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The Kerman-Klein-Dönau-Frauendorf(KKDF) model is a linearized version of the nonlinear Kerman-Klein
(equations of motion) formulation of the nuclear many-body problem. In practice, it is a generalization of the
standard core-particle coupling model that, like the latter, provides a description of the spectroscopy of odd
nuclei in terms of the corresponding properties of neighboring even nuclei and of single-particle properties,
which are the input parameters of the model. A divers sample of recent applications attests to the usefulness of
the model. In this paper, we first present a concise general review of the fundamental equations and properties
of the KKDF model. We then derive a corresponding formalism for odd-odd nuclei with proton-neutron
numbersZ,Nd that relates their properties to those of the four neighboring even-even nucleisZ+1,N+1d, sZ
−1,N+1d, sZ+1,N−1d, and sZ−1,N−1d, all of which are required if one is to include both multipole and
pairing forces. We treat these equations in two ways. In the first, we make essential use of the solutions of the
neighboring odd nucleus problem, as obtained by the KKDF method. In the second, we relate the properties of
the odd-odd nucleus directly to those of the even-even nuclei. For both choices, we derive equations of motion,
normalization conditions, and an expression for transition amplitudes. We also resolve the problem of choosing
the subspace of physical solutions that arises in an equation of motion approach that includes pairing
interactions.
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I. INTRODUCTION

The Kerman-Klein-Dönau-Frauendorf(KKDF) model for
odd nuclei was introduced and applied[1–6] as a semiphe-
nomenological approximation to the Kerman-Klein(KK )
self-consistent formulation of the equation of motion ap-
proach to nuclear collective motion[7–11]. As such it gen-
eralizes phenomenological core-particle coupling models, to
which it can be shown to reduce in various limits[12]. The
past decade has witnessed further development of the theory
and additional applications[13–21] including, for example, a
suggested solution of the Coriolis attenuation problem
[17,18].

The main purpose of this paper is to show that a formal-
ism of the KKDF type, at the same level of completeness as
for odd nuclei, can be constructed for odd-odd nuclei. The
first important step in this direction has already been made
by Starostaet al.who have applied a restricted version of the
formalism to the phenomenon of chirality in odd-odd triaxial
nuclei [22]. The restriction is the omission of pairing inter-
actions. When the latter are included, we face, among other
difficulties, the problem that the manifold of solutions is four
times the size of the manifold of physical solutions. More

recently Koikeet al. [23] have applied an approximate form
of the formalism developed in Sec. III.

As a preliminary step, in Sec. II, we review the KKDF
program for odd nuclei. We do this in a form which is both
more general and more complete than can be found in our
previously published work, and which sets the stage for the
work on odd-odd nuclei that follows. It is more general in
the sense that the equations are not restricted to deformed
nuclei. It is more complete in the sense that in our published
work, we have described up to three different methods for
choosing the physical subspace of solutions, while here we
discuss and compare them trying to indicate the most suit-
able one.

In Sec. III, we present the first of the two methods that
can be used for odd-odd nuclei. We refer to this as the se-
quential method in that it solves the problem by two succes-
sive applications of the KKDF approach to odd nuclei, uti-
lizing the solutions for neighboring odd nuclei to derive
equations for an odd-odd nucleus relative to its neighboring
odd nuclei, so that the method involves only single-particle
coefficients of fractional parentage(CFP). In Sec. IV, in an
approach that treats the pair of odd particles symmetrically,
we derive a set of eigenvalue equations and attendant or-
thonormalization conditions for two-particle(proton-
neutron) coefficients of fractional parentage. These ampli-
tudes relate the given odd-odd nucleus to any of four
neighboring even nuclei. For both approaches, we solve the
problem of choosing the physical subspace of solutions. Fi-
nally we derive for each case formulas for single-particle
transition matrix elements that clearly separate collective and
single-particle contributions.
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II. REVIEW OF MODEL FOR ODD NUCLEI

A. Equations of motion

In this section we shall derive a version of the KK equa-
tions based on the Hamiltonian(1) given below. These equa-
tions, when taken literally, define a nonlinear problem for the
self-consistent study of the properties of an odd nucleus and
of its immediate even neighbors. However, the version of the
theory developed here, referred to as the KKDF model, has a
more modest goal. This goal is achieved by making such
further approximations as to reduce the problem to a linear
eigenvalue problem for the properties of odd nuclei, assum-
ing the required properties of the neighboring even nuclei to
be known. This can be done only if the Hamiltonian can be
chosen of sufficiently simple form such that the matrix ele-
ments of its ingredient multipole and pairing operators can
be related to observed properties of the even neighbors. Even
with such simplification, the resulting theory generalizes pre-
vious core-particle coupling models.

We start with a shell-model Hamiltonian of the form

H = o
a

haaa
†aa +

1

2
Fagdbaa

†agab
†ad +

1

2
Gabgdaa

†ab
†adag

= o
a

haaa
†aa +

1

2 o
abcd

o
LML

FacdbsLdBLML

† sacdBLML
sdbd

+
1

2 o
abcd

o
LML

GabcdsLdALML

† sabdALML
scdd. s1d

Hereha are the spherical single-particle energies referred to
the nearest closed shell,a refers to the standard set of single-
particle quantum numbers, including in particular the pair
s ja,mad, anda refers to the same set withma omitted. The
charge conservation requirement means that only the matrix
elements of interactionsF andG which fulfill the condition

qa + qb = qc + qd, s2d

whereqa is the electric charge of a nucleon with the set of
quantum numbersa, do not vanish and enter in the Hamil-
tonian of Eq.s1d. In the KKDF model we assume addition-
ally two more restrictive conditions for the interaction matrix
elements, namely,s1d the charge exchange interactions are
excluded, i.e.,qa=qc andqb=qd for nonvanishing matrix el-
ementsFagdb; s2d only the pairs of like nucleons are corre-
lated, i.e.,qa=qb and qc=qd for nonvanishing matrix ele-
mentsGabgd. BLML

† is the particle-hole multipole operator,

BLML

† sabd ; o
mamb

sbs jamajb − mbuLMLdaa
†ab

= s− 1d ja+jb−ML+1BL−ML
sbad s3d

andALML

† is the particle-particle multipole operator,

ALML

† sabd ; o
mamb

s jamajbmbuLMLdaa
†ab

† , s4d

where s j1m1j2m2u jmd is a Clebsch-Gordon coefficient,
sa=s−1d ja−ma. The coefficientsF are the particle-hole matrix
elements,

FacdbsLd ; o
m8s

sgsbs jamajc − mcuLMLd

3 s jdmdjb − mbuLMLdFagdb s5d

andG the particle-particle matrix elements,

GabcdsLd ; o
m8s

s jamajbmbuLMLds jcmcjdmduLMLdGabgd.

s6d

Assuming the matricesF andG are real, we have

FacdbsLd = FdbacsLd, s7d

GacdbsLd = GdbacsLd

= s− 1d ja+jc−L+1Gcadb= s− 1d jb+jd−L+1Gacbd. s8d

The task is to obtain equations for the states and energies
of an odd nucleus assuming that properties of immediately
neighboring even nuclei are known. The states of the odd
nucleus(particle numberA) are designated below asuJmnl,
where n denotes all quantum numbers besides the angular
momentumJ and its projectionm. The states of the neigh-
boring even nuclei with particle numberssA±1d are written,
in a parallel notation, asuIMnsA±1dl. The corresponding ei-
genvalues areEJn andEIn

sA±1d, respectively. We first obtain the
operator equations of motion(EOM), bar indicating reversal
of the sign of the single-particle magnetic quantum number,

faā,Hg = ha8aā + o
bdg

o
LM

sḡs ja − majcmcuLMd

3 F̄acdbsLdaḡBLMsdbd + o
bdg

o
LM

s ja − majcmcuLMd

3 GacbdsLdag
†ALMsbdd, s9d

faa
†,Hg = − ha9aa

† − o
bdg

o
LM

sgs jamajc − mcuLMd

3 ag
†F̄acdbsLdBLM

† sdbd − o
bdg

o
LM

s jamajc − mcuLMd

3 aḡGacbdsLdALM
† sbdd. s10d

Here

F̄acdb=
1

2
fFacdb+ s− 1d ja+jc+jb+jdFbdcag = Facdb, s11d

ha8 = ha −
1

2o
Ljc

FcacasLd
2L + 1

2ja + 1
, s12d

ha9 = ha + o
Ljc

2L + 1

2ja + 1
S2Gacac+

1

2
FacacD . s13d

In consequence of Eq.s11d, we may replaceF̄ by F.
The appearance of different single-particle energies in the

two equations may be traced to the rearrangement of opera-
tors required to have the EOM in a form necessary to achieve
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our aims. This requires, as we shall see below, that the mul-
tipole and pairing operators occur on the extreme right. The
matrix elements of these equations provide expressions that
determine the single-particle CFP,

VJmnsaIMnd = kJmnuaāuIMnsA + 1dl, s14d

UJmnsaIMnd = kJmnuaa
†uIMnsA − 1dl. s15d

To find equations for these quantities, we form the necessary
matrix elements of the EOM and evaluate the interaction
terms by inserting the completeness relation for the states of
the appropriate even nuclei between the single-fermion op-
erators and the multipole or pair operators.

