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The spherical Hartree-Fock approximation is applied to theab initio no-core shell model, with a realistic
effective nucleon-nucleon interaction in order to investigate the range of its utility. Hartree-Fock results for
binding energies, one-body density distributions, and occupation probabilities are compared with results from
exact diagonalization in similar model spaces. We show that this mean-field approximation, especially with
second-order corrections, is able to provide some useful approximations for4He and16O. We also explore the
physical insights provided by the Hartree-Fock results for single-particle properties such as spin-orbit split-
tings. We find single-particle state ordering consistent with the phenomenological shell model.
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I. INTRODUCTION

Recently, theab initio no-core shell model(NCSM) has
been applied with realistic effective nucleon-nucleon(NN)
interactions to light nuclei up toA=12 [1–4]. With the need
to extend to heavier systems and to incorporate improve-
ments such as effective and real three-body forces in ever
larger model spaces, the prospect for near-term results is lim-
ited by present day computational resources. In light of this
situation, there is a need for approximate methods to extend
theab initio NCSM to heavier systems with a wide range of
observables to compare with experiment.

Hartree-Fock is a proven tool for semirealistic interac-
tions for even the heaviest of nuclei[5] and is sufficiently
flexible to handle many-body forces through the role ofd
excitations[6–9]. It is also the starting point for practical
many-body methods used extensively in heavier systems[5].
One of the new questions to address is the quantitative accu-
racy of Hartree-Fock itself when using the latest theories for
effective interactions based on realisticNN potentials. Here,
we provide an initial comparison in light nuclei which leads
us to conclude that care must be exercised in the use of the
mean-field approach with these newer effective Hamilto-
nians. The size of second-order corrections is found to be a
useful gauge of the utility of the mean-field method in the
present comparison.

Two recent efforts[10,11], taken together, show that the
higher-order corrections to Hartree-Fock are rather sensitive
to the choice of Hamiltonian. On the one hand, using phe-
nomenological interactions, Ref.[10] presents higher-order
corrections that are significantly smaller than those we ob-
tain. These phenomenological interactions provide a good
description of many experimental observables within the
mean-field approach. It is not clear whether these phenom-
enological interactions would provide good descriptions of
experiment in the NCSM approach or any otherab initio
method. On the other hand, using a new method[12] to
develop a realistic low-momentum nucleon-nucleon poten-
tial, called “Vlow-k,” Ref. [11] evaluated the Hartree-Fock re-
sults for 16O and 40Ca including corrections through third
order. For16O the second-order corrections of Ref.[11] are

somewhat larger than those we obtain. On the other hand,
their Hartree-Fock results through third order are in better
agreement with experiment. We discuss further the differ-
ences between our results and those of Ref.[11] in Sec. IV.

Of course, there is a long history going back to Brueckner,
of merging the mean-field method with nonrelativistic effec-
tive potentials (G matrix) derived from NN interactions
[13–15]. The conclusion of this extensive set of research is
that such Hamiltonians underbind nuclei by about 1–3 MeV
per nucleon. The tendency of the results is to have a root-
mean-square radiusrrms which is too small compared to ex-
periment whenever the binding energy approaches the ex-
perimental value(“Coester line”).

Until recently, these extensive results left open the possi-
bility that the mean-field method along with selected higher-
order corrections, included by various means, was not a suf-
ficiently accurate approach. However, with the advent of
very precise methods to solve the many-fermion problem for
light nuclei, there appears to be a good consensus now that
the deficiency lies with the Hamiltonian itself. That is, we
need true many-body forces to resolve the discrepancies be-
tween theoretical and experimental ground state(g.s.) prop-
erties.

Thus, we can easily imagine that properly constructed
Hamiltonians, consisting of bareNN and NNN interactions,
renormalized for large but finite basis spaces, could provide
high precision descriptions of a wide variety of low-energy
properties of nuclei. We then require many-body techniques
that propel the applications in all nuclei, not just light nuclei.
Given the recent advances in constructing such effective
Hamiltonians, we may begin to reassess the utility of mean-
field methods and their extensions for these purposes.

Our intent here is rather focused on a particular set of
issues. We aim to examine the utility of the mean-field
method with one of the more recent effective interaction ap-
proaches. We need to do this if we are to open the door to
incorporatingd excitations as one of the important mecha-
nisms for many-body forces in nuclei and if we are to pro-
ceed to heavier nuclei retaining predictive power. Indeed, we
have been working in this direction for some time[6–9] with
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effective Hamiltonians based onG matrices augmented by
N-D andD-D interactions.

In the present effort, we have two specific goals: first, to
compare spherical Hartree-Fock(SHF) with the ab initio
NCSM in light nuclei where both methods are solvable with
newly developed effective Hamiltonians in order to deter-
mine the quantitative accuracy of SHF and the associated
conditions; second, to extract additional physical insights
from SHF with these realistic effective Hamiltonians as a
complement to the NCSM results.

