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The Kerman-Klein-Dénau-Frauend@kKDF) model is a linearized version of the nonlinear Kerman-Klein
(equations of motionformulation of the nuclear many-body problem. In practice, it is a generalization of the
standard core-particle coupling model that, like the latter, provides a description of the spectroscopy of odd
nuclei in terms of the corresponding properties of neighboring even nuclei and of single-particle properties,
which are the input parameters of the model. A divers sample of recent applications attests to the usefulness of
the model. In this paper, we first present a concise general review of the fundamental equations and properties
of the KKDF model. We then derive a corresponding formalism for odd-odd nuclei with proton-neutron
number(Z,N) that relates their properties to those of the four neighboring even-even (Zel&iN+1), (Z
-1,N+1), (Z+1,N-1), and(Z-1,N-1), all of which are required if one is to include both multipole and
pairing forces. We treat these equations in two ways. In the first, we make essential use of the solutions of the
neighboring odd nucleus problem, as obtained by the KKDF method. In the second, we relate the properties of
the odd-odd nucleus directly to those of the even-even nuclei. For both choices, we derive equations of motion,
normalization conditions, and an expression for transition amplitudes. We also resolve the problem of choosing
the subspace of physical solutions that arises in an equation of motion approach that includes pairing

interactions.
DOI: 10.1103/PhysRevC.69.034338 PACS nun®er21.60.Ev, 21.60.Cs
[. INTRODUCTION recently Koikeet al. [23] have applied an approximate form

of the formalism developed in Sec. Ill.

As a preliminary step, in Sec. Il, we review the KKDF
program for odd nuclei. We do this in a form which is both
more general and more complete than can be found in our
previously published work, and which sets the stage for the
work on odd-odd nuclei that follows. It is more general in

eralizes phenomenological core-particle coupling models, tge sanse that the equations are not restricted to deformed

which it can be shqwn to reduce in various limit2]. The nuclei. It is more complete in the sense that in our published
past decade has witnessed further development of the theo\Work we have described up to three different methods for
and additional applicationd3—27 including, for example, a :

d luti f the Corioli ; bl choosing the physical subspace of solutions, while here we
Ff?%%ge solution of the Coriolis attenuation probleyjse s and compare them trying to indicate the most suit-

. . . able one.
The main purpose of this paper is to show that a formal- |, gec |11 we present the first of the two methods that

ism of the KK.DF type, at the same |evel of completem_ass 8%an be used for odd-odd nuclei. We refer to this as the se-
f_or O.dd nuclei, can _be c_ons_truct.ed for odd-odd nuclei. Th%uential method in that it solves the problem by two succes-
first important step in this dll’e'CtIOI’l has .already peen mad%ive applications of the KKDF approach to odd nuclei, uti-
by Starostat al. who have applied a restricted version of theIizing the solutions for neighboring odd nuclei to derive

forma_llsm to the phef_‘ome”.o” of chlr_allt_y n odd-p(_jd tf'ax'a' equations for an odd-odd nucleus relative to its neighboring
nuclei[22]. The restriction is the omission of pairing inter- odd nuclei, so that the method involves only single-particle
actions. When the latter are included, we face, among Othec,roefficienté of fractional parentad€FP). In Sec. IV, in an
difficulties, the problem that the manifold of solutions is four approach that treats the pair of odd particles sym,metrically
times the size of the manifold of physical solutions. More, " jarive a set of eigenvalue equations and attendant o;-
thonormalization conditions for two-particle(proton-
neutror) coefficients of fractional parentage. These ampli-

The Kerman-Klein-Dénau-FrauenddiKDF) model for
odd nuclei was introduced and appligd-6] as a semiphe-
nomenological approximation to the Kerman-KlejiKK)
self-consistent formulation of the equation of motion ap-
proach to nuclear collective motidi7—11. As such it gen-

*Deceased. tudes relate the given odd-odd nucleus to any of four
"Electronic address: pavios@nscp.upenn.edu neighboring even nuclei. For both approaches, we solve the
*Electronic address: Stanislaw-G.Rohozinski@fuw.edu.pl problem of choosing the physical subspace of solutions. Fi-

Spreviously at Department of Physics and Astronomy, State Uninally we derive for each case formulas for single-particle
versity of New York at Stony Brook, Stony Brook, New York transition matrix elements that clearly separate collective and
11794-3800. Electronic address: starosta@nscl.msu.edu single-particle contributions.
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Il. REVIEW OF MODEL FOR ODD NUCLEI . .
acatfL) = 2 $,85(jaMajc = MJLM,)
A. Equations of motion m's
In this section we shall derive a version of the KK equa- X (jaMaip = Mp|LMF 455 (5

tions based on the Hamiltonigf) given below. These equa-
tions, when taken literally, define a nonlinear problem for the
self-consistent study of the properties of an odd nucleusand (| = M LM M LMOG

of its immediate even neighbors. However, the version of the avodL) = 2 (jaMal o LM0) (eMejeMelLMU) Gy
theory developed here, referred to as the KKDF model, has a
more modest goal. This goal is achieved by making such (6)

further approximations as to reduce the problem to a lineapssuming the matriceE andG are real, we have
eigenvalue problem for the properties of odd nuclei, assum-

and G the particle-particle matrix elements,

m’s

ing the required properties of the neighboring even nuclei to FacaL) = FapadlL), (7)
be known. This can be done only if the Hamiltonian can be
chosen of sufficiently simple form such that the matrix ele- GacdL) = GgpadLL)

ments of its ingredient multipole and pairing operators can — ( ANiat Lt — (it
be related to observed properties of the even neighbors. Even = (= Dale™ Goagp= (- 1) Gacha: (8)
with such simplification, the resulting theory generalizes pre- The task is to obtain equations for the states and energies

vious core-particle coupling models. of an odd nucleus assuming that properties of immediately
We start with a shell-model Hamiltonian of the form neighboring even nuclei are known. The states of the odd
1 1 nucleus(particle numberd) are designated below &3uv),
H=>, haalaa+ —Fawﬁazaya;a§+ _Gaﬁyéalagaéay where v denotes all quantum numbers besides the angular
a 2 2 momentumJ and its projectionu. The states of the neigh-
boring even nuclei with particle numbef8+1) are written,
= E hala, + = 2 > FacadL)Bl (@c)Byy, (db) in a parallel notation, aMn(A+1)). The corresponding ei-
2abedLm, genvalues ar&,, andE\~*", respectively. We first obtain the
1 operator equations of motiqiieOM), bar indicating reversal
+-2 2 Gabcc(L)AIML(ab)ALML(Cd)- (1) of the sign of the single-particle magnetic quantum number,

abcdLM|

Hereh, are the spherical single-particle energies referred to [ag H] = haag + g % Sy{la~ MajcMelLM)
the nearest closed shedl refers to the standard set of single- ’

particle quantum numbers, including in particular the pair XEacdb(L)a;BLM(db)+z > (ja— Majcm|LM)
(ja,my), anda refers to the same set with, omitted. The bdy LM
charge conservation requirement means that only the matrix +
elements of interactions and G which fulfill the condition X Gacod L)aAu(bd) ©)

Gat G = G+ Ga» @ [alHl=-hal- 3 s (amajc—m{LM)
whereq, is the electric charge of a nucleon with the set of by LM
guantum numbers, do not vanish and enter in the Hamil- « a'F. (LB (db) - Cmiio—mlLM
tonian of Eq.(1). In the KKDF model we assume addition- FacalL)Bry(db) %L% (jamaje = mLM)
ally two more restrictive conditions for the interaction matrix +
elements, namely1) the charge exchange interactions are X &;Gacod L) A m(Pd). (10)
excluded, i.e.g,=q, andg,=0q for nonvanishing matrix el- .,
ementsF,, 55 (2) only the pairs of like nucleons are corre-
lated, i.e.,q,=q, and g.=qq for nonvanishing matrix ele- — 1 R
mentsG,,s By, is the particle-hole multipole operator, Facan= S[Facab (= 1) 0™ Fpgca] = Facan, (1)

