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The limiting temperatureTlim of a series of nuclei is calculated employing a set of microscopic nuclear
equations of state(EOS’s). It is shown that the value ofTlim is sensitive to the nuclear matter equation of state
used. Comparison with the values extracted in recent phenomenological analysis appears to favor a definite
selection of EOS’s. On the basis of this phenomenological analysis, it therefore seems possible to check the
microscopic calculations of the nuclear EOS at finite temperature, which is hardly accessible through other
experimental information.
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I. INTRODUCTION

The knowledge of the equation of state(EOS) of nuclear
matter at finite temperature is one of the fundamental issues
in nuclear physics. Phenomenological information on the
EOS can be obtained from experimental data on heavy ion
collisions at intermediate energies and astrophysical observa-
tions on supernovae explosions and neutron stars. The
nuclear matter EOS is believed to go through a liquid-gas
phase transition, as many theoretical calculations indicate
[1–4]. However, if this phase transition exists, it does not
possess a direct correspondence in finite nuclei, due to the
presence of the Coulomb and finite size effects. In particular,
the Coulomb interaction is of long range and strong enough
to modify the nature of the phase transition. Instead, it has
been recognized by some authors[5,6], that the nuclear EOS
is related to the maximal temperature a nucleus can sustain
before reaching mechanical instability. This “limiting tem-
perature”Tlim is mainly the maximal temperature at which a
nucleus can be observed.

It has to be stressed that the reaction dynamics can pre-
vent the formation of a true compound nucleus. The onset of
incomplete fusion reactions can mask completely the pos-
sible presence of fusion or nearly fusion processes. At higher
energies, the heavy ion reaction can be fast enough so that no
(nearly) thermodynamical equilibrium can be reached, as de-
manded in a genuine standard fusion-evaporation reaction.
However, combined theoretical and experimental analysis[7]
indicates that a nearly equilibrium condition is reached in
properly selected multifragmentation heavy ion reactions at
intermediate energy. The main experimental observation is
the presence of a plateau in the so-called “caloric curve,” i.e.,
in the plot of temperature vs total excitation energy[8–11].
This behavior was qualitatively predicted by the Copenhagen
statistical model[12] of nuclear multifragmentation. The re-
lation between multifragmentation processes and the nuclear
EOS was extensively studied by several authors within the
statistical approach to heavy ion reaction at intermediate en-
ergy [13–19].

In different experiments, various methods are used to ex-

tract from the data the values of the temperature of the
source which produces the observed fragments, but a careful
analysis of the data[7] seems to indicate a satisfactory con-
sistency of the results. In Refs.[7,20] an extensive set of
experimental data was analyzed and it was shown that the
temperature at which the plateau starts decreases with in-
creasing mass of the residual nucleus which is supposed to
undergo fragmentation. Both the values and the decreasing
trend of this temperature turn out to be consistent with its
interpretation as limiting temperatureTlim. According to this
interpretation, at increasing excitation energy the point where
the temperature plot deviates from Fermi gas behavior and
the starting point of the plateau mark the critical point for
mechanical instability and the onset of the multifragmenta-
tion regime. The corresponding value of the critical tempera-
ture can be calculated within the droplet model, and indeed
many estimates based on Skyrme forces are in fairly good
agreements with the values extracted from phenomenology
[7,6]. Moreover, the relation between nuclear matter critical
temperatureTc andTlim appears to be quite stable and inde-
pendent of the particular EOS and method used, which al-
lows us[20] to estimateTc from the set of values ofTlim.

In general, one can expect thatTlim is substantially smaller
than the critical one,Tc. In fact, both the Coulomb repulsion
and the lowering of the surface tension with increasing tem-
perature tend to destabilize the nucleus with respect to infi-
nite nuclear matter. Since the surface tension goes to zero at
the critical temperature,Tlim is reached much beforeTc.
These predictions were checked in the seminal paper of Ref.
[5], as well as in further studies based on macroscopic
Skyrme forces[6], for which a simple relationship was es-
tablished betweenTlim and Tc. In Ref. [21] it was shown,
however, that if microscopic EOS’s are used, the relationship
betweenTlim andTc is not so simple and systematic as in the
case of Skyrme force EOS, and only a qualitative connection
exists.

