D2G

s49d

with

EP = EN + hPmN. s50d

We employ this expression withFP evaluated at the on-shell
point, s=mR

2.
For decays of spin32 resonances into theNr channel, the

decay vertex has the same form as the corresponding photon
vertex defined previously. To obtain widths with just a single
coupling for these decays, we simply drop the terms involv-
ing g2. This yields the center of mass width

TABLE V. D resonance on-shell branching ratios.

Resonance Two-body channels Three-body channels

Np Nr Ds1232dp Ns1440dp

Ds1232d 1.0

Ds1600d 0.17 0.08 0.55 0.20

Ds1620d 0.25 0.20 0.55

Ds1700d 0.15 0.40 0.45

TABLE IV. N! resonance on-shell branching ratios.

Resonance Two-body channels Three-body channels

Np Nh LK Nr Ns Ds1232dp

Ns1440d 0.65 0.10 0.25

Ns1520d 0.55 0.20 0.05 0.20

Ns1535d 0.45 0.50 0.03 0.02

Ns1650d 0.75 0.06 0.06 0.08 0.05

Ns1700d 0.10 0.017 0.063 0.22 0.60

Ns1710d 0.15 0.01 0.15 0.26 0.43

Ns1720d 0.15 0.012 0.07 0.768
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GS3P

2
→ 1+

2
+ 1−D = S g1

2mN
D2 1

8p

pr
3EP

3Îs
FS1 −

Er

EP
D2

+ 2SEr
2 + pr

2

EPmr
D2

+ 3S1 +
Er

EP
D2G .

s51d

The model employed to represent multibody decay channels
involves unstable decay products, in particular, ther meson
in the Nr channel and the baryon resonances in the
Ds1232dp and Ns1440dp channels. In each such channel,
the decay amplitude is spread out over a range of masses
determined by the width of the unstable decay product. To
take this mass spread into account, we replace the width
expressions discussed earlier with expressions of the form

Gssd =
g2

4p
E

mmin

mmax

Pss,xdSsxddx, s52d

whereg is the coupling strength, and the phase space factor
P is obtained by replacing the unstable decay product mass
in the appropriate width formula with the integration variable
x. The integration limits are defined by

mmin = Îsthr − mstable,

mmax= Îs− mstable, s53d

wheremstable is the mass of the stable decay product(mN for
r meson decays andmp for decays to unstable baryon reso-
nances) andÎsthr is the minimum center of mass energy re-
quired to form the unstable decay product in its dominant
production mode. This latter quantity is just equal tomN
+mp for the Ds1232d and Ns1440d resonances andmp+mp

for the r meson.
For the strength distribution function, we employ the

Breit-Wigner form

Ssxd =
A

2p

Gpr

sx − mCd2 +
1

4
Gpr

2

, s54d

whereGpr is the empirical width of the unstable decay prod-
uct andmC is the center of its mass distribution. The normal-
ization factorA is defined by the requirement that

E
mmin

`

Ssxddx= 1, s55d

which yields

1

A
=

1

2
+

1

p
arctanSmC − xmin

Gpr
D . s56d

V. MATRIX ELEMENTS

To obtain the photoproduction cross section, the matrix
elements of the reaction amplitude must be evaluated be-
tween an initial deuteron state and the finalLn state. This is
most readily accomplished in momentum space in the deu-

teron rest frame. In any other frame of reference, the numeri-
cal evaluation of the rescattering matrix elements is substan-
tially more difficult.

As discussed in the Introduction, we employ a nonrelativ-
istic deuteron wave function to represent the initial state and
omit all interactions from the final state. The final state is
then just a product of free Dirac spinors representing the two
outgoing baryons.