L
Bly (@) = 2 se(jamajp ~ mylLM\)ajay oL +1
e 22 Foacd L5 7 (12)
= (- DMl (ba) 3) Lic
andA[,\,IL is the particle-particle multipole operator, . 2L+1 1
ha: ha+ = 0j +1 acact éFacac (13
Al (@) = X (jamejsmy|LMy)alal, 0 e <la
MaMy

In consequence of Eq11), we may replacé by F.

where (j;mijomy|jm) is a Clebsch-Gordon coefficient,  The appearance of different single-particle energies in the
s,=(—1)'a"Ma, The coefficients are the particle-hole matrix two equations may be traced to the rearrangement of opera-
elements, tors required to have the EOM in a form necessary to achieve
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our aims. Thi_s_requires, as we shall see below, tha’g the mul- (£, + €L+ wan‘l))UJW(aan)
tipole and pairing operators occur on the extreme right. The

. . . T — _T(A-DT ’ INAT A
matrix elements of these equations provide expressions that =-T*(aIMn[y'M'n U ("M

determine the single-particle CFP, _ AT(aIMnW’M’n’)VJW(yI 'M'n’). (17)
Viu(a@Mn) = (JuijagIMn(A+ 1)), (14
Here
Uj(alMn) = (JurjalIMn(A - 1). (15) 1
- LA L (A1)
To find equations for these quantities, we form the necessary Ew="Ep+ Z(EO *E ), (18)

matrix elements of the EOM and evaluate the interaction
terms by inserting the completeness relation for the states of
the appropriate even nuclei between the single-fermion op- €,=h, = \a, (19
erators and the multipole or pair operators.
In terms of a convenient and physically meaningful set of
energy differences and sets of multipole fields and pairing Aa = }(E(Aﬂ)_ EA-D) (20)
fields defined below, we thereby obtain generalized matrix AT 20 o n
equations of the Hartree-Bogoliubov form:

(€3~ €+ 0 ™IV, (aIMN) oY = gD _ p(AsD) (21)

—T(A+D) (] IINA A INA A/
P (@M M )V, ("M and the matrices of the single-particle and pairing potentials
+A(adMn|ylI’'M'n")U;,,,(A'M'n), (16)  read

TAD(aMn|y'M'n’) = 2 20S (jaMaje = M LM ) Facqd LX(I'M/n’ (A% 1)[BLy, (db)[IMn(A £ 1)), (22)
L bd
A(aAMN[P'M'N) = 2 X (jaMaj cMelLM ) Gacg LY M (A= 1)| ALy, (db)[IMN(A + 1)). (29
L bd
[
FurthermoreEgAﬂ) refer to the ground-state energies of the B. Equations for reduced matrix elements

neighboring even nuclei, the matrix elementsldfare de-

rived from those of Eq(22) simply by the replacement of

the operatorB by BT, and the matrix elements aof™ are

similarly derived from those ok by the replacement ok by

AT together with the interchangé+1— A= 1. Finally €, is _ .

obtained frome,, by the replacement di,, by h’. Vyu(alMn) = (= D)aa(IMjm[Jpvy,(@ln),  (26)
To specify fully solutions of the equations given above,

we must develop orthonormalization conditions for the CFP

that fix their scale. Orthogonality conditions can be derived Uj(@Mn) = (IMj myJu)uy,(aln), (27)

from the equations of motion themselves. A normalization

condition, on the other hand, is obtained by taking a suitable

matrix element of the summed anticommutator, (I'M'n’[Bpy, (bb")[IMn) = (= DEML(IML = M [I'M”)

X['n'[[Bu(bb)llin],  (28)

To apply the Wigner-Eckart theorem to obtain the EOM
for the reduced matrix elements, we utilize the following
definitions for the lattefwhich suppress nucleon numiper

2{a,al}=0=2 (2ja+1). (24)
“ a ("M |Ay, (BD)[IMR) = (= =ML (IML = M 1'M)
We thus find X[1'n’[|AL(bb")[In], (29
1 (I'M"n’ (B[ (bb")[IMN) = (IMLM_[I’M")[1"'[[B{(bb")]in],

Qa%n (U@ IMn)[2+ |V, (a; IMN)P] = 1. (25) =0
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{ '|\/|'n’|A’[ML(bb')|||v|n> = (IMLM|I’M")[1'n’|Al (bb)[[In]. (A1)<(A4) as a sum of separable interactions of the form
(31) Facdb(l—) == KL(QaQb)fac(L)fdb(L)y (39)

Assuming the reality of the multipole and pairing matrix
elementszg,J we also h)ellve P pairing Gabed L) = = 91(da) Yan(L) ved(L) - (40)
Then the interactions are parametrized by a few strengths
INA A/ — (1NN’ T ' 1Al
(1M1 [Bu, 1M} = (I"MLM,[IM) I By (bB7)J '], andg, which can be either fitted to the experimental data or
(32)  estimated theoretically.

("'M'n’|ALy, (BB)[IMN) = (1I'M’LM[IM)[In]Al (bb)[1'n']. C. Physical solutions

(33 The equations that we have derived have the form of gen-

eralized Hartree-BogoliubogHB) equations. We summarize

With the help of these definitions, we can transform EdSihe content of Eqs(34) and(35) in the condensed forh
(16) and(17) into the forms

Hipy, = Eqibyn, 41
Epvy(ain) = (€ — o V)vy,(aln) 3= Enihy (41)
+ 2 If*Yalna’t’nu;@1'n’) H=H-w, (42)
/II !
o where
+ X Ayana’n)u,@1'n’, (34
arlrnr _ U) 43
¥ (u , (43
SJVUJV(aIn) == (Eg + ng_l))UJV(aJn)
€ +F(A+l) A
) ,lzuF}(A_l)(aln|a’|’n’)ujy(a’vn') H= AT - -ty ) (44)
aln
+ > Alainja’t’nyv,,@1'n"), (35 EPRCETI .
a'l’'n’ w= 0 w(A—l) . ( )

where the corresponding reduced (rg]i%trix ele,rr,le,nts of the The HB structure of these equations implies that only half
single-particle and pairing potentials, (alnfa’l'n’) and  of the solutions refer to physical states. In the standard
Aj(alnfa’l’n’), respectively, are expressed by formulas ofground-state problem, the solutions divide into two sets with

Egs.(A1)—«(A4) in Appendix A 1. reversed energies. These with the positive energies represent
The normalization conditio25) becomes the physical solutions and a generalization of the notion of
quasiparticles. The negative energy or the quasihole solu-
2 [[vs(@ln)? +|us, (a1 = Q. (36) tions are spurious. The solutions of E41) do not divide so

ain neatly. The resolution of this dilemma starts by identifying a

The equations derived above define a linear eigenvalupiece of the Hamiltoniari that has such a simple property
problem, provided we supply from outside the single-particleand then initially to “turn off” the remainder of the operator.
energiesh,, the reduced matrix elements of the included This is done with the aid of the orthogonal matiix that
multipole and pairing forces, and the excitation energies ofnterchanges particles and holes,
the neighboring even nuclei. In the underlyingelf- 0 -1
consistent theory these quantities, other than the single- :( )
particle energies, can themselves be expressed in terms of the
CFPv andu. In practice, characteristics of even nuclei ex- ) ~ -
pressed in terms of the reduced matrix elements of single2Nd its ranspos€, and by defining the operator
particle operators,

1 0 (46)