In this paper we consider the finite temperature EOS in
the framework of microscopic nonrelativistic and relativistic
many-body theory of nuclear matter and the corresponding
critical temperature. Then the limiting temperature for finite
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nuclei is calculated on the basis of the corresponding EOS.
The comparison with phenomenology shows the sensitivity
of Tlim to the microscopic EOS. These results open the pos-
sibility of a direct check of the microscopic theory of the
nuclear matter EOS. Indeed, all the considered microscopic
EOS’s reproduce the empirical saturation point, but their be-
havior at finite temperature can be quite different.

II. THE MICROSCOPIC EOS

Microscopic calculations of the nuclear EOS at finite tem-
perature are quite few. The variational calculation by Fried-
man and Pandharipande[1] was one of the first few semim-
icroscopic investigation of the finite temperature EOS. The
results predict a liquid-gas phase transition, with a critical
temperatureTc=18–20 MeV. Later, Brueckner calculations
at finite temperature[2] confirmed these findings with very
similar values ofTc.

The Van der Waals behavior, which leads to the liquid-gas
phase transition, was also found in the finite temperature
relativistic Dirac-Brueckner(DB) calculations of Refs.[3,4].
A liquid-gas phase transition was clearly observed, but at a
much lower value,Tc<10 MeV. It seems unlikely that such
lower critical temperature can be attributed to relativistic ef-
fects, since the critical density is a fraction of the saturation
one, where relativistic effects are expected to play no role. It
is more likely that this lower value ofTc is due to the smaller
value of the effective mass, and we will present evidence of
that later.

More recently, chiral perturbation theory at finite tempera-
ture was used[22] to calculate the nuclear matter EOS, up to
three-loop level of approximation. The theory is a low den-
sity expansion, and it appears appropriate to study the critical
point, where the density is a fraction of the saturation den-
sity. Again a Van der Waals behavior was found, with a criti-
cal temperatureTc<25 MeV.

This set of nuclear matter EOS can be considered repre-
sentative of the possible predictions from microscopic many-
body theory. Here in the sequel of this section we will recall
briefly the nonrelativistic Bloch and De Dominicis formal-
ism, used in our calculations, which is an extension to finite
temperature of the Bethe-Brueckner-Goldstone(BBG) ex-
pansion. The formalism used in Dirac-Brueckner calcula-
tions at finite temperature is formally very similar, as we will
discuss later. For the chiral perturbation the formalism is of
course quite different, and we refer the reader to the original
paper[22].

The finite temperature Bloch and De Dominicis linked
diagram expansion is based on the grand-canonical represen-
tation and has the property to lead, in the zero temperature
limit, to the BBG expansion of the ground state energy. The
grand-canonical potential per particlev is written as the sum
of the unperturbed potentialv08 and a correlation termDv,

v = v08 + Dv s1d

corresponding to the one-body grand-canonical potential,
and a power series expansion in the interactionH1 involving
connected diagrams only, respectively. The unperturbed po-
tential is defined by

v08 = v0 − o
k

Uknskd, s2d

with nskd the finite temperature Fermi distribution,v0 the
grand-canonical potential of the independent particle Hamil-
tonianH08, and the summation over the single particle poten-
tial Uk represents the first potential insertion diagramf2g.
Therefore,v08 includes all one-body contributions and its ex-
plicit form reads

v08 = −
2

p2E
0

+`

k2dkF 1

b
lns1 + e−bsekmdd + UskdnskdG , s3d

m being the chemical potential, and

Dv =
2

s2pd3 o
lSJT

Ĵ2T̂2E dqE P2dPe−bsĒPq−2md

3 dsq,PdarctanFpfqluKSJTsĒPqduqlgq2Q̄sq,Pd
dsq,Pd

G ,

s4d

where the density of stated is given by

dsq,Pd = U ] ĒqP

] q
U = U2"2q

m
+

]

] q
ŪqPU . s5d

The two-particle energyĒqP, the Pauli operatorQ̄qP, and

the potential felt by two particles,ŪqP, are all angle averaged
quantities[2]. These angular averaging is expected to be ac-
curate, allowing us to make the contribution of different
channels additive, since then, only the diagonal part of the
finite temperature scattering matrixK contributes. The quan-

tum numberslSJT specify the two-body channel andÂ
=Î2A+1.