In terms of a convenient and physically meaningful set of
energy differences and sets of multipole fields and pairing
fields defined below, we thereby obtain generalized matrix
equations of the Hartree-Bogoliubov form:

sEJn − ea8 + vIn
sA+1ddVJmnsaIMnd

= GsA+1dsāIMnuḡI8M8n8dVJmnsgI8M8n8d

+ DsāIMnugI8M8n8dUJmnsgI8M8n8d, s16d

sEJn + ea9 + vIn
sA−1ddUJmnsaIMnd

= − GsA−1d†saIMnugI8M8n8dUJmnsgI8M8n8d

− D†saIMnuḡI8M8n8dVJmnsgI8M8n8d. s17d

Here

EJn = − EJn +
1

2
sE0

sA+1d + E0
sA−1dd, s18d

ea8 = ha8 − lA, s19d

lA =
1

2
sE0

sA+1d − E0
sA−1dd, s20d

vIn
sA±1d = EIn

sA±1d − E0
sA±1d, s21d

and the matrices of the single-particle and pairing potentials
read

GsA±1dsaIMnugI8M8n8d = o
L

o
bd

sgs jamajc − mcuLMLdFacdbsLdkI8M8n8sA ± 1duBLML
sdbduIMnsA ± 1dl, s22d

DsaIMnugI8M8n8d = o
L

o
bd

s jamajcmcuLMLdGacdbsLdkI8M8n8sA − 1duALML
sdbduIMnsA + 1dl. s23d

FurthermoreE0
sA±1d refer to the ground-state energies of the

neighboring even nuclei, the matrix elements ofG† are de-
rived from those of Eq.s22d simply by the replacement of
the operatorB by B†, and the matrix elements ofD† are
similarly derived from those ofD by the replacement ofA by
A† together with the interchangeA±1→A71. Finally ea9 is
obtained fromea8 by the replacement ofha8 by ha9.

To specify fully solutions of the equations given above,
we must develop orthonormalization conditions for the CFP
that fix their scale. Orthogonality conditions can be derived
from the equations of motion themselves. A normalization
condition, on the other hand, is obtained by taking a suitable
matrix element of the summed anticommutator,

o
a

haa,aa
†j = V = o

ja

s2ja + 1d. s24d

We thus find

1

V
o

aIMn

fuUJmnsa;IMndu2 + uVJmnsa;IMndu2g = 1. s25d

B. Equations for reduced matrix elements

To apply the Wigner-Eckart theorem to obtain the EOM
for the reduced matrix elements, we utilize the following
definitions for the latter(which suppress nucleon number):

VJmnsaIMnd = s− 1d ja−masIMj amauJmdvJnsaInd, s26d

UJmnsaIMnd = sIMj amauJmduJnsaInd, s27d

kI8M8n8uBLML
sbb8duIMnl = s− 1dL−MLsIML − MLuI8M8d

3fI8n8iBLsbb8diIng, s28d

kI8M8n8uALML
sbb8duIMnl = s− 1dL−MLsIML − MLuI8M8d

3fI8n8iALsbb8diIng, s29d

kI8M8n8uBLML

† sbb8duIMnl = sIMLMLuI8M8dfI8n8iBL
†sbb8diIng,

s30d
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kI8M8n8uALML

† sbb8duIMnl = sIMLMLuI8M8dfI8n8iAL
†sbb8diIng.

s31d

Assuming the reality of the multipole and pairing matrix
elements, we also have

kI8M8n8uBLMLsbb8duIMnl = sI8M8LMLuIM dfIniBL
†sbb8diI8n8g,

s32d

kI8M8n8uALML
sbb8duIMnl = sI8M8LMLuIM dfIniAL

†sbb8diI8n8g.

s33d

With the help of these definitions, we can transform Eqs.
s16d and s17d into the forms

EJnvJnsaInd = sea8 − vn
sA+1ddvJnsaInd

+ o
a8I8n8

GJ
sA+1dsaInua8I8n8dv jnsa8I8n8d

+ o
a8I8n8

DJsaInua8I8n8duJnsa8I8n8d, s34d

EJnuJnsaInd = − sea9 + vn
sA−1dduJnsaInd

− o
a8I8n8

GJ
†sA−1dsaInua8I8n8dujnsa8I8n8d

+ o
a8I8n8

DJ
†saInua8I8n8dvJnsa8I8n8d, s35d

where the corresponding reduced matrix elements of the
single-particle and pairing potentials,GJ

sA±1dsaInua8I8n8d and
DJsaInua8I8n8d, respectively, are expressed by formulas of
Eqs.sA1d–sA4d in Appendix A 1.

The normalization condition(25) becomes

o
aIn

fuvJnsaIndu2 + uuJnsaIndu2g = V. s36d

The equations derived above define a linear eigenvalue
problem, provided we supply from outside the single-particle
energiesha, the reduced matrix elements of the included
multipole and pairing forces, and the excitation energies of
the neighboring even nuclei. In the underlying(self-
consistent) theory these quantities, other than the single-
particle energies, can themselves be expressed in terms of the
CFPv and u. In practice, characteristics of even nuclei ex-
pressed in terms of the reduced matrix elements of single-
particle operators,

FLML
= o

ac

facsLdBLML
sacd s37d

and pair transfer operators,

GLML
= o

ab

gabsLdALML

† sabd s38d

are available rather than the reduced matrix elements of two-
body interactions. To make use of them in Eqs.s34d ands35d
it is convenient to present the interactions appearing in Eqs.

sA1d–sA4d as a sum of separable interactions of the form

FacdbsLd = − kLsqaqbdfacsLdfdbsLd, s39d

GabcdsLd = − gLsqadgabsLdgcdsLd. s40d

Then the interactions are parametrized by a few strengthskL
andgL which can be either fitted to the experimental data or
estimated theoretically.

C. Physical solutions

The equations that we have derived have the form of gen-
eralized Hartree-Bogoliubov(HB) equations. We summarize
the content of Eqs.(34) and (35) in the condensed form1

HcJn = EJncJn, s41d

H = H̄ − v̄, s42d

where

c = Sv

u
D , s43d

H̄ = Se8 + GsA+1d D

D† − e9 − G†sA−1d D , s44d

v̄ = SvsA+1d 0

0 vsA−1d D . s45d

The HB structure of these equations implies that only half
of the solutions refer to physical states. In the standard
ground-state problem, the solutions divide into two sets with
reversed energies. These with the positive energies represent
the physical solutions and a generalization of the notion of
quasiparticles. The negative energy or the quasihole solu-
tions are spurious. The solutions of Eq.(41) do not divide so
neatly. The resolution of this dilemma starts by identifying a
piece of the HamiltonianH that has such a simple property
and then initially to “turn off” the remainder of the operator.
This is done with the aid of the orthogonal matrixC that
interchanges particles and holes,

C = S0 − 1

1 0
D s46d

and its transposeC̃, and by defining the operator

Ho =
1

2
sH − CHC̃d =1 sHod11

1

2
sD + D†d

1

2
sD + D†d − sHod11

2 , s47d

1The core excitation energy matrixv̄ is usually not separated from
the HamiltonianH and we shall not do it in the following. HereH
is decomposed into the odd-particle partH̄ and the core excitation
energy matrixv̄ in order to have an analogy qwith a similar decom-
position for the odd-odd nucleus, Eqs.(109) and (133) below.
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sHod11 =
1

2
se8 + e9d +

1

2
sGsA+1d + G†sA−1dd −

1

2
svsA+1d − vsA−1dd.

s48d

Because

CHoC̃ = − Ho, s49d

if C is an eigenstate ofHo with eigenvalueE, thenCC is an
eigenstate with eigenvalue −E. As in the simple case, the
solutions with positive eigenvalues are the physical solutions
for our limiting case. Again, these solutions represent quasi-
particles which are now different for different states of the
even-even cores.

Next we turn on the remainder of the Hamiltonian,
namely, the even part

He =
1

2
sH + CHC̃d, s50d

our aim being to keep track of the physical solutions. In the
applications carried out to date several methods have been
used for carrying out this program. The diagonalization of
He within the subspace of physicalspositive energyd states of
Ho was performed originally when solving the modelf1,3g.
However, this can lead to a bad approximation of physical
solutions ofH as obtained by diagonalization within trun-
cated basis, since matrix elements ofHe between physical
and unphysical solutions need not be small. Therefore, a bet-
ter procedure seemed to consider an auxiliary Hamiltonian

Hsgd = Ho + gHe s51d

and to turn onHe adiabatically changingg slowly from 0 to
1 f13g. Knowing the physical solutions forg=0 one follows
them for 0,gø1 by using a wave function overlap argu-
ment; namely, the projection operator onto an eigenstate of
Hsgd, cJnsgd, for a giveng can in the condensed form be
written as

RJnsgd =
1

V
cJnsgdcJn

† sgd. s52d

Then, for a new value of the parameter,g+dg, close tog,
the wave function overlapcJn8

† sg+dgdRJnsgdcJn8sg+dgd
should be close toV, the norm of wave function squared for
n8=n, the right continuation of stateJn at point g+dg and
close to zero for other statesn8Þn. This procedure is based
on the assumption that the physical wave functions change
slowly during such a procedure. The above assumption is
valid when the levels are far apart. However, it fails when
two levels approach and, possibly, cross each other.