. (Mo 5(a+AY
Fim, = % fac(L)BLm, (ac) (37) H,y= 5(7—[ -CHC) = (47

_ SA+AT) - (Hon
and pair transfer operators, 2

— + -
GLML - Eb 7ab(L)A'—'V'L(ab) (38) The core excitation energy matrixis usually not separated from
é the Hamiltonian and we shall not do it in the following. Hef®
are available rather than the reduced matrix elements of twds decomposed into the odd-particle paftand the core excitation
body interactions. To make use of them in E(@l) and(35) energy matrixw in order to have an analogy qwith a similar decom-
it is convenient to present the interactions appearing in Eqsosition for the odd-odd nucleus, Eq409) and(133) below.
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1 1 1 agonal matrix element of the Hamiltonian vanishes for an
(Ho)11= 5(5/ +e)+ E(F(Aﬂ) +ITAD) - E(w(Aﬂ) - A7), arbitrary v. In such a case there is a single equation for the
value of y at the crossing point of the levels involved. The
(48) equation can, in general, be easily fulfilled, however, not
necessary foly within the range in question. The crossing is
thus possible. However, when the representations are equiva-
CHOE= ~H,, (49) lent the matrix element i_s, in general, not equal_to zero and
then we have two equations fgrto be the crossing point.
if ¥ is an eigenstate df(, with eigenvalueS, thenC¥ is an  The equations are most likely inconsistent with each other
eigenstate with eigenvalue€—As in the simple case, the and the crossing point does not exist. Besides, the existence
solutions with positive eigenvalues are the physical solution®f the crossing point would mean an additional symmetry of
for our limiting case. Again, these solutions represent quasithe Hamiltonian at some value gf which is not expected.
particles which are now different for different states of theComing back to the Hamiltonian of E¢5), we expect that

Because

even-even cores. the levels of the same given angular momentum never cross
Next we turn on the remainder of the Hamiltonian, each other and all crossings are avoided. Possible crossings
namely, the even part of levels with different angular momenta are not of interest

for current study, since we solve the problem separately for
each angular momentum. In the case of no crossings it thus
suffices to diagonalize the Hamiltonidr, using the com-

) ) _ ] plete set of stateghysical and spurioysgenerated byH,,

our aim being to keep track of the physical solutions. In the;ng selecting the largest half of the eigenvalues as the physi-
applications carried out to date several methods have begy solutiong16]. Unfortunately, this need not be always the
used for carrying out this program. The diagonalization ofc53se pecause when two levels approach each other close
He within the subspace of physicgdositive energystates of  anough no matter if the crossing is real or avoided, the two
H, was performed originally when solving the modi&(3].  \yave functions in question interchange their character after
However, this can lead to a bad approximation of physicajne closest approach is passed. Therefore, instead of selecting
solutions of { as obtained by diagonalization within trun- the |argest half of the eigenvalues we rather project all wave
cated baS|s., since matrix elements7gf between physical f,nctions n,(y=1) onto the physical subspace of vectors
and unphysical solutions need not be small. Therefore, a be[pjv(y: 0) with £,,(y=0)>0 and select the half of them with

ter procedure seemed to consider an auxiliary Hamiltonian y,q |514est overlaps. The corresponding projection operator is
H(y) =Ho+ YHe (51)

Ho= %(H +CHC), (50)

. , Ryy=0= X Ryu(y=0). (53)
and to turn orH, adiabatically changing slowly from 0 to 1,63,>0
1[13]. Knowing the physical solutions fop=0 one follows
them for 0<y<1 by using a wave function overlap argu- In the ideal case the corresponding overlap of a physical
ment; namely, the projection operator onto an eigenstate offave function isQ) and that of a spurious one is 0. It may
H(y), #3,(y), for a giveny can in the condensed form be happen in practice that some states are half-and-half mixtures
written as of the physical and spurious ones which means that those are

reproduced badly within the present model. Figure 1 shows

1 + an exemplary level scheme of Hamiltoni&f(y). From the
Ra()= Q%”(y)w”(y)' (52 above discussion the physical and spurious levels can be
identified.
Then, for a new value of the parameteft oy, close toy, This brings us to another issue that is both technical and

the wave function overlapy),(y+8Y) Ry (Vs (y+8y)  physical. The simplest application of the KKDF method is to
should be close t6}, the norm of wave function squared for cases where there is well established band structure, either
v’ =v, the right continuation of statdv at point y+Jy and  rotational or vibrational, of the same type for both neighbor-
close to zero for other stated# v. This procedure is based ing even nuclei. The problem is then to classify the states of
on the assumption that the physical wave functions changthe odd nucleus into bands. For this case, the study initially
slowly during such a procedure. The above assumption isf H, can be useful. This is because for the states belonging
valid when the levels are far apart. However, it fails whento the same band, states of differénare practically degen-
two levels approach and, possibly, cross each other. erate, because of the smallnessaf*? -V, This was

To settle the problem of crossing the no-crossing theorenthe method used in our early wofk3-16. For more com-
[24—-24 has been calledi14,2q. According to the theorem plicated situations, we can identify different band members
the levels belonging to the equivalent irreducible representaby the structure of the states, in the sense that the expansion
tions of a symmetry group of a one-parameter Hamiltoniarcoefficients in terms of a given basis of states vary slowly
H(y) most likely do not cross each other for any valueyof  with angular momenturf20]. Consistent with the identifica-
The reasoning behind the theorem is outlined below. Whetion by state vector, we should equally be able to associate
the states in question belong to two nonequivalent irreducstates into bands by calculating transition rates of a suitable
ible representations, respectively, the corresponding nondeollective operator, usually the electric quadrupole operator.
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Qv [T [dur)

8 — : . : : :
of X
_ 4t /// 75. 25 2 [U\]r#rvr(alIM,n,)UJMV(a’an)
2 //8 alMni’M’n’
2 2r #A_
S O'b/ | XM [Ty, [IMD) + Ve, (21 'M0)
@ — —
1 2.3; | XVJ,W(OAMH)("M'n'|TLML||Mn>]
S ————
4l i 1
- +5 E taar[UJWV,(alMn)UJW(a'IMn)
%55 02 04 06 08 i aa’ IMn
¥ _ _
—VJM,,(aIMn)VJ/#,,,r(a’an)]. (56)

FIG. 1. An exemplary scheme of the energy levels of Hamil-
tonianH(y) as functions ofy. At y=0 the positive energy level b
and all higher levels are physicajuasiparticle whereas the all  We thus have a clear separation into collective and single-
negative energy ones starting from a down are spuiiquasihol¢.  particle contributions. The corresponding formula for re-

At y=1 there is no doubt that the physical levels @, E, F,G.  duced matrix elements df_is presented in Appendix C 1,
An estimation of overlaps should determine which of levelndB Eq. (C4).

is the physical level. The diagonalization &f(y=1) within the
basis of only the quasiparticle states would certainly give the lowest

physical state close tA rather than tdB. Il ODD-ODD NUCLEI

D. Matrix elements of transition operators A. Equations of motion

We complete the exposition of the general formalism for e turn to the problem of deriving a general core-particle
present purposes by deriving formulas for transition amplicoupling model for odd-odd nuclei analogous to the model
tudes of a generalcharge-conservingone-body operator. derived for odd nuclei in Sec. Il. Given an odd-odd nucleus
We choose this operator to be a tensor of ran y , that  with Z protons and\ neutrons, we shall relate its properties

we write in the form to those of four neighboring even nuclei with proton-neutron
numbers (Z+1,N+1), (Z+1,N-1), (Z-1,N+1), and (Z
TLMfE%ﬁan- (54 —1,N-1), respectively. In the following development, we
By shall continue to use greek letters for a general single-

o o particle level, but shall us@, p’, etc., to indicate proton
The notation is such that the quantitigg include a product  |evels anch, n’, etc., to indicate neutron levels. To relate the
of matrix elements of single-particle operators and of assoprgperties of the odd-odd nucleus to its four even-even
ciated coupling strengthigharges, gyromagnetic ratios, gtc. neighbors, we need the equations of motion for four pairs of

We wish to calculate the matrix eleme@t u'v'|Tuy [Juv).  operators that we present for initial convenience in an un-
To carry through the calculation, we substitute for the ket acoupled form:

formally exact expression in terms of the action of single-
particle operators on the states of the éore

. [asam H] = (h) + h))agan + Foy gprap an(@y, ag)
[Juvy== 2 [Uj,.(alMn)alIMn)

t t
Qs + P g p8i (8:8p) + Gy @@y
+V,,,(alMn)agfiMn)], (55) + Gy 8o (@) = Fopmi@gam,  (57)

where an underline identifies the lighter of the two cores and
an overline the heavier orié,6]. That Eq.(59) represents an Foo o o t £t
orthonormal set can be proved by first showing that the or- [apen,H1 = (hy =~ h)agan + Fig g apan(ag.ap)
thogonality of different states follows from the equations of Tt Tt