II. THE EFFECTIVE HAMILTONIAN

The ab initio approach in shell-model studies of the
nuclear many-body problem starts[1–4] with the intrinsic
two-body Hamiltonian for theA-nucleon system, i.e.,

H = o
i, j

A

fTij + Vijg, s1d

with Tij the relative kinetic energy betweenNN pairs andVij
the NN interaction including the Coulomb interaction be-
tween protons. We ignore three-body interactions in the
present effort. For the purposes of evaluating an effective
Hamiltonian we modify it by addingsand later subtractingd
the center-of-masssc.m.d harmonic-oscillatorsHOd Hamil-
tonian

Hc.m.
V =

PW 2

2Am
+

1

2
AmV2RW 2, s2d

with m the nucleon mass,PW =oi=1
A pW i, andRW =s1/Adoi=1

A rWi.
This addition/subtration of a single-particle potential, first

introduced by Lipkin [16], helps our overall convergence
when working in a HO set of basis states. We emphasize that
it is important to ensure, as we do, that theintrinsic proper-
ties of the many-body system are not affected by the center-
of-mass term. The modified Hamiltonian, thus, acquires a
dependence on the HO frequencyV, and can then be written
as

HA
V = o

i=1

A F pW i
2

2m
+

1

2
mV2rWi

2G + o
i, j

A FVij −
mV2

2A
srWi − rW jd2G .

s3d

Our shell-model calculations are performed in a model space
defined by a projection operatorP, with the complementary
spacesi.e., the excluded spaced defined by the projection
operatorQ=1−P. Furthermore, due to its strong short-range
part, the realistic nuclear interaction in Eqs.s1d and s3d will
yield pathological results unless we derive a model-space
dependenteffectiveHamiltonian

Hef f
V = o

i=1

A

PF pW i
2

2m
+

1

2
mV2rWi

2GP + PfVef fgP. s4d

The effective interaction appearing in Eq.s4d is, in general,
an A-body interaction, and, when it is obtained without any
approximations, the model-space Hamiltonian provides an

identical description of a subset of states as the exact original
Hamiltonianf17,18g.

From among the eigenstates of the Hamiltonian(4), it is
necessary to choose only those that correspond to the same
center-of-mass energy. This can be achieved by working in a
complete Nmax"V model space, and then by shifting the
center-of-mass eigenstates with energies greater than3

2"V
(representing spurious center-of-mass motion) upwards in
the energy spectrum. We do this by addingsb−1dPHc.m.

V P to
and subtractingb 3

2"VP from Eq. (4) above. One unit of
Hc.m. has already been acquired, as mentioned above[4]. The
resulting shell-model Hamiltonian takes the form

Hef f b
V = o

i, j

A

PF spW i − pW jd2

2Am
+

mV2

2A
srWi − rW jd2GP + PfVef fgP

+ bPSHc.m.
V −

3

2
"VDP, s5d

whereb is a sufficiently large positive parameter. When ap-
plied in a completeNmax"V model space, this procedure re-
moves the spurious center-of-mass motion exactly, and has
no effect on the intrinsic spectrum of states with the lowest
center-of-mass configurationf2g.

In principle, the effective interaction introduced in Eqs.
(4) and (5) above should reproduce exactly the full-space
results in the model space for some subset of states. Further-
more, an A-body effective interaction is required for an
A-nucleon system. In practice, however, the effective inter-
action cannot be calculated exactly, and it is approximated
with a two-body effective interaction determined for a two-
nucleon subsystem of theA-nucleon system. More recently,
it has been possible to extend the effective interaction to the
three-body cluster level[19].

In this work, we follow the procedure described in Refs.
[2–4] in order to construct the two-body effective interac-
tion. The procedure employs the Lee-Suzuki[17] similarity
transformation method, which yields an interaction in the
form

P2Vef fP2 = P2VP2 + P2VQ2vP2, s6d

with v the transformation operator satisfyingv=Q2vP2, and
P2 andQ2=1−P2 operators that project on the two-nucleon
model and complementary spaces, respectively. Note that we
distinguish between the two-nucleon system projection op-
eratorsP2,Q2 and theA-nucleon system projection operators
P,Q. The choice ofP2 is fixed by the choice ofP. The
remaining detailed steps to obtain the non-Hermitian form of
H2ef f follow earlier work f3,4,17,18g.

The final Hermitian formH̄2ef f is obtained by applying a
similarity transformation determined from the metric opera-
tor P2s1+v†vdP2 [18]:

H̄2ef f = fP2s1 + v†vdP2g1/2H2ef ffP2s1 + v†vdP2g−1/2. s7d

The two-body effective interaction used in the present cal-
culations is determined from this two-nucleon effective

Hamiltonian asV2ef f=H̄2ef f−H02
V , whereH02

V is the relative
oscillator Hamiltonian for two particles. The resulting two-
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body effective interactionV2ef f depends onA, on the HO
frequencyV, and onNmax, the maximum many-body HO
excitation energy(above the lowest configuration) defining
the P space. Furthermore, as discussed earlier, when used in
the shell-model Hamiltonian(5), it results in the factorization
of our many-body wave function into a product of a center-
of-mass 0S component times an intrinsic component, which
allows exact correction of any observable for spurious
center-of-mass effects, thus preserving translational invari-
ance. This feature distinguishes our approach from most phe-
nomenological shell-model studies that involve multiple HO
shells.