The single particle potential and the two-body scattering
matrix K satisfy the self-consistent equations

Usk1d = o
st

o
k2

kk1k2uKsvduk1k2lAnsk2d s6d

and

kk1k2uKsvduk3k4l = kk1k2uvuk3k4l + o
k38k48

kk1k2uvuk38k48l

3
n.sk38dn.sk48d

v − e
kk38k48uKsvduk3k4l. s7d

In Eq. s4d

kk1k2uKsvduk3k4l

= fn.sk1dn.sk2dn.sk3dn.sk4dg1/2kk1k2uKsvduk3k4l.

s8d

In all the previous equationsv=Ek1
+Ek2

, e=Ek38
+Ek48

, with
Ek="2k2/2m+Uk. Equations7d coincides with the Brueckner
equation for the BruecknerG matrix at zero temperature, if
the single particle occupation numbernskd is taken atT=0.
At finite temperaturenskd is a Fermi distribution. In Eqs.s7d
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and s8d n.skd=1−nskd. It has to be noticed that only the
principal part has to be considered in the integration, thus
makingK a real matrix.

Equations(6) and (7) have to be solved self-consistently
for the single particle potential. For a given density and tem-
perature we solve the self-consistent equations along with
Eq. (9) for the chemical potentialm̃,

r = o
k

nskd = o
k

1

ebsEk−m̃d + 1
. s9d

Then we obtain the grand-canonical potentialv from Eq.s4d.
Finally we extract the free energy per particlef from the
relation

f = vr + m̃. s10d

The pressurep is calculated performing a numerical deriva-
tive of f, i.e., p=r2] f /]r. Notice that the chemical potential
m̃ extracted from Eq.s9d does not coincide with the exact
thermodynamical chemical potentialm given by

m =
] F

] N
= f + rS ] f

] r
D , s11d

which is the one actually adopted, in order to satisfy the
Hugenholtz–Van Hove theoremf2g.

It turns out that[2] the dominant diagrams in the expan-
sion are the ones that correspond to the zero temperature
BBG diagrams, where the temperature is introduced in the
occupation numbers only, represented by Fermi distributions,
thus justifying this commonly used procedure of naively in-
troducing the temperature effect.

The same prescription has been used in Dirac-Brueckner
calculations. The formalism is therefore in principle very
similar.

III. THE LIMITING TEMPERATURE OF FINITE NUCLEI

Following Ref.[5] the limiting temperature can be evalu-
ated within the liquid drop model, which should be accurate
enough for medium-heavy nuclei. The nucleus is described
in terms of a droplet surrounded by a vapor, in thermal and
mechanical equilibrium. In the model one adds to the droplet
pressure and chemical potential the contributions due to the
Coulomb force and surface tension, which are evaluated as-
suming a spherical droplet. These additional terms read

dP = PC + PS= SZ2e2

5A
r − 2asTdDYR,

s12d

dm =
6Z2e2

5AR
,

whereR is the droplet radius,R=s3A/4prd1/3, r is the drop-
let density, andasTd=a0s1+ 3

2T/Tcds1−T/Tcd3/2, with Tc

=20 MeV the nuclear matter critical temperature and the sur-
face tension at zero temperaturea0=1.14 MeV fm−2, ob-
tained from the semiempirical mass formula. The Coulomb
interaction introduces an additional positive pressurePC and
a repulsive contribution to the bulk chemical potentialm,

while the surface tension provides an additional negative
pressure term which tends to stabilize the system. At increas-
ing temperature the surface tension decreases and the system
becomes unstable against Coulomb dissociation. The sim-
plest way to observe the modifications introduced by these
terms is to consider the plot of the chemical potential as a
function of pressure, both for nuclear matter and for the
droplet model.

The intersection between the liquid and the vapor
branches defines the coexistence point in nuclear matter. The
additional terms will only shift the liquid branch, since the
vapor is assumed to be uniform and uncharged, leading to a
new coexistence point.

This procedure was followed for the set of nuclear matter
EOS discussed in the preceding section. At the lowest den-
sities in the vapor region, needed in the calculations, the
microscopic EOS was extended following Ref.[2].