. . . _F ’ ’ ,aar+G_//rma,a Ay Ay
motion (16) and (17) and then showing that the normaliza- ' 55 3p@y (A1) + Cipr By B Bprdyy)
tion follows from the CFP normalization conditid@5). By - Gnﬁ,n,,n,,,aﬁaﬁ(a;”a;w) + Fwnn,aaa;,1 (58)
using the commutation relations and completeness, this leads
to the following expression for the transition element:
t

T . . . . H:_h”"'h/ T _F ! /T, T 1
This expression was first called to the attention of one of the [apam H1= (= + h)agan = Fop g an(agas)

authorg(A.K.) in 1965 by Do Dang and was later used by him in his +F— ..alas(al a.) -G »ra-afa.al
unpublished lectures on nuclear theory. It reappears in the work of nn'Ap apaﬁ( B '8) PPIPTRTER 3 PP )

O ot t
Donau and Frauendof8,5]. + Gy @@ (Byrdyy) + Fppim 8y a (59
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[aEaZ,H] =(-hg- hhal aanp 58 'an(a,BaB )
+
= Fowppra) n,(aﬁaﬁ )= Gppr p,,pmaman(a @)

- Gnﬁ/n//n///agaﬁ/(an,,an,,,) - Fpp/n/nap,an, . (60)
Notice that we have not included neutron-proton pairing
interactions. We shall study matrix elements of these equa-
tions between the staté3M;s| on the left, an included state

of the odd-odd nucleu&Z,N), and the appropriate one of the

PHYSICAL REVIEW C 69, 034338(2004)

(—Egst E++|r)‘I’JM S(pnIM,r)
= (hy+ ) W5iT(pniMyr)
+ T (pIM r[p’ I’M,,r’)\If(f,\;S p'nl’M,.r’)
+ AP @IM r|p’ 1" M r )W) (I’ M)
+r++>(m|v|,r|ﬁ|'M,,r')\lfgm(pn 1'M,r")

states|c7RMgr) of the even nucleusZol,N71), o=%, 7

=#. We use the following notation for the matrix elements in

guestion which are the two-particle CFP:

(IM;slagaf+ + |M|r>:~1f3;;js pniM;r), (61)
(IMslaganl+ = IMr) = w5 (pniMir), — (62)
(IMysiagasf= +IM;r) = W50 (pnIMr), (63
(Mgslafall==IMin) = W5 (pniMir). - (64)

+ AWM 1M ) WEE (o'l My )
Fooma® Sus(P'nIM1), (67)
where the single-particle and pairing potentials

T@(@IMr[a’l'My 1) = Fag gg (oM r|al,aglord ' M.r')

(68)
and
AP (PIM I[P I'Mi17) = Gy prgn{+ TIM F|[agnag|— 71" Myr7)
(69

are essentially the same as those of Eg8) and (23) but

To shorten the notation we introduce a two-component ophow for different even cores.

eratoray for protons,

a(— 1™  for o= +,
{ ? (69

ap foro=-,

and a corresponding paia;, 7=%, for neutrons. Then Egs.

(61)—(64) resolve themselves into formula

W5I(PNRMRF) = (IMslagar] o TRMgr). (66)

The next step is to write out equations for the amplitudes
plon (pnIM;r). To fix additional notation, which will be un-

IM;s

B. Matrix elements of transition operators

It still remains the problem of deriving a general formula
for the transition matrix element,)’M,s'|T y, [IM;s) of a
one-body operatofl v in a manner analogous to the calcu-

lation carried out in Sec. Il D. For this purpose, we utilize a
formula for the stateJM;s) [compare Eq(55)]

[IM;s) = > WRI(pnRMy)ajar| o TRMgr).

Q(p Q(n) oTPNRMgr
(70)

derstood immediately to be a modified form of the notationEquation(70) describes a set of orthonormal states, as fol-

of Sec. Il, we exhibit just one of these equatidnsing the
summation convention

(I'Mys' [Ty, [IM;s) =
) Q(p Q N orpnRMIR' Mgt
1

+
Qpd

(M rpp NRMgr

a ! 1
X\I’S,M) o (PRMgNt, — Q(p)—Q(n

1
QpQ

+jp/—mp, _

Xtgyr (= 1)lp ™

> WD (PNRMRN) W

(=7)

- _ , 1
S WEIPIRMWSD (P RME oo D

lows from the equations of motion and the normalization
condition (108). We thus derive the formula

‘](7,’3 ,S,(an'MR/I")<0'TR'MR/I"|T|_ML|0'TRMRI‘>

JM S(pn RIMRr)
Q(p)Q(”) apnn’ RMgr

S WHIPnRMOWST (p'NRVR)
) 7pp’ NRMRr

2 WSPnRMNTT (o RMen )ty (= )Mt
(M gpnn’ RMgr

(71)
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in which we have again a clear separation into collective part Into Eq. (67) and its three partners, we substitute Egs.

of the four even cores, and the single-proton and single¢72)—75) and recognize that the result can be simplified by

neutron contributions coming from the odd particles. the use of equations such as

For the further development of the formalism, in particu-

lar the reduction to equations for reduced matrix elements,  (Ej, = E.. ~ h,;)VS:?\,,nrN(nIM,r)

there are, however, several choices which are to be discussed +4) ., ) . )

in the two following sections. First, we shall develop a =T 0IM M r )V (01 M)

method that makes maximal use of the formalism for odd + i R o ,

nuclei, and, as a consequence involves only single-particle +AD@IM 'l Myt )U‘(]ng\/l_mn(n "Myt

CFP. This method, which treats the neutron and proton asym- (80)

metrically, we shall refer to as sequential coupling. Then, we

shall develop an alternative, referred to as symmetrical couand its partners. The resulting equation #f** is then

pling, that bypasses any use of the results for odd nuclei. combined with the corresponding equation f#&f*~), con-
tracting the first with &/ factor and the second with&*

IV. SEQUENTIAL COUPLING OF ODD NUCLEONS factor so as to permit use of the _normalization conditia). '
We carry through a corresponding procedure for the pair of
A. Equations of motion amplitudes?* and ¥,

By introducing a complete set of states of the appropriate Ve thus obtain the pair of equations
odd nucleus between the neutron and proton single-particle

operators in matrix elements of Eq61)—(64), we write (= Egs* Evg r ) Xom,s(PIMpr )
WEI(pnIMr) = J % Xoms(PIMAr V5 s . (IM), = héXJMJs(pJn'V'nfﬂ
e . + T PIMr olP’ Iy Mo )Xo o(P' I M)
+ APIM [P I My T0) Yo s(P' I My T )
‘I’(Jms(pm'\/'ﬂ) = | %r Xams(PIM nrn)US:I),\,,nrn(nlM|r), F VO PIM oD I Moy )Xot o P In M ),
(73) (81
WEPAIMD = 3 Vo PAM Vo, (M), (= Bos By You,s(PIMaf o)
e ” = = hgYam,s(PIMqr)
=T (PIMuralp Iy M) Yaus(P I My 1)
Wi pniMir) =J§r YiuePIMarUS o (NIMr). = A (PIMt oD Iy Mo )Xo (P I M)
o (75) + VO (PI Mt alp’ Iy Mu ) Yau o(p' Iy My Fry),
Here (82
\/S‘n’,{,lnrn(nlMﬁ) =(aJMIlagio + IM ), (76)  where the effective single-particle and pairing potentials for

the proton on top of odd nucleil® andA, and the effective
(o) _ : proton-neutron interactiod® depend on the single-neutron
Uiy, (NIMIF) = (@3 M ofaglo = IMir) (77) CFP, V® and U®. The corresponding formulas are pre-

are two sets of CFP amplitudes for odd neutron nuclei, whictfented in Appendix A, Eq3AS)-A10).