So far, the most important approximation used in our ap-
proach is the neglect of contributions coming from higher
than two-body clusters to our effective Hamiltonian. In the
NCSM the inclusion of a three-body effective interaction has
been accomplished for 0s- and 0p- shell nuclei [19–21]
though computational needs increase rapidly. For SHF it is
straightforward, in principle, to carry out investigations with
multibody effective Hamiltonians.

While the preservation of translational invariance in the
NCSM is exact, this is not the case in our SHF approach. It
is well known that projection before variation is desirable for
obtaining optimized solutions respecting a given symmetry
not already guaranteed by mean-field basis selection. Thus, it
is possible to implement an exact treatment of translational
invariance within Hartree-Fock[22]. Here, instead, we set
b=0 in Eq. (5) and solve the conventional SHF problem.
Since we introduce a SHF model-space truncation and we
solve for a single slater determinant, our SHF results acquire
c.m. motion dependence. Thus, our SHF rms radius and one-
body density will have c.m. wave function smearing and we
approximately correct for this in our rms radius results be-
low.

The preservation of translational invariance in the effec-
tive Hamiltonian brings about a very interesting set of con-
sequences for the mean-field single-particle energies[23].
Hence some care must be exercised in their interpretation
and in comparison with results from other Hamiltonians.

For cases with either a purely intrinsic Hamiltonian(no
one-body component) or a Hamiltonian with a one-body
component plus intrinsic terms, we can list the common fea-
tures. First, the single-particle energy is the eigenvalue of a
mean-field one-body Hamiltonian equation derived from the
application of the variational principle to the initial Hamil-
tonian. Second, it is this one-body self-consistent field prob-
lem that defines the leading order mean-field single-particle
properties with which higher-order corrections are to be
evaluated. Thus, in either case, it is the resulting single-
particle energies that appear in the energy denominators of
higher-order perturbation theory. Also, the associated single-
particle wave functions are used to evaluate the matrix ele-
ments of the perturbative corrections. Third, in neither case
may these single-particle energies be directly compared with
experiment without considering the role of rearrangement.
The single-particle energies and their associated rearrange-
ment effects are not independent of each other and neither
corresponds directly to an observable. Hence they may differ
significantly between the two types of Hamiltonians.

We will now see why our single-particle energies differ

substantially from those obtained with a combination of a
one-body and a two-body Hamiltonian as conventionally em-
ployed. We will also see that we can easily extract results for
spin-orbit splittings that are not markedly different from re-
sults of other approaches.

In particular, for our purely intrinsic effective Hamilto-
nians, we obtain a simple relationship between the Hartree-
Fock (HF) energy and the single-particle energy:

EHF = 0.5o eAs2jA + 1d, s8d

where we signify orbits occupied in the slater determinant by
capital roman letters. One can easily verify this relationship
with the SHF results presented below. This relationship was
already evident from thermal mean-field studies using pure
two-body no-core Hamiltoniansf24g and was examined in
some detail in Ref.f23g.

Herein lies an important bridge for comparing with ex-
perimental single-particle energies. In particular, by neglect-
ing rearrangement effects, as is traditional when comparing
mean-field results with experimental states in neighboring
odd-mass nuclei, we see that the HF excitation energy is only
one-half of the difference in the single-particle energies of a
promoted particle. Thus if the difference in the single-
particle energies between a particular single-particle state
above the Fermi surface and one below, obtained with our
intrinsic Hamiltonian, is 20 MeV, for example, then the
Hartree-Fock energy of the associated Hartree-Fock excited
state is just 10 MeV above the Hartree-Fock ground state.

To make the comparison with experiment more precise,
we would need to carry out an evaluation of the rearrange-
ment energy which takes us beyond the scope of the present
effort. However, insofar as rearrangement effects may be ne-
glected with both classes of Hamiltonians discussed above, it
seems reasonable to compare one-half of our single-particle
energy differences with full single-particle energy differ-
ences obtained from Hamiltonians having a one-body com-
ponent. On this basis, we will compare quantitatively in Sec.
IV the example of spin-orbit splittings obtained with our
Hamiltonian and the results of Ref.[11] which employed a
Hamiltonian with a one-body component.

As all Hartree-Fock energies are then proportional to the
single-particle energies, we can obtain evidence on shell
properties(single-particle state ordering and relative spac-
ings) from the mean-field results with our chosen Hamil-
tonian. For example, the relative size of gaps between single-
particle states can be used to determine where shell closures
are predicted.