The initial state can be expressed as a product of an iso-
spin factor and a spin-spatial wave function,

CMspd = uspndI = 0lFMspd, s57d

whereM andp are the deuteron spin projection and relative
3-momentum, and

uspndI = 0l =
1
Î2

supnl − unpld. s58d

As mentioned previously, the inverseÎ2 above and the fac-
tor 2 associated with the diagrams not shown in Figs. 1
and 2 are taken into account by including an extra factor
Î2 in the matrix elements. The minus sign in Eq.s58d is
accounted for by including an extra minus sign in the
neutral meson exchange contributions to the rescattering
amplitudes. The functionF can be further decomposed
into products of spin and spatial wave functions,

Fspd = o
Ms

cM,MS
spdu1MSl s59d

with

u1MSl = o
Mp,Mn

S1

2
Mp

1

2
Mnu1MSDxMp

xMn
s60d

and

cM,MS
spd = o

L=0,2
sLM − MS1MSu1Mdf̃LspdYLM−MS

sup,fpd,

s61d

where

f̃Lspd =Î 2

p
iLE

0

`

r2fLsrd jLsprddr s62d

is the radial part of the deuteron wave function in momentum
space.

In terms of these initial and final states, the photoproduc-
tion matrix elements have the form

kFuT̂uIl = Îs2pd32mdsMMLMnFM
ia + MMLMnFM

rs d, s63d

whereML andMnF are the spin projections of the outgoing
L and neutron, and the factor containing the deuteron mass
md is a normalization factor. In the impulse term, the
4-momentum of the spectator neutron is fixed by energy-
momentum conservation, and the initial and final neutron
spin projections must be equal. Hence, the first term in Eq.
s63d can be written as
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MMLMnFM
ia = T MLMnFM

ia spd

= o
MS

cM,MS
spd

3S1

2
MS− MnF

1

2
MnFu1MSDtMLMnFMS−MnFMnF

ia ,

s64d

with p=−pnF, p0= 1
2md−EnF, and

tMLMnFMS−MnFMnF

ia = ūML
spLdT̂iauMS−MnF

sppddspnF − pnId,

s65d

where T̂ia is the sum of impulse amplitudes defined in
Sec. II.

The relative deuteron 4-momentum is not fixed in the sec-
ond term, however, so that, in principle, a four-dimensional
loop integration is required to evaluate the rescattering ma-
trix element. Since we wish to employ a nonrelativistic deu-
teron wave function, some prescription is needed to fix the
energy variable in this integration. The four-dimensional in-
tegration then reduces to a three-dimensional integration
over the deuteron relative momentum. For most of the results
reported in the following section, we have fixed the energy
variable in the loop integration by requiring that the deuteron
energy be equally shared by the proton and neutron. We have
attempted to check the sensitivity of our results to this choice
by performing additional calculations with an arbitrary en-
ergy added to the incident nucleon attached to the photon
absorption line and the same energy subtracted from the
nucleon attached to the kaon emission line(so that the total
deuteron energy is unchanged).

With the relative deuteron energy fixed, the second term
in Eq. (63) can be written as

MMLMnFM
rs =E d3p

s2pd3/2T MLMnFM
rs spd, s66d

whereT rs is defined by an equation analogous to Eq.s64d
with

tMLMnFMpMnI

rs = ūML
spLdūMnF

spnFdT̂rsuMnI
spnIduMp

sppd.

s67d

The various contributions to this quantity represented by the
diagrams in Fig. 2 can all be expressed as products of a
photon absorption matrix element, a meson propagator, and a
kaon emission matrix element. The charged pion exchange
contribution from diagramsad, for example, has the form

tMLMnFMpMnI

A,p+
= ūMnF

spnFdT̂guMp
sppdGpsqdūML

spLdT̂KuMnI
spnId.

s68d

The two-body matrix elements appearing in Eq.s68d, as well
as those associated with other rescattering terms, have the
general structure

ūMF
spFdT̂uMI

spId = ūMF
spFdfÂ + B̂g5 + Ĉg0 + D̂g0g5guMI

spId,

s69d

where the operatorsÂ, B̂, Ĉ, andD̂ depend upon the ampli-
tude considered and the spin and parity of the resonance
involved. Detailed expressions for these operators are given
in the Appendix. Carrying out the Dirac algebra in Eq.s69d
yields the equivalent Pauli form