IV. RESULTS AND DISCUSSION

To illustrate the procedure followed in the microscopic
calculations of EOS andTlim in the framework of many-body
theory, the nuclear matter free energy is reported in Fig. 1(a)
as a function of density for various temperatures in the case
of the Bonn B potential[23]. The points indicate the actual
microscopic calculations and the full lines the corresponding
polynomial fits. The figure illustrates the precision and sta-
bility of the numerical procedure. The three-body force, dis-
cussed in Ref.[2], was included with adjusted parameters to
reproduce the correct saturation point. From the free energy,
by numerical derivative, one gets the pressure depicted in
Fig. 1(b). The critical temperature for the liquid-gas phase
transition is the lowest temperature for which the isotherm is
monotonic and the critical point is the corresponding inflex-
ion point on the isotherm. From Fig. 1(b) the critical tem-
perature appears to be aroundTc<18 MeV, slightly below
the value obtained in Ref.[2] for the Argonnev14 potential
[24] sTc<20 MeVd. This shows that there is some sensitivity
of Tc on theNN interaction. It has to be stressed that the two
EOS’s have very close saturation points.

As is well known, the Dirac-Brueckner approach gives in
general a better saturation point than the conventional
Brueckner calculations(without three-body force). It has
been shown that this is mainly due to the modification of the
nucleon Dirac spinor inside nuclear matter, which can be
described by the contribution of the so-calledZ diagram
[25], corresponding to the virtual creation of a nucleon-
antinucleon pair. TheZ diagram can be viewed as a particu-
lar three-body force, which is repulsive at all densities. The
density dependence of this contribution was studied in Ref.
[25] and was found to be of the typeDe=Cr8/3, with the
coefficientC depending on theNN interaction. In Ref.[23] it
was found that such a term can account very precisely for the
difference between the Dirac-Brueckner calculation and the
corresponding nonrelativistic Brueckner one.

Finite temperature Dirac-Brueckner calculations are quite
few in the literature[3,4]. Furthermore, for our analysis we
need the free energy as a function of density at small steps of
the temperature. Fortunately it is possible to estimate accu-

THE LIMITING TEMPERATURE OF HOT NUCLEI FROM… PHYSICAL REVIEW C 69, 034321(2004)

034321-3



rately the temperature dependence of the free energy at a
given density by a simplified procedure, avoiding the com-
plexity of the full finite temperature Dirac-Brueckner calcu-
lations. Once the zero temperature EOS is known, we as-
sume that the free energy atTÞ0 can be obtained by
including the variations of both entropy and internal energy
of a free Fermi gas with the value of the effective mass(at
k=kF) equal to the one calculated at the same density and at
T=0. In this way one neglects the variation with temperature
of the effective mass and of the interaction energy. Both
these variations turn out to be small at the Brueckner level
[2], and indeed the same procedure applied to nonrelativistic
Brueckner calculations give excellent agreement with the full
calculations[2].

We applied this procedure to the EOS of Ref.[3], by
fitting the Dirac-Brueckner EOS atT=0 and calculating the
free energy at finite temperature from the corresponding ef-

fective mass. At variance with the previous calculations of
Ref. [2], we preferred here to fit directly the EOS at zero
temperature instead of applying the relativistic correction
due toZ diagram mentioned above. This should avoid any
possible bias from theNN interaction. In any case, the final
results are quite similar to the previous calculations. We
found a critical temperatureTc<12 MeV, in comparison
with the value of 10 MeV reported in Ref.[3]. This reason-
able agreement is a further check of the simplified procedure
adopted. Since the limiting temperatureTlim is expected to be
a small fraction of the critical temperatureTc, the error in-
troduced by the simplified procedure can be considered small
enough for an accurate treatment of the Dirac-Brueckner
case.

In DB calculations the single particle energyEk is written
as [23]

Ek = ÎM*2 + k2 + UV, M* = M + US, s13d

where US and UV are the scalar and vector single particle
potentials, respectively. In the nonrelativistic limit the square
root is expanded in power ofk/M* . If one neglects the mo-
mentum dependence of the scalar and vector potentials,M*

can be identified with the nonrelativistic effective mass to be
used in the finite temperature calculations for the Fermi gas
model. In the region of the liquid-gas phase transition the
nonrelativistic expansion is fully justified. This is equivalent
to a parabolic approximation for the single particle energy.
This procedure results in values of the effective mass which
are substantially smaller than in the conventional nonrelativ-
istic Brueckner calculationsf23g, where no parabolic ap-
proximation for the single particle potential is usedf26g.