We select the CD-BonnNN interaction [25,26] and in-
clude the Coulomb interaction between the protons. For4He
we employ the 1996 CD-Bonn[25] while for 16O we employ
the 2000 CD-Bonn[26]. Where comparisons exist, the dif-
ferences in these interactions are minor and are not expected
to influence the results of our investigations.

Our selection of model-space sizes and harmonic-
oscillator basis parameter are as follows: for both nuclei we
conduct the SHF evaluations in a model space of six major
shells. In addition, for16O we also provide results for model
spaces of four and five major shells. For the NCSM, we
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select Nmax=10s4Hed and Nmax=6s16Od. For 4He we use
"V=22 MeV while for 16O we use"V=15 MeV.

By way of explanation of the differences in model spaces
sampled by SHF and by NCSM, we note that the model
spaces are selected for a precise NCSM calculation with the
evaluatedHef f. As a result, the SHF calculation samples a
somewhat different basis space where all nucleons are al-
lowed to be excited through a set of single-particle basis
states depending on the number of oscillator shells included.
Our philosophy is to fixHef f and to use it for both the NCSM
and SHF applications. In this way, we test how well the SHF
results approximate the NCSM results, where the NCSM re-
sults are expected to converge to the exact answers as the
model-space size increases. Figure 1 displays the two-
particle model spaces employed in the SHF and NCSM for
4He and16O. In areas where two-body effective Hamiltonian
matrix elements are required for SHF but are absent in the
NCSM, we simply use the relative kinetic energy matrix el-
ements.

We solve for the properties of our selected nuclei using
the SHF code underlying the results of Refs.[6–9] and the
m-scheme Many-Fermion Dynamics code[27] which was
developed for NCSM calculations.

In order to gauge the overall effectiveness of the SHF
method, we also evaluate the second-order perturbative cor-
rections to many observables presented here. We find the
perturbative corrections significantly improve the agreement
between SHF and NCSM as may be expected for closed
shell systems. We label our perturbatively corrected results
with “SHF(2).”

Let us specify the occupied SHF orbitals by capital roman
letters and the unoccupied SHF orbitals by lower case roman
letters. We allow for full charge dependence so that neutron
and proton orbitals are separately indicated and we employe
to signify the self-consistent SHF single-particle energies.
Then, for example, we evaluate the second-order correction
to the SHF binding energy

DESHF= − o
J,iø j ,AøB

s2J + 1d
fkAnBn,JuHef fuinjn,Jlg2

ein
+ e jn

− eAn
− eBn

− o
J,i,j ,A,B

s2J + 1d
fkAnBp,JuHef fuinj p,Jlg2

ein
+ e jp

− eAn
− eBp

− o
J,iø j ,AøB

s2J + 1d
fkApBp,JuHef fuipj p,Jlg2

eip
+ e jp

− eAp
− eBp

, s9d

where we signify reducedj j -coupled two-body matrix ele-
ments of the effective Hamiltonian in the SHF basis by
kab,JuHef f ucd,Jl. In this shorthand notation,a, b, c, andd
represent either occupied or unoccupied neutron or proton
states. Our two-body states are normalized and antisymme-
trized.

Furthermore, we evaluate the second-order correction to
the occupation probabilities. We present the change in the
occupation probabilityDNAn

of the occupied SHF neutron
orbital An as an example from which other cases
sDNAp

,DNin
,DNip

d can easily be determined by appropriate
modifications

DNAn
= o

J,B,iø j

s2J + 1d
fkAnBn,JuHef fuinjn,Jlg2

sein
+ e jn

− eAn
− eBn

d2

+ o
J,B,i,j

s2J + 1d
fkAnBp,JuHef fuinj p,Jlg2

sein
+ e jp

− eAn
− eBp

d2 . s10d

In every case, we verify by direct evaluation that the num-
ber of neutrons and the number of protons is separately con-
served through the second-order calculations.

The second-order corrections to the SHF one-body den-
sity are easily evaluated from the corrections to the occupa-
tion probabilities. These corrections, in turn lead to a second-
order correction to the rms radius.

We also introduce a standard correction to the SHF one-
body density[14] to adjust the rms radius(RMS) for the
spurious center-of-mass motion. This correction is defined as
RMS=fsRMSSHFd2−b2/Ag1/2. For A=4 and 16 we useb
=1.374 fm and 1.663 fm, respectively. All theoretical results
for rms radii quoted here are for pointlike nucleons—i.e., we
do not adjust for an electromagnetic radius of the nucleons.
The sequence of corrections presented below begins with the
second-order perturbative correction to the rms radius. We
then apply the center-of-mass motion correction[quoted
separately in the tables asD spursc.m.d] to our SHF(2) result.
The rms radius resulting from these corrections is also
quoted in the tables below as the “Total.”

In the following sections, we investigate several observ-
ables as well as properties of the wave functions. For observ-
ables, we evaluate the binding energy of the g.s. as well as its
rrms, one-body density distributions, single-particle energies,
and occupation probabilities.