can be calculated using the formalism for odd nuclei devel- 1he final goal of this section is to obtain equations of
oped in Sec. II. On the other hand the amplitudes motion for the reduced matrix elements. For this purpose the

only definitions needed to supplement E@86)—«31) are

Xams(PIMr ) = (IM;slagl+ JaMar o), (78)  those for the reduced CFP relating the odd to the odd-odd
nuclei,
Y o(PIMar ) = (IMslar|— I M o1 79 i : .
s PHM) = OMSRGI= JMetn) (19 (03 Mat) = (= DMy Moo )

are single-particle CFP relating odd and odd-odd nuclei. The (83)

aim of the present coupling scheme is to obtain equations to

determine the amplitudes andY. Before proceeding along

these lines, we remark that there is a related sequential Yams(PIMar ) = (IaMpj Mo IM) i pdnr) - (84)
scheme obtained by starting with two-particle amplitudes in

which the order of the single-particle operators is inter-t is then a straightforward exercise in angular momentum
changed. algebra to derive the equations

034338-8
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(= Ejst E+Jnrn)XJs(j pJnrn)
= h;gXJs(jp‘Jnrn) + FS+)(j pJnrn“p’Jn’rn’)XJs(jp’Jn’rn’)
+Ay(] pJnrn|j p’\]n’rn’) AL p’Jn’rn’)

+ VS+)(j pJnrn“p’Jn’rn’)XJs(jp’Jn’rn’)r (85)

(= Ess+ Eoy ) madlipdarn)
=~ ipdnfn) = T3 Gpdut ol prdn ) 7l ipr I )

+ ASGpdnf nlipr I o) Xasiprdn )
VGl nlipr ) masiprdn )

where the reduced matrix elementsIdt), A, and V* are
given by Eqs(A11)—A16) in Appendix A 2.

(86)

PHYSICAL REVIEW C 69, 034338(2004)

As we already mentioned, the procedure is not symmetric
in treatment of the odd proton and the odd neutron. We have
the two separate Hamiltonians for the two odd neutron nuclei
with even proton numberd¥ 1, respectively. The odd parts
of these Hamiltonians represent the two sets of the corre-
sponding neutron quasiparticles. Then, the single set of pro-
ton quasiparticles is introduced on top of the two odd neu-
tron nuclei. The roles of odd neutron and odd proton can, of
course, be exchanged.

C. Matrix elements of transition operators

The reduced matrix elements for a one-body transition
operator can be calculated from E@1) by substituting de-
compositions of Eqs(72)—(75) of the two-particle CFP’s,
V(7 into the single-particle CFP’¥, Y, V&, andU®, and
applying the Wigner-Eckart theorem to these latter ones.

The normalization condition associated with this formal-However, the result we want can be read off directly from

ism is

E [|XJs(jp\]nrn)|2 + |77Js(j pJnrn)|2] = Q(p)- (87)

jpd-nry

B. Physical solutions

The problem of choosing the physical solutions of Egs.
(85) and(86) can solved by simply repeating the arguments
given in Sec. Il C. This is seen immediately if we rearrange
the energies in these equations so that they resemble exactly

the corresponding equatio34) and(35). We thus write
EssxadipInln) = (&= @13 )XaslipInfn)
TG oot olipr I f ) Xad I i)
+ A5(J pInf ol prdne o) ol pr I i)

+ VS+)(j p‘Jnrnlj p"Jn’rn’)XJS(j p"Jn'r”') !
(88)

ExsmadipInrn) = (= €y = w3 ¢ ) misipdnln)
=TI Gpdrolipr It ) s I )
+ A3l liprIn o) Xaslipr I o)
+ V5 Gl ol oI ) masipr I )

(89

with
E1s=—Eje+ 3(E, +E.), (90)
e=h-i(E,-E), (91)
Wiy r, = EiJnrn -E,. (92

Eq. (C4) if we replace, appropriately, the single-particle CFP

v andu by y and » and the reduced matrix elements of the
transition operatoil, between states of even nuclei by the
corresponding matrix elements between states of the appro-
priate odd nuclei. The final result is presented in Appendix C

2, Eq.(C5).

V. FORMALISM FOR SYMMETRICAL TREATMENT
OF ODD NUCLEONS

A. Equations for reduced matrix elements

With the aid of the Wigner-Eckart theorem and suitable
definitions, we proceed to the transformation of these raw
equations for¥(“? [Eq. (67) and the three similar ong$o
equations for reduced matrix elements. We couple the prod-
ucts of operatorsy] anday to a given multipolarity:

agan = 2% (jpMpjaMy/Im)Bi7(pn), (93
|
and define reduced matrix elememtS(pniRy),
(IM;s|B(pn)|omRMgr) = (RM,Im[IM;)b5Z(pniRr).
(94)

Here [JM;s) is a state of the odd-odd nucle¢&,N) and
|cTRMgr) is a state of the even nucle(@@ol,N71).

In the following, we also require reduced matrix elements
of the multipole and pairing operators, defined as follows:

<O"TR’MR/r,|BLML(bb’)|O"TRMRr>
= (- D" M (RMgL — M |R'Mg)[R'r’[|BI? (bb)||Rr],
(95)
<mR'MR,r'|BIML(bb’)|mRMRr>
= (RMgLM|R'Mg)[R'r’||B[“?(bb")|Rr], (96)

HereE, are the ground states of the heavier and lighter odd
neutron nuclei, respectively. With these forms one has an (o= R'Mg'[A y(nn")|o + RMgr)

exact parallel to Eq9.34) and(35), and thus the arguments
for choosing physical solutions can be repeated without

modification.

= (- D" MURMRL - M |R' Mg )[Rt A (nn)||Rr],
(97)
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<0- +R’ MR’r,|AEM(nn,)|U - RMRr> E {ap,a:)}{an,a:l} = Q(p)Q(n), (106)
= (RMaLM_ [R'Mg)[R'F|AT @ (nn)|RF],  (99) -

(- IR Mgt |ALw(pp)) [+ TRMgr) Qp =2 Qip+1). (107)
P
= (- D"MU(RMRL = M{R'Me)[R'r A (pp)) IR,
(99) Rearranging the order of the operators, taking a diagonal
matrix element in the statgM;s), and utilizing complete-
) ot ) ness and the definition@3) and (94), we obtain the ex-
(+ R'Mpr'|Aly(pp")| - TRMgr) pected result

= (RMeLM[R'Mg)[R'r|Al”(pp")[|Rr]. (100)

. . o . > b5 (pnIRNP= Q0. (108
In the final equations of motion given below, we also intro- o7ipiglRr
duce, in as close analogy as possible with our procedure for
the odd-nucleus case, various combinations of energies. The
energies of the odd states will naturally be specifiedEy B. Physical solutions
those of the four neighboring even nuclei By,g,, and the
ground states of the latter b,,. We then introduce the
following differences:

We expect the space of physical solutions to be only a
quarter of the total space of solutions. With a little care, we
can generalize the method used to identify physical solutions

1 for the case of odd nuclei. If we examine the Hamiltonian
€=~ Byt (Bt E+EL+E), matrix H given by Eqs(B1)~B12), we see that it can be
decomposed into a sum

WomRr = EO’TRI' - EO’T’ (101)

H=Hy+Hr— 0+, (109
e=n —E(EH—EJ,_)—}(EH—E__), describing in turn an odd-neutron nucleus, an odd-proton
g 8 nucleus, a core excitation energy matrix, and a neutron-

proton effective interaction. We initially turn off the last two
terms. Next we define two ¥ 4 matrices,C,, andC,,

! ! 1 1
Ep = hp - Z(E++ - E—+) - é(E++ - E——)v (102)

c o0
Ci=\- =, 110
” " 3 1 " (Q (_:) ( )
€= hn - Z(E++ -E)+ é(E++ -E.),
(9 -1
Cp— 1 0) (111