To settle the problem of crossing the no-crossing theorem
[24–26] has been called[14,20]. According to the theorem
the levels belonging to the equivalent irreducible representa-
tions of a symmetry group of a one-parameter Hamiltonian
Hsgd most likely do not cross each other for any value ofg.
The reasoning behind the theorem is outlined below. When
the states in question belong to two nonequivalent irreduc-
ible representations, respectively, the corresponding nondi-

agonal matrix element of the Hamiltonian vanishes for an
arbitraryg. In such a case there is a single equation for the
value of g at the crossing point of the levels involved. The
equation can, in general, be easily fulfilled, however, not
necessary forg within the range in question. The crossing is
thus possible. However, when the representations are equiva-
lent the matrix element is, in general, not equal to zero and
then we have two equations forg to be the crossing point.
The equations are most likely inconsistent with each other
and the crossing point does not exist. Besides, the existence
of the crossing point would mean an additional symmetry of
the Hamiltonian at some value ofg, which is not expected.
Coming back to the Hamiltonian of Eq.(55), we expect that
the levels of the same given angular momentum never cross
each other and all crossings are avoided. Possible crossings
of levels with different angular momenta are not of interest
for current study, since we solve the problem separately for
each angular momentum. In the case of no crossings it thus
suffices to diagonalize the HamiltonianHe using the com-
plete set of states(physical and spurious) generated byHo
and selecting the largest half of the eigenvalues as the physi-
cal solutions[16]. Unfortunately, this need not be always the
case because when two levels approach each other close
enough no matter if the crossing is real or avoided, the two
wave functions in question interchange their character after
the closest approach is passed. Therefore, instead of selecting
the largest half of the eigenvalues we rather project all wave
functions cJnsg=1d onto the physical subspace of vectors
cJnsg=0d with EJnsg=0d.0 and select the half of them with
the largest overlaps. The corresponding projection operator is

RJsg = 0d = o
n,EJn.0

RJnsg = 0d. s53d

In the ideal case the corresponding overlap of a physical
wave function isV and that of a spurious one is 0. It may
happen in practice that some states are half-and-half mixtures
of the physical and spurious ones which means that those are
reproduced badly within the present model. Figure 1 shows
an exemplary level scheme of HamiltonianHsgd. From the
above discussion the physical and spurious levels can be
identified.

This brings us to another issue that is both technical and
physical. The simplest application of the KKDF method is to
cases where there is well established band structure, either
rotational or vibrational, of the same type for both neighbor-
ing even nuclei. The problem is then to classify the states of
the odd nucleus into bands. For this case, the study initially
of Ho can be useful. This is because for the states belonging
to the same band, states of differentJ are practically degen-
erate, because of the smallness ofvsA+1d−vsA−1d. This was
the method used in our early work[13–16]. For more com-
plicated situations, we can identify different band members
by the structure of the states, in the sense that the expansion
coefficients in terms of a given basis of states vary slowly
with angular momentum[20]. Consistent with the identifica-
tion by state vector, we should equally be able to associate
states into bands by calculating transition rates of a suitable
collective operator, usually the electric quadrupole operator.
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D. Matrix elements of transition operators

We complete the exposition of the general formalism for
present purposes by deriving formulas for transition ampli-
tudes of a general(charge-conserving) one-body operator.
We choose this operator to be a tensor of rankL, TLML

, that
we write in the form

TLML
= o

bg

tbgab
†ag. s54d

The notation is such that the quantitiestab include a product
of matrix elements of single-particle operators and of asso-
ciated coupling strengthsscharges, gyromagnetic ratios, etc.d
We wish to calculate the matrix elementkJ8m8n8uTLML

uJmnl.
To carry through the calculation, we substitute for the ket a
formally exact expression in terms of the action of single-
particle operators on the states of the core2

uJmnl =
1

V
o

aIMn

fUJmnsaIMndaa
†uIMnI l

+ VJmnsaIMndaāuIMnlg, s55d

where an underline identifies the lighter of the two cores and
an overline the heavier onef5,6g. That Eq.s59d represents an
orthonormal set can be proved by first showing that the or-
thogonality of different states follows from the equations of
motion s16d and s17d and then showing that the normaliza-
tion follows from the CFP normalization conditions25d. By
using the commutation relations and completeness, this leads
to the following expression for the transition element:

kJ8m8n8uTLML
uJmnl

=
1

V
o

aIMnI8M8n8

fUJ8m8n8saI8M8n8dUJmnsaIMnd

3kI8M8n8I uTLML
uIMnI l + VJ8m8n8saI8M8n8d

3VJmnsaIMndkI8M8n8uTLML
uIMnlg

+
1

V
o

a,a8,IMn

taa8fUJ8m8n8saIMndUJmnsa8IMnd

− VJmnsāIMndVJ8m8n8sā8IMndg. s56d

We thus have a clear separation into collective and single-
particle contributions. The corresponding formula for re-
duced matrix elements ofTL is presented in Appendix C 1,
Eq. sC4d.

III. ODD-ODD NUCLEI

A. Equations of motion

We turn to the problem of deriving a general core-particle
coupling model for odd-odd nuclei analogous to the model
derived for odd nuclei in Sec. II. Given an odd-odd nucleus
with Z protons andN neutrons, we shall relate its properties
to those of four neighboring even nuclei with proton-neutron
numbers sZ+1,N+1d, sZ+1,N−1d, sZ−1,N+1d, and sZ
−1,N−1d, respectively. In the following development, we
shall continue to use greek letters for a general single-
particle level, but shall usep, p8, etc., to indicate proton
levels andn, n8, etc., to indicate neutron levels. To relate the
properties of the odd-odd nucleus to its four even-even
neighbors, we need the equations of motion for four pairs of
operators that we present for initial convenience in an un-
coupled form:

fap̄an̄,Hg = shp8 + hn8dap̄an̄ + Fp̄p̄8bb8ap̄8an̄sab8
† abd

+ Fn̄n̄8bb8ap̄an̄8sab8
† abd + Gp̄p8p9p-ap8

† an̄sap-ap9d

+ Gn̄n8n9n-ap̄an8
† san-an9d − Fp̄p̄8n̄8n̄ap̄8an̄8, s57d

fap̄an
†,Hg = shp8 − hn9dap̄an

† + Fp̄p̄8bb8ap̄8an
†sab8

† abd

− Fnn8bb8ap̄an8
† sab

†ab8d + Gp̄p8p9p-ap8
† an

†sap-ap9d

− Gnn̄8n9n-ap̄an̄8san9
† an-

† d + Fp̄p̄8nn8ap̄8an8
† , s58d

fap
†an̄,Hg = s− hp9 + hn8dap

†an̄ − Fpp8bb8ap8
† ansab

†ab8d

+ Fn̄n̄8bb8ap
†an̄8sab8

† abd − Gpp̄8p9p-ap̄8an̄sap9
† ap-

† d

+ Gn̄n8n9n-ap
†an8

† san-an9d + Fpp8n̄n̄8ap8
† an̄8, s59d

2This expression was first called to the attention of one of the
authors(A.K.) in 1965 by Do Dang and was later used by him in his
unpublished lectures on nuclear theory. It reappears in the work of
Dönau and Frauendorf[3,5].

FIG. 1. An exemplary scheme of the energy levels of Hamil-
tonianHsgd as functions ofg. At g=0 the positive energy level b
and all higher levels are physical(quasiparticle) whereas the all
negative energy ones starting from a down are spurious(quasihole).
At g=1 there is no doubt that the physical levels areC, D, E, F, G.
An estimation of overlaps should determine which of levelsA andB
is the physical level. The diagonalization ofHsg=1d within the
basis of only the quasiparticle states would certainly give the lowest
physical state close toA rather than toB.
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fap
†an

†,Hg = s− hp9 − hn9dap
†an

†Fpp8bb8ap8
† an

†sab
†ab8d

− Fnn8bb8ap
†an8

† sab
†ab8d − Gpp̄8p9p-ap̄8an

†sap9
† ap-

† d

− Gnn̄8n9n-ap
†an̄8san9

† an-
† d − Fpp8n8nap8

† an8
† . s60d

Notice that we have not included neutron-proton pairing
interactions. We shall study matrix elements of these equa-
tions between the stateskJMJsu on the left, an included state
of the odd-odd nucleussZ,Nd, and the appropriate one of the
statesustRMRrl of the even nucleussZs1,Nt1d, s=±, t
=±. We use the following notation for the matrix elements in
question which are the two-particle CFP:

kJMJsuap̄an̄u+ + IMIrl = CJMJs
s++d spnIMIrd, s61d

kJMJsuap̄an
†u+ − IMIrl = CJMJs

s+−d spnIMIrd, s62d

kJMJsuap
†an̄u− + IMIrl = CJMJs

s−+d spnIMIrd, s63d

kJMJsuap
†an

†u− − IMIrl = CJMJs
s−−d spnIMIrd. s64d

To shorten the notation we introduce a two-component op-
eratorap

s for protons,

ap
s =Hap̄s− 1d jp−mp for s = + ,

ap
† for s = − ,

J s65d

and a corresponding pair,an
t, t=±, for neutrons. Then Eqs.