III. APPLICATION TO 4He

In this section we apply the methods outlined in Sec. II to
evaluate the properties of4He in the SHF and NCSM ap-
proaches.

FIG. 1. (Color online) Depictions of the variousP2 space pro-
jectors defining the model spaces employed in the SHF and NCSM
calculations.
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For the NCSM, we use a completeNmax"V model space
with Nmax=10 for the positive-parity states. This means that a
total of 11 major harmonic-oscillator shells are involved. The
two-nucleon model space shown in Fig. 1, is then defined by
Nmax, such that the restriction of the harmonic-oscillator
single-particle states is given byN1=2n1+ l1øNmax, N2
=2n2+ l2øNmax, and sN1+N2døNmax. Thus, the maximum
excitation of two nucleons simultaneously is through the
sixth shell.

For the SHF we have a cutoff in basis states for each
orbital—i.e., for eachsl j d pair. Clearly, we would have to
make some arbitrary choices if the SHF model space covers
areas exceeding the NCSM space. We do make some at-
tempts at this below where we examine the sensitivity to the
choice of the SHF basis in more detail with the applications
to 16O. However, for4He we have selected the largest SHF
basis included entirely within theNmax=10 space of the
NCSM. Thus, we select the six-shell SHF basis shown in
Fig. 1 that includes threeS states, threeP states, twoD
states, etc.

On the other hand, there is a range of two-body matrix
elements ofHef f which participate in the NCSM calculations
but not in the SHF calculations. To a certain degree, the
present work tests the importance of those matrix elements
for the g.s. properties of4He.

In Table I we present the experimental g.s. properties
[28,29] along with the corresponding theoretical results from
SHF and NCSM.

First, we note that the NCSM ground state energy is near
the typical underbound result obtained with realistic interac-
tions. In fact, the converged binding energy with the CD-
Bonn NN potential is −26.30s15dMeV obtained in calcula-
tions that employ basis spaces up toNmax=18 [21]. At the
same time, the SHF result appears to be rather far from
NCSM with 13.76 MeV less binding. Most of this difference
is recovered with the second-order corrections to SHF, that is
the results of SHF(2), leaving a net 2.9 MeV difference.
While the SHF(2) is considerably closer to the NCSM, the
second-order correction may raise concern over the overall
rate of convergence of the perturbative corrections to SHF

for 4He. We note, however, that the second-order correction
is only 15.3% of the total SHF interaction energy
f−70.946 MeVg. Hence, it appears reasonable to expect most
of the remaining difference between SHF(2) and NCSM will
be obtained in third order.

For the rms radii, the NCSM and SHF are rather close to
each other and to experiment where it is available. The
agreement between SHF(2) and NCSM is especially satisfy-
ing once the SHF(2) rms radius is corrected for spurious c.m.
motion as described above.

In Table II we present occupation probabilities for se-
lected orbitals. It is important to note that we present some
results in the SHF basis and some in the HO basis. In par-
ticular, the first two columns present the probabilities that the
neutron and proton orbitals are described by pure HO orbit-
als. The last two columns present the HO single-particle state
occupation probability from the NCSM wave function. The
intermediate two columns present the second-order correc-
tion to the ground state occupation probabilitiesin the SHF
basis.

For 4He, we observe rather good overlap of the SHF
ground state with the lowest HO configuration. In addition,
the NCSM indicates a rather pure HO lowest configuration
description of the ground state. Hence there is overall close
agreement. This agreement is retained since the SHF(2) cor-
rections for the occupiedS1/2 orbital appear to be rather
small. The unoccupied SHF orbitals indicate a strong degree
of mixing but they do not directly contribute to the ground
state SHF energy so this mixing is less relevant.

Overall, one feature is rather noticeable—the SHF wave
function is less “correlated” than the NCSM ground state
wave function. In the SHF basis, SHF(2) is encouraging with
its trend indicating correlation mixtures approaching those of
NCSM for the 0S orbital. At first glance, this comparison
may appear a little dangerous as we are comparing results in
a SHF basis with those in a HO basis. However, since the
SHF occupied orbital is largely dominated by a single, HO
orbit, the differences from the SHF occupation probabilities
expressed in the HO basis would be negligible. This is the
case, in general, for both light nuclei treated in the present
work.

TABLE I. Experimental and calculated observables for the ground state of4He with anNmax=10 effective
Hamiltonian based on the 1996 CD-Bonn[25] and using"V=22 MeV. Experimental and calculated ground
state energy(in MeV) and rms radii(in fm). The (negative) correction for spurious center-of-mass motion
[D spur(c.m.)] is described in the text. For the experimental rms radius, we take the measured charge radius
and correct for the contribution of the proton charge rms radiuss0.8 fmd.