ūMF
spFdT̂uMI

spId = NFNIxMF

† fsÂ + Ĉd + sB̂ + D̂ds · p̂I

+ s · p̂FsD̂ − B̂d + s · p̂FsĈ − Âds · p̂IgxMI

s70d

with

N =ÎE + m

2m
s71d

and

p̂ =
p

E + m
. s72d

This last expression can be further reduced analytically, but
the procedure is extremely tedious, especially for the rescat-
tering terms. Instead, we evaluate the Pauli matrix elements
numerically.

An alternative procedure is to evaluate the two-body
Dirac matrix elements directly without resorting to the de-
composition given by Eq.(69). We have written separate
numerical codes to evaluate the matrix elements by both
methods. Agreement in the results not only confirms the ac-
curacy of the codes themselves, but also provides a check of
the algebraic results given in the Appendix.

The angle integrals in Eq.(66) are carried out using a
two-dimensional Gauss points technique. Without form fac-
tors, the radial integrals diverge, due both to the momentum
dependence associated with the lower components of the in-
cident Dirac spinors[Eq. (70)] and to the momentum depen-
dence in the spin32 propagators[Eq. (18)] and photon verti-
ces[Eq. (20)]. The radial integrals are further complicated by
pole singularities associated with the meson propagator. In
the NN interaction, such poles generate the imaginary part of
the t matrix from a realK matrix and are usually treated
analytically. Here, however, the pole positions are angle de-
pendent due to the choice of integration variable in the loop
integrals and cannot be easily handled analytically.

To make the radial integrals converge, we introduce form
factors at the internal meson-baryon vertices. Physically,
these form factors are supposed to take account of the inter-
nal structure of the mesons and baryons participating in the
interaction. Instead of the usual dipole form factors, whose
incorporation would introduce additional nonphysical poles
into the radial integrand, we employ the exponential form
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Fsqd = expS−
uq2 − mM

2 u
2LM

2 D , s73d

wheremM and q are the mass and 4-momentum of the ex-
changed meson, andLM is a scale factor. Two such factors
are included, one at each internal meson-baryon vertex. Most
of the results presented in the following section have been
obtained with the choiceL=1500 MeV for all exchanged
mesons. However, we have also obtained results with
other values ofL to check the sensitivity of our results to
the form factor scale.

To handle the meson pole singularities, we introduce a
small imaginary parameter in the meson propagators and
then numerically evaluate the radial integrals as this param-
eter is made to approach zero. We have checked that this

procedure converges well and that it yields the correct result
for a test integral that can be evaluated analytically. Because
radial pole singularities can occur at quite large momentum
values, depending on the angle of the deuteron relative mo-
mentum vector, it is necessary to carry out the radial inte-
grals to several GeV/c to ensure convergence, even when
exponential form factors are incorporated. Nevertheless, the
insensitivity of the results to the form factor scale, within a
reasonable range for this scale, indicates that the bulk of the
calculated cross sections is associated with rather modest
values of the deuteron relative momentum.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section we present results for the differential pho-
toproduction cross section in the deuteron rest frame,

d5s

dpKdVKdVL

=
1

12

1

s2pd2

mLmnpLpK
2

EBEKEg

gsuLd o
spins

ukFuT̂uIlu2,

s74d

where

g−1 = F1 −
ELPB

EBpL

cossuLdG . s75d

Here EB and PB are the total outgoing baryon energy and
3-momentum in the deuteron rest frame, anduL is the angle
between theL momentum andPB. The expression is evalu-
ated using a coordinate system with thez axis along the
incident photon direction and the kaon momentum in thexz
plane withpKx.0.