s61d–s64d resolve themselves into formula

CJMJs
sstd spnRMRrd = kJMJsuap

san
tustRMRrl. s66d

The next step is to write out equations for the amplitudes
CJMJs

sstd spnIMIrd. To fix additional notation, which will be un-
derstood immediately to be a modified form of the notation
of Sec. II, we exhibit just one of these equationssusing the
summation conventiond,

s− EJs+ E++IrdCJMJs
s++d spnIMIrd

= shp8 + hn8dCJMJs
s++d spnIMIrd

+ Gs++dsp̄IMIr up̄8I8MI8r8dCJMJs
s++d sp8nI8MI8r8d

+ Ds+dsp̄IMIr up8I8MI8r8dCJMJs
s−+d sp8nI8MI8r8d

+ Gs++dsn̄IMIr un̄8I8MI8r8dCJMJs
s++d spn8I8MI8r8d

+ Ds+dsn̄IMIr un8I8MI8r8dCJMJs
s+−d spn8I8MI8r8d

− Fp̄p̄8n̄8n̄CJMJs
s++d sp8n8IMIrd, s67d

where the single-particle and pairing potentials

GsstdsaIMIr ua8I8MI8r8d = Faa8bb8kstIMIr uab8
† abustI8MI8r8l

s68d

and

DstdspIMIr up8I8MI8r8d = Gpp8p9p-k+ tIMIr uap-ap9u− tI8MI8r8l

s69d

are essentially the same as those of Eqs.s22d and s23d but
now for different even cores.

B. Matrix elements of transition operators

It still remains the problem of deriving a general formula
for the transition matrix element,kJ8MJ8s8uTLML

uJMJsl of a
one-body operator,TLML

in a manner analogous to the calcu-
lation carried out in Sec. II D. For this purpose, we utilize a
formula for the stateuJMJsl [compare Eq.(55)]

uJMJsl =
1

VspdVsnd
o

stpnRMRr

CJMJs
sstd spnRMRrdap

san
tustRMRrl.

s70d

Equations70d describes a set of orthonormal states, as fol-
lows from the equations of motion and the normalization
condition s108d. We thus derive the formula

kJ8MJ8s8uTLML
uJMJsl =

1

VspdVsnd
o

stpnRMRrR8MR8r8

CJMJs
sstd spnRMRrdCJ8MJ8s8

sstd spnR8MR8r8dkstR8MR8r8uTLML
ustRMRrl

+
1

VspdVsnd
o

tpp8nRMRr

CJMJs
s−td spnRMRrdCJ8MJ8s8

s−td sp8nRMRrdtp8p +
1

VspdVsnd
o

spnn8RMRr

CJMJs
ss−d spnRMRrd

3CJ8MJ8s8
ss−d spn8RMRrdtn8n −

1

VspdVsnd
o

tpp8nRMRr

CJMJs
s+td spnRMRrdCJ8MJ8s8

s+td sp8nRMRrd

3tp̄p̄8s− 1d jp−mp+jp8−mp8 −
1

VspdVsnd
o

spnn8RMRr

CJMJs
ss+d spnRMRrdCJ8MJ8s8

ss+d spn8RMRrdtn̄n̄8s− 1d jn−mn+jn8−mn8,

s71d
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in which we have again a clear separation into collective part
of the four even cores, and the single-proton and single-
neutron contributions coming from the odd particles.

For the further development of the formalism, in particu-
lar the reduction to equations for reduced matrix elements,
there are, however, several choices which are to be discussed
in the two following sections. First, we shall develop a
method that makes maximal use of the formalism for odd
nuclei, and, as a consequence involves only single-particle
CFP. This method, which treats the neutron and proton asym-
metrically, we shall refer to as sequential coupling. Then, we
shall develop an alternative, referred to as symmetrical cou-
pling, that bypasses any use of the results for odd nuclei.

IV. SEQUENTIAL COUPLING OF ODD NUCLEONS

A. Equations of motion

By introducing a complete set of states of the appropriate
odd nucleus between the neutron and proton single-particle
operators in matrix elements of Eqs.(61)–(64), we write

CJMJs
s++d spnIMIrd = o

JnMnrn

XJMJs
spJnMnrndVJNMnrn

s+d snIMIrd,

s72d

CJMJs
s+−d spnIMIrd = o

JnMnrn

XJMJs
spJnMnrndUJNMnrn

s+d snIMIrd,

s73d

CJMJs
s−+d spnIMIrd = o

JnMnrn

YJMJs
spJnMnrndVJNMnrn

s−d snIMIrd,

s74d

CJMJs
s−−d spnIMIrd = o

JnMnrn

YJMJs
spJnMnrndUJNMnrn

s−d sNIMIrd.

s75d

Here

VJnMnrn

ssd snIMIrd = ksJnMnrnuan̄us + IMIrl, s76d

UJnMnrn

ssd snIMIrd = ksJnMnrnuan̄us − IMIrl s77d

are two sets of CFP amplitudes for odd neutron nuclei, which
can be calculated using the formalism for odd nuclei devel-
oped in Sec. II. On the other hand the amplitudes

XJMJs
spJnMnrnd = kJMJsuap̄u+ JnMnrnl, s78d

YJMJs
spJnMnrnd = kJMJsuap

†u− JnMnrnl s79d

are single-particle CFP relating odd and odd-odd nuclei. The
aim of the present coupling scheme is to obtain equations to
determine the amplitudesX andY. Before proceeding along
these lines, we remark that there is a related sequential
scheme obtained by starting with two-particle amplitudes in
which the order of the single-particle operators is inter-
changed.

Into Eq. (67) and its three partners, we substitute Eqs.
(72)–(75) and recognize that the result can be simplified by
the use of equations such as

sEJnrn
− E++Ir − hn8dVJnMnrN

s+d snIMIrd

= Gs++dsn̄IMIr un̄8I8MI8r8dVJnMnrn

s+d sn8I8MI8r8d

+ Ds+dsn̄IMIr un8I8MI8r8dUJnM−nrn
s+d sn8I8MI8r8d

s80d

and its partners. The resulting equation forCs++d is then
combined with the corresponding equation forCs+−d, con-
tracting the first with aVs+d factor and the second with aUs+d

factor so as to permit use of the normalization conditions25d.
We carry through a corresponding procedure for the pair of
amplitudesCs−+d andCs−−d.

We thus obtain the pair of equations

s− EJs+ E+Jnrn
dXJMJs

spJnMnrnd

= hp8XJMJs
spJnMnrnd

+ Gs+dsp̄JnMnrnup̄8Jn8Mn8rn8dXJMJs
sp8Jn8Mn8rn8d

+ Dsp̄JnMnrnup8Jn8Mn8rn8dYJMJs
sp8Jn8Mn8rn8d

+ Vs+dsp̄JnMnrnup̄8Jn8Mn8rn8dXJMJs
sp8Jn8Mn8rn8d,

s81d

s− EJs+ E−Jnrn
dYJMJs

spJnMnrnd

= − hp9YJMJs
spJnMnrnd

− G†s−dspJnMnrnup8Jn8Mn8rn8dYJMJs
sp8Jn8Mn8rn8d

− D†spJnMnrnup̄8Jn8Mn8rn8dXJMJs
sp8Jn8Mn8rn8d

+ Vs−dspJnMnrnup8Jn8Mn8rn8dYJMJs
sp8Jn8Mn8rn8d,

s82d

where the effective single-particle and pairing potentials for
the proton on top of odd nuclei,Gs±d andD, and the effective
proton-neutron interactionVs±d depend on the single-neutron
CFP, Vs±d and Us±d. The corresponding formulas are pre-
sented in Appendix A, Eqs.sA5d–sA10d.

The final goal of this section is to obtain equations of
motion for the reduced matrix elements. For this purpose the
only definitions needed to supplement Eqs.(26)–(31) are
those for the reduced CFP relating the odd to the odd-odd
nuclei,

XJMJs
spJnMnrnd = s− 1d jp−mpsJnMnjpmpuJMJdxJss j pJnrnd,

s83d

YJMJs
spJnMnrnd = sJnMnjpmpuJMJdhJss j pJnrnd. s84d

It is then a straightforward exercise in angular momentum
algebra to derive the equations
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s− EJs+ E+Jnrn
dxJss j pJnrnd

= hp8xJss j pJnrnd + GJ
s+ds j pJnrnu j p8Jn8rn8dxJss j p8Jn8rn8d

+ DJs j pJnrnu j p8Jn8rn8dhJss j p8Jn8rn8d

+ VJ
s+ds j pJnrnu j p8Jn8rn8dxJss j p8Jn8rn8d, s85d

s− EJs+ E−Jnrn
dhJss j pJnrnd

= − hp9hJss j pJnrnd − GJ
†s−ds j pJnrnu j p8Jn8rn8dhJss j p8Jn8rn8d

+ DJ
†s j pJnrnu j p8Jn8rn8dxJss j p8Jn8rn8d

+ VJ
s−ds j pJnrnu j p8Jn8rn8dhJss j p8Jn8rn8d, s86d

where the reduced matrix elements ofGs±d, D, andVs±d are
given by Eqs.sA11d–sA16d in Appendix A 2.