" " 3 1
€= hp - Z(E++ -E_)+ é(E++ -E_), (103

where the underlined entries are eack 2 matrices and the
1 1 matrix C is the particle-hole conjugation matrix defined in
e =h+-(E__-E,)+=(E_-E,,), Eq. (46). The matricesC,, C, commute with each other.
4 8 We then observe that the averages

m " 1 1 o, 1 =
€ =hp+ Z(E" -E_,)+ é(E" -E.y). (109 Hp= E(Hp +C HCh), (112
Starting from Eq(67) and its three partners we thereby ob-
tain the following equations of motion for the reduced matrix — 1 ~
elements: Hn= E(Hn + CpHnCp) (113

EdZPnIRN = > H(omnlRie’ 7' p'n'I'RY) each have a structure more symmetrical than their individual

orPniRY terms. Thus, the nonvanishing elementg-qfare(in a con-
xbs,” (' I'R'T). (105  densed notation
Expressions for the matrix elements of the effective Hamil- o 1
tonian matrixH are given in Appendix B. Hp(+ + [+ ) =Hp(+ = [+ =) = €+ ‘(FEJH) + rg‘)),
To the equations of motion, we add a normalization con- 2
dition that can be derived from the anticommutation relation (119
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Ho(= +[=#) = Hy(-=|=-)

=-(ey+ ey +TIY+T]7)), (115

gl +1= 9 =yl == =) = 545 +a5), (116

1
et S+

—-n

1 .
5 AT 4 ATE)

We infer from their structure that it is the barred matrices
that form suitable starting points for the antisymmetrization

PHYSICAL REVIEW C 69, 034338(2004)

— _ 1 R _
Hyl= + [+ 4) = Hy(= = [+ =) = S5 + A7),

(117
whereasﬁn has the block-diagonal structure,
H, —(ﬂ” 0 ) (118)
"o H,)
in terms of 2< 2 matrices, and
1 -
A7+ 8
. (119
- lér e I
[
CoHo(€)Cp=Ho(- &). (127)

that was the essential step for identifying physical solutions

for the theory of odd nuclei. We thus define the matritgg
andH o,

T

1 — —
o= 5 (Hp = CoHiCo), (120

1 — —~
Hno = E(Hn - CanCn): (121)

which are antisymmetric with respect to the particle-hole
conjugation matrice<C, and C, for protons and neutrons,

respectively,

CoHpoCp =~ Hpo (122

Cntlzno’én == Hpo- (123

Notice thatC, commutes Wit}’ﬂ?po and C, commutes with

A quarter of the set of eigenvectors 1:60(1)5770 form the
physical basis. From Eq126) we see that for each positive

eigenvalue£;{&) >0 of H,y(e) which enter in equation

Hole)Pde) = Exd)dade), (128

there is a corresponding negative eigenvalég(=) with the
associated eigenvect@,C,;4e). Following the standard
reasoning of superconductivity theory we reject half of the
eigenvectors, those belonging to negative eigenvalues as
nonphysical. These spurious states are interpreted as the
quasihole-quasihole and quasihole-quasiparticle pairs. How-
ever that still leaves too many states.

From Eg.(127) it follows that the Hamiltonian§70(s)
and Hy(-¢) have the same set of eigenvalues, i&de)

Hne bUt the two Hamiltonians do not commute with each=Ead(—¢), With the corresponding eigenvectorg(—s)
other. Because of that these Hamiltonians cannot generafeCp¥/ss(e). This has as a further consequence that each ei-

the separate “average” quasiparti¢tpiasiholé proton and
neutron states. Instead, the eigenvectors of matrix,

Ho=Hno* Hpo (124)

represent the neutron-proton pair states. To identify th

physical basis we introduce an auxiliary Hamiltonian

770(8) = 77”0 + 87'—{’)0, (125
which has the following properties:
CoCrHo(£)CaCp = = Hole), (126)

genvalue ofH(0), £;40) is twofold degenerate with the two
eigenvectorsy;(0) and C,i,40). The degeneracy of this
pair of levels ate=0 means the real crossing, which is not
surprising since there is additionally the particle-hole sym-

dnetry C, for proton. Next we solve Eq128) for Ose<1

and a givenJ. For ¢>0, level £;0) splits into a pair of

levels, Iabelecap(s) and &;.(e), distinguishing the larger
from the smaller value. The corresponding eigenvectors are
labeled ¢;s-(e) and y;s-(e), respectively. Let us suppose

that the expectation value of matri,, in state ;40) is
positive:
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0€36= Y140/ Hpoitso0) > 0. (129 D (PNRM) = 2 (jpmpiamy/im)
Im
If it is not the case we exchange the vectarg(0) and X (RMgIm|IM,)b{Z” (pnIR),
Cotsd0) since Yi0)CyH poCptsd0) =855 For small val- (135
ues of e the perturbed energies of unperturbed states .
- (0)=¢40) and g5 (0)=C,y,40) are equal to which combines the contents of Eq®83), (94), and (66).

The final result is written out in Appendix C 2, E¢C6).

E1e(g) = £140) + £ 5E; 130
35-(8) = E5d0) + 2065 (130 VI. SUMMARY AND CONCLUSIONS

and A linearized version of the equation of motion approach

o o o to the nuclear many-body problem, considered as a generali-
Eys<(8) = E340) — £6E 35, (131)  zation of traditional core-particle coupling models, has
proved its worth in a number of recent applications to de-
respectively. For larges’s we solve Eq.(129 in the same formed odd nuclei. In this method, the basic object studied is
way as the eigenvalue problem of matrix of E§1) in Sec.  a single-particle coefficient of fractional parentg@#P) re-
Il C. We choose the larger of the two eigenvalues as thdating the states of the even nuclei to those of a neighboring
physical one, recognizing its role as the analog of theodd nucleus.
guasiparticle-quasiparticle pair energy. The lower levels cor- In this paper we showed how the same general method
respond to the gquasiparticle-quasihole pair states and are stilan be applied to odd-odd nuclei. We started with a review of
spurious. The corresponding projection operator onto physithe formalism for odd nuclei, since it plays an essential role
cal subspace is in some of the considerations that follow. We then showed
that there are three possible formulations for the odd-odd
— 1 T case, two of which we label as sequential and a third as
Role)=—— Y de(iele). (132 symmetrical, terms that characterize the way in which we
(P*En) s>
_ couple an extra neutraior neutron holgand an extra proton
E1>>0 (or proton holé to nearby even nuclei, treated as cores. First
) ) _ ] we study in detail the case where we initially couple the odd
Increasing the value of to unity we define the physical neytron to the even cores, an example of our method for odd
eigenstates of the Hamiltoniat (¢ =1) ="H, as the quarter nuclei. We then couple the odd proton to the odd neutron
of all 1's having large overlap with physical subspace deternuclei, introducing new CFP for this relationship, and mak-
mined through the projection operator of E§32). Since the ing essential use of the odd neutron calculations for energies
number of positive eigenvalues is even, in the case of nand CFP. The second sequential method, not discussed in
crossings for a gived, the physical solutions are the odd- detail, reverses the order of the odd-particle couplings. In the
numbered positive eigenvalues, counting from the largestsymmetrical coupling, we first couple the two odd particles
value. together and study directly the relationship of the odd-odd

The separation of{, from the original Hamiltonian of Nucleus to the core even nuclei by means of two-particle

Eq. (109 is achieved by the following decompositionaf. ~ CFP- In principle all three methods are equivalent, but in
practice results will differ owing to the need to approximate.

In this regard, the existence of alternatives that may be com-
pared may be of some practical advantage.

Because of the presence of pairing interactions the equa-
tions for the odd-odd case yield four times as many solutions
as are physical. In the sequential method, the problem of
ﬁe: E(Hp +H,) + %Can(Hp+ Hn)anap choosing _physical solutions can be solved by sequential use

of essentially the same method as for the odd case. For the

1 - 1 5 symmetrical coupling case, a more elaborate method has
+=Cp(Hp=Hn)Cp+ ~Cy(Hy~Hp)Cy. (134  been devised.

4 4 Concerning applications, approximate versions of the se-

, ) ) quential method have already been carried [@2,23. The
The physical eigenvectors @{ can further be found using symmetrical approach remains to be tried.

again the methods similar to those discussed in Sec. Il C for
odd nuclei.