For the EOS calculated within chiral perturbation theory,
all the expressions are semianalytical and the whole proce-
dure is much simpler.

Plots of the chemical potential as a function of pressure
for nuclear matter are reported in Fig. 2. The intersection
between the liquid and the vapor branches defines the coex-

FIG. 2. Chemical potential vs pressure for the Bonn potential
from the Brueckner-Hartree-Fock calculations of Figs. 1(a) and 1(b)
(full line) at a given temperature. The dotted line indicates the cor-
responding plot for the nucleus208Pb. At this temperature the
nucleus starts to be unstable, see the text for details.

FIG. 1. (a) Free energy per particle as a function of Fermi mo-
mentum at different temperatures for the Bonn potential. From top
to bottom the different curves correspond to temperaturesT
=2,8,12,16,20,24,28 MeV. Thepoints represent the results of the
Brueckner-Hartree-Fock calculations at finite temperature and, the
curves are the corresponding polynomial fits.(b) Isotherms of pres-
sure vs Fermi momentum corresponding to the free energy plots of
(a). The sequence of temperatures is the same as in 1a(from bottom
to top).
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istence point in nuclear matter. Increasing the temperature,
the curve shrinks and should collapse to a point atTc, which
can be thus determined in this way. The values extracted
along this procedure is in good agreement with the values
obtained from the plot of pressure vs density, Fig. 1(b). This
illustrates the consistency and precision of the numerical
procedure.

For the droplet model, including the corrections of Eq.
(12), the new liquid branch, indicated by the dashed lines in
Fig. 2, shows a shift with respect to nuclear matter. At low
enough temperature an intersection between the liquid and
vapor branches still occurs, which corresponds to the coex-
istence point between the liquid droplet and the nuclear mat-
ter vapor and assures that the droplet is stable. Increasing the
temperature, the curve shrinks, and well belowTc it is pos-
sible to find a temperature for which the intersection between
the liquid droplet and the vapor branches just disappears, as
indeed reported in Fig. 2. This determinesTlim.

The droplet-vapor coexistent point, and consequentlyTlim,
depends on the mass and charge of the system.

Figure 3 summarizes the results of the calculations, in
comparison with the data obtained from the phenomenologi-
cal analysis[7,20]. For completeness and for sake of com-
parison, also the results for theAv14 potential of Ref.[2] is
reported. The calculated values of the limiting temperature
Tlim, for the considered set of microscopic nuclear matter
EOS, show an overall trend which clearly reflect the corre-

sponding trend for the critical temperatureTc of each EOS.
Smaller values ofTc result in a smaller value ofTlim.

The ratio betweenTlim andTc for Skyrme forces was ex-
tensively studied in Ref.[20]. It was found that this ratio is
close to 1/3 with a small dispersion. The microscopic EOS’s
analyzed in Fig. 3 give values which follow closely this
value, except the Dirac-Brueckner case, which gives a value
closer to 1/4. This could be attributed to the approximate
procedure we used for this EOS, but in any case a value of
1/3 would not alter the trend reported in Fig. 3.

More importantly, the comparison of the values ofTlim
from microscopic EOS with the phenomenological values
emphasizes the sensitivity ofTlim to the EOS. This compari-
son appears as a crucial test for any microscopic EOS. The
EOS from Ref.[22], as noticed by the authors, produces a
too large value of the nucleon effective mass, and this is
probably the reason of the too high value ofTc. In fact, a
large effective mass reduces the increase with temperature of
the kinetic energy and therefore of the free energy.

On the contrary, the DB results seem to indicate that the
corresponding EOS has a too smallTc. Notice that this would
be very difficult to verify with other phenomenological
analyses. The reason for such a small value ofTc, and there-
fore of a too small value ofTlim, can be attributed again to
the value of the effective mass, which is smaller than in the
nonrelativistic case. However, other characteristics of the
EOS could play a role, such as the values of the chemical
potential or of the compressibility at low density(i.e., in the
gas phase).

The nonrelativistic BHF results appear to agree quite
closely with the phenomenological values. Some dependence
on the NN interaction is present, but this uncertainty is
within the phenomenological uncertainty. Therefore, phe-
nomenology appears to favor this set of EOS. These results
also support the interpretation ofTlim as the temperature for
the mechanical instability and the onset of the multifragmen-
tation regime.
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