Observable Experiment SHF SHF+DSHF NCSM

D SHF +D spursc.m.d
D spursc.m.d

Eg.s. −28.296 −14.156 −24.991 −27.913

−10.835

n-rms 1.584 1.411

p-rms 1.450 1.590 1.416

rms 1.587 1.560 1.413

0.118

−0.145
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In Table III we present the SHF single-particle energies
for 4He. We note again that the single-particle energies can-
not be compared directly with the experimental separation
energies without considering the expected large rearrange-
ment effects.

Our spectrum of single-particle energies is shifted about
20 MeV from the results obtained with phenomenological
Hamiltonians that include a one-body part. This shift has
been addressed[23] in some detail and is related to the role
of the c.m. motion. Our single-particle energies contain a
contribution of <kTrel /Al where the expectation value is
with respect to the self-consistent single-particle wave func-
tion.

Recalling the factor of one-half discussed in the preceding
section, we may interpret the results of Table III as predicting
a 0P3/2−0S1/2 particle-hole excited state of4He, neglecting
rearrangement effects, at about 34.6/2=17.3 MeV. This is
low compared to the lowest negative-parity excited state in-
volving this configuration at 21.84 MeV of excitation.

We present the radial one-body density distributions for
4He in Fig. 2. One is struck by the apparent large differences
between the mean-field, either SHF or SHF(2), and the
NCSM distributions. Overall, the distributions presented are
similar in shape but appear scaled by an amount indicated by
their rms radii(see Table I). We shall see below that such a
simple scaling does not appear in16O.

One major difference between our mean-field radial dis-
tributions compared with NCSM is due to a spurious center-
of-mass smearing effect present in our mean-field results. We

anticipate that as we proceed to heavier systems, one of our
major goals, this spurious effect will be less significant.

Some differences between SHF and NCSM results are
due to the different model spaces using the 10"V NCSM
effective Hamiltonian derived for4He as depicted in Fig. 1.
Below, we will investigate the significance of different
model spaces using the16O case with a 6"V effective
Hamiltonian derived for the NCSM space.

IV. APPLICATION TO 16O

For 16O, we conduct the NCSM investigations in a 6"V
model space, the largest that is currently feasible for this
nucleus. In them scheme, forM =0 configurations, the
6"Vs8"Vd basis dimensionality is 26,483,625(996,878,170)
for this nucleus. We conduct the SHF calculations in a series
of three model spaces(four shells, five shells, and six shells)
that cover a range of situations both smaller and larger in
certain aspects than the NCSM space. These selections are
compared in Fig. 1.

In the six-shell space, the SHF is missing certain matrix
elements due to the limitations of the NCSM space. This
corresponds to the region where the SHF model space con-
tains two-nucleon excitations beyond the NCSM space.

TABLE II. Selection of occupation probabilities for the ground state of4He. The columns “SHF” and
“NCSM” label the probabilities in the HO basis. Specifically, in the case of the SHF unoccupied orbits, we
quote their expansion probabilities in the HO basis. TheD SHF columns present the second-order perturba-
tive corrections in the SHF basis.

Orbital SHF SHF D SHF D SHF NCSM NCSM

Neutron Proton Neutron Proton Neutron Proton

0S1/2 0.992 0.991 20.050 20.050 0.941 0.940

1S1/2 0.005 0.005 0.002 0.002 0.008 0.008

2S1/2 0.004 0.005 0.000 0.000 0.003 0.003

0P3/2 0.794 0.784 0.007 0.007 0.004 0.004

0P1/2 0.629 0.621 0.014 0.015 0.016 0.016

0D5/2 0.833 0.829 0.000 0.000 0.001 0.001

0D3/2 0.764 0.761 0.002 0.002 0.002 0.002

TABLE III. SHF single-particle energies for the ground state of
4He in a six-shell-model space using"V=22 MeV.

Orbital Neutron Proton

0S1/2 −7.546 −6.610

0P3/2 27.156 28.218

0P1/2 30.409 31.367

0D5/2 40.877 41.855

1S1/2 35.955 36.936

0D3/2 43.003 43.947 FIG. 2. (Color online) One-body radial density distributions ob-
tained in the SHF and NCSM calculations for4He.
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When this occurs in our SHF calculations, theVef f matrix
elements vanish while we do retain the unrenormalized rela-
tive kinetic energy matrix elements.

In Table IV we present the experimental and theoretical
ground state properties for16O. We examine the dependence
of the SHF results on the number of shells included in such
a way as to bracket the division in model space accom-
plished in the corresponding NCSM results as shown in Fig.
1.

The SHF ground state energy is between 7 and 25 MeV
above the NCSM result. When we include the SHF(2) cor-
rections, the differences are altered to a range of 6–32 MeV.
The larger these corrections, the more significant they are as
indicators of possible difficulties with a convergent perturba-
tion theory based on SHF for this nucleus. However, when
viewed on the scale of the total interaction energy, these
concerns are reduced. The second-order correction is
f6.5% ,10.1% ,6.9%g of the total SHF interaction energy
f−481.01,−492.37,−554.61g MeV in the [4–6] shell-model
spaces, respectively. In all these16O cases, the small percent-
age change when including second-order corrections is en-
couraging for our goal of treating heavier systems in SHF(2).