H=Hy+He— 0+ V), (133

where
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gg;z;télr?cvghere this work was initiated while we were both in FE(A—l)(a|n|a/| 'y = E (- 1)ja+3+|\,,—(2|, + )L+

Lbb’
APPENDIX A: MATRIX ELEMENTS OF EFFECTIVE 1 1’ L
INTERACTIONS T Faabw (L)
a’ a
1. Odd lei
| _ e . x[1'n[B{(bb")in], (A3)
The single-particle and pairing potential matrices occur-
ring in Eqgs.(16) and (17) for the single-particle CFP are
given by Egs(22) and(23), respe(_:tive_ly. The corresponding
;zc::gietg matrix elements appearing in E@2) and(35) are A}(aln|a’| my=3 (- wwﬂﬂ\ym
Lbb’
Al — j ’
r™Y@lnja’l’'n’) = 3, (- Dlat*@21" + 1)(2L + 1) LL
Lbb’ . G,y (L)
L ja ja J aa’bb
i i J Faaroty (L) X[1'n’||Al (bb)[[In]. (A4)
x[1'n’[By(bb")[lIn], (A1)

AJ(aIn|a’I ) = 2 (- l)ja+J+'+1\f"m 2. Sequential coupling in odd-odd nuclei

Lob’ The effective single-proton, proton-pairing, and proton-

1" L neutron potentials in Eq¥81) and (82) for single-proton

ja ja J Gaarbr (L) CFP, X andY, relating the odd-neutron and odd-odd nuclei,
are dependent on the single-neutron C¥#P, andU®, and
X[In[|Al(bb")|I '], (A2)  read

1
TOPIMp My )= > (VSN (IMIDTED RIMr|p' 1 My )V,
nIM,rt "My’ = (0)

+USY - (IMOTE(RIMrp MUYy (' Mpr )], (A5)

(nI'Myir’")

A

1 .
APIMr P IpMpro) = 2 [V - (NIMIDAD (PIMr[p/ 1" My )V )y
niMrt " Myor’ =0

+US, - (IMIDA(PIMrp "M r)US )y (0l Mpr)], (A6)

(n"Mpr’")

A

1

V(Jr)(anMnrn|FJn’Mn’rn’) = 2

Mt Myor’ =50

+USY - (IMIDUS), (0 IV ) Fnn ], (A7)

[= V5 (NIMIDVEy, (0 I P

- ! 1 - - AN ! - ! !
TTOPEIMrp I M) = [V (NIMIDTT I (RIM 1 Mypr )V )y (1 Mr)
niMrt "My r’ =20

+ UGy (NIMOTT D (pIMrp 1M rHUS )y (nl' M )], (A8)

A

1 _
AT PIMA AP Iy M) = 2 V5, - (NIMID AT (pIMr|p' 1 My r )V,
nIMr /My’ =5 (0)

+USy - (IMIDATORIMrp " Mpr)US, (1M, (A9)

(nl'Mpr")

A
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- ’ 1 - - ’
V( )(pInMnrn|p ‘]n'Mn'rn’) = 2 [Vflnz\nnrn(nler)vf]n?Mn,rn,(n IMIr)Fpp’nT’
nIMrt "My’ =2 (0)

= US e (NIMIDUS - (0 IV F . (A10)

The correctness of the above equations can be verified independently. By starting wit9)Easl (10), we can derive
equations of the fornil6) and(17) with potentialsI’ and A that refer appropriately to the odd systems, rather than the even
system and with no overt sign of the neutron-proton interaction terms. These equations are readily transformed into the results
given above by the application of Ep5), just as the latter was applied in Sec. Il D to express transition matrix elements
between odd states in terms of matrix elements between even states and single-particle CFP.

Passing to Eq9:85) and (86) for the reduced CFBy and 7, we encounter the following reduced matrix elements of the
effective interactions given above:

Iode Il
T Gipdnl nljprdn o) = > {.” Iy }{J ! J”}( 1)lptint 3+ L (2L + 1)(20, + 1)(20, + 1)(21 + 1)

) Laa'j it v’ Jor Jn L v I
X Fopraa ({05 (Galn)ul (ol )IFBE@20IIFT+ 5y (alr)ug) Gl e[ [BE @) T},
(A11)

1 J, Jp J I J, ] o ,
Aiphtipdnin) = 5= S { e HJ ' ’”}(—wwn”“ L @LH D(@3,+ D23y + D@7+ 1)

!
(M Lag’jirt v’ lp! o L v 1L

X Gopraa (L5 (00 (Gl T[T AP @IF]+ U (alrus. (ol T IAT aa)]ir T},
(A12)

R 1 3o 3w e L o
VO Gpdiralipdntn) =5 — 2 { Sy } T (= DRI L+ 1)(2, + 1)(2], + 1)
Qg Upr I L (3 o |

X [05) (005 (I Fppn(L) + (= DIl Gonul, (lnFoppny(L)], (A1)

1 I Il
TG Il alip o) = o > { n le H ] " J“}( )lptint 3+ 1-L (o] +1)(23, + 1)(23,, + 1) (21" + 1)
n/

(n) Laa’jnlrl e! Jp’ ‘Jn’ L I '
X Fppaa (D05 Galn)os ) Gl 107 [BE @D+ U5 (Galr)uge (ol 'r)[1'r|IBE @&)]Ir T,
(A14)

o 0o )13 ,
Al pdnl nliprdn o) = > {_“ o H N J”}( Diptint L 2L + 1) (23, + 1)(23, + 1)(21” + 1)

Q(”)Laa’jnlrl'r’ ]p, \]nr L ‘]n’ |’
X Goraar (L{05) (ol o (e )1 AL @)+ U5 (U (ol e | )i ),
(A15)

Jn odp Jlin jn L o
V5 (jpdh rnIJprJnrrn>—Q_ 2 {in ij L}{Jn JJ |}<—1>Jp”n’”n”+1(2L+1)\/<2Jn+1)(2Jnf+1>
M Ljpiplr UIp" ¥’ n “Yn’

X [U‘(J;zn(jnlr)v\(];hn,(jn’Ir)Fpp’nn’(L) + (_ 1)jn+Jn _Luf] r (Jnlr)u\(]:rm(jn’lr)Fpp’n’n(L)]- (Ale)
APPENDIX B: THE EFFECTIVE HAMILTONIAN FOR TWO-PARTICLE CFP
The matrix of effective Hamiltonian occurring in EGLO5) for the reduced matrix elements of two-particle CFP are equal

to
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H(+ +pnlRi+ +p'n'l'R'r") = (e, + €)= 044r) 8y p O 8117 SRR 6 1 + TS (PIRMP'R'T) 8y + TS (MIRANIR'Y) 8,
+V(++)(pn|p’n')5|,|,5R’Rr5”,, (Bl)

H(+ = pnlRMl+ = p'n'I'R't") = (&) = € = 01-r) Sppr S A1 Ore Sy o + TS (PIRAP'TR'T) 8, =TI (MIRAN'TR'T) 8,
+ V) (pnlp'n') & Sr S (B2)

H(= +pnIRi= +p'n'I'R'rt") = (= &) + €, = w_.r) Fppr o 11 Sr i O = T (PIRAPIR'T) 8,
+TTIMIRANTR'T) 8, o + V) (prlp'n') 81 Sr e S (B3)

H(==pnIRA==p'n'I'R'r") = (= &) = €} = 0__r) Sp.p Sy Ay S G o = T3 (PIRIP I R'T) 8y

—TIMIRAN RTS8, 5 + V) (prlp'n') 8 s Sr e 6 (B4)
H(+ +pnIR = +p'n'l'R't’ = A (pIRMp I'R'r") &, v, (B5)
H(+ +pnIRi+-p'n'I'R't’) = A(IRAN'I'R'T) 8, (B6)
H(+-pnIRi—-p'n'I'R'r") = AT (pIRMp I 'R't) 8y (B7)
H(+-pnIRi+ +p'n'I'R't’) = Al (NIRANT'R'T) 8, (B8)
H(= +pnIRi+ +p'n'I'R'r’) = A}('>(pIRr|p’I’R’r’)b‘n,n/, (B9)
H(= +pnIRi-—p'n'I'R'r") = AT (NIRAN'I'R'T") 8, 1, (B10)
H(--pnIRi+-p'n’I’'R'r") = Al (IR’ I'R'r") 8, (B11)
H(--pnIRf= +p'n'I'R'r’") = Al (nIRrn'l 'R't") 6y - (B12)