The normalization condition associated with this formal-
ism is

o
jpJ−nrn

fuxJss j pJnrndu2 + uhJss j pJnrndu2g = Vspd. s87d

B. Physical solutions

The problem of choosing the physical solutions of Eqs.
(85) and (86) can solved by simply repeating the arguments
given in Sec. II C. This is seen immediately if we rearrange
the energies in these equations so that they resemble exactly
the corresponding equations(34) and (35). We thus write

EJsxJss j pJnrnd = sep8 − v+Jnrn
dxJss j pJnrnd

+ GJ
s+ds j pJnrnu j p8Jn8rn8dxJss j p8Jn8rn8d

+ DJs j pJnrnu j p8Jn8rn8dhJss j p8Jn8rn8d

+ VJ
s+ds j pJnrnu j p8Jn8rn8dxJss j p8Jn8rn8d,

s88d

EJshJss j pJnrnd = s− ep9 − v−Jnrn
dhJss j pJnrnd

− GJ
†s−ds j pJnrnu j p8Jn8rn8dhJss j p8Jn8rn8d

+ DJ
†s j pJnrnu j p8Jn8rn8dxJss j p8Jn8rn8d

+ VJ
s−ds j pJnrnu j p8Jn8rn8dhJss j p8Jn8rn8d,

s89d

with

EJs= − EJs+ 1
2sE+ + E−d, s90d

e = h − 1
2sE+ − E−d, s91d

v±Jnrn
= E±Jnrn

− E±. s92d

HereE± are the ground states of the heavier and lighter odd
neutron nuclei, respectively. With these forms one has an
exact parallel to Eqs.s34d and s35d, and thus the arguments
for choosing physical solutions can be repeated without
modification.

As we already mentioned, the procedure is not symmetric
in treatment of the odd proton and the odd neutron. We have
the two separate Hamiltonians for the two odd neutron nuclei
with even proton numbersZ71, respectively. The odd parts
of these Hamiltonians represent the two sets of the corre-
sponding neutron quasiparticles. Then, the single set of pro-
ton quasiparticles is introduced on top of the two odd neu-
tron nuclei. The roles of odd neutron and odd proton can, of
course, be exchanged.

C. Matrix elements of transition operators

The reduced matrix elements for a one-body transition
operator can be calculated from Eq.(71) by substituting de-
compositions of Eqs.(72)–(75) of the two-particle CFP’s,
Csstd, into the single-particle CFP’s,X, Y, Vs±d, andUs±d, and
applying the Wigner-Eckart theorem to these latter ones.
However, the result we want can be read off directly from
Eq. (C4) if we replace, appropriately, the single-particle CFP
v andu by x andh and the reduced matrix elements of the
transition operatorTL between states of even nuclei by the
corresponding matrix elements between states of the appro-
priate odd nuclei. The final result is presented in Appendix C
2, Eq. (C5).

V. FORMALISM FOR SYMMETRICAL TREATMENT
OF ODD NUCLEONS

A. Equations for reduced matrix elements

With the aid of the Wigner-Eckart theorem and suitable
definitions, we proceed to the transformation of these raw
equations forCsstd [Eq. (67) and the three similar ones] to
equations for reduced matrix elements. We couple the prod-
ucts of operatorsap

s andan
t to a given multipolarity:

ap
san

t = o
l

s j pmpjnmnulmdBlm
stspnd, s93d

and define reduced matrix elementsbJs
stspnlRrd,

kJMJsuBlm
stspndustRMRrl = sRMrlmuJMjdbJs

stspnlRrd.

s94d

Here uJMJsl is a state of the odd-odd nucleussZ,Nd and
ustRMRrl is a state of the even nucleussZs1,Nt1d.

In the following, we also require reduced matrix elements
of the multipole and pairing operators, defined as follows:

kstR8MR8r8uBLML
sbb8dustRMRrl

= s− 1dL−MLsRMRL − MLuR8MR8dfR8r8iBL
sstdsbb8diRrg,

s95d

kstR8MR8r8uBLML

† sbb8dustRMRrl

= sRMRLMLuR8MR8dfR8r8iBL
†sstdsbb8diRrg, s96d

ks − R8MR8r8uALMsnn8dus + RMRrl

= s− 1dL−MLsRMRL − MLuR8MR8dfR8r8iAL
ssdsnn8diRrg,

s97d
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ks + R8MR8r8uALM
† snn8dus − RMRrl

= sRMRLMLuR8MR8dfR8r8iAL
†ssdsnn8diRrg, s98d

k− tR8MR8r8uALMspp8du+ tRMRrl

= s− 1dL−MLsRMRL − MLuR8MR8dfR8r8iAL
stdspp8diRrg,

s99d

k+ tR8MR8r8uALM
† spp8du− tRMRrl

= sRMRLMLuR8MR8dfR8r8iAL
†stdspp8diRrg. s100d

In the final equations of motion given below, we also intro-
duce, in as close analogy as possible with our procedure for
the odd-nucleus case, various combinations of energies. The
energies of the odd states will naturally be specified byEJs,
those of the four neighboring even nuclei byEstRr, and the
ground states of the latter byEst. We then introduce the
following differences:

EJs= − EJs+
1

4
sE++ + E+− + E−+ + E−−d,

vstRr = EstRr − Est, s101d

en8 = hn8 −
1

4
sE++ − E+−d −

1

8
sE++ − E−−d,

ep8 = hp8 −
1

4
sE++ − E−+d −

1

8
sE++ − E−−d, s102d

en9 = hn9 −
3

4
sE++ − E+−d +

1

8
sE++ − E−−d,

ep9 = hp9 −
3

4
sE++ − E−+d +

1

8
sE++ − E−−d, s103d

en- = hn9 +
1

4
sE−− − E+−d +

1

8
sE−− − E++d,

ep- = hP9 +
1

4
sE−− − E−+d +

1

8
sE−− − E++d. s104d

Starting from Eq.(67) and its three partners we thereby ob-
tain the following equations of motion for the reduced matrix
elements:

EJsbJs
stspnlRrd = o

s8t8p8n8l8R8r8

HsstpnlRrus8t8p8n8l8R8r8d

3bJs
s8t8sp8n8l8R8r8d. s105d

Expressions for the matrix elements of the effective Hamil-
tonian matrixH are given in Appendix B.

To the equations of motion, we add a normalization con-
dition that can be derived from the anticommutation relation

o
pn

hap,ap
†jhan,an

†j = VspdVsnd, s106d

Vspd = o
p

s2j p + 1d. s107d

Rearranging the order of the operators, taking a diagonal
matrix element in the stateuJMJsl, and utilizing complete-
ness and the definitionss93d and s94d, we obtain the ex-
pected result

o
st jpjnlRr

ubJs
sstdspnlRrdu2 = VspdVsnd. s108d

B. Physical solutions

We expect the space of physical solutions to be only a
quarter of the total space of solutions. With a little care, we
can generalize the method used to identify physical solutions
for the case of odd nuclei. If we examine the Hamiltonian
matrix H given by Eqs.(B1)–(B12), we see that it can be
decomposed into a sum

H = Hp + Hn − v̄ + V, s109d

describing in turn an odd-neutron nucleus, an odd-proton
nucleus, a core excitation energy matrix, and a neutron-
proton effective interaction. We initially turn off the last two
terms. Next we define two 434 matrices,Cn andCp,

Cn = SCI 0I

0I CI
D , s110d

Cp = S0I − 1I

1I 0I
D , s111d

where the underlined entries are each 232 matrices and the
matrix CI is the particle-hole conjugation matrix defined in
Eq. s46d. The matricesCp, Cn commute with each other.