The differential cross section given above depends on five
independent kinematic variables. We have chosen the inci-

FIG. 6. Impulse contribution to the differential cross section for
(a) Eg=1230 MeV, TK=500 MeV, and uK=10°; and (b) Eg

=1367 MeV,TK=620 MeV, anduK=20°.

FIG. 7. Differential cross sec-
tions for Eg=1500 MeV and vari-
ous choices forTK and uK: (a)
TK=200 MeV and uK=15°, (b)
TK=300 MeV and uK=15°, (c)
TK=500 MeV and uK=15°, and
(d) TK=300 MeV and uK=30°.
The solid and dashed curves were
obtained with the rescattering
modelsA and B discussed in the
text plus impulse terms; the dotted
curves were obtained with im-
pulse terms only.

RESCATTERING CONTRIBUTIONS TO THE… PHYSICAL REVIEW C 69, 034605(2004)

034605-15



dent photon energyEg, the kaon kinetic energyTK, the kaon
angleuK defined relative to the incident photon direction, the
L angleuL defined above, and the anglef between the plane
containingpL andpn and the plane containingpg andpK (the
xzplane). In all figures displayed here,f has been set to zero
and the cross section plotted as a function ofuL for fixed
values of the other three parameters. Calculations carried out
with other values forf indicate that the cross section does
not depend significantly on this parameter.

In the absence of final state correlations, the strength of
the impulse term is determined primarily by the strength of
the deuteron wave function and thus depends mainly on the
spectator neutron momentum. When this momentum is
small, the cross section is dominated by the impulse term. In
Fig. 6, we present results for two kinematical situations
where this is the case. The cross sections displayed here have
been obtained with just the impulse terms and are several
times larger than those of Li and Wright[16], which also

FIG. 8. Differential cross sec-
tions forEg=1500 MeV,uK=15°,
and various choices forTK: (a)
TK=200 MeV, (b) TK=300 MeV,
and(c) TK=500 MeV. The dashed
curves were obtained withL
=1200 MeV, the solid curves with
L=1500 MeV, and the dotted
curves withL=1800 MeV.

FIG. 9. Differential cross sec-
tions for the same kinematics as in
Fig. 8. The solid curves were ob-
tained with a deuteron energy in-
crement of 0 MeV, the dashed
curves with an energy increment
of 100 MeV, and the dotted
curves with an energy increment
of 200 MeV, as explained in the
text.
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include just the impulse terms. Our coupling strengths are
rather different from theirs, and we have employed a differ-
ent deuteron wave function and different forms for the spin3

2
propagators and vertices. All of these differences influence
the calculated results, but it is rather surprising that our cross
sections differ so much from theirs.

More recent results based on the impulse approximation
have also been reported in Ref.[17]. However, these later
results are not given in the deuteron rest frame, which we
have employed in our calculations to facilitate the evaluation
of the rescattering terms, so no direct comparison with our
results is possible. It should be emphasized that we are pri-
marily interested here in kinematical regimes where the im-
pulse contribution is small and which have not been exam-
ined in previous analyses.

When the neutron spectator momentum exceeds a few
tens of MeV/c, the impulse strength drops dramatically, and
the photoproduction matrix elements are dominated by the
rescattering contributions. This is illustrated in Fig. 7 where
the differential cross section is plotted againstuL for Eg

=1500 MeV and various choices forTK and uK. The solid
and dashed curves in this figure represent results obtained
with two different rescattering models. In modelA (solid
curves), intermediate baryon lines in the rescattering dia-
grams include only resonance states. In modelB (dashed
curves), ground state baryons are included as intermediate
baryon states in the crossed(u-channel) amplitudes but not in
the direct(s-channel) amplitudes. In the direct amplitudes the

absence of nucleon widths would lead to poles in the nucleon
propagators, were nucleons to be included in the intermedi-
ate states. These poles are difficult to handle numerically.
These poles do not occur in thes-channel impulse term, and
thus intermediate baryon states are included in all the im-
pulse terms in both models.