We note from the binding energies in Table IV that the
SHF results are closest to NCSM in the six-shell case while,
with second-order corrections, the four-shell results are clos-
est.

Let us also address the issue of convergence by compar-
ing the size of our second-order corrections in16O with the
perturbative corrections obtained in Ref.[11] using a differ-
ent approach and featuring a realistic smoothed nucleon-
nucleon interaction,Vlow-k [12]. They obtain a second-order
correction that is 17% of their total SHF interaction energy
of −376 MeV and a third-order correction of 8%. We note
that the average of our second-order correctionss7.8%d is

comparable in percentage to their third-order correction.
Table V presents for16O the occupation probabilities for

selected orbitals in the six-shell SHF calculations and com-
pares them with theNmax=6 results of the NCSM. We see
that SHF shows greater mixing in the SHF occupied orbits
than does NCSM which provides a distinctive situation from
that observed above for4He.

The second-order corrections to the SHF occupation prob-
abilities presented in Table V are all small and consistent
with a well-behaved perturbation theory. As a figure of merit,
we note that the total neutron and proton percentage pro-
moted from occupied to unoccupied orbits is about 5% in the
four-shell case while increasing slightly in the five-shell and
six-shell SHF results. Hence, the concern raised above with
the apparent large second-order corrections to the SHF en-
ergy is again reduced.

We present the16O single-particle energies in Table VI for
the four-, five-, and six-shell SHF results. We again cite our
warning about direct comparison between these single-
particle energies and experimental states in odd-mass neigh-
boring nuclei.

First, we note that the Hartree-Fock energy difference for
the neutron orbits, 0D5/2−0P1/2, is s23.6,22.4,24.7d /2
=s11.8,11.2,12.4d MeV in the four-, five-, and six-shell re-
sults, respectively. These values compare favorably with the
experimental neutron 0D5/2-0P1/2 splitting of 11.52 MeV ob-
tained from the binding energy differences of17O and 15O.
Similar results are obtained when comparing the proton SHF
single-particle energies with experimental binding energies
of neighboring odd nuclei after accounting for Coulomb cor-
rections. The proton 0D5/2-0P1/2 splittings are
s23.3,22.4,24.5d /2=s11.7,11.2,12.3dMeV in the four-,
five-, and six-shell results, respectively. The relevant experi-
mental splitting is 11.53 MeV. Thus, the size of the gap be-

TABLE IV. Experimental and calculated observables for the ground state of16O with anNmax=6 effective
Hamiltonian based on the 2000 CD-Bonn[26] and using"V=15 MeV. Experimental and calculated ground
state energy(in MeV) and rms radii(in fm). The (negative) correction for spurious center-of-mass motion
[D spur(c.m.)] is described in the text. For the experimental rms radius, we take the measured charge radius
and correct for the contribution of the proton charge rms radiuss0.8 fmd. SHF results are presented for
four-shell-, five-shell-, and six-shell-model spaces.

Observable four-shell SHF five-shell SHF six-shell SHF NCSM

[Experiment] D SHF D SHF D SHF

D spur(c.m.) D spur(c.m.) D spur(c.m.)

Total Total Total

Eg.s. −107.46 −109.83 −126.00 −132.87

f−127.62g −31.46 −49.88 −38.21

−138.92 −159.71 −164.21

n-rms 2.093 2.071 1.954 2.209

p-rms 2.101 2.080 1.968 2.223

f2.58g
rms 2.097 2.076 1.961 2.216

0.072 0.112 0.117

−0.040 −0.040 −0.042

2.129 2.148 2.036
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tween the occupied and unoccupied SHF states that we find
in 16O is in accord with the known doubly magic character of
this nucleus. We also note that Ref.[11] obtains the corre-
sponding(full ) single-particle energy splitting of 15.6 MeV.

In a similar vein, and with similar caution, we may exam-
ine our spin-orbit splittings. For example, the four-, five-,
and six-shell neutron 0P3/2-0P1/2 splittings of Table VI are
s10.0,10.9,13.9d /2=s5,5.5,7dMeV, respectively, which are
in approximate agreement with the experimental splitting in
15O of 6.2 MeV. We note that Ref.[11] obtains a spin-orbit
splitting of 7.6 MeV for theseP states.

A corresponding comparison of the neutron 0D5/2-0D3/2
splittings yields s9.6,10.4,11.5d /2=s4.8,5.2,5.8dMeV in
comparison with the experimental splitting of 5.1 MeV and
the result of 5.9 MeV in Ref.[11].