The remaining matrix elementg(o7|-o—7) vanish.
The effective interactions that occur in the above equations are

Y, j I R J{Jin ip |
FSUT)(ler|p/I/R/rr) - 2 (_ 1)]p+]n+l+| +L+R+J\/’(2R/ + 1)(2'. + 1)(2| + 1)(2|/ + 1){ o } In JEJ -
= ROIVLJ|L 1y

X Fopron (LIR'T B (bb)||Rr], (B13)

o ; I R J in | I
TE7(nIRA 'R = 3 (- 1>Jp+1n'+L+R+Jv(2R'+1)<2L+1)<2|+1)<2I’+1>{ ;o }{Jp v }
o ROV LJIL UV ju

X Frbr (LIR'T B (bD)||R], (B14)

o , , I R J(Jin p |
F;(UT)(pIde/l /R/rr) — 2 (_ 1)Jp+Jn+L+|+l +R+J\€’(2R, + 1)(2'. + 1)(2| + 1)(2" + 1){ o } In ]E) .
= ROV LJ|L 1 gy

X Fopror (L[R'T[BT7Lo(bb))|Rr], (B15)
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R J|)ip in |
CIMIRANIRT) = 3 (= Do R 2R + 1) (2L + D21+ (2 +1>{ - } C
Lbb’ RI" LJ{L I" ]

X Fowoy (LR'T[BI7(bb")|Rr], (B16)

Lp//p/// | ! L L | ! Jp’

X Gpp (LRI AP (p"p")|IRr], (B17)

o I R J(Jin ip !
AST)(pIRr|pIIIR,r,):_ E ( 1)Jp+]n+|+| +L+R+JV/(2R/+1)(2L+1)(2| +1)(2|;+1){R, }{Jn JD . }

! !
1" I L L | ] n’

Ln'n

- I R JI|Jip in |
AVMIRINI'R'T) == >, (- 1)Jp+'n’+L+R+J\"(2R’+1)(2L+1)(2I+1)(2I’+1){R, HJ" o }

X Ganryer (LR’ A (nn™)||R], (B18)

I R J|Jin Jp |
A}(T)(leﬂprerrr/) — E ( l Jp+Jn+L+|+| +R+J\ (ZR, + 1)(2'. + 1)(2| + 1)(2| + 1){ l/ ) }{JLI‘] :E) J }
Lpr/pm p’

X Gpp (LR T AT (p"p")|IRr], (B19)

R J|]ip | |
A}f(o)(nIRr|nf|rRrrr)=— > (= Dt RS OR + 1) (2L + 1)(21 + 1)(21" _,_1){ ) L}{Jp In _ }

Ln"n"” L I" Jw
X Goy e (DIR'E A (n'n")|IRr], (B20)
o TR T (N
V) (pnlp'n’) = - > (= 1)t (2L + 1) .Jp .]" Fopnn(L), (B21)
L Jn ]p’ L
o i | |—
V) (pnlp'n’) = ) (- )it (2L + 1) .Jp ) oprnn (L), (B22)
L Jnr ]p’ L
VT (pnlp'n’) = ) (= 1)l + 1){ij . } o (L), (B23)
L n! /
V) (prlp'n’) == 2 (= Do int(2L + l){jJp } Fpprnn(L). (B24)
L n’
[
APPENDIX C: REDUCED MATRIX ELEMENTS OF (-1 )I M
TRANSITION OPERATORS (I'M'n ITLMLlan>— (| M’l = M|LM))
1. Odd nuclei X<I n|[Tulfin), (€2
The matrix elements of one-body transition operators
within states of an odd nucleus are given by &f). We use ( 1)lcme
the following definitions of the reduced matrix elements: Lay L+t e (jaMajc = MJLMD)tac. (C3)

! ! ! (_ 1)J_M ! ! ! ! . - .
Q' 'V [Tum Fpv) = ="' I~ w|LM)I"V'[|T.[[J»),  Applying the Wigner-Eckart theorem with the help of Egs.
VoL +1 (26) and (27) to Eq. (56) we find the following expression
(C1 for the reduced matrix element @f :
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1 oL
<J’V'||TL||JV>=5 > (=it +'+L{J, ] J.}\'(23+1)(2J’+1)[uav(aln)uyVr(al’n')<ﬂ||TL|||£l>
a

alnl’n’

+ug@inuy, @) [T [in]+ = Q E ta V(23 + 1)(20" + 1)[( Dlartiest

aa’ln

ja Jar L L
x{’; J;, I}uy J(aln)uy,(@’In)+ (= 1)la+1+d +1{’; Jj I}vh(aln)vy,,,(a’ln)]. (C4)

2. Odd-odd nuclei

By means of methods discussed in Sec. IV C we obtain the following formula for the reduced matrix element of transition

operatorT, within states of an odd-odd nucleus as a function of the reduced matrix elements of only the single-particle CFP,
v andu, and y and #:

J, L /m/mm—— . .
<J,S,||TL||\]S> = 2 ( 1)] +J * +L{J, 3 . }\"(23 + 1)(2~], + 1)[77Js(JpJnrn) 77J’s’(]pJn’rn’)<\]n’rn'||TL||\]n_rn>

(n) jp‘]nrn‘]n’rn Jp

_ _ — e 1 P , jp Jpr L
+XJs(Jp‘]nrn)XJ’s’(Jp‘]n’rn’)<‘]n’rn’||TL||‘Jnrn>]+Q_ 2 ’\(2J+1)(2~] +1)|:( 1)]') Hntd +L{ P }

njpjp'Jnrn J ‘], Jn
. , jn o L . .
X nye(] pJnrn) an(jprJ rn) + (- 1)J|° It +1{ Jl: 3 3, }XJS(J pJnrn)XJ’s’(Jp"]nrn):| ) (CH

where the reduced matrix elementsTofwithin states of odd nuclei occurring on the right-hand side of(E&) are given by
Eq. (C4).

The same reduced matrix elements as these of &g). but expressed by the reduced matrix elements of the two-particle
CFP, b, take the following form coming directly from Egé7/1) and(135), and the Wigner-Eckart theorem:

!

s ————— 3 J L
> (1R +'+L\'(2J+1)(2J’+1){ , }<mR'r'||TL||mRr>b<f”>(pn|Rr)bg‘,’;?(pnm'r')
orLjpipRIR 1’ R R

(J's[T N9 =
QpQn)

1

+

2jp
2 ( 1)R+J +ip*in
Q(p)ﬂ(n) Al Ljpj iR 2L+

\,(2| +1)(21" +1)(2)+ 1)(2)" + 1){ IJ Jl }

o in | } ) - 2l 1
X . bS.”(pnIRNb;, D (pnIR'T') + > (= Rt
’ Pp
{I L Jp Q(D)Q(mm'Ljpjn,jnRr 2L+1
XV(21+ 1)(21" +1)(23 + 1)(2 + 1) M t. 0 (pnIRNBY (P IR'r )
' R 11 L gy [Tt (PRRDDy (P
1 o 2t L J J)ip in |
S (CpRI d(zl+1)(2|’+1><23+1)(2J’+1){ / HJ? U }
Qe e 2L+1 RI 1IN L
o s 2+
X (= Dttty (”)(pnIRr)bSTQ(pnIR’r’) + S (= DR HptintH An ¥
Q(p)ﬂ(n) Al ’Ljpjn’jnRr 2L+1
/ ’ , L J J in jp | irtin L (o) (0-) ne'e!
X A2+ 121" +1)(2]+ 1)(2)" + 1) R I | oL (= DIt by (pnIRDbY S (p'IR'r ).
n!

(C6)
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