We then observe that the averages

H̄p =
1

2
sHp + CnHpC̃nd, s112d

H̄n =
1

2
sHn + CpHnC̃pd s113d

each have a structure more symmetrical than their individual

terms. Thus, the nonvanishing elements ofH̄p aresin a con-
densed notationd

H̄ps+ + u+ +d = H̄ps+ − u+ − d = ep8 +
1

2
sGp

s++d + Gp
s+−dd,

s114d
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H̄ps− + u− +d = H̄ps− − u− − d

= −
1

2
sep9 + ep- + Gp

†s−+d + Gp
†s−−dd, s115d

H̄ps+ + u− +d = H̄ps+ − u− − d =
1

2
sDp

s+d + Dp
s−dd, s116d

H̄ps− + u+ +d = H̄ps− − u+ − d =
1

2
sDp

†s+d + Dp
†s−dd,

s117d

whereasH̄n has the block-diagonal structure,

H̄n = SHIn 0

0 HIn
D , s118d

in terms of 232 matrices, and

HIn =1en8 +
1

2
sGn

s++d + Gn
s+−dd

1

2
sDn

s+d + Dn
s−dd

1

2
sDn

†s+d + Dn
†s−dd −

1

2
sen9 + en- + Gn

†s−+d + Gn
†s−−dd 2 . s119d

We infer from their structure that it is the barred matrices
that form suitable starting points for the antisymmetrization
that was the essential step for identifying physical solutions

for the theory of odd nuclei. We thus define the matricesH̄po

andH̄no,

H̄po =
1

2
sH̄p − CpH̄pC̃pd, s120d

H̄no =
1

2
sH̄n − CnH̄nC̃nd, s121d

which are antisymmetric with respect to the particle-hole
conjugation matricesCp and Cn for protons and neutrons,
respectively,

CpH̄poC̃p = − H̄po, s122d

CnH̄noC̃n = − H̄no. s123d

Notice thatCn commutes withH̄po and Cp commutes with

H̄no, but the two Hamiltonians do not commute with each
other. Because of that these Hamiltonians cannot generate
the separate “average” quasiparticlesquasiholed proton and
neutron states. Instead, the eigenvectors of matrix,

H̄o = H̄no + H̄po s124d

represent the neutron-proton pair states. To identify the
physical basis we introduce an auxiliary Hamiltonian

H̄os«d = H̄no + «H̄po, s125d

which has the following properties:

CpCnH̄os«dC̃nC̃p = − H̄os«d, s126d

CpH̄os«dC̃p = H̄os− «d. s127d

A quarter of the set of eigenvectors ofH̄os1d;H̄o form the
physical basis. From Eq.s126d we see that for each positive

eigenvalue,ĒJss«d.0 of H̄os«d which enter in equation

H̄os«dcJss«d = ĒJss«dcJss«d, s128d

there is a corresponding negative eigenvalue −ĒJss«d with the
associated eigenvectorCpCncJss«d. Following the standard
reasoning of superconductivity theory we reject half of the
eigenvectors, those belonging to negative eigenvalues as
nonphysical. These spurious states are interpreted as the
quasihole-quasihole and quasihole-quasiparticle pairs. How-
ever that still leaves too many states.

From Eq. (127) it follows that the HamiltoniansH̄os«d
and H̄os−«d have the same set of eigenvalues, i.e.,ĒJss«d
= ĒJss−«d, with the corresponding eigenvectorscJss−«d
=CpcJss«d. This has as a further consequence that each ei-

genvalue ofH̄os0d, ĒJss0d is twofold degenerate with the two
eigenvectorscJss0d and CpcJss0d. The degeneracy of this
pair of levels at«=0 means the real crossing, which is not
surprising since there is additionally the particle-hole sym-
metry Cp for proton. Next we solve Eq.(128) for 0ø«ø1

and a givenJ. For «.0, level ĒJss0d splits into a pair of

levels, labeledĒJs.s«d and ĒJs,s«d, distinguishing the larger
from the smaller value. The corresponding eigenvectors are
labeled cJs.s«d and cJs,s«d, respectively. Let us suppose

that the expectation value of matrixH̄po in statecJss0d is
positive:
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dĒJs= cJs
† s0dH̄pocJss0d . 0. s129d

If it is not the case we exchange the vectorscJss0d and

CpcJss0d sincecJs
† s0dC̃pH̄poCpcJss0d=−dEJs. For small val-

ues of « the perturbed energies of unperturbed states
cJs.s0d=cJss0d andcJs,s0d=CpcJss0d are equal to

ĒJs.s«d = ĒJss0d + «dĒJs s130d

and

ĒJs,s«d = ĒJss0d − «dĒJs, s131d

respectively. For larger«’s we solve Eq.s128d in the same
way as the eigenvalue problem of matrix of Eq.s51d in Sec.
II C. We choose the larger of the two eigenvalues as the
physical one, recognizing its role as the analog of the
quasiparticle-quasiparticle pair energy. The lower levels cor-
respond to the quasiparticle-quasihole pair states and are still
spurious. The corresponding projection operator onto physi-
cal subspace is

R̄Js«d =
1

VspdVsnd
o
s.

ĒJs..0

cJs.s«dcJs.
† s«d. s132d

Increasing the value of« to unity we define the physical

eigenstates of the HamiltonianH̄os«=1d;H̄o as the quarter
of all 1’s having large overlap with physical subspace deter-
mined through the projection operator of Eq.s132d. Since the
number of positive eigenvalues is even, in the case of no
crossings for a givenJ, the physical solutions are the odd-
numbered positive eigenvalues, counting from the largest
value.

The separation ofH̄o from the original Hamiltonian of
Eq. (109) is achieved by the following decomposition ofH:

H = H̄o + H̄e − v̄ + V, s133d

where

H̄e =
3

4
sHp + Hnd +

1

4
CpCnsHp + HndC̃nC̃p

+
1

4
CpsHp − HndC̃p +

1

4
CnsHn − HpdC̃n. s134d

The physical eigenvectors ofH can further be found using
again the methods similar to those discussed in Sec. II C for
odd nuclei.

C. Reduced matrix elements of transition operators

To calculate the reduced matrix elements of transition op-
erators we apply the Wigner-Eckart theorem to Eq.(71) and
use the formula

CJMJs
sstd spnRMRrd = o

lm

s j pmpjnmnulmd

3 sRMRlmuJMJdbJs
sstdspnlRrd,

s135d

which combines the contents of Eqs.s93d, s94d, and s66d.
The final result is written out in Appendix C 2, Eq.sC6d.

VI. SUMMARY AND CONCLUSIONS

A linearized version of the equation of motion approach
to the nuclear many-body problem, considered as a generali-
zation of traditional core-particle coupling models, has
proved its worth in a number of recent applications to de-
formed odd nuclei. In this method, the basic object studied is
a single-particle coefficient of fractional parentage(CFP) re-
lating the states of the even nuclei to those of a neighboring
odd nucleus.

In this paper we showed how the same general method
can be applied to odd-odd nuclei. We started with a review of
the formalism for odd nuclei, since it plays an essential role
in some of the considerations that follow. We then showed
that there are three possible formulations for the odd-odd
case, two of which we label as sequential and a third as
symmetrical, terms that characterize the way in which we
couple an extra neutron(or neutron hole) and an extra proton
(or proton hole) to nearby even nuclei, treated as cores. First
we study in detail the case where we initially couple the odd
neutron to the even cores, an example of our method for odd
nuclei. We then couple the odd proton to the odd neutron
nuclei, introducing new CFP for this relationship, and mak-
ing essential use of the odd neutron calculations for energies
and CFP. The second sequential method, not discussed in
detail, reverses the order of the odd-particle couplings. In the
symmetrical coupling, we first couple the two odd particles
together and study directly the relationship of the odd-odd
nucleus to the core even nuclei by means of two-particle
CFP. In principle all three methods are equivalent, but in
practice results will differ owing to the need to approximate.
In this regard, the existence of alternatives that may be com-
pared may be of some practical advantage.

Because of the presence of pairing interactions the equa-
tions for the odd-odd case yield four times as many solutions
as are physical. In the sequential method, the problem of
choosing physical solutions can be solved by sequential use
of essentially the same method as for the odd case. For the
symmetrical coupling case, a more elaborate method has
been devised.

Concerning applications, approximate versions of the se-
quential method have already been carried out[22,23]. The
symmetrical approach remains to be tried.
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APPENDIX A: MATRIX ELEMENTS OF EFFECTIVE
INTERACTIONS

1. Odd nuclei

The single-particle and pairing potential matrices occur-
ring in Eqs. (16) and (17) for the single-particle CFP are
given by Eqs.(22) and(23), respectively. The corresponding
reduced matrix elements appearing in Eqs.(34) and(35) are
equal to

GJ
sA+1dsaInua8I8n8d = o

Lbb8

s− 1d ja+J+IÎs2I8 + 1ds2L + 1d

3H I I 8 L

ja8 ja J
JFaa8bb8sLd

3fI8n8iBLsbb8diIng, sA1d

DJsaInua8I8n8d = o
Lbb8

s− 1d ja+J+I+1Îs2I8 + 1ds2L + 1d

3H I I 8 L

ja8 ja J
JGaa8bb8sLd

3fIniAL
†sbb8diI8n8g, sA2d

GJ
†sA−1dsaInua8I8n8d = o

Lbb8

s− 1d ja+J+IÎs2I8 + 1ds2L + 1d

3H I I 8 L

ja8 ja J
JFaa8bb8sLd

3fI8n8iBL
†sbb8diIng, sA3d

DJ
†saInua8I8n8d = o

Lbb8

s− 1d ja+J+I+1Îs2I8 + 1ds2L + 1d

3H I I 8 L

ja8 ja J
JGaa8bb8sLd

3fI8n8iAL
†sbb8diIng. sA4d

2. Sequential coupling in odd-odd nuclei

The effective single-proton, proton-pairing, and proton-
neutron potentials in Eqs.(81) and (82) for single-proton
CFP,X andY, relating the odd-neutron and odd-odd nuclei,
are dependent on the single-neutron CFP,Vs±d andUs±d, and
read

