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We have developed a model for the nuclear interaction which is based on the effects of the Pauli nonlocality.
In earlier works, we have successfully used this interaction to describe the elastic scattering for several systems
in a very wide energy range. In the present work, we have checked the validity of the same interaction in the
description of about 2500 fusion cross section data for 165 different systems. By introducing only one energy-
and system-independent effective parameter, the nonlocal model describes the global behavior of the fusion
process with good precision.
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The heavy-ion fusion process has been extensively stud-
ied over the last decades[1]. It is well known that fusion
cross sections for heavy-ion systems have shown large en-
hancements at sub-barrier energies in comparison with theo-
retical predictions from the barrier penetration model[2].
These enhancements can be described by introducing effec-
tive barrier parameters, which have been studied in a global
way for a large number of systems[2–4]. On the other hand,
the enhancements have been explained for several particular
systems by considering the internal structure of the partici-
pating nuclei through couped-channel calculations(e.g.,
Refs. [5,6]). A few models have also been presented to de-
scribe the elastic scattering process and the energy and sys-
tem dependences of the corresponding optical potential[7].
However, the consistency between the models for the fusion
and elastic scattering processes has only been verified in cer-
tain particular cases(e.g., Ref.[8]). We have developed a
model for the nuclear interaction which has been successful
in describing the elastic scattering for several systems in a
wide energy range[9–15]. The model is based on the effects
of the Pauli nonlocality and is totally parameter free. In this
work, we use this interaction in the description of about 2500
fusion cross section data[16–53] for 165 different systems
from sub-barrier to high energies.

Within the nonlocal model, the bare interactionVN is con-
nected with the folding potentialVF through[54]

VNsR,Ed = VFsRde−4v2/c2
, s1d

wherec is the speed of light andv is the local relative ve-
locity between the two nuclei,

v2sR,Ed =
2

m
fE − VCsRd − VNsR,Edg. s2d

The folding potentialfEq. s3dg can be obtained in two differ-
ent waysf54g: sid using the nucleon distributions of the nu-
clei and an appropriate form for the nucleon-nucleon inter-
action, andsii d using the matter distributions of the nuclei
with a zero-range approach forvsrWd. We distinguish the mat-
ter density from the nucleon one by taking into account the
finite size of the nucleon. Both alternatives are equivalent in
describing the heavy-ion nuclear potentialf54g, and we have

adopted the zero-range approach to describe the fusion pro-
cess:

VFsRd =E r1sr1dr2sr2dvsRW − rW1 + rW2ddrW1drW2. s3d

With the aim of providing a global description of the nuclear
interaction, we proposedf54g an extensive systematization of
nuclear densities, based on experimental charge distributions
and theoretical densities calculated through the Dirac-
Hartree-Bogoliubov model. In that work, we adopted the
two-parameter Fermis2pFd distribution to describe the
nuclear densities. The radii of the 2pF distributions are well
described by

R0 = 1.31A1/3 − 0.84 fm, s4d

whereA is the number of nucleons of the nucleus. The mat-
ter densities present an average diffuseness valuea
=0.56 fm. Owing to specific nuclear structure effects
ssingle particle and/or collectived, the parametersR0 anda
show small variations around the corresponding average
values throughout the periodic table. This systematization
of the nuclear distributions is essential to obtain a
parameter-free interaction, since the folding potential de-
pends on the densities of the partners in the collision. In
the present work, we use the nonlocal model in the con-
text of this systematics, i.e., assuming the average diffuse-
ness value and Eq.s4d for the radii of the distributions.
Therefore, the interaction does not contain any free pa-
rameter and is quite appropriate to connect experimental
results for different systems in a realistic manner. In the
present work, we have also calculated the Coulomb poten-
tial through a folding procedure using the realistic charge
densities of Ref.f54g.