The curves in Fig. 7 reveal that the rescattering ampli-
tudes are substantially larger than the impulse amplitudes in
a variety of kinematic situations. The results displayed also
indicate that the results obtained with the two rescattering
models can be significantly different. This result warrants
further study. The remaining figures, which explore the de-
pendence of the calculated results on various dynamical fea-
tures of the model, have all been obtained with modelA.

Figure 8 displays the dependence of the calculated cross
sections on the form factors discussed in the preceding sec-
tion. As seen in the figures, the cross sections depend mod-
erately on the form factor mass when this mass is below our
standard choice of 1500 MeV. For masses above 1500 MeV,
however, the form factor dependence becomes quite strong.
This suggests that the rescattering contributions receive most
of their strength from low or moderate values of the deuteron
relative momentum and gives us some confidence that our
form factor prescription is not unreasonable.

As mentioned in Sec. V, the four-dimensional loop inte-
gral is reduced to a three-dimensional integral by arbitrarily
assigning half the deuteron energy to the proton and half to
the neutron. We have attempted to determine the sensitivity

FIG. 10. Rescattering contributions to the differential cross section for the same kinematics as in Fig. 8. The solid curves were obtained
with the full rescattering model, the dashed curves with just the pion exchange rescattering terms included, the dotted curves with just the
kaon exchange rescattering terms included, and the dot-dashed curves with the pion and kaon exchange rescattering terms included.
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of the calculated cross sections to this prescription by defin-
ing a deuteron energy incrementDE through the relations

ENg =
1

2
Ed + DE,

ENK =
1

2
Ed − DE, s76d

whereENg is the energy of the incident nucleon on the pho-
ton absorption line andENK is the energy of the incident
nucleon on the kaon emission line, and carrying out calcula-
tions with several values for this increment. The results are
exhibited in Fig. 9. The sensitivity toDE revealed here sug-
gests that a better treatment of the deuteron relative energy
would be desirable; however, the sensitivity is not so large as
to invalidate the conclusions derived from our results.

Contributions to the rescattering terms from different me-
son exchanges are compared in Fig. 10. The solid curves
displayed here were obtained with all three meson
exchanges—p, K, andh—included in the rescattering con-
tributions, but with the impulse terms suppressed. The re-
maining curves were obtained with different combinations of
p andK exchange, as specified in the figure caption. A com-
parison of the curves in each panel reveals that thep ex-
change terms are by far the most important, but that at
smaller values ofTK, kaon exchange terms make non-
negligible contributions as well.

A possible source of uncertainty in our results that we
have not explored lies in the neglect of off-shell terms in the
spin 3

2 propagator and the spin32 electromagnetic vertex. Al-
though these terms do not affect kaon photoproduction from
the proton very dramatically[12], they could be quite impor-
tant in the rescattering terms here, where the intermediate
resonances are generally far off-shell. Certainly, a thorough
investigation of the off-shell terms would be desirable in any
future study.

In summary, we have examined kaon photoproduction
from the deuteron within a fairly elaborate model that in-
cludes meson rescattering terms. Our results indicate that the
rescattering contributions to the amplitude may be significant
over a wide kinematical range. Only when the spectator neu-
tron momentum is small is the cross section dominated by
the impulse contribution.

Several improvements in the model could be made. To
remove the arbitrariness introduced in the evaluation of the
rescattering loop integrals, a more rigorous treatment of the
deuteron relative energy is required. Some means must also
be found for incorporating off-shell terms into the treatment
of the 3

2 resonances. Finally, although the model includes
vector meson exchange in a very approximate way through
the use of pseudoscalar meson form factors, it would be bet-
ter to include vector meson exchanges explicitly.