Gs+dspJnMnrnup8Jn8Mn8rn8d = o
nIMIrI8MI8r8

1

Vsnd
fVJnMnrn

s+d snIMIrdGs++dspIMIr up8I8MI8r8dVJn8Mn8rn8

s+d snI8MI8r8d

+ UJnMnrn

s+d snIMIrdGs+−dspIMIr up8I8MI8r8dUJn8Mn8rn8

s+d snI8MI8r8dg, sA5d

DspJnMnrnup8Jn8Mn8rn8d = o
nIMIrI8MI8r8

1

Vsnd
fVJnMnrn

s+d snIMIrdDs+dspIMIr up8I8MI8r8dVJn8Mn8rn8

s−d snI8MI8r8d

+ UJnMnrn

s+d snIMIrdDs−dspIMIr up8I8MI8r8dUJn8Mn8rn8

s−d snI8MI8r8dg, sA6d

Vs+dsp̄InMnrnup̄8Jn8Mn8rn8d = o
nIMIrI8MI8r8

1

Vsnd
f− VJnMnrn

s+d snIMIrdVJn8Mn8rn8

s+d sn8IMIrdFp̄p̄8n̄8n̄

+ UJnMnrn

s+d snIMIrdUJn8Mn8rn8

s+d sn8IMIrdFp̄p̄8nn8g, sA7d

G†s−dspJnMnrnup8Jn8Mn8rn8d = o
nIMIrI8MI8r8

1

Vsnd
fVJnMnrn

s−d snIMIrdG†s−+dspIMIr up8I8MI8r8dVJn8Mn8rn8

s−d snI8MI8r8d

+ UJnMnrn

s−d snIMIrdG†s−−dspIMIr up8I8MI8r8dUJn8Mn8rn8

s−d snI8MI8r8dg, sA8d

D†spJnMnrnup8Jn8Mn8rn8d = o
nIMIrI8MI8r8

1

Vsnd
fVJnMnrn

s−d snIMIrdD†s+dspIMIr up8I8MI8r8dVJn8Mn8rn8

s+d snI8MI8r8d

+ UJnMnrn

s−d snIMIrdD†s−dspIMIr up8I8MI8r8dUJn8Mn8rn8

s+d snI8MI8r8dg, sA9d
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Vs−dspInMnrnup8Jn8Mn8rn8d = o
nIMIrI8MI8r8

1

Vsnd
fVJnMnrn

s−d snIMIrdVJn8Mn8rn8

s−d sn8IMIrdFpp8n̄n̄8

− UJnMnrn

s−d snIMIrdUJn8
Mn8

rn8

s−d sn8IMIrdFpp8nn8g. sA10d

The correctness of the above equations can be verified independently. By starting with Eqs.(9) and (10), we can derive
equations of the form(16) and (17) with potentialsG andD that refer appropriately to the odd systems, rather than the even
system and with no overt sign of the neutron-proton interaction terms. These equations are readily transformed into the results
given above by the application of Eq.(55), just as the latter was applied in Sec. II D to express transition matrix elements
between odd states in terms of matrix elements between even states and single-particle CFP.

Passing to Eqs.(85) and (86) for the reduced CFP,x andh, we encounter the following reduced matrix elements of the
effective interactions given above:

GJ
s+ds j pJnrnu j p8Jn8rn8d =

1

Vsnd
o

Laa8 jnIrI 8r8
H Jn jp J

jp8 Jn8 L
JH I Jn jn

Jn8 I8 L
Js− 1d jp+jn+J+I8+1−LÎs2L + 1ds2Jn + 1ds2Jn8 + 1ds2I8 + 1d

3 Fpp8aa8sLdhvJnrn

s+d s jnIr dvJn8rn8

s+d s jnI8r8dfI8r8iBL
s++dsaa8diIr g + uJnrn

s+d s jnIr duJn8rn8

s+d s jnI8r8dfI8r8iBL
s+−dsaa8diIr gj,

sA11d

DJs j pJnrnu j p8Jn8rn8d =
1

Vsnd
o

Laa8 jnIrI 8r8
H Jn jp J

jp8 Jn8 L
JH I Jn jn

Jn8 I8 L
Js− 1d jp+jn+J+I8−LÎs2L + 1ds2Jn + 1ds2Jn8 + 1ds2I8 + 1d

3 Gpp8aa8sLdhvJnrn

s+d s jnIr dvJn8rn8

s−d s jnI8r8dfI8r8iAL
s+dsaa8diIr g + uJnrn

s+d s jnIr duJn8rn8

s−d s jnI8r8dfI8r8iAL
s−dsaa8diIr gj,

sA12d

VJ
s+ds j pJnrnu j p8Jn8rn8d =

1

Vsnd
o

Ljnjn8Ir
H Jn jp J

jp8 Jn8 L
JH jn8 jn L

Jn Jn8 I
Js− 1d jp+jn+Jn+J+Ls2L + 1dÎs2Jn + 1ds2Jn8 + 1d

3 fvJnrn

s+d s jnIr dvJn8rn8

s+d s jn8Ir dFpp8n8nsLd + s− 1d jn+jn8−LuJnrn

s+d s jnIr duJn8rn8

s+d s jn8Ir dFpp8nn8sLdg, sA13d

GJ
†s−ds j pJnrnu j p8Jn8rn8d =

1

Vsnd
o

Laa8 jnIrI 8r8
H Jn jp J

jp8 Jn8 L
JH I Jn jn

Jn8 I8 L
Js− 1d jp+jn+J+I8+1−LÎs2L + 1ds2Jn + 1ds2Jn8 + 1ds2I8 + 1d

3 Fpp8aa8sLdhvJnrn

s−d s jnIr dvJn8rn8

s−d s jnI8r8dfI8r8iBL
s++dsaa8diIr g + uJnrn

s+d s jnIr duJn8rn8

s+d s jnI8r8dfI8r8iBL
s+−dsaa8diIr gj,

sA14d

DJ
†s j pJnrnu j p8Jn8rn8d =

1

Vsnd
o

Laa8 jnIrI 8r8
H Jn jp J

jp8 Jn8 L
JH I Jn jn

Jn8 I8 L
Js− 1d jp+jn+J+I8−LÎs2L + 1ds2Jn + 1ds2Jn8 + 1ds2I8 + 1d

3 Gpp8aa8sLdhvJnrn

s−d s jnIr dvJn8rn8

s+d s jnI8r8dfI8r8iAL
†s+dsaa8diIr g + uJnrn

s−d s jnIr duJn8rn8

s+d s jnI8r8dfI8r8iAL
†s−dsaa8diIr gj,

sA15d

VJ
s−ds j pJnrnu j p8Jn8rn8d =

1

Vsnd
o

Ljnjn8Ir
H Jn jp J

jp8 Jn8 L
JH jn8 jn L

Jn Jn8 I
Js− 1d jp+jn8+Jn+J+1s2L + 1dÎs2Jn + 1ds2Jn8 + 1d

3 fvJnrn

s−d s jnIr dvJn8rn8

s−d s jn8Ir dFpp8nn8sLd + s− 1d jn+jn8−LuJnrn

s−d s jnIr duJn8
rn8

s−d s jn8Ir dFpp8n8nsLdg. sA16d

APPENDIX B: THE EFFECTIVE HAMILTONIAN FOR TWO-PARTICLE CFP
The matrix of effective Hamiltonian occurring in Eq.(105) for the reduced matrix elements of two-particle CFP are equal

to
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Hs+ + pnlRru+ + p8n8l8R8r8d = sep8 + en8 − v++Rrddp,p8dn,n8dl,l8dR,R8dr,r8 + GJ
s++dsplRrup8l8R8r8ddn,n8 + GJ

s++dsnlRrun8l8R8r8ddp,p8

+ Vs++dspnup8n8ddl,l8dR,R8dr,r8, sB1d

Hs+ − pnlRruu+ − p8n8l8R8r8d = sep8 − en88 − v+−Rrddp,p8dn,n8dl,l8dR,R8dr,r8 + GJ
s+−dsplRrup8l8R8r8ddn,n8 − GJ

†s+−dsnlRrun8l8R8r8ddp,p8

+ Vs+−dspnup8n8ddl,l8dR,R8dr,r8, sB2d

Hs− + pnlRru− + p8n8l8R8r8d = s− ep9 + en8 − v−+Rrddp,p8dn,n8dl,l8dR,R8dr,r8 − GJ
†s−+dsplRrup8l8R8r8ddn,n8

+ GJ
s−+dsnlRrun8l8R8r8ddp,p8 + Vs−+dspnup8n8ddl,l8dR,R8dr,r8, sB3d

Hs− − pnlRru− − p8n8l8R8r8d = s− ep- − en- − v−−Rrddp,p8dn,n8dl,l8dR,R8dr,r8 − GJ
†s−−dsplRrup8l8R8r8ddn,n8