In Fig. 3 we present the radial one-body density distribu-
tions for 16O obtained in the NCSM and SHF calculations.
Here we note significant differences between SHF and
NCSM, especially in the central region. It is worth comment-
ing that our SHF results are quite consistent with long-
established results of Brueckner Hartree-Fock[14] and
coupled cluster[30]. In fact our NCSM results are somewhat
closer to the traditional results from density dependent

Hartree-Fock either with phenomenological interactions[31]
or with higher-order Brueckner approaches such as renor-
malized Brueckner Hartree-Fock[15]. Hence, the more sur-
prising result is the NCSM smooth Gaussian-like shape
(solid line). This implies that simple scaling cannot reduce
the differences between SHF and NCSM in the case of16O.

V. CONCLUSIONS AND OUTLOOK

We have compared results obtained with exact diagonal-
ization in large multishell-model spaces(ab initio no-core
shell model) with the approximate results from spherical
Hartree-Fock using realistic effective two-body Hamilto-
nians. Significant differences are obtained and second-order
corrections to SHF bring the SHF into reasonable agreement
with NCSM for 4He and 16O in SHF model spaces “en-
closed” by the NCSM space. By enclosed we refer to the
sketch of model spaces in Fig. 1 where the meaning is clear
from the labeled model spaces.

One recent effort[10], with which we can compare our
results, shows that higher-order corrections to Hartree-Fock
using phenomenological interactions are significantly smaller
than those we obtain here. It is reasonable, in our view, that

TABLE V. Selection of occupation probabilities for the ground state of16O with an Nmax=6 effective
Hamiltonian using"V=15 MeV. The SHF calculations were performed in the six-shell space. The column
SHF and NCSM labels the probabilities in the HO basis. Specifically, in the case of the SHF unoccupied
orbits, we quote their expansion probabilities in the HO basis. TheD SHF labels the second-order perturba-
tive corrections in the SHF basis.

Orbital SHF SHF D SHF D SHF NCSM NCSM

Neutron Proton Neutron Proton Neutron Proton

0S1/2 0.887 0.892 −0.020 −0.019 0.959 0.961

1S1/2 0.102 0.098 0.015 0.014 0.033 0.031

2S1/2 0.012 0.011 0.000 0.000 0.003 0.003

0P3/2 0.843 0.851 −0.041 0.040 0.935 0.939

1P3/2 0.131 0.125 0.006 0.005 0.032 0.029

2P3/2 0.025 0.024 0.002 0.002 0.004 0.004

0P1/2 0.886 0.895 −0.079 −0.079 0.938 0.941

1P1/2 0.087 0.079 0.004 0.004 0.020 0.018

2P1/2 0.027 0.026 0.000 0.000 0.004 0.004

0D5/2 0.955 0.965 0.013 0.013 0.013 0.013

0D3/2 0.978 0.964 0.017 0.019 0.015 0.015

TABLE VI. SHF single-particle energies for the ground state of16O in a four-shell-, five-shell-, and
six-shell-model spaces using"V=15 MeV.

Orbital four-shell four-shell five-shell five-shell six-shell six-shell

Neutron Proton Neutron Proton Neutron Proton

0S1/2 −41.877 −37.402 −44.289 −39.714 −49.101 −44.312

0P3/2 −10.148 −5.893 −10.085 −5.778 −12.334 −7.743

0P1/2 −0.129 4.031 0.852 5.042 1.575 5.997

0D5/2 23.437 27.335 23.277 27.450 26.261 30.537

1S1/2 24.840 28.614 25.037 28.842 28.255 32.075

0D3/2 33.080 36.920 33.650 37.295 37.803 40.991
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the rates of convergence of higher-order corrections to SHF
are different between realistic effective Hamiltonian ap-
proaches and phenomenological interactions.

These phenomenological interactions have been adjusted
within Hartree-Fock to provide a good description of many
experimental observables using the mean-field approxima-
tion. For the NCSM, we now understand that residual differ-
ences between theory and experiment in light nuclei are due
to contributions from effective and real three-body forces.
How possible differences between NCSM theory and experi-
ment will be resolved in heavier systems will require further
investigation.

Another recent effort[11], with which we can also com-
pare our results, shows somewhat larger higher-order correc-
tions to Hartree-Fock using a different realistic effective

Hamiltonian. The resulting mean-field excitation spectra of
16O are rather similar considering the differences in our ap-
proaches. With the caveat that rearrangement corrections are
not included, both approaches give spin-orbit splittings in
rough accord with experiment. Our mean-field rms radii are
somewhat smaller than those of Ref.[11] and smaller than
experiment but our mean-field rms radii approximately agree
with the NCSM results. This raises additional questions re-
garding the different mean-field treatments of the c.m. mo-
tion.

Additional questions worth examining in the future in-
clude making a similar comparison between SHF and NCSM
with effective three-body Hamiltonians including true three-
body forces. It is anticipated that such additional study will
be especially worthwhile if the expected improved agree-
ment between theory and experiment with realistic effective
Hamiltonians is achieved.

We also conclude that investigations of heavier closed
shell nuclei with SHF(2) are now warranted where the
NCSM results are not obtainable in the near future.
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