In the context of the barrier penetration model(BPM), the
effective potential is a sum of the Coulomb, nuclear, and
centrifugal parts:

Vef fsR,Ed = VCsRd + VNsR,Ed +
,s, + 1d"2

2mR2 . s5d

The fusion cross section is associated with the transmitted
flux through
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sBPMsEd =
p

k2 o s2, + 1dT,. s6d

In our calculations, the sum in Eq.s6d is performed up to a
maximum, wave, which is the greatest, value that results a
pocketsand a barrierd in the corresponding effective poten-
tial. For , waves with effective barrier heights below the
center of mass energy, we have approximated the effective
potential by a parabola with curvature"v,. In such cases, the
transmission coefficients can be obtained through the Hill-
Wheeler formulaf55g:

T, = H1 + expF2psVB, − Ed
"v,

GJ−1

, s7d

"v, = U"2

m

d2Vef f

dR2 U
RB,

1/2

, s8d

whereVB, andRB, are the barrier height and the correspond-
ing radius, respectively. On the other hand, for, waves with
effective barriers above the center of mass energy, instead of
the Hill-Wheeler formula we have used the more appropriate
WKB method:

T, = f1 + expsS,dg−1, s9d

S, =E
R1

R2Î8m

"2 fVef fsR,Ed − EgdR, s10d

where R1 and R2 are the classical turning points. At low
energies, the WKB method results in values for the transmis-
sion coefficients quite different from those of the Hill-
Wheeler formula. In this case, we have defined the barrier
curvature connecting expressionss7d and s9d as

"v, =
2psVB, − Ed

S,

. s11d

Within the context of parabolic transmission coefficients,
and consideringRB,<RB0 and "v,<"v0, Wong has dem-
onstratedf56g that

sWongsEd =
RB0

2 "v0

2E
lnH1 + expF2psE − VB,d

"v0
GJ . s12d

With the aim of obtaining system-independent quantities, we
have defined the following reduced cross section and energy:

sred =
2E

RB0
2 "v0

s fus, s13d

Ered =
E − VB0

"v0
. s14d

By using these adimensional quantities, Eq.s12d can be re-
cast in the following system-independent form:

sred
Wong= lnf1 + exps2pEreddg. s15d

However, we have verified that, in some cases, the results
obtained from the Wong expressionfEq. s12dg present sig-

nificant differences in comparison with those from the full
BPM calculationsfEq. s6dg. Thus, in order to compare ex-
perimental results for very different systems, we have de-
fined the experimental reduced fusion cross section through
the following trivial equation:

sred
exp=

s fus

sBPM
sred

Wong. s16d

The reduced fusion cross section data, according to Eq.
(16), are presented in Fig. 1, as a function of the reduced
energy[Eq. (14)]. The data set includes 165 quite different
systems ranging in reduced mass from about 4 to 40 amu. A
very good agreement between data and theoretical predic-
tions is obtained for energies above thes-wave barrier
sEredù0d for the whole set of systems, while sub-barrier data
present large enhancements in comparison with the BPM cal-
culations. The sub-barrier deviation is negligible formø8
and increases as a function of the reduced mass of the system
in a relatively smooth manner. A similar behavior of the sub-
barrier fusion data has already been very well established[2].
An inspection of the slopes of the data in Fig. 1 indicates that
the enhancements are more closely connected with the bar-
rier curvature than with the barrier height itself. Taking into
account all these considerations, we propose a simple model
to describe the enhancements by introducing effective barrier
curvatures. This effective parameter is assumed to be a
simple linear function of the reduced mass of the system, as
given in Eq.(17). The fit to the data results inl=0.1/amu:

"v,ef f = H"v, for m ø 8 amu

"v,f1 + lsm − 8dg for m ù 8 amu.
s17d

Using Eq.s17d with l=0.1, thebarrier penetration model
describes with good precision the global behavior of the
2500 experimental fusion cross section data in the whole
energy rangessee Fig. 2d. In fact, it is possible to describe

FIG. 1. The reduced fusion cross section as a function of the
reduced energy, using barrier parameters obtained with the nonlocal
model. The figure shows the results for different ranges of the re-
duced mass of the system. The solid lines represent the reduced
Wong equation.
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the above-barrier data within 20% precisionsstandard de-
viationd and the sub-barrier data within an average factor
of about 3. We consider this dispersion rather small be-
cause our analysis has been performed for a large number
of different systems and over a very wide energy range
sfrom about 18 MeV below the barrier to 120 MeV above
itd with only one system- and energy-independent free pa-
rameterl. With the aim of including the whole data set,
Figs. 1 and 2 have been made with reduced scales. Figures
3–5 present the results in usual scales for a few particular
systems, in order to provide further examples of the qual-
ity of our predictions.