− GJ
†s−−dsnlRrun8l8R8r8ddp,p8 + Vs−−dspnup8n8ddl,l8dR,R8dr,r8, sB4d

Hs+ + pnlRru − + p8n8l8R8r8 = DJ
s+dsplRrup8l8R8r8ddn,n8, sB5d

Hs+ + pnlRru+ − p8n8l8R8r8d = DJ
s+dsnlRrun8l8R8r8ddp,p8, sB6d

Hs+ − pnlRru− − p8n8l8R8r8d = DJ
s−dsplRrup8l8R8r8ddn,n8, sB7d

Hs+ − pnlRru+ + p8n8l8R8r8d = DJ
†s+dsnlRrun8l8R8r8ddp,p8, sB8d

Hs− + pnlRru+ + p8n8l8R8r8d = DJ
†s−dsplRrup8l8R8r8ddn,n8, sB9d

Hs− + pnlRru− − p8n8l8R8r8d = DJ
s−dsnlRrun8l8R8r8ddp,p8, sB10d

Hs− − pnlRru+ − p8n8l8R8r8d = DJ
†s−dsplRrup8l8R8r8ddn,n8, sB11d

Hs− − pnlRru− + p8n8l8R8r8d = DJ
†s−dsnlRrun8l8R8r8ddp,p8. sB12d

The remaining matrix elementsHsst u−s−td vanish.
The effective interactions that occur in the above equations are

GJ
sstdsplRrup8l8R8r8d = o

Lbb8

s− 1d jp+jn+l+l8+L+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH jn j p l

L l8 j p8
J

3 F̄pp8bb8sLdfR8r8iBL
sstdsbb8diRrg, sB13d

GJ
sstdsnlRrun8l8R8r8d = o

Lbb8

s− 1d jp+jn8+L+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH j p jn l

L l8 jn8
J

3 F̄nn8bb8sLdfR8r8iBL
sstdsbb8diRrg, sB14d

GJ
†sstdsplRrup8l8R8r8d = o

Lbb8

s− 1d jp+jn+L+l+l8+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH jn j p l

L l8 j p8
J

3 F̄pp8bb8sLdfR8r8iB†sstdLssbb8diRrg, sB15d
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GJ
†sstdsnlRrun8l8R8r8d = o

Lbb8

s− 1d jp+jn8+L+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH j p jn l

L l8 jn8
J

3 F̄nn8bb8sLdfR8r8iBL
†sstdsbb8diRrg, sB16d

DJ
stdsplRrup8l8R8r8d = − o

Lp9p-

s− 1d jp+jn+l+l8+L+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH jn j p l

L l8 j p8
J

3 Gpp8p9p-sLdfR8r8iAL
stdsp9p-diRrg, sB17d

DJ
ssdsnlRrun8l8R8r8d = − o

Ln9n-

s− 1d jp+jn8+L+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH j p jn l

L l8 jn8
J

3 Gnn8n9n-sLdfR8r8iAL
ssdsn9n-diRrg, sB18d

DJ
†stdsplRrup8l8R8r8d = − o

Lp9p-

s− 1d jp+jn+L+l+l8+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH jn j p l

L l8 j p8
J

3 Gpp8p9p-sLdfR8r8iAL
†stdsp9p-diRrg, sB19d

DJ
†ssdsnlRrun8l8R8r8d = − o

Ln9n-

s− 1d jp+jn8+L+R+JÎs2R8 + 1ds2L + 1ds2l + 1ds2l8 + 1dH l R J

R8 l8 L
JH j p jn l

L l8 jn8
J

3 Gnn8n9n-sLdfR8r8iAL
†ssdsn9n98diRrg, sB20d

Vs++dspnup8n8d = − o
L

s− 1d jp+jn8+ls2L + 1dH j p jn l

jn8 j p8 L
JF̄pp8n8nsLd, sB21d

Vs+−dspnup8n8d = o
L

s− 1d jp+jn+l+Ls2L + 1dH j p jn l

jn8 j p8 L
JF̄pp8nn8sLd, sB22d

Vs−+dspnup8n8d = o
L

s− 1d jp8+jn8+l+Ls2L + 1dH j p jn l

jn8 j p8 L
JF̄pp8nn8sLd, sB23d

Vs−−dspnup8n8d = − o
L

s− 1d jp8+jn+ls2L + 1dH j p jn l

jn8 j p8 L
JF̄pp8n8nsLd. sB24d

APPENDIX C: REDUCED MATRIX ELEMENTS OF
TRANSITION OPERATORS

1. Odd nuclei

The matrix elements of one-body transition operators
within states of an odd nucleus are given by Eq.(56). We use
the following definitions of the reduced matrix elements:

kJ8m8n8uTLML
uJmnl =

s− 1dJ−m

Î2L + 1
sJ8m8J − muLMLdkJ8n8uuTLuuJnl,

sC1d

kI8M8n8uTLML
uIMnl =

s− 1dI−M

Î2L + 1
sI8M8I − MuLMLd

3kI8n8uuTLuuInl, sC2d

tag =
s− 1d jc−mc

Î2L + 1
s jamajc − mcuLMLdtac. sC3d

Applying the Wigner-Eckart theorem with the help of Eqs.
s26d and s27d to Eq. s56d we find the following expression
for the reduced matrix element ofTL:
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kJ8n8uuTLuuJnl =
1

V
o

aInI8n8

s− 1d ja+J8+I+LH I I 8 L

J8 J ja
JÎs2J + 1ds2J8 + 1dfuJnsaInduJ8n8saI8n8dkI8n8I uuTLuuInIl

+ vJnsaIndvJ8n8saI8n8dkI8n8uuTLuuInlg +
1

V
o

aa8In

taa8
Îs2J + 1ds2J8 + 1dFs− 1d ja8+I+J8+L

3H ja ja8 L

J J8 I
JuJ8n8saInduJnsa8Ind+ s− 1d ja8+I+J8+1H ja ja8 L

J8 J I
JvJnsaIndvJ8n8sa8IndG . sC4d

2. Odd-odd nuclei

By means of methods discussed in Sec. IV C we obtain the following formula for the reduced matrix element of transition
operatorTL within states of an odd-odd nucleus as a function of the reduced matrix elements of only the single-particle CFP,
v andu, andx andh:

kJ8s8uuTLuuJsl =
1

Vsnd
o

jpJnrnJn8rn8

s− 1d jp+J8+Jn+LHJn Jn8 L

J8 J jp
JÎs2J + 1ds2J8 + 1dfhJss j pJnrndhJ8s8s j pJn8rn8dkJn8rn8I uuTLuuJnrnIl

+ xJss j pJnrndxJ8s8s j pJn8rn8dkJn8rn8uuTLuuJnrnlg +
1

Vn
o

jpjp8Jnrn

tpp8
Îs2J + 1ds2J8 + 1dFs− 1d jp8+Jn+J8+LH j p j p8 L

J J8 Jn
J

3 hJ8s8s j pJnrndhJss j p8Jnrnd + s− 1d jp8+Jn+J8+1H jn jn8 L

J8 J Jn
JxJss j pJnrndxJ8s8s j p8JnrndG , sC5d

where the reduced matrix elements ofTL within states of odd nuclei occurring on the right-hand side of Eq.sC5d are given by
Eq. sC4d.

The same reduced matrix elements as these of Eq.(C5) but expressed by the reduced matrix elements of the two-particle
CFP,b, take the following form coming directly from Eqs.(71) and (135), and the Wigner-Eckart theorem:

kJ8s8uuTLuuJsl =
1

VspdVsnd
o

stlLj pjnRrR8r8

s− 1dJ+R8+l+LÎs2J + 1ds2J8 + 1dH J J8 L

R8 R l
JkstR8r8uuTLuustRrlbJs

sstdspnlRrdbJ8s8
sstdspnlR8r8d

+
1

VspdVsnd
o

tll8Ljpjp8 jnRr

s− 1dR+J8+jp8+jn
2j p8 + 1

2L + 1
Îs2l + 1ds2l8 + 1ds2J + 1ds2J8 + 1dHL J J8

R l8 l
J

3 H j p jn l

l8 L jp8
Jtp8pbJs

s−tdspnlRrdbJ8s8
s−tdspnlR8r8d +

1

VspdVsnd
o

tll8Ljpjn8 jnRr

s− 1dR+J8+jp+jn+l+l8
2jn8 + 1

2L + 1

3Îs2l + 1ds2l8 + 1ds2J + 1ds2J8 + 1dHL J J8

R l8 l
JH jn j p l

l8 L jn8
Jtn8nbJs

ss−dspnlRrdbJ8s8
ss−dspn8lR8r8d

+
1

VspdVsnd
o

tll8Ljpjp8 jnRr

s− 1dR+J8+jp8+jn
2j p8 + 1

2L + 1
Îs2l + 1ds2l8 + 1ds2J + 1ds2J8 + 1dHL J J8

R l8 l
JH j p jn l

l8 L jp8
J

3s− 1d jp+jp8−Ltpp8bJs
s+tdspnlRrdbJ8s8

s+tdspnlR8r8d +
1

VspdVsnd
o

tll8Ljpjn8 jnRr

s− 1dR+J8+jp+jn+l+l8
2jn8 + 1

2L + 1

3 Îs2l + 1ds2l8 + 1ds2J + 1ds2J8 + 1dHL J J8

R l8 l
JH jn j p l

l8 L jn8
Js− 1d jn+jn8−Ltnn8bJs

ss−dspnlRrdbJ8s8
ss−dspn8lR8r8d.

sC6d
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