APPENDIX: AMPLITUDE OPERATORS
The operators defined by Eq.(69) in Sec. V depend upon

the amplitude considered and the spin and parity of the reso-
nance involved. For positive parity spin12 resonances, the
kaon emission operators are given by

Â1/2+
K = − GKssdmR,

B̂1/2+
K = 0,

Ĉ1/2+
K = GKssdER,

D̂1/2+
K = − GKssds ·pR sA1d

with

GKssd = gKgMDssd, sA2d

wheregK andgM are the couplings at the kaon emission and
meson absorption vertices, and

Dssd = ss− mR
2 + imRGRd−1. sA3d

The corresponding photon absorption operators are

Â1/2+
gd = GgssdmRVspg,ed,

B̂1/2+
gd = GgssdmRSspg,ed,

Ĉ1/2+
gd = − GgssdV3spR,pg,ed,

D̂1/2+
gd = − GgssdS3spR,pg,ed sA4d

for thes-channel impulse term and rescattering diagrams(a),
(b), and(c) and

Â1/2+
gc = GgssdmRVspg,ed,

B̂1/2+
gc = GgssdmRSspg,ed,

Ĉ1/2+
gc = GgssdV3spg,e,pRd,

D̂1/2+
gc = GgssdS3spg,e,pRd sA5d

for theu-channel impulse term and rescattering diagrams(d),
(e), and(f) with

Ggssd = gggMDssd. sA6d

The S andV operators here are defined by the relations

Ssa,bd = a0b0 − s ·as ·b,

Vsa,bd = b0s ·a − a0s ·b, sA7d

and

S3sa,b,cd = a0Ssb,cd − s ·aVsb,cd,

V3sa,b,cd = a0Vsb,cd − s ·aSsb,cd, sA8d

wherea0 and a are the time and space components of the
4-vectora.
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For 3
2

+ resonances, the kaon emission operators take the
form

Â3/2+
Kd = G̃KssdFmRQ + SspR,hd −

mR

3
SspK,pMdG ,

B̂3/2+
Kd = G̃KssdFVspR,hd −

mR

3
VspK,pMdG ,

Ĉ3/2+
Kd = G̃KssdFERQ + mRh0 −

1

3
S3spR,pK,pMdG ,

D̂3/2+
Kd = G̃KssdF− Qs ·pR − mRs ·h −

1

3
V3spR,pK,pMdG

sA9d

for diagrams(a) and (c) and

Â3/2+
Kc = G̃KssdFmRQ − SspR,hd −

mR

3
SspM,pKdG ,

B̂3/2+
Kc = G̃KssdF− VspR,hd −

mR

3
VspM,pKdG ,

Ĉ3/2+
Kc = G̃KssdFERQ − mRh0 −

1

3
S3spR,pM,pKdG ,

D̂3/2+
Kc = G̃KssdF− Qs ·pR + mRs ·h −

1

3
V3spR,pM,pKdG

sA10d

for the remaining rescattering diagrams with

G̃Kssd =
GKssd

mp
2 , sA11d

Q = pK · pM −
2

3mR
2 spK · pRdspM · pRd, sA12d

and

h =
1

3mR
fspK · pRdpM − spM · pRdpKg, sA13d

wherepM andpK are the 4-momenta of the absorbed meson
and emitted kaon.

To specify the3
2

+ photon absorptions operators, we define
the coupling constant combinations

b1 = F1 + F2,

b2 = F2 − 2F1,

b3 = 3F1 − F2 sA14d

with

F1 =
gM

mp

g1

2mB
Dssd,

F2 =
gM

mp

mRg2

4mB
2 Dssd, sA15d

wheremB is the mass of the ground state baryon at the pho-
ton vertex. In terms of these couplings,