We believe that the effective curvature simulates, in some
way, the average effect of a large number of coupled chan-
nels that contribute to the fusion process. The effect of the
couplings depends on the reduced mass of the system be-
cause heavier systems present a greater number of reaction

channels and also larger coupling amplitudes(which are con-
nected with the size of the nuclei). The dispersion observed
in Fig. 2 is probably due[57] to particular strong couplings
that were not included in our model, and is also connected
with variations of the densities, arising from nuclear struc-
ture effects, which have an influence on the nuclear potential
[54]. For example, the great isotopic dependence(see Fig.
6—top) of the sub-barrier fusion cross section for the
16O+144,148,150,152,154Sm systems is decreased by using the
effective curvature(Fig. 6—bottom). Even so, the difference
is not totally eliminated probably due to structure effects not
included in our model.

The effect of the nonlocality is not very significant at
near-barrier energies(low velocities), where Eq.(1) indicates
that VNsR,Ed<VFsRd. The effect becomes greater as the en-
ergy increases, such that at energies of about
200 MeV/nucleonVNsR,Ed is about one order of magnitude
less intense than the corresponding folding potential[9,10].

FIG. 2. The same as Fig. 1, considering the correction[Eq. (17)
with l=0.1/amu] for the barrier curvatures.

FIG. 3. The fusion cross section for the12C+12C, 12C+16O,
16O+208Pb, and58Ni+ 64Ni systems. The lines represent full barrier
penetration model calculations with(solid lines) or without (dashed
lines) including the effect of the effective curvature.

FIG. 4. The same of Fig. 3 for the16O+144,148,150,154Sm sys-
tems.

FIG. 5. The fusion cross section for the12C+27Al, 32S systems.
The lines represent full barrier penetration model calculations with
(dotted lines) or without (solid lines) the effect of the Pauli nonlo-
cality.
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However, there are few available fusion data at high ener-
gies. Thus, for most of the cases considered in this work, the
theoretical results for the BPM cross sections obtained using
Eq. (1) differ by less than 5% in comparison from those
obtained consideringVNsR,Ed=VFsRd. Even so, we have
found two cases in the present data set in which the energy is
high enough to emphasize such a difference(see Fig. 5).
Here the decrease of the cross section for higher energies is
connected with the competition between centrifugal repul-
sion and nuclear attraction. The energy dependence of the
nuclear interaction that arises from nonlocality plays an im-
portant role by providing further reduction of the cross sec-
tion. On the other hand, the nonlocality has been fundamen-
tal in our description of the heavy-ion elastic scattering
process, in which the energy dependence of the potential has

been successfully taken into account by Eq.(1). Therefore,
we consider the major reason for using the nonlocal interac-
tion to be the goal of obtaining a unified description of both
the elastic scattering and fusion processes, within a consis-
tent model from the sub-barrier region to intermediate ener-
gies.

In summary, our parameter-free nonlocal model for the
nuclear interaction has been successful in describing the
heavy-ion elastic scattering process from sub-barrier energies
up to 200 MeV/nucleon. This interaction has also been suc-
cessfully tested in some cases for inelastic scattering and
transfer at sub-Coulomb and intermediate energies
[11,12,15]. In the present work, we have also obtained good
predictions for fusion cross sections, using the nonlocal in-
teraction in the context of the barrier penetration model, for a
very large number of different systems and over a wide en-
ergy range(from the sub-barrier region to energies about
15 MeV/nucleon, where there are still a few existing experi-
mental data). We emphasize that the theoretical calculations
have no free parameters, except for the system- and energy-
independent one connected with the effective barrier curva-
ture. We also emphasize that our model provides remarkable
predictions for the light heavy-ion systems over nine orders
of magnitude(see Fig. 1 formø8). In this range of reduced
mass there is no need to include any correction in the barrier
curvatures. Therefore, the parameter-free nonlocal model
seems to be a good basis for studying the fusion process in
important cases for astrophysics, which involve mainly light
systems. The model also provides a good description, again
without using any free parameter, for the whole set of sys-
tems in energies above the barrier(see Fig. 1 forEredù0).
Clearly, there is room for improvement of the model[57] for
heavier systems in lower energies, by considering two
points:(i) the development of a more realistic model for the
effective barrier parameters, based on results obtained from
coupled-channel calculations; and(ii ) inclusion of the ex-
perimental results obtained for fusion barrier distributions in
the analysis.
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