Â3/2+
gd =

1

3
fb1VspM,kRd + 2F1spM · pRdVspg,ed − 3VspR,q1d

− 2F1V4spR,pM,pg,edg,

B̂3/2+
gd =

1

3
fb1SspM,kRd + 2F1spM · pRdSspg,ed − 3SspR,q1d

− 2F1S4spR,pM,pg,ed − 3F2spM ·kRdg,

Ĉ3/2+
gd =

1

3mR
fb1V3spR,pM,kRd + 2F1spM · pRdV3spR,pg,ed

+ 3F2spM ·kRds ·pR + 3mR
2s ·q1

− 2mR
2F1V3spM,pg,edg,

D̂3/2+
gd =

1

3mR
fb1S3spR,pM,kRd + 2F1spM · pRdS3spR,pg,ed

− 3F2spM ·kRdER − 3mR
2q1

0 − 2mR
2F1S3spM,pg,edg

sA16d

for thes-channel impulse term and rescattering diagrams(a),
(b), and(c) and

Â3/2+
gc =

1

3
f− b3VskR,pMd − 2F1spM · pRdVse,pgd + 3VspR,q1d

+ 2F1V4spR,e,pg,pMdg,

B̂3/2+
gc =

1

3
f− b3SskR,pMd − 2F1spM · pRdSse,pgd + 3SspR,q1d

+ 2F1S4spR,e,pg,pMd − 3b2spM ·kRdg,

Ĉ3/2+
gc =

1

3mR
f− b1V3spR,kR,pMd − 2F1spM · pRdV3spR,e,pgd

− 3F2spM ·kRds ·pR − 3mR
2s ·q2

+ 2mR
2F1V3se,pg,pMdg,

D̂3/2+
gc =

1

3mR
f− b1S3spR,kR,pMd − 2F1spM · pRdS3spR,e,pgd

+ 3F2spM ·kRdER + 3mR
2q2

0 + 2mR
2F1S3se,pg,pMdg

sA17d
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for theu-channel impulse term and rescattering diagrams(d),
(e), and(f), where

q1 = F1kM + b2
pM · pR

3mR
2 kR,

q2 = F1kM − F2
pM · pR

3mR
2 kR sA18d

with

kM = spM · edpg − spM · pgde,

kR = spR · edpg − spR · pgde. sA19d

The S4 andV4 operators in these expressions are defined by

S4sa,b,c,dd = Ssa,bdSsc,dd + Vsa,bdVsc,dd,

V4sa,b,c,dd = Ssa,bdVsc,dd + Vsa,bdSsc,dd. sA20d

The negative parity operators are given by the same expres-

sions as these except for extra minus signs multiplying theÂ

and B̂ kaon emission operators and theĈ and D̂ photon
absorption operators.

Finally, for the t-channel impulse terms, we define the
combinations

aK!
V =

ggKK!

msc
gpLK!

V 1

pK!
2 − mK!

2 + imK!GK!

,

aK!
T =

ggKK!

msc

gpLK!
T

mL + mp

1

pK!
2 − mK!

2 + imK!GK!

sA21d

for the K!s892d resonance and

aK1
V =

ggKK1

msc
gpLK1

V 1

pK1
2 − mK1

2 + imK1GK1
,

aK1
T =

ggKK1

msc

gpLK1
T

mL + mp

1

pK1
2 − mK1

2 + imK1GK1
sA22d

for the K1s1270d resonance, wheremsc is the same scaling
mass used in Sec. II. In terms of these combinations, the
t-channel operators are given by

ÂK!
t = iaK!

T sEK!f − s ·pK!s · jd,

B̂K!
t = − iaK!

T sEK!s · j − fs ·pK!d,

ĈK!
t = iaK!

V f ,

D̂K!
t = − iaK!

V
s · j sA23d

for the K!s892d resonance, where

f = e ·pg 3 pK sA24d

and

j = e 3 sEKpg − EgpKd, sA25d

and

ÂK1
t = aK1

T fe ·pKVspK1,pgd + pg ·pKEK1s · eg,

B̂K1
t = aK1

T fe ·pKSspK1,pgd + pg ·pKs ·pK1s · eg,

ĈK1
t = aK1

V fpg ·pKs · e − e ·pKs ·pgg,

D̂K1
t = aK1

V e ·pKEg sA26d

for the K1s1270d resonance.
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